
Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.3, June 2025, pp. 883~896

e-ISSN: 2548-6861 883

http://jurnal.polibatam.ac.id/index.php/JAIC

Integrating the CNN Model with the Web for Indonesian Sign Language

(BISINDO) Recognition

Enisda Libra Kelana 1*, Muhammad Riko Anshori Prasetya 2*, Mambang 3*, Muhammad Zulfadhilah 4*
* Informatics, Universitas Sari Mulia

enisdalibra23@gmail.com1, riko.anshori@gmail.com2, mambang@unism.ac.id3 , zulfadhilah@unism.ac.id4

Article Info ABSTRACT

Article history:

Received 2025-03-26

Revised 2025-06-14

Accepted 2025-06-17

 Effective communication is challenging for deaf individuals in Indonesia, most of

whom use Indonesian Sign Language (BISINDO). Sign Language Recognition

(SLR) can bridge this communication gap. While Convolutional Neural Networks

(CNNs) show high potential for SLR, their practical accessibility remains limited.

This research aims to develop a CNN architecture for recognizing BISINDO

alphabet signs from static images (still images) and integrate it into an accessible

web platform. Using a static vision-based approach, a CNN model was trained on a

public dataset (312 images, 26 classes) following standard pre-processing including
data augmentation. The model was subsequently integrated into a web interface

using Python and the Gradio library. Results demonstrated strong model

performance, with validation accuracy reaching 97.44% and a macro-average F1-

score of approximately 97.12%. However, classification challenges were identified

for visually similar signs ('M' and 'N'). The resulting integrated web application

proved functional, exhibited low prediction latency, and showed cross-platform

compatibility. This study successfully demonstrates the development of an accurate

DL model for static BISINDO alphabet recognition and its practical implementation

via a web platform. This contributes to reducing the accessibility gap in SLR

technology. Future research is recommended to utilize larger, more varied datasets

and explore dynamic sign recognition.

Keyword:

Deep Learning,

Indonesian Sign Language,

Sign Language Recognition,
Web.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Communication is an important aspect of social life.

Through communication individuals can interact with the

surrounding environment, convey ideas, and obtain education

[1]. However, there are individuals who have limitations in

communicating verbally due to hearing or speech impairment

they are deaf - speech impaired [2], [3]. The Population

Census conducted in 2020 showed that 1.43% of Indonesia's

population were people with disabilities, with 0.36% having
hearing impairments and 0.35% having speech impairments

[4].

Sign language is a language used by people with deaf-

speech disabilities to communicate. In Indonesia there are two

sign languages: The Indonesian Sign Language System (SIBI)

and Indonesian Sign Language (BISINDO). SIBI is a

standardized system developed by the Indonesian government

and adapted from American Sign Language (ASL) [5]. In

contrast, BISINDO emerged naturally and serves as the

primary language for the majority of Deaf individuals in
Indonesia [6]. Research shows that only 9% of people with

disabilities use SIBI and 91% use BISINDO [7].

Sign Language Recognition (SLR) is a method that aims to

facilitate communication between deaf and hearing

individuals. The field of research focuses on the automatic

identification of signs within specific sign languages and their

subsequent translation into formats such as text or speech,

thereby rendering the signed communication accessible to

non-signers [8], [9].

Sign Language Recognition generally uses two

approaches, which are vision-based approach and sensor-

based approach. In the sensor-based approach, sensor devices
are attached to the body to capture the position and movement

of hands, fingers and other body parts. These sensors will

mailto:enisdalibra23@gmail.com
mailto:riko.anshori@gmail.com
mailto:mambang@unism.ac.id
mailto:zulfadhilah@unism.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

884

generate signals that are then processed for Sign Language

recognition [8], [9], [10]. This sensor-based approach has the

disadvantage that sensor devices are expensive [10].

Meanwhile, the vision-based approach takes hand gesture

images as input and converts them into text or voice. This

vision-based approach can utilize the Traditional Machine

Learning approach and Deep Learning (DL) approach.

Traditional approaches use Hidden Markov Models (HMM)

and Support Vector Machines (SVM), while non-traditional
approaches utilize Deep Learning such as Convolutional

Neural Networks (CNN) and Long Short-Term Memory

(LSTM) [7], [8], [10], [11], [12]. Deep Learning is a subfield

of Artificial Intelligence that focuses on learning the

representation of data by utilizing artificial neural networks

inspired by the structure and function of the human brain, DL

has many layers of processing [13].

Vision-based approaches to sign language recognition can

be classified into static and dynamic methods, depending on

the type of visual input analyzed [9]. Static approaches

emphasize the extraction of pertinent spatial characteristics
from static images of isolated signs, such as alphabets, and

generally utilize two-dimensional convolutional neural

network (CNN) architectures. Conversely, dynamic

approaches process video sequences to simultaneously

capture spatial and temporal information, including motion

and transitions between signs [13]. This capability is essential

for continuous sign language recognition (CSLR) tasks.

Consequently, dynamic methods often necessitate more

complex architectures and tend to require greater

computational resources [13].

This research employs a vision-based sign language

recognition approach to identify static signs corresponding to
the BISINDO alphabet. The selection of this methodology

was driven by its accessibility and its independence from

costly, specialized hardware or substantial computational

resources. The implementation of this vision-based

recognition offers significant practical advantages, as it can

be readily utilized with standard camera devices integrated

into smartphones or laptops [9].

Vision-based approaches employing Deep Learning (DL)

techniques, such as Convolutional Neural Networks (CNN),

have demonstrated promising accuracy in recognizing

Indonesian Sign Language [7], [11], [14], [15], [16], [17].
However, the real-world application of these models remains

significantly limited, hindering their broader accessibility and

use [8], [10]. Therefore, the objective of this research is to

address this limitation by integrating a developed DL model

into a web-based sign language recognition platform,

specifically designed with an emphasis on practicality and

user-friendliness.

II. METHOD

A. Research Pipeline

This study employs a quantitative approach to identify

static hand gestures associated with Indonesian Sign

Language (BISINDO), utilizing a deep learning (DL) model

and integrating it into a web-based interface. The research was

conducted by following the flow in Figure 1, which began

with conducting a literature study of related research articles

both national and international articles. After conducting a

literature study of various sources, the researcher continued

by determining the research topic, determining this topic after

carefully reading the existing literature. At this stage the

researcher determines the topic of Sign Language

Recognition. The problem formulation stage is done by
asking questions related to what solutions can be done to the

problems encountered in the topic being studied. Data

collection is a stage where researchers collect related data, this

involves finding appropriate data, downloading, and pre-

processing before being given to the model for the training

stage. The next stage is model building and model evaluation.

The choice of DL architecture to be used is closely related to

the type of data used. This research will use CNN because of

its ability to recognize patterns in images by maintaining the

relationship between pixels in the image. Models that have

been trained using data will be evaluated to ensure the
prediction results provided by quality models. Web design

stages include system design, web interface design.

Integrating the model with the web is the stage of

implementing the model with the web. The last stage is report

writing, at this stage all experimental results are written

systematically. The flow of research conducted can be seen in

Figure 1.

Figure 1. Research Process

As shown in Figure 1, this research was conducted step by

step in a sequential manner from literature review to report

writing. The process is depicted from top to bottom.

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

885

B. Data Collection

This study utilizes secondary data, specifically comprising
open-source images of hand gestures representing the

Indonesian Sign Language (BISINDO). The data selection

criteria applied in this research are detailed in Table 1.

TABLE I

DATA SELECTION CRITERIA

Criterion Specification

Data Type Open-source image data

Data Source Kaggle or UCI Dataset

Data Format Images (JPG, PNG)

Sign Language System BISINDO (Indonesian Sign
Language)

Minimum Resolution 200 x 200 pixels

The data search process will be modified to align with the

data criteria specified in Table 1. This search will be

conducted within the Kaggle and UCI open-source data

repositories. The process of data search is shown in Figure 2.

Figure 2. Data Collection Process

The data collection process, as illustrated in Figure 2,

included search initiation, keyword refinement, and dataset

downloading.

1) The initiation of the search process: Querying open-

source data websites using the keyword "BISINDO

dataset". The Kaggle and UCI databases were selected

due to their provision of straightforward access to a wide

array of relevant and contemporaneous open-source

datasets.

2) The refinement of the keywords: This is a necessary step

when the initial keywords are not matching any relevant

datasets.

3) Dataset downloading: Matched datasets are then
downloaded for further processing.

During the searching process, one dataset was found that

was relevant to the required data criteria. This data was

obtained from the Kaggle repository under the title

Indonesian Sign Language (BISINDO) Alphabets, created by

Achmad Noer. The dataset contains a total of 312 images, and

consists of 26 classes corresponding to the alphabet (A-Z),

with each class containing 12 BISINDO alphabet images [18].

The sample BISINDO alphabet dataset can be seen in

Figure 3. In Figure the hand gestures of the letters A, B, C, D,

E and F in BISINDO are shown.

Figure 3. Sample images from the Indonesian Sign Language dataset for the

letters A, B, C, D, E, and F.

The comprehensive information regarding the Indonesian

Sign Language (BISINDO) Alphabets Dataset is shown in
Table 2.

TABLE II

DATASET INFORMATION

Feature Description

Data Type Images

Format JPEG (.jpg)

Colour Space RGB

Dimensions (pixels) 512×512

Number of Classes 26

Label A, B, C, ..., Z

Images per Class 12

Total Number of Images 312

Is there a class imbalance? No

C. Pre-processing

The downloaded data will be adjusted to the appropriate

size and format before being input into the model. This stage

is termed pre-processing [10]. This pre-processing stage
involves several key steps, including the splitting of the data

into training and validation sets, encoding, and augmentation.

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

886

1) Data Splitting: As illustrated in Figure 4,

modifications to the directory structure occur during the data

splitting phase of pre-processing. The left panel, designated

as "Before Data Splitting," illustrates the initial structure of

the dataset, where all image data resides in a single data

directory, categorized into classes (schematically represented

as directories A through Z). The right panel ("After Data

Splitting") illustrates the outcome of the aforementioned

partitioning. The original data directory is divided into two
distinct subsets: a training set (train) and a validation set (val).

Notably, the original class structure (A through Z) is

maintained within both the training and validation sets,

making sure that each subset contains examples from all

classes. The dataset utilized in this study comprises 312

images, equally distributed across 26 distinct sign language

classes, resulting in 12 samples per class.

Figure 4. Data Splitting

Standard percentage-based data splitting methods (e.g.,

80% training, 20% validation) were deemed potentially

suboptimal due to the limited number of samples per class
[19]. Such methods could lead to significant class imbalance

or even zero representation for some classes in the validation

set. To mitigate this issue and ensure robust evaluation across

all categories, a specific data partitioning strategy was

adopted. Instead of a conventional percentage ratio, a fixed

number of samples—specifically, 3 images (designated as

support) from each of the 26 classes—were allocated to

constitute the validation set. This allocation resulted in a

validation set containing 78 images (3 samples/class × 26

classes) and a training set comprising the remaining 234

images, effectively yielding a 75% training and 25%

validation split ratio. This method guarantees balanced class
representation within the validation set, thereby providing a

more reliable basis for evaluating the model's generalization

performance across all classes.

2) Label Encoding: Label encoding was performed

because deep learning models generally operate more

effectively with numerical data compared to categorical

inputs. Figure 5 illustrates this label encoding process, a

prerequisite step in preparing the dataset for deep learning.

The dataset, located within the main data directory, is

organized into a training set ('train') and a validation set ('val').

Categorical class labels, initially represented by folder names

corresponding to letters ("A", "B", "C" through "Z"), were

systematically mapped to numerical identifiers.

Consequently, as depicted, each class is now represented by a
numerically labelled subdirectory (ranging from 01 to 26)

within both the 'train' and 'val' folders.

Figure 5. Label Encoding

This numerical representation is crucial for enabling the

deep learning model to effectively process and learn from the

class distinctions during the training and evaluation phases.

3) Data Augmentation: Data augmentation was
implemented to address the challenge of limited data

availability by synthetically expanding the dataset from

existing images. Data augmentation is a widely employed

technique in deep learning and computer vision, leveraged to

enhance model performance and generalization capabilities

[20]. This approach involves increasing the diversity of the

training dataset by applying various transformations, such as

image rotation, to the existing data. The specific

augmentation techniques and parameters utilized in this study

are detailed in Table 3 Augmentation Parameters.

TABLE III

AUGMENTATION PARAMETERS

Parameter Value Description

rescale 1./255 Rescales pixel intensity values
from the [0, 255] range to the [0, 1]
range by multiplying with the
specified factor (1/255).

rotation 10 Randomly rotates images by an
angle selected uniformly from the
range [-10, +10] degrees.

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

887

width_shift 0.2 Randomly shifts images
horizontally by a fraction of the
total width, selected uniformly

from the range [-0.2 * width, +0.2
* width].

heigh_shift 0.1 Randomly shifts images vertically
by a fraction of the total height,
selected uniformly from the range
[-0.1 * height, +0.1 * height].

zoom_range [0.8,
1.2]

Randomly applies zoom to the
image by selecting a zoom factor
uniformly from the specified range.
A factor < 1 zooms in, > 1 zooms
out. E.g., ̀ [0.8, 1.2]` corresponds to
zooming in/out by up to 20%.

brightness_r
ange

[0.8,
1.2]

Randomly adjusts image
brightness by picking a brightness

shift factor uniformly from the
specified range `[lower, upper]`.
E.g., `[0.8, 1.2]` modifies
brightness between 80% and
120%.

color_shift_
range

10.0 Randomly shifts color channel
values (e.g., R, G, B) by adding an
intensity value selected uniformly

from the range [-10.0, +10.0].

Table 3 illustrates the application of data augmentation to

a sample BISINDO representing the letter 'A'. This process

involves a series of geometric and photometric

transformations designed to artificially enrich the training
dataset, thereby enhancing the robustness and generalization

capability of the classification model when faced with input

variations

Figure 6. Results of the image augmentation process

As illustrated in Figure 6, the applied transformations
encompass a diverse set of modifications. Specifically, the

augmentation techniques employed include zoom, width

shift, height shift, rotation, shear, brightness shift, and channel

shift. The specific parameters that govern the degree and

range of each transformation, which yielded the augmented

data samples displayed, are defined by the values specified in

Table 3. The selection of these augmentation parameters and

value ranges was not arbitrary, but was determined through a

series of empirical trials. These trials aimed to identify the

optimal configuration for effectively simulating real-world

variability without introducing excessive distortion to the

original gesture data.

D. Deep Learning Model Building

The development process for the Deep Learning (DL)

model encompasses several key stages: architecture

definition, model training, performance evaluation, and

subsequent saving of the trained model. Architecture

definition constitutes the initial and fundamental phase.

During this phase, the network configuration is specified,

including the number of layers, the quantity of units within

each layer, and the filter sizes to be employed, particularly for
the feature extraction task from image data. Table 4 provides

detailed specifications of the layers and their corresponding

parameters utilized in this study for this image feature

extraction purpose.

TABEL IV

MODEL PARAMETERS

Layer Output Shape Param

conv2d (None, 254, 254, 16) 448

max_pooling2d (None, 127, 127, 16) 0

conv2d_1 (None, 125, 125, 32) 4640

max_pooling2d_1 (None, 62, 62, 32) 0

conv2d_2 (None, 60, 60, 64) 18496

max_pooling2d_2 (None, 30, 30, 64) 0

conv2d_3 (None, 28, 28, 128) 73856

max_pooling2d_3 (None, 14, 14, 128) 0

conv2d_4 (None, 12, 12, 256) 295168

max_pooling2d_4 (None, 6, 6, 256) 0

conv2d_5 (None, 2, 2, 512) 3277312

max_pooling2d_5 (None, 1, 1, 512) 0

flatten (None, 512) 0

dropout (None, 512) 0

dense (None, 512) 262656

dense_1 (None, 256) 131328

dense_1 (None, 26) 6,682

After the architecture is defined, the model compilation

step is performed. This stage involves the selection of the loss

function, the optimization algorithm (optimizer), and the

evaluation metrics to be monitored during the ensuing

training phase. The specific parameters employed for model

compilation and training are detailed in Table V.

TABLE V

TRAINING PARAMETERS

Parameter Value

Input Shape 256*256

Batch Size 64

Optimizer RMSprop

Learning Rate 0.001 (default)

Loss Categorical Crossentropy

Epoch 200

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

888

During the training stage, the model learns to map patterns

in hand gesture images to their corresponding alphabet labels

within the dataset. This training was conducted using Google

Colab, leveraging T4 GPU acceleration.

Subsequent to the training stage, the model undergoes a

stage of evaluation in which its performance is assessed. In

this phase, the trained model is evaluated on previously

unseen hand gesture images (i.e., the validation set) to

ascertain its capacity to generalize and accurately recognize
signs.

Finally, the model saving stage involves storing the

evaluated model for subsequent integration into the sign

language recognition web application. This process involves

the storage of the model's architecture, compilation

parameters, and learned weights in the HDF5 (.h5) file format.

E. BISINDO recognition web design

The web design stage includes system design which aims

to describe how user interactions with the model through the
web and web interface design.

1) Use case diagram: The description of the interaction

between the user and the DL model through the web is

described through the UML use case diagram and can be seen

in Figure 7 system Design Using Use case Diagram.

Figure 7. System Design Using Use Case Diagram

2) User Interface Design: After the design of the

interaction between the user and the model through the web

is finalized, proceed to the next stage, namely the design of

the Indonesian Sign Language Recognition web interface as

can be seen in Figure 8.

Figure 8. Design of BISINDO Recognition Web Page

3) Functional Description of User Interface

Components: The user interface (UI) is used as the primary

medium through which users interact with the Indonesian

Sign Language (BISINDO) recognition web application. To

ensure effective navigation of the system and utilization of its

sign recognition capabilities, it is imperative that users

possess a comprehensive understanding of the function of

each button, display area, and input element. Consequently,

this section provides functional details for these UI elements.
Table 6 below systematically presents comprehensive

information on each web interface component, outlining its

specific function and purpose within the application

workflow.

Following the finalization of the web interface design, the

study proceeded to the crucial subsequent phase: the

integration of the previously developed deep learning model

into the web environment. This integration was technically

implemented using the Python programming language.

Specifically, the Gradio library (package) was utilized in this

implementation to facilitate the creation of an interactive
interface, bridging the model's functionality with the end-user

via the web application [21].

III. RESULTS AND DISCUSSION

A. Deep Learning Model

The training of the deep learning model was conducted for

a total of 200 epochs. Upon completion of this training

process, the model attained a final accuracy of 94.02% on the

training dataset and demonstrated strong generalization

performance with an accuracy of 97.44% on the validation

dataset. The progression of model accuracy throughout the

training phase, illustrating the learning convergence, is

depicted graphically in Figure 9.

Figure 9. Training and Validation Accuracy

Figure 9 shows the accuracy of the model during the

training period in the first 50 epochs, the training accuracy of

the model increases slowly, identifying progress in the model

learning process. Meanwhile, in the early epochs there is a

significant accuracy recall in the validation accuracy,
indicating the effective generalization ability of the model. In

the range of 50 to 100 epochs, the training and validation

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

889

accuracy increased sharply with the training accuracy

showing a steady increase, while the validation accuracy

fluctuated. In the final epoch phase, the accuracy diagram is

more stable indicating that the model has achieved consistent

performance. The subsequent sections will provide a detailed

evaluation of the model's performance using standard

evaluation metrics.

1) Classification Report: The detailed performance

evaluation of the proposed classification model across all 26

classes is summarized in the classification report presented in

Table 7. This report provides key performance metrics,

including precision, recall, F1-score, and support, offering

insights into the model's effectiveness on a per-class basis.

TABLE VII

CLASSIFICATION REPORT

class precision recall f1-score support

A 1.00 1.00 1.00 3

B 1.00 1.00 1.00 3

C 1.00 1.00 1.00 3

D 1.00 1.00 1.00 3

E 1.00 1.00 1.00 3

F 1.00 1.00 1.00 3

G 1.00 1.00 1.00 3

H 1.00 1.00 1.00 3

I 1.00 1.00 1.00 3

J 1.00 1.00 1.00 3

K 1.00 1.00 1.00 3

L 1.00 1.00 1.00 3

M 0.60 1.00 0.75 3

N 1.00 0.33 0.50 3

O 1.00 1.00 1.00 3

P 1.00 1.00 1.00 3

Q 1.00 1.00 1.00 3

R 1.00 1.00 1.00 3

S 1.00 1.00 1.00 3

T 1.00 1.00 1.00 3

U 1.00 1.00 1.00 3

W 1.00 1.00 1.00 3

X 1.00 1.00 1.00 3

Y 1.00 1.00 1.00 3

Z 1.00 1.00 1.00 3

The evaluation results for the Indonesian Sign Language
(BISINDO) recognition model across 26 distinct classes are

detailed in Table 7. The majority of classes, specifically 01-

12 (A-L) and 15-26 (O-Z), achieved perfect scores (1.00) for

precision, recall, and F1-score. This performance indicates

highly effective classification for these categories within the

evaluation dataset. However, notable exceptions were

observed: Class 13 (M) demonstrated lower precision (0.60)

despite perfect recall (1.00), resulting in an F1-score of 0.75.

Conversely, Class 14 (N) achieved perfect precision (1.00)

but suffered from low recall (0.33), yielding a

correspondingly lower F1-score of 0.50.
Confusion Matrix: The performance evaluation of the

proposed deep learning model for recognizing 26 Indonesian

Sign Language (BISINDO) hand signs is presented via a

confusion matrix, as illustrated in Figure 10. This matrix

provides a visual representation of the model's classification

performance on the test dataset, with its predictions mapped

against the actual class labels. The findings reveal that the

model attained a high degree of accuracy across a wide range

of sign classes. The superior performance of the model is

evident from the predominance of values along the main

diagonal of the matrix, with all test samples (n = 3 per class)

for 25 out of the 26 sign classes being correctly classified.

However, a misclassification between sign classes '14' and
'13' was identified. Specifically, two of the three samples

classified as '14' were misclassified as '13'. Consequently, the

model accurately identified only one sample from class '14.'

No other misclassifications were observed among the

remaining sign classes during this evaluation.

Figure 10. Model Evaluation Using Confusion Matrix

The findings demonstrate the model's robust

discriminative capability, despite the challenges in

differentiating the visual characteristics between signs '13'

and '14.' This suggests the potential for visual similarity

between these two sign classes.

2) Overall Performance Metrics: This classification

process specifically involves N=26 distinct classes

(categories), featuring a balanced sample distribution across

classes, with each class uniformly represented by 3 support
samples. Consequently, the entire evaluation dataset

comprises a total of 78 samples, derived directly from the

multiplication of the total number of classes by the number of

support samples per class (26 classes × 3 samples/class). This

class-balanced structure constitutes an important

characteristic of the evaluation set employed in this study.

Class-Specific Metric Derivation:

For classes 01 to 12 and 15 to 26, the following equations

are to be used:
- TP = 3
- FN = 0

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

890

- FP = 0
- TN = Total Sample - TP - FP - FN = 78 - 3 - 0 - 0 = 75

For Class 13, the values are as follows:
- TP = 3
- FN = 0

- FP = 2
- TN = Total Sample - TP - FP - FN = 78 - 3 - 2 - 0 = 73

For Class 14, the values are as follows:
- TP = 1
- FN = 2
- FP = 0
- TN = Total Sample - TP - FP - FN = 78 - 1 - 0 - 2 = 75

Macro Averaging: Macro-averaging is an approach used to

calculate aggregate performance metrics, such as precision or

recall, in multi-class classification tasks. This approach

entails the preliminary calculation of the target metric for each

class independently. The simple arithmetic mean of these

individual per-class scores is then computed to yield the final
aggregate score. A fundamental implication of this method is

that it assigns equal weight to each class in the computation

of the final average score, irrespective of the actual number of

samples (support) within each class.

Macro-averaged Precision: This macro-averaging

approach assesses model performance by weighting each

class equally. It is computed by averaging the precision scores

calculated independently for each class. The general formula

for Macro Precision is:

Macro Precision =
1

l
∑

tpi

tpi + fpi

l

i=1

...where 𝑙 is the total number of classes (26 in this study), tpi
represents the true positives, and fpi denotes the false

positives for the i-th class. The Macro Precision calculation

involves summing the precision values from all 26 classes

(yielding a total of 25.60), which is then divided by the

number of classes (l). The result of the calculation, 2625.60,

is approximately 0.9846. This value represents the model's

average precision performance across all classes, assigning

equal weight to each class regardless of its sample size.
Macro Average Recall: This metric is a measure of the

model's average ability to independently identify all true

positive instances for each class. It is computed by taking the

arithmetic mean of the recall scores calculated individually

for each class. The formula for Macro Recall is as follows:

Macro Recall =
1

l
∑ Recall𝑖 =

1

𝑙
∑ i = 1l

tpi

tpi + fni

l

i=1

...where l is the total number of classes, tpi represents the

true positives, and fni denotes the false negatives for the i-th
class. Macro Recall calculation was performed by first

summing the recall scores from all classes. Based on the per-

class results, 24 classes exhibited perfect recall (1.00), another

class also had a recall of 1.00, while the one remaining class

had a recall of 31. The total sum of these recall scores is
(24 × 1.00) + 1.00 + 31 = 376. This total value was then

divided by the number of classes (26) to obtain the macro-

average: 2676/3 = 7876. The final result of this Macro

Recall calculation is approximately 0.9744, indicating that the

model, on average, demonstrates a very high capability to

recognize positive samples from each class.

Macro F1-Score: The F1-Score represents the harmonic
mean of precision and recall, providing a single metric that

balances these two performance aspects, a characteristic

particularly valuable in the presence of class imbalance.

Consistent with other macro-averages, this method assigns

equal weight to each class, irrespective of its sample size. The

formula employed for the Macro F1-Score is:

Macro F1 =
1

l
∑ F1i

l

i=1

...where l is the total number of classes and F1i is the F1-Score

for the i − th class, calculated as

F1i =
2 × Precisioni × Recalli

Precisioni + Recalli

In its implementation in this research with 26 classes

(𝑙=26), the Macro F1-Score calculation involved summing the

F1-Scores from all classes. Based on the per-class evaluation,

it was found that 24 classes achieved a perfect F1-Score

(1.00), one class had an F1-Score of 0.75, and another class

had an F1-Score of 0.50. The total sum of these F1-Scores is
(24 × 1.00) + 0.75 + 0.50 = 25.25. The macro-average
value was then calculated by dividing this total sum by the

number of classes (26), yielding
25.25

26
. The final result of the

Macro F1-Score calculation is approximately 0.9712 ≈
97,12%, which indicates excellent overall model

performance in balancing precision and recall evenly across

all classes.

Weighted Averaging: Weighted averaging calculates the

mean of per-class metrics, weighting each class's score by its

support. This method accounts for class imbalance,
contrasting with the macro-averaging approach where all

classes are weighted equally. However, given the uniform

support of 3 samples per class in this study's validation set,

the weighted average calculation is mathematically

equivalent to the macro average, consequently yielding the

same numerical result.

Accuracy: The primary evaluation metric computed is

Accuracy. This is the most intuitive measure of classification

model performance, representing the proportion of total

samples across all classes that the model classifies correctly.

This metric offers a general overview of the model's overall

correctness in making predictions. The sum of these values is
calculated across all classification categories. The formula

employed for the Accuracy is:

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

891

Accuracy =
TP + TN

TP + TN + FP + FN

In the formula above, TP represents true positives, TN

represents true negatives, FP represents false positives and FN

represents false negatives. In the context of the model

evaluation in this research, specifically on the validation

dataset comprising 78 samples (with a balanced

representation of 3 samples per class), the model was recorded

as making 76 correct predictions. Thus, its accuracy

calculation is:

Accuracy =
76

78
= 0.97435897 … ≈ 97.44%

This high accuracy value indicates that the model
demonstrates excellent overall predictive correctness on the

dataset used for this evaluation.

Performance Analysis of Classes 13 and 14: Based on the

evaluation metrics presented above, this section provides a

detailed performance analysis for Class 13 (letter M) and

Class 14 (letter N). The recognition model demonstrated low

precision for Class 13 (letter M), achieving a score of 0.60.

This indicates that when the model predicted a sign as M, the

prediction was correct only 60% of the time. The remaining

40% comprised signs from other classes that were
misclassified as M, signifying a high False Positive rate for

this class. Conversely, the model achieved perfect recall

(1.00) for Class 13, successfully identifying all actual

instances of the M sign within the evaluation dataset.

Consequently, no M signs were missed (zero False

Negatives). This suggests a model tendency to over-predict

Class 13; while capturing all true M signs, it also erroneously

classifies other signs as M. Specifically, the confusion matrix

Figure 10 reveals that two samples belonging to Class 14

(letter N) were misclassified as M. In contrast, Class 14 (letter

N) exhibited perfect precision (1.00). This implies that every

instance predicted as N by the model was indeed correct,
resulting in no False Positives. However, the model's recall

for this class was notably low at 0.33 (approximately 1/3).

Figure 11. Visual similarity between Class 13 ('M') and Class 14 ('N')

This signifies that the model only correctly identified 33%

of the actual N signs present in the evaluation data. A

significant majority (67%) of true N signs were consequently

misclassified as other letters, indicating a high False Negative

rate. This pattern suggests the model adopts a highly

conservative approach when predicting the N sign, leading to

many true instances being overlooked. This classification

difficulty may be attributed to the visual similarity between

the signs for M and N, as potentially illustrated in Figure 11.

As illustrated in Figure 11, representative images are

presented for sign class M (depicted on the left) and sign class
N (depicted on the right). A high similarity between these two

sign classes can be observed. The distinguishing factor

between these two sign classes lies in the number of fingers

that make contact with the palm: three fingers for class M, and

two fingers for class N.

B. Model Integration

After evaluating the DL Model, the next step is to integrate

the model with the web. Implementation of the model with

the web is done using the Python Programming Language.
Figure 12 shows the initial appearance of the BISINDO

recognition web.

Figure 12. Initial View of BISINDO Recognition Web

Figure 13 shows the BISINDO recognition web interface

when hand gesture image recognition is run. On the left side,

the image preview will appear and on the right side, the class

prediction results will appear.

Figure 13. Web View when Sign Language Recognition is Running

Figure 13 shows that the integration between the model and

the BISINDO recognition web has been successful, this is

shown by the web integrated with the model that successfully
recognizes the letter “F” in the BISINDO hand gesture in a

short time.

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

892

C. Further Evaluation

Robustness to Lighting Conditions: In this study, the

performance evaluation of the static hand sign recognition
model was conducted under three distinct lighting conditions:

normal, dim, and dark. Ideally, image data acquisition would

be performed directly under each specific lighting condition

to accurately represent real-world environmental variations.

However, due to resource and time constraints encountered

during the research period, direct data capture under dim and

dark conditions was not feasible. As a pragmatic alternative

approach, these lower light conditions were simulated

through digital manipulation of the images originally captured

under normal lighting. This simulation involved applying a

uniform black color overlay (hex code #000000) to the

original images, setting the opacity level to 60% to represent
dim conditions and 80% to represent dark conditions. The

corresponding results, demonstrating the model's robustness

to these lighting conditions, are presented in Table 8.

TABLE VIII

ROBUSTNESS TO LIGHTING CONDITIONS

Sign Normal Dim Dark Notes

A 84 85 53 None

B 84 76 98 None

C 88 71 241 1Misclassified as letter D

D 94 74 392 2Misclassified as letter B

E 90 85 86 None

F 78 87 293 3Misclassified as letter G

G 72 56 39 None

H 92 89 74 None

I 94 82 86 None

J 92 76 57 None

K 94 63 47 None

L 96 64 40 None

M 89 76 58 None

N 57 41 374 4Misclassified as letter M

O 91 88 92 None

P 90 47 275 5Misclassified as letter V

Q 88 52 45 None

R 85 68 45 None

S 96 77 65 None

T 80 61 69 None

U 80 70 70 None

V 85 91 78 None

W 89 82 85 None

X 82 85 48 None

Y 78 82 64 None

Z 79 55 246 6Misclassified as letter V

While acknowledging the inherent limitations of this

simulation method compared to using natively captured data

under varied lighting, this approach enabled a preliminary

investigation into the model's robustness against reduced light

intensity within the scope of the existing constraints. The

presented table compares the confidence scores
(probabilities) assigned by the model to the actual class label

for static hand signs (A-Z) when evaluated under three

distinct lighting conditions. Under normal lighting conditions,

prediction confidence was generally high (majority >80%),

although some inter-class variation was observed. Dim

lighting led to a heterogeneous decrease in confidence across

classes. This decrease became more drastic and widespread

under very dark conditions, with the majority of classes

exhibiting scores below 50%, indicating high prediction

uncertainty. Nevertheless, under both reduced lighting

conditions, inter-class performance variability was evident,

with some classes demonstrating greater robustness than

others

1) Prediction Latency Analysis: Table 9 shows the

results of the computation time required by the model to

predict a single hand sign (latency). These results were

obtained under three different lighting conditions: Normal,

Dim, and Very Dark. The latency tests were performed for

each sign language class from A to Z.

TABLE IX

PREDICTION LATENCY ANALYSIS

Isyarat Normal Dim Dark

A 0.066 0.099 0.099

B 0.066 0.102 0.075

C 0.071 0.071 0.067

D 0.098 0.069 0.068

E 0.067 0.067 0.065

F 0.066 0.067 0.068

G 0.065 0.094 0.065

H 0.074 0.064 0.067

I 0.064 0.066 0.065

J 0.072 0.096 0.064

K 0.144 0.064 0.066

L 0.066 0.065 0.085

M 0.065 0.066 0.064

N 0.065 0.064 0.087

O 0.070 0.096 0.081

P 0.144 0.067 0.068

Q 0.066 0.101 0.066

R 0.144 0.144 0.067

S 0.111 0.101 0.073

T 0.073 0.083 0.075

U 0.086 0.072 0.100

V 0.066 0.091 0.065

W 0.065 0.065 0.064

X 0.066 0.096 0.065

Y 0.064 0.109 0.078

Z 0.064 0.113 0.078

According to the data in Table 9, the model's prediction time

(latency), measured in seconds, was generally very fast across

all lighting conditions, with most predictions completed in
under 0.1 seconds per sign. Further analysis indicated no

consistent trend suggesting that darker lighting conditions

(both dim and very dark) significantly and uniformly affected

the model's prediction speed. The impact of lighting changes

on latency appeared variable across sign classes, with certain

signs exhibiting minor, non-systematic decelerations or

accelerations under different lighting conditions.

Furthermore, some instances of relatively higher latency were

observed under normal conditions for specific signs (e.g., K,

P, R).

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

893

TABLE VI

FUNCTIONAL DESCRIPTION OF USER INTERFACE COMPONENTS

Component ID Type Precondition(s) Function Interaction & Response

upload Icon Button None Initiates the selection and

loading of a BISINDO hand

gesture image from the

user's local storage.

Opens the operating system's file selection dialog.

Upon selection, the image is displayed in the

Image preview area. Enables the `submit` and

`clear` buttons.

camera Icon Button Device has a

camera; User

grants camera

access permission

(if required).

Activates the device's

camera interface for capture

BISINDO sign image.

Activates the device's camera stream. The captured

image is displayed in the `image_preview_area`.

Enables the `submit` and `clear` buttons.

image_preview Image Preview

Area

Image loaded via

`upload` or

captured via

`camera`.

Displays the hand gesture

image selected or captured

by the user, prior to

submission for

classification.

Displays image data received from `upload` or

`camera` actions. Content is cleared by the `clear`

action.

submit Primary Button A valid image is

displayed in the

Image preview

area.

Initiates processing of the

displayed image data using

the integrated classification

model.

Passes image data to the integrated model. Receives

classification results (predicted class, probability

score) directly from the integrated model and

updates the corresponding output areas.

clear Secondary Button An image is

displayed in the

Image preview

area.

Resets the image input area,

removing the currently

displayed image.

Removes the image from the *Image* preview area.

Disables the `submit` button until a new image is

provided (via `upload` or `camera`).

`predicted_class` Text Output Area Successful

completion of

integrated model

processing

following `submit`.

Displays the predicted class

label for the submitted hand

gesture image, as

determined by the model.

Content is populated by the system based on the

results returned by the local model function/process.

Displays the resulting class name (e.g., "A", "B",

"Hello").

`probability` Text Output Area Successful

completion of

integrated model

processing

following `submit`.

Displays the confidence

score (probability)

associated with the

predicted class provided by

the model.

Content is populated by the system based on the

results returned by the local model function/process.

Displays the probability score (e.g., "98.5%",

"0.985").

2) Web Functional Testing: To verify that the sign

recognition web application functions as expected across

various user environments, functionality testing was

conducted. Table 10 summarizes the results of this

functionality testing, focusing on key application components

across different combinations of web browsers and operating

systems. The testing procedure was conducted online and

involved 10 university student participants. These participants

were asked to access the web application from various devices

and then complete an online research questionnaire that

included usability testing questions.

TABEL X

PREDICTION LATENCY ANALYSIS

Browser

(version)

Operating

Systems

Component ID

upload camera preview submit clear predicted_class probability

Chrome

(135.0.7049.85)

Windows

10

Passed Passed Passed Passed Passed Passed Passed

Firefox

(137.0.1)

Windows

10

Passed Passed Passed Passed Passed Passed Passed

Chrome

(135.0.7049.84)

Arch

Linux

Passed Passed Passed Passed Passed Passed Passed

Firefox

(137.0.1)

Arch

Linux

Passed Passed Passed Passed Passed Passed Passed

Chrome

(135.0.7)

Android 13 Passed Passed Passed Passed Passed Passed Passed

Firefox (137.0) Android 13 Passed Passed Passed Passed Passed Passed Passed

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

894

The functionality testing results, presented in Table 10,

indicate that all key components of the web application—

including image upload, camera access, image preview,

submission for prediction, input clearing, as well as the

display of results (predicted_class and probability) -

successfully passed testing ('Passed') across all tested
configurations. The tested configurations encompassed the

Chrome and Firefox web browsers on the Windows 10, Arch

Linux, and Android 13 operating systems. These results

indicate that the application's core functionality performs

correctly and exhibits sufficient cross-browser and cross-

platform compatibility across the tested environments.

D. Further Evaluation

1) Dataset Comparison: To provide context for the

dataset utilized in this study, a comparison was made with

datasets employed in previous related research focusing on
Indonesian Sign Language (BISINDO). Table 11 presents this

comparison, detailing key characteristics of these datasets,

including the number of images, acquisition source, number

of classes, and their corresponding reference citations.
TABEL XI

COMPARISON OF DATASET CHARACTERISTICS USED IN RELATED STUDIES

Reference Study Number

Images

Acquisition

Source

Number

Classes

Notes

BISINDO (Bahasa Isyarat Indonesia) Sign Language
Recognition Using CNN and LSTM [11]

1.100 Author's
Collection
(Private)

10 None

Indonesian Sign Language Recognition using YOLO
Method [22]

4.547 Author's
Collection
(Private)

24 None

Indonesia Sign Language Recognition using Convolutional
Neural Network [14]

39.455 Author's
Collection
(Private)

37 None

Convolutional Neural Network (CNN) for Image
Classification of Indonesia Sign Language Using
Tensorflow [7]

2.659 Public Dataset 12 Identical dataset
referenced by
the author could
not be located.

Integrating the CNN Model with the Web for Indonesian
Sign Language (BISINDO) Recognition

312 Public Dataset 26 None

Table 11 reveals significant variations among the

characteristics of datasets employed in related research on

BISINDO recognition. This study utilizes a public dataset

containing 312 images across 26 sign classes. This dataset

size is relatively small compared to most listed prior studies,

several of which utilized thousands to tens of thousands of

images, often sourced from private collections [7], [11], [22].

Employing a public dataset in this study, similar to [7],

potentially enhances the reproducibility of the research
findings, although the specific dataset used by [7] could not

be definitively identified. The number of classes (26)

addressed in this study falls within the range commonly

investigated by previous studies (10-37 classes).

2) Model Performance comparison: As part of the

evaluation process, the performance of the model developed

in this study was compared with results from previous related

studies. Table 12 provides a comprehensive summary of this

comparison across several aspects, including the methods

employed, recognition type (e.g., static/dynamic), input

dimensions, training and validation accuracies (where
reported), and the presence or absence of user interface (UI)

integration among this study and the referenced works.
TABEL XII

COMPARISON OF MODEL PERFORMANCE WITH PREVIOUS RESEARCH

Reference Study Method Recognition

Type

Model Input

Dimension

Train

Acc (%)

Val Acc

(%)

UI

Integration

BISINDO (Bahasa Isyarat Indonesia) Sign
Language Recognition Using CNN and LSTM

[11]

CNN and
LSTM

Dynamic 100 × 89 96 Not
mentioned

No

Indonesian Sign Language Recognition using
YOLO Method [22]

CNN Dynamic 3024×3024;
640×640

100 Not
mentioned

No

Indonesia Sign Language Recognition using
Convolutional Neural Network [14]

CNN Static 60 × 60 99,48 98,39 No

Convolutional Neural Network (CNN) for

Image Classification of Indonesia Sign
Language Using Tensorflow [7]

CNN Static 150 × 150 96,80 100 No

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

895

Integrating the CNN Model with the Web for
Indonesian Sign Language (BISINDO)
Recognition

CNN Static 256 × 256 94,02 97,44 Yes

Table 12 contextualizes this research within the landscape

of related studies. Employing a CNN method for static sign
recognition, analogous to approaches in [14] and [7], this

study achieved a training accuracy of 94.02% and a validation

accuracy of 97.44%. While the training accuracy is

marginally lower than that reported in some studies (>96%),

the validation accuracy (97.44%) demonstrates competitive

generalization performance compared to [14] (98.39%) and

[7] (100%).

It is important to note, however, that direct accuracy

comparisons across studies are inherently limited due to

significant differences in the datasets used (as detailed in the

Table 11), variations in the number of classes and input
dimensions, and differing focuses on static versus dynamic

signs [11], [22]. A unique contribution of this study, setting it

apart from the compared works, is the successful integration

of the model into a web-based user interface, which

demonstrates the practical application potential of the

developed model.

IV. CONCLUSION

Based on the research conducted, it is concluded that the

developed Deep Learning (DL) model effectively recognizes

static images containing hand gestures for the BISINDO

alphabet. This is evidenced by the model's high accuracy,

achieving 94.02% on the training data and 97.44% on the

validation data. Furthermore, evaluation metrics including the

confusion matrix, precision, recall, and F1-score also yielded

strong results, with respective average macro-scores of

approximately 98%, 97%, and 97.12%. Additionally,

functional and latency testing results confirm that the web-
integrated DL model functions correctly, is readily accessible,

and provides rapid recognition results. Although this research

successfully developed an accurate DL model and integrated

it into an accessible web recognition application, the study

was limited to the 26 alphabet classes of BISINDO and

utilized a dataset smaller than those in some prior studies.

Furthermore, direct performance testing involving users with

disabilities was not performed. Consequently, subsequent

development needs to overcome limitations related to data

scope, dataset variability, and end-user validation for real-

world applicability.

REFERENCES

[1] World Report on Hearing, 1st ed. Geneva: World Health

Organization, 2021.

[2] L. Arisandi and B. Satya, “Sistem Klarifikasi Bahasa Isyarat

Indonesia (Bisindo) Dengan Menggunakan Algoritma Convolutional

Neural Network,” Jurnal Sistem Cerdas, vol. 5, no. 3, pp. 135–146,

Dec. 2022, doi: 10.37396/jsc.v5i3.262.

[3] Kemendikbud, “Tunarungu.” 2023. [Online]. Available:

https://kbbi.kemdikbud.go.id/entri/tunarungu

[4] BPS, Hasil Long Form Sensus Penduduk 2020. Badan Pusat Statistik

Indonesia, 2023. [Online]. Available:

https://www.bps.go.id/id/publication/2023/01/27/ffb5939b4393e5b1

146a9b91/hasil-long-form-sensus-penduduk-2020.html

[5] Kemendikbud, “Kamus SIBI,” Kementerian Pendidikan dan

Kebudayaan. Dec. 2020. Accessed: Jan. 22, 2024. [Online].

Available: https://pmpk.kemdikbud.go.id/sibi/

[6] Pusbisindo, “Tentang Pusat Bahasa Isyarat Indonesia.” [Online].

Available: https://pusbisindo.org/tentang-kami

[7] O. Kembuan, G. Caren Rorimpandey, and S. Milian Tompunu

Tengker, “Convolutional Neural Network (CNN) for Image

Classification of Indonesia Sign Language Using Tensorflow,” in

2020 2nd International Conference on Cybernetics and Intelligent

System (ICORIS), Manado, Indonesia: IEEE, Oct. 2020, pp. 1–5. doi:

10.1109/ICORIS50180.2020.9320810.

[8] I. A. Adeyanju, O. O. Bello, and M. A. Adegboye, “Machine learning

methods for sign language recognition: A critical review and

analysis,” Intelligent Systems with Applications, vol. 12, p. 200056,

Nov. 2021, doi: 10.1016/j.iswa.2021.200056.

[9] M. Alaghband, H. R. Maghroor, and I. Garibay, “A survey on sign

language literature,” Machine Learning with Applications, vol. 14, p.

100504, Dec. 2023, doi: 10.1016/j.mlwa.2023.100504.

[10] M. Madhiarasan and P. P. Roy, “A Comprehensive Review of Sign

Language Recognition: Different Types, Modalities, and Datasets.”

arXiv, Apr. 2022. doi: 10.48550/arXiv.2204.03328.

[11] A. Aljabar and S. Suharjito, “BISINDO (Bahasa Isyarat Indonesia)

Sign Language Recognition Using CNN and LSTM,” Advances in

Science, Technology and Engineering Systems Journal, vol. 5, no. 5,

pp. 282–287, 2020, doi: 10.25046/aj050535.

[12] F. Alrowais, S. S. Alotaibi, S. Dhahbi, R. Marzouk, A. Mohamed,

and A. Mustafa Hilal, “Sign Language Recognition and

Classification Model to Enhance Quality of Disabled People,”

Computers, Materials & Continua, vol. 73, no. 2, pp. 3419–3432,

2022, doi: 10.32604/cmc.2022.029438.

[13] N. Adaloglou et al., “A Comprehensive Study on Deep Learning-

Based Methods for Sign Language Recognition,” IEEE Transactions

on Multimedia, vol. 24, pp. 1750–1762, 2022, doi:

10.1109/TMM.2021.3070438.

[14] S. Dwijayanti, H. -, S. I. Taqiyyah, H. Hikmarika, and B. Y. Suprapto,

“Indonesia Sign Language Recognition using Convolutional Neural

Network,” International Journal of Advanced Computer Science and

Applications, vol. 12, no. 10, 2021, doi:

10.14569/IJACSA.2021.0121046.

[15] A. N. Sihananto, E. M. Safitri, Y. Maulana, F. Fakhruddin, and M. E.

Yudistira, “Indonesian Sign Language Image Detection Using

Convolutional Neural Network (CNN) Method,” Inspiration: Jurnal

Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 13–21, May

2023, doi: 10.35585/inspir.v13i1.37.

[16] S. A. Sanjaya and H. Faustine Ilone, “BISINDO Sign Language

Recognition: A Systematic Literature Review of Deep Learning

Techniques for Image Processing,” Indonesian Journal of Computer

Science, vol. 12, no. 6, Dec. 2023, doi: 10.33022/ijcs.v12i6.3539.

[17] R. Borman, B. Priopradono, and A. Syah, “Klasifikasi Objek Kode

Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia

(BISINDO),” SNIA (Seminar Nasional Informatika dan

Aplikasinya), vol. 3, 2019, [Online]. Available:

https://snia.unjani.ac.id/web/index.php/snia/article/view/87

[18] A. Noer, “Bahasa Isyarat Indonesia (BISINDO) Alphabets.” Kaggle,

2022. [Online]. Available:

https://www.kaggle.com/datasets/achmadnoer/alfabet-bisindo

[19] V. R. Joseph, “Optimal Ratio for Data Splitting,” Statistical Analysis,

vol. 15, no. 4, pp. 531–538, Aug. 2022, doi: 10.1002/sam.11583.

[20] C.-H. Lin, C. Kaushik, E. L. Dyer, and V. Muthukumar, “The good,

the bad and the ugly sides of data augmentation: An implicit spectral

regularization perspective,” 2022, arXiv. doi:

10.48550/ARXIV.2210.05021.

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 3, June 2025: 883 – 896

896

[21] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, and J. Zou,

“Gradio: Hassle-Free Sharing and Testing of ML Models in the

Wild,” 2019, arXiv. doi: 10.48550/ARXIV.1906.02569.

[22] S. Daniels, N. Suciati, and C. Fathichah, “Indonesian Sign Language

Recognition using YOLO Method,” IOP Conf. Ser.: Mater. Sci. Eng.,

vol. 1077, no. 1, p. 012029, Feb. 2021, doi: 10.1088/1757-

899X/1077/1/012029t

JAIC e-ISSN: 2548-6861

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
(Enisda Libra Kelana, Muhammad Riko Anshori Prasetya, Mambang, Muhammad Zulfadhilah)

897

