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 Effective communication is challenging for deaf individuals in Indonesia, most of 

whom use Indonesian Sign Language (BISINDO). Sign Language Recognition 

(SLR) can bridge this communication gap. While Convolutional Neural Networks 

(CNNs) show high potential for SLR, their practical accessibility remains limited. 

This research aims to develop a CNN architecture for recognizing BISINDO 

alphabet signs from static images (still images) and integrate it into an accessible 

web platform. Using a static vision-based approach, a CNN model was trained on a 

public dataset (312 images, 26 classes) following standard pre-processing including 
data augmentation. The model was subsequently integrated into a web interface 

using Python and the Gradio library. Results demonstrated strong model 

performance, with validation accuracy reaching 97.44% and a macro-average F1-

score of approximately 97.12%. However, classification challenges were identified 

for visually similar signs ('M' and 'N'). The resulting integrated web application 

proved functional, exhibited low prediction latency, and showed cross-platform 

compatibility. This study successfully demonstrates the development of an accurate 

DL model for static BISINDO alphabet recognition and its practical implementation 

via a web platform. This contributes to reducing the accessibility gap in SLR 

technology. Future research is recommended to utilize larger, more varied datasets 

and explore dynamic sign recognition. 

Keyword: 

Deep Learning, 

Indonesian Sign Language,  

Sign Language Recognition, 
Web. 

 

 

    
This is an open access article under the CC–BY-SA license. 

 

I. INTRODUCTION 

Communication is an important aspect of social life. 

Through communication individuals can interact with the 

surrounding environment, convey ideas, and obtain education 

[1]. However, there are individuals who have limitations in 

communicating verbally due to hearing or speech impairment 

they are deaf - speech impaired [2], [3]. The Population 

Census conducted in 2020 showed that 1.43% of Indonesia's 

population were people with disabilities, with 0.36% having 
hearing impairments and 0.35% having speech impairments 

[4]. 

Sign language is a language used by people with deaf-

speech disabilities to communicate. In Indonesia there are two 

sign languages: The Indonesian Sign Language System (SIBI) 

and Indonesian Sign Language (BISINDO). SIBI is a 

standardized system developed by the Indonesian government 

and adapted from American Sign Language (ASL) [5]. In 

contrast, BISINDO emerged naturally and serves as the 

primary language for the majority of Deaf individuals in 
Indonesia [6]. Research shows that only 9% of people with 

disabilities use SIBI and 91% use BISINDO [7]. 

Sign Language Recognition (SLR) is a method that aims to 

facilitate communication between deaf and hearing 

individuals. The field of research focuses on the automatic 

identification of signs within specific sign languages and their 

subsequent translation into formats such as text or speech, 

thereby rendering the signed communication accessible to 

non-signers [8], [9]. 

Sign Language Recognition generally uses two 

approaches, which are vision-based approach and sensor-

based approach. In the sensor-based approach, sensor devices 
are attached to the body to capture the position and movement 

of hands, fingers and other body parts. These sensors will 
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generate signals that are then processed for Sign Language 

recognition [8], [9], [10]. This sensor-based approach has the 

disadvantage that sensor devices are expensive [10]. 

Meanwhile, the vision-based approach takes hand gesture 

images as input and converts them into text or voice. This 

vision-based approach can utilize the Traditional Machine 

Learning approach and Deep Learning (DL) approach. 

Traditional approaches use Hidden Markov Models (HMM) 

and Support Vector Machines (SVM), while non-traditional 
approaches utilize Deep Learning such as Convolutional 

Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) [7], [8], [10], [11], [12]. Deep Learning is a subfield 

of Artificial Intelligence that focuses on learning the 

representation of data by utilizing artificial neural networks 

inspired by the structure and function of the human brain, DL 

has many layers of processing [13]. 

Vision-based approaches to sign language recognition can 

be classified into static and dynamic methods, depending on 

the type of visual input analyzed [9]. Static approaches 

emphasize the extraction of pertinent spatial characteristics 
from static images of isolated signs, such as alphabets, and 

generally utilize two-dimensional convolutional neural 

network (CNN) architectures. Conversely, dynamic 

approaches process video sequences to simultaneously 

capture spatial and temporal information, including motion 

and transitions between signs [13]. This capability is essential 

for continuous sign language recognition (CSLR) tasks. 

Consequently, dynamic methods often necessitate more 

complex architectures and tend to require greater 

computational resources [13]. 

This research employs a vision-based sign language 

recognition approach to identify static signs corresponding to 
the BISINDO alphabet. The selection of this methodology 

was driven by its accessibility and its independence from 

costly, specialized hardware or substantial computational 

resources. The implementation of this vision-based 

recognition offers significant practical advantages, as it can 

be readily utilized with standard camera devices integrated 

into smartphones or laptops [9]. 

Vision-based approaches employing Deep Learning (DL) 

techniques, such as Convolutional Neural Networks (CNN), 

have demonstrated promising accuracy in recognizing 

Indonesian Sign Language [7], [11], [14], [15], [16], [17]. 
However, the real-world application of these models remains 

significantly limited, hindering their broader accessibility and 

use [8], [10]. Therefore, the objective of this research is to 

address this limitation by integrating a developed DL model 

into a web-based sign language recognition platform, 

specifically designed with an emphasis on practicality and 

user-friendliness. 

II. METHOD  

A. Research Pipeline 

This study employs a quantitative approach to identify 

static hand gestures associated with Indonesian Sign 

Language (BISINDO), utilizing a deep learning (DL) model 

and integrating it into a web-based interface. The research was 

conducted by following the flow in Figure 1, which began 

with conducting a literature study of related research articles 

both national and international articles. After conducting a 

literature study of various sources, the researcher continued 

by determining the research topic, determining this topic after 

carefully reading the existing literature. At this stage the 

researcher determines the topic of Sign Language 

Recognition. The problem formulation stage is done by 
asking questions related to what solutions can be done to the 

problems encountered in the topic being studied. Data 

collection is a stage where researchers collect related data, this 

involves finding appropriate data, downloading, and pre-

processing before being given to the model for the training 

stage. The next stage is model building and model evaluation. 

The choice of DL architecture to be used is closely related to 

the type of data used. This research will use CNN because of 

its ability to recognize patterns in images by maintaining the 

relationship between pixels in the image. Models that have 

been trained using data will be evaluated to ensure the 
prediction results provided by quality models. Web design 

stages include system design, web interface design. 

Integrating the model with the web is the stage of 

implementing the model with the web. The last stage is report 

writing, at this stage all experimental results are written 

systematically. The flow of research conducted can be seen in 

Figure 1. 

 

Figure 1. Research Process 

As shown in Figure 1, this research was conducted step by 

step in a sequential manner from literature review to report 

writing. The process is depicted from top to bottom. 
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B. Data Collection 

This study utilizes secondary data, specifically comprising 
open-source images of hand gestures representing the 

Indonesian Sign Language (BISINDO). The data selection 

criteria applied in this research are detailed in Table 1. 

TABLE I 

DATA SELECTION CRITERIA 

Criterion Specification 

Data Type Open-source image data 

Data Source Kaggle or UCI Dataset 

Data Format Images (JPG, PNG) 

Sign Language System BISINDO (Indonesian Sign 
Language) 

Minimum Resolution 200 x 200 pixels 

The data search process will be modified to align with the 

data criteria specified in Table 1. This search will be 

conducted within the Kaggle and UCI open-source data 

repositories. The process of data search is shown in Figure 2. 

 

Figure 2. Data Collection Process 

The data collection process, as illustrated in Figure 2, 

included search initiation, keyword refinement, and dataset 

downloading. 

1) The initiation of the search process: Querying open-

source data websites using the keyword "BISINDO 

dataset". The Kaggle and UCI databases were selected 

due to their provision of straightforward access to a wide 

array of relevant and contemporaneous open-source 

datasets. 

2) The refinement of the keywords: This is a necessary step 

when the initial keywords are not matching any relevant 

datasets. 

3) Dataset downloading: Matched datasets are then 
downloaded for further processing. 

During the searching process, one dataset was found that 

was relevant to the required data criteria. This data was 

obtained from the Kaggle repository under the title 

Indonesian Sign Language (BISINDO) Alphabets, created by 

Achmad Noer. The dataset contains a total of 312 images, and 

consists of 26 classes corresponding to the alphabet (A-Z), 

with each class containing 12 BISINDO alphabet images [18]. 

The sample BISINDO alphabet dataset can be seen in 

Figure 3. In Figure the hand gestures of the letters A, B, C, D, 

E and F in BISINDO are shown. 

 
Figure 3. Sample images from the Indonesian Sign Language dataset for the 

letters A, B, C, D, E, and F. 

The comprehensive information regarding the Indonesian 

Sign Language (BISINDO) Alphabets Dataset is shown in 
Table 2. 

TABLE II 

DATASET INFORMATION 

Feature Description 

Data Type Images 

Format JPEG (.jpg) 

Colour Space RGB 

Dimensions (pixels) 512×512 

Number of Classes 26 

Label A, B, C, ..., Z 

Images per Class 12 

Total Number of Images 312 

Is there a class imbalance? No 

C. Pre-processing 

The downloaded data will be adjusted to the appropriate 

size and format before being input into the model. This stage 

is termed pre-processing [10]. This pre-processing stage 
involves several key steps, including the splitting of the data 

into training and validation sets, encoding, and augmentation. 
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1) Data Splitting: As illustrated in Figure 4, 

modifications to the directory structure occur during the data 

splitting phase of pre-processing. The left panel, designated 

as "Before Data Splitting," illustrates the initial structure of 

the dataset, where all image data resides in a single data 

directory, categorized into classes (schematically represented 

as directories A through Z). The right panel ("After Data 

Splitting") illustrates the outcome of the aforementioned 

partitioning. The original data directory is divided into two 
distinct subsets: a training set (train) and a validation set (val). 

Notably, the original class structure (A through Z) is 

maintained within both the training and validation sets, 

making sure that each subset contains examples from all 

classes. The dataset utilized in this study comprises 312 

images, equally distributed across 26 distinct sign language 

classes, resulting in 12 samples per class. 

 
Figure 4. Data Splitting 

Standard percentage-based data splitting methods (e.g., 

80% training, 20% validation) were deemed potentially 

suboptimal due to the limited number of samples per class 
[19]. Such methods could lead to significant class imbalance 

or even zero representation for some classes in the validation 

set. To mitigate this issue and ensure robust evaluation across 

all categories, a specific data partitioning strategy was 

adopted. Instead of a conventional percentage ratio, a fixed 

number of samples—specifically, 3 images (designated as 

support) from each of the 26 classes—were allocated to 

constitute the validation set. This allocation resulted in a 

validation set containing 78 images (3 samples/class × 26 

classes) and a training set comprising the remaining 234 

images, effectively yielding a 75% training and 25% 

validation split ratio. This method guarantees balanced class 
representation within the validation set, thereby providing a 

more reliable basis for evaluating the model's generalization 

performance across all classes. 

2) Label Encoding: Label encoding was performed 

because deep learning models generally operate more 

effectively with numerical data compared to categorical 

inputs. Figure 5 illustrates this label encoding process, a 

prerequisite step in preparing the dataset for deep learning. 

The dataset, located within the main data directory, is 

organized into a training set ('train') and a validation set ('val'). 

Categorical class labels, initially represented by folder names 

corresponding to letters ("A", "B", "C" through "Z"), were 

systematically mapped to numerical identifiers. 

Consequently, as depicted, each class is now represented by a 
numerically labelled subdirectory (ranging from 01 to 26) 

within both the 'train' and 'val' folders. 

 
Figure 5. Label Encoding 

This numerical representation is crucial for enabling the 

deep learning model to effectively process and learn from the 

class distinctions during the training and evaluation phases. 

3) Data Augmentation: Data augmentation was 
implemented to address the challenge of limited data 

availability by synthetically expanding the dataset from 

existing images. Data augmentation is a widely employed 

technique in deep learning and computer vision, leveraged to 

enhance model performance and generalization capabilities 

[20]. This approach involves increasing the diversity of the 

training dataset by applying various transformations, such as 

image rotation, to the existing data. The specific 

augmentation techniques and parameters utilized in this study 

are detailed in Table 3 Augmentation Parameters. 

TABLE III 

AUGMENTATION PARAMETERS 

Parameter Value Description 

rescale 1./255 Rescales pixel intensity values 
from the [0, 255] range to the [0, 1] 
range by multiplying with the 
specified factor (1/255). 

rotation 10 Randomly rotates images by an 
angle selected uniformly from the 
range [-10, +10] degrees. 
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width_shift 0.2 Randomly shifts images 
horizontally by a fraction of the 
total width, selected uniformly 

from the range [-0.2 * width, +0.2 
* width]. 

heigh_shift 0.1 Randomly shifts images vertically 
by a fraction of the total height, 
selected uniformly from the range 
[-0.1 * height, +0.1 * height]. 

zoom_range [0.8, 
1.2] 

Randomly applies zoom to the 
image by selecting a zoom factor 
uniformly from the specified range. 
A factor < 1 zooms in, > 1 zooms 
out. E.g., ̀ [0.8, 1.2]` corresponds to 
zooming in/out by up to 20%. 

brightness_r
ange 

[0.8, 
1.2] 

Randomly adjusts image 
brightness by picking a brightness 

shift factor uniformly from the 
specified range `[lower, upper]`. 
E.g., `[0.8, 1.2]` modifies 
brightness between 80% and 
120%. 

color_shift_
range 

10.0 Randomly shifts color channel 
values (e.g., R, G, B) by adding an 
intensity value selected uniformly 

from the range [-10.0, +10.0]. 

Table 3 illustrates the application of data augmentation to 

a sample BISINDO representing the letter 'A'. This process 

involves a series of geometric and photometric 

transformations designed to artificially enrich the training 
dataset, thereby enhancing the robustness and generalization 

capability of the classification model when faced with input 

variations 

 
Figure 6. Results of the image augmentation process 

As illustrated in Figure 6, the applied transformations 
encompass a diverse set of modifications. Specifically, the 

augmentation techniques employed include zoom, width 

shift, height shift, rotation, shear, brightness shift, and channel 

shift. The specific parameters that govern the degree and 

range of each transformation, which yielded the augmented 

data samples displayed, are defined by the values specified in 

Table 3. The selection of these augmentation parameters and 

value ranges was not arbitrary, but was determined through a 

series of empirical trials. These trials aimed to identify the 

optimal configuration for effectively simulating real-world 

variability without introducing excessive distortion to the 

original gesture data. 

D. Deep Learning Model Building 

The development process for the Deep Learning (DL) 

model encompasses several key stages: architecture 

definition, model training, performance evaluation, and 

subsequent saving of the trained model. Architecture 

definition constitutes the initial and fundamental phase. 

During this phase, the network configuration is specified, 

including the number of layers, the quantity of units within 

each layer, and the filter sizes to be employed, particularly for 
the feature extraction task from image data. Table 4 provides 

detailed specifications of the layers and their corresponding 

parameters utilized in this study for this image feature 

extraction purpose. 

TABEL IV 

MODEL PARAMETERS 

Layer Output Shape Param 

conv2d (None, 254, 254, 16) 448 

max_pooling2d (None, 127, 127, 16) 0 

conv2d_1 (None, 125, 125, 32) 4640 

max_pooling2d_1 (None, 62, 62, 32) 0 

conv2d_2 (None, 60, 60, 64) 18496 

max_pooling2d_2 (None, 30, 30, 64) 0 

conv2d_3 (None, 28, 28, 128) 73856 

max_pooling2d_3 (None, 14, 14, 128) 0 

conv2d_4 (None, 12, 12, 256) 295168 

max_pooling2d_4 (None, 6, 6, 256) 0 

conv2d_5 (None, 2, 2, 512) 3277312 

max_pooling2d_5 (None, 1, 1, 512) 0 

flatten (None, 512) 0 

dropout (None, 512) 0 

dense (None, 512) 262656 

dense_1 (None, 256) 131328 

dense_1 (None, 26) 6,682 

After the architecture is defined, the model compilation 

step is performed. This stage involves the selection of the loss 

function, the optimization algorithm (optimizer), and the 

evaluation metrics to be monitored during the ensuing 

training phase. The specific parameters employed for model 

compilation and training are detailed in Table V. 

TABLE V 

TRAINING PARAMETERS 

Parameter Value 

Input Shape 256*256 

Batch Size 64 

Optimizer RMSprop 

Learning Rate 0.001 (default) 

Loss Categorical Crossentropy 

Epoch 200 



               e-ISSN: 2548-6861  

JAIC Vol. 9, No. 3, June 2025:  883 – 896 

888 

During the training stage, the model learns to map patterns 

in hand gesture images to their corresponding alphabet labels 

within the dataset. This training was conducted using Google 

Colab, leveraging T4 GPU acceleration. 

Subsequent to the training stage, the model undergoes a 

stage of evaluation in which its performance is assessed. In 

this phase, the trained model is evaluated on previously 

unseen hand gesture images (i.e., the validation set) to 

ascertain its capacity to generalize and accurately recognize 
signs. 

Finally, the model saving stage involves storing the 

evaluated model for subsequent integration into the sign 

language recognition web application. This process involves 

the storage of the model's architecture, compilation 

parameters, and learned weights in the HDF5 (.h5) file format. 

E. BISINDO recognition web design 

The web design stage includes system design which aims 

to describe how user interactions with the model through the 
web and web interface design. 

1) Use case diagram: The description of the interaction 

between the user and the DL model through the web is 

described through the UML use case diagram and can be seen 

in Figure 7 system Design Using Use case Diagram. 

 

 

Figure 7. System Design Using Use Case Diagram 

2) User Interface Design: After the design of the 

interaction between the user and the model through the web 

is finalized, proceed to the next stage, namely the design of 

the Indonesian Sign Language Recognition web interface as 

can be seen in Figure 8. 

 

 

Figure 8. Design of BISINDO Recognition Web Page 

3) Functional Description of User Interface 

Components: The user interface (UI) is used as the primary 

medium through which users interact with the Indonesian 

Sign Language (BISINDO) recognition web application. To 

ensure effective navigation of the system and utilization of its 

sign recognition capabilities, it is imperative that users 

possess a comprehensive understanding of the function of 

each button, display area, and input element. Consequently, 

this section provides functional details for these UI elements. 
Table 6 below systematically presents comprehensive 

information on each web interface component, outlining its 

specific function and purpose within the application 

workflow. 

Following the finalization of the web interface design, the 

study proceeded to the crucial subsequent phase: the 

integration of the previously developed deep learning model 

into the web environment. This integration was technically 

implemented using the Python programming language. 

Specifically, the Gradio library (package) was utilized in this 

implementation to facilitate the creation of an interactive 
interface, bridging the model's functionality with the end-user 

via the web application [21]. 

 

III. RESULTS AND DISCUSSION 

A. Deep Learning Model 

The training of the deep learning model was conducted for 

a total of 200 epochs. Upon completion of this training 

process, the model attained a final accuracy of 94.02% on the 

training dataset and demonstrated strong generalization 

performance with an accuracy of 97.44% on the validation 

dataset. The progression of model accuracy throughout the 

training phase, illustrating the learning convergence, is 

depicted graphically in Figure 9. 

 

 

Figure 9. Training and Validation Accuracy 

Figure 9 shows the accuracy of the model during the 

training period in the first 50 epochs, the training accuracy of 

the model increases slowly, identifying progress in the model 

learning process. Meanwhile, in the early epochs there is a 

significant accuracy recall in the validation accuracy, 
indicating the effective generalization ability of the model. In 

the range of 50 to 100 epochs, the training and validation 
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accuracy increased sharply with the training accuracy 

showing a steady increase, while the validation accuracy 

fluctuated. In the final epoch phase, the accuracy diagram is 

more stable indicating that the model has achieved consistent 

performance. The subsequent sections will provide a detailed 

evaluation of the model's performance using standard 

evaluation metrics. 

1) Classification Report: The detailed performance 

evaluation of the proposed classification model across all 26 

classes is summarized in the classification report presented in 

Table 7. This report provides key performance metrics, 

including precision, recall, F1-score, and support, offering 

insights into the model's effectiveness on a per-class basis. 

TABLE VII 

CLASSIFICATION REPORT 

class precision recall f1-score support 

A 1.00 1.00 1.00 3 

B 1.00 1.00 1.00 3 

C 1.00 1.00 1.00 3 

D 1.00 1.00 1.00 3 

E 1.00 1.00 1.00 3 

F 1.00 1.00 1.00 3 

G 1.00 1.00 1.00 3 

H 1.00 1.00 1.00 3 

I 1.00 1.00 1.00 3 

J 1.00 1.00 1.00 3 

K 1.00 1.00 1.00 3 

L 1.00 1.00 1.00 3 

M 0.60 1.00 0.75 3 

N 1.00 0.33 0.50 3 

O 1.00 1.00 1.00 3 

P 1.00 1.00 1.00 3 

Q 1.00 1.00 1.00 3 

R 1.00 1.00 1.00 3 

S 1.00 1.00 1.00 3 

T 1.00 1.00 1.00 3 

U 1.00 1.00 1.00 3 

W 1.00 1.00 1.00 3 

X 1.00 1.00 1.00 3 

Y 1.00 1.00 1.00 3 

Z 1.00 1.00 1.00 3 

 

The evaluation results for the Indonesian Sign Language 
(BISINDO) recognition model across 26 distinct classes are 

detailed in Table 7. The majority of classes, specifically 01-

12 (A-L) and 15-26 (O-Z), achieved perfect scores (1.00) for 

precision, recall, and F1-score. This performance indicates 

highly effective classification for these categories within the 

evaluation dataset. However, notable exceptions were 

observed: Class 13 (M) demonstrated lower precision (0.60) 

despite perfect recall (1.00), resulting in an F1-score of 0.75. 

Conversely, Class 14 (N) achieved perfect precision (1.00) 

but suffered from low recall (0.33), yielding a 

correspondingly lower F1-score of 0.50. 
Confusion Matrix: The performance evaluation of the 

proposed deep learning model for recognizing 26 Indonesian 

Sign Language (BISINDO) hand signs is presented via a 

confusion matrix, as illustrated in Figure 10. This matrix 

provides a visual representation of the model's classification 

performance on the test dataset, with its predictions mapped 

against the actual class labels. The findings reveal that the 

model attained a high degree of accuracy across a wide range 

of sign classes. The superior performance of the model is 

evident from the predominance of values along the main 

diagonal of the matrix, with all test samples (n = 3 per class) 

for 25 out of the 26 sign classes being correctly classified. 

However, a misclassification between sign classes '14' and 
'13' was identified. Specifically, two of the three samples 

classified as '14' were misclassified as '13'. Consequently, the 

model accurately identified only one sample from class '14.' 

No other misclassifications were observed among the 

remaining sign classes during this evaluation. 

 

 

Figure 10. Model Evaluation Using Confusion Matrix 

The findings demonstrate the model's robust 

discriminative capability, despite the challenges in 

differentiating the visual characteristics between signs '13' 

and '14.' This suggests the potential for visual similarity 

between these two sign classes. 

2) Overall Performance Metrics: This classification 

process specifically involves N=26 distinct classes 

(categories), featuring a balanced sample distribution across 

classes, with each class uniformly represented by 3 support 
samples. Consequently, the entire evaluation dataset 

comprises a total of 78 samples, derived directly from the 

multiplication of the total number of classes by the number of 

support samples per class (26 classes × 3 samples/class). This 

class-balanced structure constitutes an important 

characteristic of the evaluation set employed in this study. 

Class-Specific Metric Derivation: 

For classes 01 to 12 and 15 to 26, the following equations 

are to be used: 
- TP = 3 
- FN = 0 
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- FP = 0 
- TN = Total Sample - TP - FP - FN = 78 - 3 - 0 - 0 = 75 

 

For Class 13, the values are as follows: 
- TP = 3 
- FN = 0 

- FP = 2 
- TN = Total Sample - TP - FP - FN = 78 - 3 - 2 - 0 = 73 

 

For Class 14, the values are as follows: 
- TP = 1 
- FN = 2 
- FP = 0 
- TN = Total Sample - TP - FP - FN = 78 - 1 - 0 - 2 = 75 

 

Macro Averaging: Macro-averaging is an approach used to 

calculate aggregate performance metrics, such as precision or 

recall, in multi-class classification tasks. This approach 

entails the preliminary calculation of the target metric for each 

class independently. The simple arithmetic mean of these 

individual per-class scores is then computed to yield the final 
aggregate score. A fundamental implication of this method is 

that it assigns equal weight to each class in the computation 

of the final average score, irrespective of the actual number of 

samples (support) within each class. 

Macro-averaged Precision: This macro-averaging 

approach assesses model performance by weighting each 

class equally. It is computed by averaging the precision scores 

calculated independently for each class. The general formula 

for Macro Precision is: 

Macro Precision =
1

l
∑

tpi

tpi + fpi

l

i=1

 

...where 𝑙 is the total number of classes (26 in this study), tpi 
represents the true positives, and fpi denotes the false 

positives for the i-th class. The Macro Precision calculation 

involves summing the precision values from all 26 classes 

(yielding a total of 25.60), which is then divided by the 

number of classes (l). The result of the calculation, 2625.60, 

is approximately 0.9846. This value represents the model's 

average precision performance across all classes, assigning 

equal weight to each class regardless of its sample size. 
Macro Average Recall: This metric is a measure of the 

model's average ability to independently identify all true 

positive instances for each class. It is computed by taking the 

arithmetic mean of the recall scores calculated individually 

for each class. The formula for Macro Recall is as follows: 

Macro Recall =
1

l
∑ Recall𝑖 =

1

𝑙
∑ i = 1l

tpi

tpi + fni

l

i=1

 

 

...where l is the total number of classes, tpi represents the 

true positives, and fni denotes the false negatives for the i-th 
class. Macro Recall calculation was performed by first 

summing the recall scores from all classes. Based on the per-

class results, 24 classes exhibited perfect recall (1.00), another 

class also had a recall of 1.00, while the one remaining class 

had a recall of 31. The total sum of these recall scores is 
(24 × 1.00) + 1.00 + 31 = 376. This total value was then 

divided by the number of classes (26) to obtain the macro-

average: 2676/3 = 7876. The final result of this Macro 

Recall calculation is approximately 0.9744, indicating that the 

model, on average, demonstrates a very high capability to 

recognize positive samples from each class. 

Macro F1-Score: The F1-Score represents the harmonic 
mean of precision and recall, providing a single metric that 

balances these two performance aspects, a characteristic 

particularly valuable in the presence of class imbalance. 

Consistent with other macro-averages, this method assigns 

equal weight to each class, irrespective of its sample size. The 

formula employed for the Macro F1-Score is: 

Macro F1 =
1

l
∑ F1i

l

i=1

 

 

...where l is the total number of classes and F1i is the F1-Score 

for the i − th class, calculated as 

 

F1i =
2 × Precisioni × Recalli

Precisioni + Recalli

 

 

In its implementation in this research with 26 classes 

(𝑙=26), the Macro F1-Score calculation involved summing the 

F1-Scores from all classes. Based on the per-class evaluation, 

it was found that 24 classes achieved a perfect F1-Score 

(1.00), one class had an F1-Score of 0.75, and another class 

had an F1-Score of 0.50. The total sum of these F1-Scores is 
(24 × 1.00) + 0.75 + 0.50 = 25.25. The macro-average 
value was then calculated by dividing this total sum by the 

number of classes (26), yielding 
25.25

26
. The final result of the 

Macro F1-Score calculation is approximately 0.9712 ≈
97,12%, which indicates excellent overall model 

performance in balancing precision and recall evenly across 

all classes. 

 

Weighted Averaging: Weighted averaging calculates the 

mean of per-class metrics, weighting each class's score by its 

support. This method accounts for class imbalance, 
contrasting with the macro-averaging approach where all 

classes are weighted equally. However, given the uniform 

support of 3 samples per class in this study's validation set, 

the weighted average calculation is mathematically 

equivalent to the macro average, consequently yielding the 

same numerical result. 

Accuracy: The primary evaluation metric computed is 

Accuracy. This is the most intuitive measure of classification 

model performance, representing the proportion of total 

samples across all classes that the model classifies correctly. 

This metric offers a general overview of the model's overall 

correctness in making predictions. The sum of these values is 
calculated across all classification categories. The formula 

employed for the Accuracy is: 
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Accuracy =
TP + TN

TP + TN + FP + FN
 

 

In the formula above, TP represents true positives, TN 

represents true negatives, FP represents false positives and FN 

represents false negatives. In the context of the model 

evaluation in this research, specifically on the validation 

dataset comprising 78 samples (with a balanced 

representation of 3 samples per class), the model was recorded 

as making 76 correct predictions. Thus, its accuracy 

calculation is: 

Accuracy =
76

78
= 0.97435897 … ≈ 97.44% 

 

This high accuracy value indicates that the model 
demonstrates excellent overall predictive correctness on the 

dataset used for this evaluation. 

 

Performance Analysis of Classes 13 and 14: Based on the 

evaluation metrics presented above, this section provides a 

detailed performance analysis for Class 13 (letter M) and 

Class 14 (letter N). The recognition model demonstrated low 

precision for Class 13 (letter M), achieving a score of 0.60. 

This indicates that when the model predicted a sign as M, the 

prediction was correct only 60% of the time. The remaining 

40% comprised signs from other classes that were 
misclassified as M, signifying a high False Positive rate for 

this class. Conversely, the model achieved perfect recall 

(1.00) for Class 13, successfully identifying all actual 

instances of the M sign within the evaluation dataset. 

Consequently, no M signs were missed (zero False 

Negatives). This suggests a model tendency to over-predict 

Class 13; while capturing all true M signs, it also erroneously 

classifies other signs as M. Specifically, the confusion matrix 

Figure 10 reveals that two samples belonging to Class 14 

(letter N) were misclassified as M. In contrast, Class 14 (letter 

N) exhibited perfect precision (1.00). This implies that every 

instance predicted as N by the model was indeed correct, 
resulting in no False Positives. However, the model's recall 

for this class was notably low at 0.33 (approximately 1/3).  

 

 
Figure 11. Visual similarity between Class 13 ('M') and Class 14 ('N') 

This signifies that the model only correctly identified 33% 

of the actual N signs present in the evaluation data. A 

significant majority (67%) of true N signs were consequently 

misclassified as other letters, indicating a high False Negative 

rate. This pattern suggests the model adopts a highly 

conservative approach when predicting the N sign, leading to 

many true instances being overlooked. This classification 

difficulty may be attributed to the visual similarity between 

the signs for M and N, as potentially illustrated in Figure 11. 

As illustrated in Figure 11, representative images are 

presented for sign class M (depicted on the left) and sign class 
N (depicted on the right). A high similarity between these two 

sign classes can be observed. The distinguishing factor 

between these two sign classes lies in the number of fingers 

that make contact with the palm: three fingers for class M, and 

two fingers for class N. 

B. Model Integration 

After evaluating the DL Model, the next step is to integrate 

the model with the web. Implementation of the model with 

the web is done using the Python Programming Language. 
Figure 12 shows the initial appearance of the BISINDO 

recognition web. 

 

 
Figure 12. Initial View of BISINDO Recognition Web 

Figure 13 shows the BISINDO recognition web interface 

when hand gesture image recognition is run. On the left side, 

the image preview will appear and on the right side, the class 

prediction results will appear. 

 
Figure 13. Web View when Sign Language Recognition is Running 

Figure 13 shows that the integration between the model and 

the BISINDO recognition web has been successful, this is 

shown by the web integrated with the model that successfully 
recognizes the letter “F” in the BISINDO hand gesture in a 

short time. 
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C. Further Evaluation 

Robustness to Lighting Conditions: In this study, the 

performance evaluation of the static hand sign recognition 
model was conducted under three distinct lighting conditions: 

normal, dim, and dark. Ideally, image data acquisition would 

be performed directly under each specific lighting condition 

to accurately represent real-world environmental variations. 

However, due to resource and time constraints encountered 

during the research period, direct data capture under dim and 

dark conditions was not feasible. As a pragmatic alternative 

approach, these lower light conditions were simulated 

through digital manipulation of the images originally captured 

under normal lighting. This simulation involved applying a 

uniform black color overlay (hex code #000000) to the 

original images, setting the opacity level to 60% to represent 
dim conditions and 80% to represent dark conditions. The 

corresponding results, demonstrating the model's robustness 

to these lighting conditions, are presented in Table 8. 

TABLE VIII  

ROBUSTNESS TO LIGHTING CONDITIONS 

Sign Normal Dim Dark Notes 

A 84 85 53 None 

B 84 76 98 None 

C 88 71 241 1Misclassified as letter D 

D 94 74 392 2Misclassified as letter B 

E 90 85 86 None 

F 78 87 293 3Misclassified as letter G 

G 72 56 39 None 

H 92 89 74 None 

I 94 82 86 None 

J 92 76 57 None 

K 94 63 47 None 

L 96 64 40 None 

M 89 76 58 None 

N 57 41 374 4Misclassified as letter M 

O 91 88 92 None 

P 90 47 275 5Misclassified as letter V 

Q 88 52 45 None 

R 85 68 45 None 

S 96 77 65 None 

T 80 61 69 None 

U 80 70 70 None 

V 85 91 78 None 

W 89 82 85 None 

X 82 85 48 None 

Y 78 82 64 None 

Z 79 55 246 6Misclassified as letter V 

 

While acknowledging the inherent limitations of this 

simulation method compared to using natively captured data 

under varied lighting, this approach enabled a preliminary 

investigation into the model's robustness against reduced light 

intensity within the scope of the existing constraints. The 

presented table compares the confidence scores 
(probabilities) assigned by the model to the actual class label 

for static hand signs (A-Z) when evaluated under three 

distinct lighting conditions. Under normal lighting conditions, 

prediction confidence was generally high (majority >80%), 

although some inter-class variation was observed. Dim 

lighting led to a heterogeneous decrease in confidence across 

classes. This decrease became more drastic and widespread 

under very dark conditions, with the majority of classes 

exhibiting scores below 50%, indicating high prediction 

uncertainty. Nevertheless, under both reduced lighting 

conditions, inter-class performance variability was evident, 

with some classes demonstrating greater robustness than 

others  

1) Prediction Latency Analysis: Table 9 shows the 

results of the computation time required by the model to 

predict a single hand sign (latency). These results were 

obtained under three different lighting conditions: Normal, 

Dim, and Very Dark. The latency tests were performed for 

each sign language class from A to Z. 

TABLE IX 

PREDICTION LATENCY ANALYSIS 

Isyarat Normal Dim Dark 

A 0.066 0.099 0.099 

B 0.066 0.102 0.075 

C 0.071 0.071 0.067 

D 0.098 0.069 0.068 

E 0.067 0.067 0.065 

F 0.066 0.067 0.068 

G 0.065 0.094 0.065 

H 0.074 0.064 0.067 

I 0.064 0.066 0.065 

J 0.072 0.096 0.064 

K 0.144 0.064 0.066 

L 0.066 0.065 0.085 

M 0.065 0.066 0.064 

N 0.065 0.064 0.087 

O 0.070 0.096 0.081 

P 0.144 0.067 0.068 

Q 0.066 0.101 0.066 

R 0.144 0.144 0.067 

S 0.111 0.101 0.073 

T 0.073 0.083 0.075 

U 0.086 0.072 0.100 

V 0.066 0.091 0.065 

W 0.065 0.065 0.064 

X 0.066 0.096 0.065 

Y 0.064 0.109 0.078 

Z 0.064 0.113 0.078 

 

According to the data in Table 9, the model's prediction time 

(latency), measured in seconds, was generally very fast across 

all lighting conditions, with most predictions completed in 
under 0.1 seconds per sign. Further analysis indicated no 

consistent trend suggesting that darker lighting conditions 

(both dim and very dark) significantly and uniformly affected 

the model's prediction speed. The impact of lighting changes 

on latency appeared variable across sign classes, with certain 

signs exhibiting minor, non-systematic decelerations or 

accelerations under different lighting conditions. 

Furthermore, some instances of relatively higher latency were 

observed under normal conditions for specific signs (e.g., K, 

P, R).
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TABLE VI 

FUNCTIONAL DESCRIPTION OF USER INTERFACE COMPONENTS 

Component ID  Type Precondition(s) Function Interaction & Response 

upload Icon Button None Initiates the selection and 

loading of a BISINDO hand 

gesture image from the 

user's local storage. 

Opens the operating system's file selection dialog. 

Upon selection, the image is displayed in the 

*Image* preview area. Enables the `submit` and 

`clear` buttons. 

camera Icon Button Device has a 

camera; User 

grants camera 

access permission 

(if required). 

Activates the device's 

camera interface for capture 

BISINDO sign image. 

Activates the device's camera stream. The captured 

image is displayed in the `image_preview_area`. 

Enables the `submit` and `clear` buttons. 

image_preview Image Preview 

Area 

Image loaded via 

`upload` or 

captured via 

`camera`. 

Displays the hand gesture 

image selected or captured 

by the user, prior to 

submission for 

classification. 

Displays image data received from `upload` or 

`camera` actions. Content is cleared by the `clear` 

action. 

submit Primary Button A valid image is 

displayed in the 

Image preview 

area. 

Initiates processing of the 

displayed image data using 

the integrated classification 

model. 

Passes image data to the integrated model. Receives 

classification results (predicted class, probability 

score) directly from the integrated model and 

updates the corresponding output areas. 

clear Secondary Button An image is 

displayed in the 

Image preview 

area. 

Resets the image input area, 

removing the currently 

displayed image. 

Removes the image from the *Image* preview area. 

Disables the `submit` button until a new image is 

provided (via `upload` or `camera`). 

`predicted_class` Text Output Area Successful 

completion of 

integrated model 

processing 

following `submit`. 

Displays the predicted class 

label for the submitted hand 

gesture image, as 

determined by the model. 

Content is populated by the system based on the 

results returned by the local model function/process. 

Displays the resulting class name (e.g., "A", "B", 

"Hello"). 

`probability` Text Output Area Successful 

completion of 

integrated model 

processing 

following `submit`. 

Displays the confidence 

score (probability) 

associated with the 

predicted class provided by 

the model. 

Content is populated by the system based on the 

results returned by the local model function/process. 

Displays the probability score (e.g., "98.5%", 

"0.985"). 

 

 

2) Web Functional Testing: To verify that the sign 

recognition web application functions as expected across 

various user environments, functionality testing was 

conducted. Table 10 summarizes the results of this 

functionality testing, focusing on key application components 

across different combinations of web browsers and operating 

systems. The testing procedure was conducted online and 

involved 10 university student participants. These participants 

were asked to access the web application from various devices 

and then complete an online research questionnaire that 

included usability testing questions. 

TABEL X 

PREDICTION LATENCY ANALYSIS 

Browser 

(version) 

Operating 

Systems 

Component ID 

upload camera preview submit clear predicted_class probability 

Chrome 

(135.0.7049.85) 

Windows 

10 

Passed Passed Passed Passed Passed Passed Passed 

Firefox 

(137.0.1) 

Windows 

10 

Passed Passed Passed Passed Passed Passed Passed 

Chrome 

(135.0.7049.84) 

Arch 

Linux 

Passed Passed Passed Passed Passed Passed Passed 

Firefox 

(137.0.1) 

Arch 

Linux 

Passed Passed Passed Passed Passed Passed Passed 

Chrome 

(135.0.7) 

Android 13 Passed Passed Passed Passed Passed Passed Passed 

Firefox (137.0) Android 13 Passed Passed Passed Passed Passed Passed Passed 
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The functionality testing results, presented in Table 10, 

indicate that all key components of the web application—

including image upload, camera access, image preview, 

submission for prediction, input clearing, as well as the 

display of results (predicted_class and probability) - 

successfully passed testing ('Passed') across all tested 
configurations. The tested configurations encompassed the 

Chrome and Firefox web browsers on the Windows 10, Arch 

Linux, and Android 13 operating systems. These results 

indicate that the application's core functionality performs 

correctly and exhibits sufficient cross-browser and cross-

platform compatibility across the tested environments. 

D. Further Evaluation 

1) Dataset Comparison: To provide context for the 

dataset utilized in this study, a comparison was made with 

datasets employed in previous related research focusing on 
Indonesian Sign Language (BISINDO). Table 11 presents this 

comparison, detailing key characteristics of these datasets, 

including the number of images, acquisition source, number 

of classes, and their corresponding reference citations. 
TABEL XI 

COMPARISON OF DATASET CHARACTERISTICS USED IN RELATED STUDIES 

Reference Study Number 

Images 

Acquisition 

Source 

Number 

Classes 

Notes 

BISINDO (Bahasa Isyarat Indonesia) Sign Language 
Recognition Using CNN and LSTM [11] 

1.100 Author's 
Collection 
(Private) 

10 None 

Indonesian Sign Language Recognition using YOLO 
Method [22] 

4.547 Author's 
Collection 
(Private) 

24 None 

Indonesia Sign Language Recognition using Convolutional 
Neural Network [14] 

39.455 Author's 
Collection 
(Private) 

37 None 

Convolutional Neural Network (CNN) for Image 
Classification of Indonesia Sign Language Using 
Tensorflow [7] 

2.659 Public Dataset 12 Identical dataset 
referenced by 
the author could 
not be located. 

Integrating the CNN Model with the Web for Indonesian 
Sign Language (BISINDO) Recognition 

312 Public Dataset 26 None 

 

Table 11 reveals significant variations among the 

characteristics of datasets employed in related research on 

BISINDO recognition. This study utilizes a public dataset 

containing 312 images across 26 sign classes. This dataset 

size is relatively small compared to most listed prior studies, 

several of which utilized thousands to tens of thousands of 

images, often sourced from private collections [7], [11], [22]. 

Employing a public dataset in this study, similar to [7], 

potentially enhances the reproducibility of the research 
findings, although the specific dataset used by [7] could not 

be definitively identified. The number of classes (26) 

addressed in this study falls within the range commonly 

investigated by previous studies (10-37 classes). 

2) Model Performance comparison: As part of the 

evaluation process, the performance of the model developed 

in this study was compared with results from previous related 

studies. Table 12 provides a comprehensive summary of this 

comparison across several aspects, including the methods 

employed, recognition type (e.g., static/dynamic), input 

dimensions, training and validation accuracies (where 
reported), and the presence or absence of user interface (UI) 

integration among this study and the referenced works. 
TABEL XII 

COMPARISON OF MODEL PERFORMANCE WITH PREVIOUS RESEARCH 

Reference Study Method Recognition 

Type 

Model Input 

Dimension 

Train 

Acc (%) 

Val Acc 

(%) 

UI 

Integration 

BISINDO (Bahasa Isyarat Indonesia) Sign 
Language Recognition Using CNN and LSTM 

[11] 

CNN and 
LSTM 

Dynamic 100 × 89 96 Not 
mentioned 

No 

Indonesian Sign Language Recognition using 
YOLO Method [22] 

CNN Dynamic 3024×3024; 
640×640 

100 Not 
mentioned 

No 

Indonesia Sign Language Recognition using 
Convolutional Neural Network [14]  

CNN Static 60 × 60 99,48 98,39 No 

Convolutional Neural Network (CNN) for 

Image Classification of Indonesia Sign 
Language Using Tensorflow [7] 

CNN Static 150 × 150 96,80 100 No 
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Integrating the CNN Model with the Web for 
Indonesian Sign Language (BISINDO) 
Recognition 

CNN Static 256 × 256 94,02 97,44 Yes 

 

Table 12 contextualizes this research within the landscape 

of related studies. Employing a CNN method for static sign 
recognition, analogous to approaches in [14] and [7], this 

study achieved a training accuracy of 94.02% and a validation 

accuracy of 97.44%. While the training accuracy is 

marginally lower than that reported in some studies (>96%), 

the validation accuracy (97.44%) demonstrates competitive 

generalization performance compared to [14] (98.39%) and 

[7] (100%).  

It is important to note, however, that direct accuracy 

comparisons across studies are inherently limited due to 

significant differences in the datasets used (as detailed in the 

Table 11), variations in the number of classes and input 
dimensions, and differing focuses on static versus dynamic 

signs [11], [22]. A unique contribution of this study, setting it 

apart from the compared works, is the successful integration 

of the model into a web-based user interface, which 

demonstrates the practical application potential of the 

developed model. 

IV. CONCLUSION 

Based on the research conducted, it is concluded that the 

developed Deep Learning (DL) model effectively recognizes 

static images containing hand gestures for the BISINDO 

alphabet. This is evidenced by the model's high accuracy, 

achieving 94.02% on the training data and 97.44% on the 

validation data. Furthermore, evaluation metrics including the 

confusion matrix, precision, recall, and F1-score also yielded 

strong results, with respective average macro-scores of 

approximately 98%, 97%, and 97.12%. Additionally, 

functional and latency testing results confirm that the web-
integrated DL model functions correctly, is readily accessible, 

and provides rapid recognition results. Although this research 

successfully developed an accurate DL model and integrated 

it into an accessible web recognition application, the study 

was limited to the 26 alphabet classes of BISINDO and 

utilized a dataset smaller than those in some prior studies. 

Furthermore, direct performance testing involving users with 

disabilities was not performed. Consequently, subsequent 

development needs to overcome limitations related to data 

scope, dataset variability, and end-user validation for real-

world applicability. 
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