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Effective communication is challenging for deaf individuals in Indonesia, most of
whom use Indonesian Sign Language (BISINDO). Sign Language Recognition
(SLR) can bridge this communication gap. While Convolutional Neural Networks
(CNNs) show high potential for SLR, their practical accessibility remains limited.
This research aims to develop a CNN architecture for recognizing BISINDO
alphabet signs from static images (still images) and integrate it into an accessible
web platform. Using a static vision-based approach, a CNN model was trained on a
public dataset (312 images, 26 classes) following standard pre-processing including
data augmentation. The model was subsequently integrated into a web interface
using Python and the Gradio library. Results demonstrated strong model
performance, with validation accuracy reaching 97.44% and a macro-average F1-
score of approximately 97.12%. However, classification challenges were identified
for visually similar signs (M' and 'N'). The resulting integrated web application
proved functional, exhibited low prediction latency, and showed cross-platform
compatibility. This study successfully demonstrates the development of an accurate
DL model for static BISINDO alphabet recognition and its practical implementation
via a web platform. This contributes to reducing the accessibility gap in SLR
technology. Future research is recommended to utilize larger, more varied datasets

and explore dynamic sign recognition.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Communication is an important aspect of social life.
Through communication individuals can interact with the
surrounding environment, convey ideas, and obtain education
[1]. However, there are individuals who have limitations in
communicating verbally due to hearing or speech impairment
they are deaf - speech impaired [2], [3]. The Population
Census conducted in 2020 showed that 1.43% of Indonesia’s
population were people with disabilities, with 0.36% having
hearing impairments and 0.35% having speech impairments
[4].

Sign language is a language used by people with deaf-
speech disabilities to communicate. In Indonesia there are two
sign languages: The Indonesian Sign Language System (SIBI)
and Indonesian Sign Language (BISINDO). SIBI is a
standardized system developed by the Indonesian government

and adapted from American Sign Language (ASL) [5]. In
contrast, BISINDO emerged naturally and serves as the
primary language for the majority of Deaf individuals in
Indonesia [6]. Research shows that only 9% of people with
disabilities use SIBI and 91% use BISINDO [7].

Sign Language Recognition (SLR) is a method that aims to
facilitate communication between deaf and hearing
individuals. The field of research focuses on the automatic
identification of signs within specific sign languages and their
subsequent translation into formats such as text or speech,
thereby rendering the signed communication accessible to
non-signers [8], [9].

Sign Language Recognition generally uses two
approaches, which are vision-based approach and sensor-
based approach. In the sensor-based approach, sensor devices
are attached to the body to capture the position and movement
of hands, fingers and other body parts. These sensors will
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generate signals that are then processed for Sign Language
recognition [8], [9], [10]. This sensor-based approach has the
disadvantage that sensor devices are expensive [10].
Meanwhile, the vision-based approach takes hand gesture
images as input and converts them into text or voice. This
vision-based approach can utilize the Traditional Machine
Learning approach and Deep Learning (DL) approach.
Traditional approaches use Hidden Markov Models (HMM)
and Support Vector Machines (SVM), while non-traditional
approaches utilize Deep Learning such as Convolutional
Neural Networks (CNN) and Long Short-Term Memory
(LSTM) [7], [8], [10], [11], [12]. Deep Learning is a subfield
of Artificial Intelligence that focuses on learning the
representation of data by utilizing artificial neural networks
inspired by the structure and function of the human brain, DL
has many layers of processing [13].

Vision-based approaches to sign language recognition can
be classified into static and dynamic methods, depending on
the type of visual input analyzed [9]. Static approaches
emphasize the extraction of pertinent spatial characteristics
from static images of isolated signs, such as alphabets, and
generally utilize two-dimensional convolutional neural
network (CNN) architectures. Conversely, dynamic
approaches process video sequences to simultaneously
capture spatial and temporal information, including motion
and transitions between signs [13]. This capability is essential
for continuous sign language recognition (CSLR) tasks.
Consequently, dynamic methods often necessitate more
complex architectures and tend to require greater
computational resources [13].

This research employs a vision-based sign language
recognition approach to identify static signs corresponding to
the BISINDO alphabet. The selection of this methodology
was driven by its accessibility and its independence from
costly, specialized hardware or substantial computational
resources. The implementation of this vision-based
recognition offers significant practical advantages, as it can
be readily utilized with standard camera devices integrated
into smartphones or laptops [9].

Vision-based approaches employing Deep Learning (DL)
techniques, such as Convolutional Neural Networks (CNN),
have demonstrated promising accuracy in recognizing
Indonesian Sign Language [7], [11], [14], [15], [16], [17].
However, the real-world application of these models remains
significantly limited, hindering their broader accessibility and
use [8], [10]. Therefore, the objective of this research is to
address this limitation by integrating a developed DL model
into a web-based sign language recognition platform,
specifically designed with an emphasis on practicality and
user-friendliness.

Il. METHOD

A. Research Pipeline

This study employs a quantitative approach to identify
static hand gestures associated with Indonesian Sign
Language (BISINDO), utilizing a deep learning (DL) model

and integrating it into a web-based interface. The research was
conducted by following the flow in Figure 1, which began
with conducting a literature study of related research articles
both national and international articles. After conducting a
literature study of various sources, the researcher continued
by determining the research topic, determining this topic after
carefully reading the existing literature. At this stage the
researcher determines the topic of Sign Language
Recognition. The problem formulation stage is done by
asking questions related to what solutions can be done to the
problems encountered in the topic being studied. Data
collection is a stage where researchers collect related data, this
involves finding appropriate data, downloading, and pre-
processing before being given to the model for the training
stage. The next stage is model building and model evaluation.
The choice of DL architecture to be used is closely related to
the type of data used. This research will use CNN because of
its ability to recognize patterns in images by maintaining the
relationship between pixels in the image. Models that have
been trained using data will be evaluated to ensure the
prediction results provided by quality models. Web design
stages include system design, web interface design.
Integrating the model with the web is the stage of
implementing the model with the web. The last stage is report
writing, at this stage all experimental results are written
systematically. The flow of research conducted can be seen in

Figure 1.

Literature Studies

l

Determination of Research Topic

l

Problem Formulation

l

Data gathering and pre-processing

I

Model Training and Evaluation

l

Web Design & Model Deployment

l

Conducting Report

End
Figure 1. Research Process
As shown in Figure 1, this research was conducted step by

step in a sequential manner from literature review to report
writing. The process is depicted from top to bottom.
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B. Data Collection

This study utilizes secondary data, specifically comprising
open-source images of hand gestures representing the
Indonesian Sign Language (BISINDO). The data selection
criteria applied in this research are detailed in Table 1.

TABLE |
DATA SELECTION CRITERIA

Criterion Specification
Data Type Open-source image data
Data Source Kaggle or UCI Dataset

Data Format Images (JPG, PNG)

Sign Language System BISINDO  (Indonesian  Sign
Language)
Minimum Resolution 200 x 200 pixels

The data search process will be modified to align with the
data criteria specified in Table 1. This search will be
conducted within the Kaggle and UCI open-source data
repositories. The process of data search is shown in Figure 2.

Initil Search: Keyword 'BISINDO dataset'

‘ Refine Search Keywords

Attempt Search with New Keywords ‘

!

No

th

4! Download Relevant Datasets ‘

End

Figure 2. Data Collection Process

The data collection process, as illustrated in Figure 2,
included search initiation, keyword refinement, and dataset
downloading.

1) The initiation of the search process: Querying open-
source data websites using the keyword "BISINDO

dataset”. The Kaggle and UCI databases were selected
due to their provision of straightforward access to a wide
array of relevant and contemporaneous open-source
datasets.

2) The refinement of the keywords: This is a necessary step
when the initial keywords are not matching any relevant
datasets.

3) Dataset downloading: Matched datasets are then
downloaded for further processing.

During the searching process, one dataset was found that
was relevant to the required data criteria. This data was
obtained from the Kaggle repository under the title
Indonesian Sign Language (BISINDO) Alphabets, created by
Achmad Noer. The dataset contains a total of 312 images, and
consists of 26 classes corresponding to the alphabet (A-Z),
with each class containing 12 BISINDO alphabet images [18].

The sample BISINDO alphabet dataset can be seen in
Figure 3. In Figure the hand gestures of the letters A, B, C, D,
E and F in BISINDO are shown.
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Figure 3. Sample images from the Indonesian Sign Language dataset for the
letters A, B, C, D, E, and F.

The comprehensive information regarding the Indonesian
Sign Language (BISINDO) Alphabets Dataset is shown in
Table 2.

TABLEII

DATASET INFORMATION
Feature Description
Data Type Images
Format JPEG (.jpg)
Colour Space RGB
Dimensions (pixels) 512x512
Number of Classes 26
Label ABC, .., Z
Images per Class 12
Total Number of Images 312
Is there a class imbalance? No

C. Pre-processing

The downloaded data will be adjusted to the appropriate
size and format before being input into the model. This stage
is termed pre-processing [10]. This pre-processing stage
involves several key steps, including the splitting of the data
into training and validation sets, encoding, and augmentation.
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1) Data Splitting: As illustrated in Figure 4,
modifications to the directory structure occur during the data
splitting phase of pre-processing. The left panel, designated
as "Before Data Splitting," illustrates the initial structure of
the dataset, where all image data resides in a single data
directory, categorized into classes (schematically represented
as directories A through Z). The right panel ("After Data
Splitting™) illustrates the outcome of the aforementioned
partitioning. The original data directory is divided into two
distinct subsets: a training set (train) and a validation set (val).
Notably, the original class structure (A through Z) is
maintained within both the training and validation sets,
making sure that each subset contains examples from all
classes. The dataset utilized in this study comprises 312
images, equally distributed across 26 distinct sign language
classes, resulting in 12 samples per class.

Before Data Splitting After Data Splitting
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Figure 4. Data Splitting

Standard percentage-based data splitting methods (e.g.,
80% training, 20% validation) were deemed potentially
suboptimal due to the limited number of samples per class
[19]. Such methods could lead to significant class imbalance
or even zero representation for some classes in the validation
set. To mitigate this issue and ensure robust evaluation across
all categories, a specific data partitioning strategy was
adopted. Instead of a conventional percentage ratio, a fixed
number of samples—specifically, 3 images (designated as
support) from each of the 26 classes—were allocated to
constitute the validation set. This allocation resulted in a
validation set containing 78 images (3 samples/class x 26
classes) and a training set comprising the remaining 234
images, effectively yielding a 75% training and 25%
validation split ratio. This method guarantees balanced class
representation within the validation set, thereby providing a
more reliable basis for evaluating the model's generalization
performance across all classes.

2) Label Encoding: Label encoding was performed
because deep learning models generally operate more

effectively with numerical data compared to categorical
inputs. Figure 5 illustrates this label encoding process, a
prerequisite step in preparing the dataset for deep learning.
The dataset, located within the main data directory, is
organized into a training set (‘train’) and a validation set (‘val’).
Categorical class labels, initially represented by folder names
corresponding to letters ("A", "B", "C" through "Z"), were
systematically  mapped to  numerical identifiers.
Consequently, as depicted, each class is now represented by a
numerically labelled subdirectory (ranging from 01 to 26)
within both the 'train’ and 'val' folders.
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Figure 5. Label Encoding

This numerical representation is crucial for enabling the
deep learning model to effectively process and learn from the
class distinctions during the training and evaluation phases.
3) Data Augmentation: Data augmentation was
implemented to address the challenge of limited data
availability by synthetically expanding the dataset from
existing images. Data augmentation is a widely employed
technique in deep learning and computer vision, leveraged to
enhance model performance and generalization capabilities
[20]. This approach involves increasing the diversity of the
training dataset by applying various transformations, such as
image rotation, to the existing data. The specific
augmentation techniques and parameters utilized in this study
are detailed in Table 3 Augmentation Parameters.

TABLE 11
AUGMENTATION PARAMETERS

Value
1./255

Parameter
rescale

Description

Rescales pixel intensity values
from the [0, 255] range to the [0, 1]
range by multiplying with the
specified factor (1/255).
Randomly rotates images by an
angle selected uniformly from the
range [-10, +10] degrees.

rotation 10
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width_shift | 0.2 Randomly shifts images
horizontally by a fraction of the
total width, selected uniformly
from the range [-0.2 * width, +0.2
* width].

Randomly shifts images vertically
by a fraction of the total height,
selected uniformly from the range
[-0.1 * height, +0.1 * height].
Randomly applies zoom to the
image by selecting a zoom factor
uniformly from the specified range.
A factor < 1 zooms in, > 1 zooms
out. E.g., [0.8,1.2] corresponds to
zooming in/out by up to 20%.
Randomly adjusts image
brightness by picking a brightness
shift factor uniformly from the
specified range ‘[lower, upper] .
E.g, [0.8, 1.2 modifies
brightness between 80% and
120%.

Randomly shifts color channel
values (e.g., R, G, B) by adding an
intensity value selected uniformly
from the range [-10.0, +10.0].

heigh_shift | 0.1

zoom_range | [0.8,

1.2]

brightness_r
ange

[0.8,
1.2]

color_shift_ | 10.0

range

Table 3 illustrates the application of data augmentation to
a sample BISINDO representing the letter 'A'. This process
involves a series of geometric and photometric
transformations designed to artificially enrich the training
dataset, thereby enhancing the robustness and generalization
capability of the classification model when faced with input
variations

width & height shift

" AN

zoom range

rotation & shear range brightness & channel shift

Figure 6. Results of the image augmentation process

As illustrated in Figure 6, the applied transformations
encompass a diverse set of modifications. Specifically, the
augmentation techniques employed include zoom, width
shift, height shift, rotation, shear, brightness shift, and channel
shift. The specific parameters that govern the degree and

range of each transformation, which yielded the augmented
data samples displayed, are defined by the values specified in
Table 3. The selection of these augmentation parameters and
value ranges was not arbitrary, but was determined through a
series of empirical trials. These trials aimed to identify the
optimal configuration for effectively simulating real-world
variability without introducing excessive distortion to the
original gesture data.

D. Deep Learning Model Building

The development process for the Deep Learning (DL)
model encompasses several key stages: architecture
definition, model training, performance evaluation, and
subsequent saving of the trained model. Architecture
definition constitutes the initial and fundamental phase.
During this phase, the network configuration is specified,
including the number of layers, the quantity of units within
each layer, and the filter sizes to be employed, particularly for
the feature extraction task from image data. Table 4 provides
detailed specifications of the layers and their corresponding
parameters utilized in this study for this image feature
extraction purpose.

TABEL IV

MODEL PARAMETERS
Layer Qutput Shape Param
conv2d (None, 254, 254, 16) 448
max_pooling2d (None, 127, 127, 16) 0
conv2d_1 (None, 125, 125, 32) 4640
max_pooling2d_1 (None, 62, 62, 32) 0
conv2d_2 (None, 60, 60, 64) 18496
max_pooling2d_2 (None, 30, 30, 64) 0
conv2d_3 (None, 28, 28, 128) 73856
max_pooling2d_3 (None, 14, 14, 128) 0
conv2d_4 (None, 12, 12, 256) 295168
max_pooling2d_4 (None, 6, 6, 256) 0
conv2d_5 (None, 2, 2,512) 3277312
max_pooling2d_5 (None, 1,1, 512) 0
flatten (None, 512) 0
dropout (None, 512) 0
dense (None, 512) 262656
dense_1 (None, 256) 131328
dense_1 (None, 26) 6,682

After the architecture is defined, the model compilation
step is performed. This stage involves the selection of the loss
function, the optimization algorithm (optimizer), and the
evaluation metrics to be monitored during the ensuing
training phase. The specific parameters employed for model
compilation and training are detailed in Table V.

TABLE V
TRAINING PARAMETERS

Parameter Value

Input Shape 256*256

Batch Size 64

Optimizer RMSprop

Learning Rate 0.001 (default)

Loss Categorical Crossentropy
Epoch 200

Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition
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During the training stage, the model learns to map patterns
in hand gesture images to their corresponding alphabet labels
within the dataset. This training was conducted using Google
Colab, leveraging T4 GPU acceleration.

Subsequent to the training stage, the model undergoes a
stage of evaluation in which its performance is assessed. In
this phase, the trained model is evaluated on previously
unseen hand gesture images (i.e., the validation set) to
ascertain its capacity to generalize and accurately recognize
signs.

Finally, the model saving stage involves storing the
evaluated model for subsequent integration into the sign
language recognition web application. This process involves
the storage of the model's architecture, compilation
parameters, and learned weights in the HDF5 (.h5) file format.

E. BISINDO recognition web design

The web design stage includes system design which aims

to describe how user interactions with the model through the
web and web interface design.
1) Use case diagram: The description of the interaction
between the user and the DL model through the web is
described through the UML use case diagram and can be seen
in Figure 7 system Design Using Use case Diagram.

Indanesian sign language recognition website

)

DL Model

Figure 7. System Design Using Use Case Diagram

2) User Interface Design: After the design of the
interaction between the user and the model through the web
is finalized, proceed to the next stage, namely the design of
the Indonesian Sign Language Recognition web interface as
can be seen in Figure 8.

Image Probability

;:-
B
'3 ]
B ®

Figure 8. Design of BISINDO Recognition Web Page

3) Functional  Description of User Interface
Components: The user interface (Ul) is used as the primary
medium through which users interact with the Indonesian
Sign Language (BISINDO) recognition web application. To
ensure effective navigation of the system and utilization of its
sign recognition capabilities, it is imperative that users
possess a comprehensive understanding of the function of
each button, display area, and input element. Consequently,
this section provides functional details for these Ul elements.
Table 6 below systematically presents comprehensive
information on each web interface component, outlining its
specific function and purpose within the application
workflow.

Following the finalization of the web interface design, the
study proceeded to the crucial subsequent phase: the
integration of the previously developed deep learning model
into the web environment. This integration was technically
implemented using the Python programming language.
Specifically, the Gradio library (package) was utilized in this
implementation to facilitate the creation of an interactive
interface, bridging the model's functionality with the end-user
via the web application [21].

I11. RESULTS AND DISCUSSION

A. Deep Learning Model

The training of the deep learning model was conducted for
a total of 200 epochs. Upon completion of this training
process, the model attained a final accuracy of 94.02% on the
training dataset and demonstrated strong generalization
performance with an accuracy of 97.44% on the validation
dataset. The progression of model accuracy throughout the
training phase, illustrating the learning convergence, is
depicted graphically in Figure 9.

Training and Validation Accuracy

104 — Training Accuracy
validation Accuracy
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Figure 9. Training and Validation Accuracy

Figure 9 shows the accuracy of the model during the
training period in the first 50 epochs, the training accuracy of
the model increases slowly, identifying progress in the model
learning process. Meanwhile, in the early epochs there is a
significant accuracy recall in the validation accuracy,
indicating the effective generalization ability of the model. In
the range of 50 to 100 epochs, the training and validation
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accuracy increased sharply with the training accuracy
showing a steady increase, while the validation accuracy
fluctuated. In the final epoch phase, the accuracy diagram is
more stable indicating that the model has achieved consistent
performance. The subsequent sections will provide a detailed
evaluation of the model's performance using standard
evaluation metrics.

1) Classification Report: The detailed performance
evaluation of the proposed classification model across all 26
classes is summarized in the classification report presented in
Table 7. This report provides key performance metrics,
including precision, recall, F1-score, and support, offering
insights into the model's effectiveness on a per-class basis.

TABLE VII
CLASSIFICATION REPORT
class precision recall fl-score support
A 1.00 1.00 1.00 3
B 1.00 1.00 1.00 3
C 1.00 1.00 1.00 3
D 1.00 1.00 1.00 3
E 1.00 1.00 1.00 3
F 1.00 1.00 1.00 3
G 1.00 1.00 1.00 3
H 1.00 1.00 1.00 3
[ 1.00 1.00 1.00 3
J 1.00 1.00 1.00 3
K 1.00 1.00 1.00 3
L 1.00 1.00 1.00 3
M 0.60 1.00 0.75 3
N 1.00 0.33 0.50 3
o 1.00 1.00 1.00 3
P 1.00 1.00 1.00 3
Q 1.00 1.00 1.00 3
R 1.00 1.00 1.00 3
S 1.00 1.00 1.00 3
T 1.00 1.00 1.00 3
U 1.00 1.00 1.00 3
W 1.00 1.00 1.00 3
X 1.00 1.00 1.00 3
Y 1.00 1.00 1.00 3
z 1.00 1.00 1.00 3

The evaluation results for the Indonesian Sign Language
(BISINDO) recognition model across 26 distinct classes are
detailed in Table 7. The majority of classes, specifically 01-
12 (A-L) and 15-26 (O-Z), achieved perfect scores (1.00) for
precision, recall, and F1-score. This performance indicates
highly effective classification for these categories within the
evaluation dataset. However, notable exceptions were
observed: Class 13 (M) demonstrated lower precision (0.60)
despite perfect recall (1.00), resulting in an F1-score of 0.75.
Conversely, Class 14 (N) achieved perfect precision (1.00)
but suffered from low recall (0.33), vyielding a
correspondingly lower F1-score of 0.50.

Confusion Matrix: The performance evaluation of the
proposed deep learning model for recognizing 26 Indonesian
Sign Language (BISINDO) hand signs is presented via a
confusion matrix, as illustrated in Figure 10. This matrix
provides a visual representation of the model's classification

performance on the test dataset, with its predictions mapped
against the actual class labels. The findings reveal that the
model attained a high degree of accuracy across a wide range
of sign classes. The superior performance of the model is
evident from the predominance of values along the main
diagonal of the matrix, with all test samples (n = 3 per class)
for 25 out of the 26 sign classes being correctly classified.
However, a misclassification between sign classes '14' and
'13' was identified. Specifically, two of the three samples
classified as '14' were misclassified as '13'. Consequently, the
model accurately identified only one sample from class '14.'
No other misclassifications were observed among the
remaining sign classes during this evaluation.

Confusion Matrix
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Figure 10. Model Evaluation Using Confusion Matrix

The findings demonstrate the model's robust
discriminative capability, despite the challenges in
differentiating the visual characteristics between signs '13'
and '14." This suggests the potential for visual similarity
between these two sign classes.

2) Overall Performance Metrics: This classification
process specifically involves N=26 distinct classes
(categories), featuring a balanced sample distribution across
classes, with each class uniformly represented by 3 support
samples. Consequently, the entire evaluation dataset
comprises a total of 78 samples, derived directly from the
multiplication of the total number of classes by the number of
support samples per class (26 classes x 3 samples/class). This
class-balanced  structure  constitutes an  important
characteristic of the evaluation set employed in this study.

Class-Specific Metric Derivation:

For classes 01 to 12 and 15 to 26, the following equations
are to be used:

- TP=3

- FN=0
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- FP=0
- TN=Total Sample - TP-FP-FN=78-3-0-0=75

For Class 13, the values are as follows:

- TP=3

- FN=0

- FP=2

- TN =Total Sample - TP-FP-FN=78-3-2-0=73

For Class 14, the values are as follows:

- TP=1

- FN=2

- FP=0

- TN = Total Sample- TP-FP-FN=78-1-0-2=75

Macro Averaging: Macro-averaging is an approach used to
calculate aggregate performance metrics, such as precision or
recall, in multi-class classification tasks. This approach
entails the preliminary calculation of the target metric for each
class independently. The simple arithmetic mean of these
individual per-class scores is then computed to yield the final
aggregate score. A fundamental implication of this method is
that it assigns equal weight to each class in the computation
of the final average score, irrespective of the actual number of
samples (support) within each class.

Macro-averaged Precision:  This macro-averaging
approach assesses model performance by weighting each
class equally. It is computed by averaging the precision scores
calculated independently for each class. The general formula
for Macro Precision is:

. 1% tp;
Macro Precision = —Z —_—
| ] tpi + fp1

...where [ is the total number of classes (26 in this study), tpi
represents the true positives, and fpi denotes the false
positives for the i-th class. The Macro Precision calculation
involves summing the precision values from all 26 classes
(vielding a total of 25.60), which is then divided by the
number of classes (1). The result of the calculation, 2625.60,
is approximately 0.9846. This value represents the model's
average precision performance across all classes, assighing
equal weight to each class regardless of its sample size.

Macro Average Recall: This metric is a measure of the
model's average ability to independently identify all true
positive instances for each class. It is computed by taking the
arithmetic mean of the recall scores calculated individually
for each class. The formula for Macro Recall is as follows:

1
1 . I, tp;
Macro Recall = —Z Recalli = —Zl =11—
1 - l tp; + fn;

..where 1is the total number of classes, tpi represents the
true positives, and fni denotes the false negatives for the i-th
class. Macro Recall calculation was performed by first
summing the recall scores from all classes. Based on the per-
class results, 24 classes exhibited perfect recall (1.00), another
class also had a recall of 1.00, while the one remaining class

had a recall of 31. The total sum of these recall scores is
(24 x 1.00) + 1.00 + 31 = 376. This total value was then
divided by the number of classes (26) to obtain the macro-
average: 2676/3 = 7876. The final result of this Macro
Recall calculation is approximately 0.9744, indicating that the
model, on average, demonstrates a very high capability to
recognize positive samples from each class.

Macro F1-Score: The F1-Score represents the harmonic
mean of precision and recall, providing a single metric that
balances these two performance aspects, a characteristic
particularly valuable in the presence of class imbalance.
Consistent with other macro-averages, this method assigns
equal weight to each class, irrespective of its sample size. The
formula employed for the Macro F1-Score is:

1
1
Macro F1 = TE F1,

i=1

...wherel is the total number of classes and F1i is the F1-Score
for the i — th class, calculated as

2 X Precision; X Recall;
Fli =

Precision; + Recall;

In its implementation in this research with 26 classes
(1=26), the Macro F1-Score calculation involved summing the
F1-Scores from all classes. Based on the per-class evaluation,
it was found that 24 classes achieved a perfect F1-Score
(1.00), one class had an F1-Score of 0.75, and another class
had an F1-Score of 0.50. The total sum of these F1-Scores is
(24 x 1.00) + 0.75 4+ 0.50 = 25.25. The macro-average
value was then calculated by dividing this total sum by the

number of classes (26), yielding % The final result of the

Macro F1-Score calculation is approximately 0.9712 =
97,12%, which indicates excellent overall model
performance in balancing precision and recall evenly across
all classes.

Weighted Averaging: Weighted averaging calculates the
mean of per-class metrics, weighting each class's score by its
support. This method accounts for class imbalance,
contrasting with the macro-averaging approach where all
classes are weighted equally. However, given the uniform
support of 3 samples per class in this study's validation set,
the weighted average calculation is mathematically
equivalent to the macro average, consequently yielding the
same numerical result.

Accuracy: The primary evaluation metric computed is
Accuracy. This is the most intuitive measure of classification
model performance, representing the proportion of total
samples across all classes that the model classifies correctly.
This metric offers a general overview of the model's overall
correctness in making predictions. The sum of these values is
calculated across all classification categories. The formula
employed for the Accuracy is:
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A ~ TP + TN
CCUraCY = TP T TN+ FP + FN

In the formula above, TP represents true positives, TN
represents true negatives, FP represents false positives and FN
represents false negatives. In the context of the model
evaluation in this research, specifically on the validation
dataset comprising 78 samples (with a balanced
representation of 3 samples per class), the model was recorded
as making 76 correct predictions. Thus, its accuracy
calculation is:

76
Accuracy = 78" 0.97435897 ... = 97.44%

This high accuracy value indicates that the model
demonstrates excellent overall predictive correctness on the
dataset used for this evaluation.

Performance Analysis of Classes 13 and 14: Based on the
evaluation metrics presented above, this section provides a
detailed performance analysis for Class 13 (letter M) and
Class 14 (letter N). The recognition model demonstrated low
precision for Class 13 (letter M), achieving a score of 0.60.
This indicates that when the model predicted a sign as M, the
prediction was correct only 60% of the time. The remaining
40% comprised signs from other classes that were
misclassified as M, signifying a high False Positive rate for
this class. Conversely, the model achieved perfect recall
(1.00) for Class 13, successfully identifying all actual
instances of the M sign within the evaluation dataset.
Consequently, no M signs were missed (zero False
Negatives). This suggests a model tendency to over-predict
Class 13; while capturing all true M signs, it also erroneously
classifies other signs as M. Specifically, the confusion matrix
Figure 10 reveals that two samples belonging to Class 14
(letter N) were misclassified as M. In contrast, Class 14 (letter
N) exhibited perfect precision (1.00). This implies that every
instance predicted as N by the model was indeed correct,
resulting in no False Positives. However, the model's recall
for this class was notably low at 0.33 (approximately 1/3).

Class 13 (representing 'M')

0

) . .
1 ' .

.
F ¥, w
- |
X i

AN M5
Figure 11. Visual similarity between Class 13 (‘M") and Class 14 ('N)
This signifies that the model only correctly identified 33%

of the actual N signs present in the evaluation data. A
significant majority (67%) of true N signs were consequently

misclassified as other letters, indicating a high False Negative
rate. This pattern suggests the model adopts a highly
conservative approach when predicting the N sign, leading to
many true instances being overlooked. This classification
difficulty may be attributed to the visual similarity between
the signs for M and N, as potentially illustrated in Figure 11.

As illustrated in Figure 11, representative images are
presented for sign class M (depicted on the left) and sign class
N (depicted on the right). A high similarity between these two
sign classes can be observed. The distinguishing factor
between these two sign classes lies in the number of fingers
that make contact with the palm: three fingers for class M, and
two fingers for class N.

B. Model Integration

After evaluating the DL Model, the next step is to integrate
the model with the web. Implementation of the model with
the web is done using the Python Programming Language.
Figure 12 shows the initial appearance of the BISINDO
recognition web.

Pengenalan Bahasa Isyarat Indonesia

» Flag

Figure 12. Initial View of BISINDO Recognition Web

Clear

Figure 13 shows the BISINDO recognition web interface
when hand gesture image recognition is run. On the left side,
the image preview will appear and on the right side, the class
prediction results will appear.

Probabilitas

F
F 95%
T 2
E 1%
R 1%
44 0!

Figure 13. Web View when Sign Language Recognition is Running

Figure 13 shows that the integration between the model and
the BISINDO recognition web has been successful, this is
shown by the web integrated with the model that successfully
recognizes the letter “F” in the BISINDO hand gesture in a
short time.
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C. Further Evaluation

Robustness to Lighting Conditions: In this study, the
performance evaluation of the static hand sign recognition
model was conducted under three distinct lighting conditions:
normal, dim, and dark. Ideally, image data acquisition would
be performed directly under each specific lighting condition
to accurately represent real-world environmental variations.
However, due to resource and time constraints encountered
during the research period, direct data capture under dim and
dark conditions was not feasible. As a pragmatic alternative
approach, these lower light conditions were simulated
through digital manipulation of the images originally captured
under normal lighting. This simulation involved applying a
uniform black color overlay (hex code #000000) to the
original images, setting the opacity level to 60% to represent
dim conditions and 80% to represent dark conditions. The
corresponding results, demonstrating the model's robustness
to these lighting conditions, are presented in Table 8.

TABLE VIl
ROBUSTNESS TO LIGHTING CONDITIONS
Sign Normal Dim Dark Notes
A 84 85 53 None
B 84 76 98 None
C 88 71 241 IMisclassified as letter D
D 94 74 392 2Misclassified as letter B
E 90 85 86 None
F 78 87 293 SMisclassified as letter G
G 72 56 39 None
H 92 89 74 None
[ 94 82 86 None
J 92 76 57 None
K 94 63 47 None
L 96 64 40 None
M 89 76 58 None
N 57 41 374 “Misclassified as letter M
0 91 88 92 None
P 90 47 275 SMisclassified as letter V
Q 88 52 45 None
R 85 68 45 None
S 96 77 65 None
T 80 61 69 None
U 80 70 70 None
V 85 91 78 None
W 89 82 85 None
X 82 85 48 None
Y 78 82 64 None
Z 79 55 245 SMisclassified as letter V

While acknowledging the inherent limitations of this
simulation method compared to using natively captured data
under varied lighting, this approach enabled a preliminary
investigation into the model's robustness against reduced light
intensity within the scope of the existing constraints. The
presented table compares the confidence scores
(probabilities) assigned by the model to the actual class label
for static hand signs (A-Z) when evaluated under three
distinct lighting conditions. Under normal lighting conditions,
prediction confidence was generally high (majority >80%),

although some inter-class variation was observed. Dim
lighting led to a heterogeneous decrease in confidence across
classes. This decrease became more drastic and widespread
under very dark conditions, with the majority of classes
exhibiting scores below 50%, indicating high prediction
uncertainty. Nevertheless, under both reduced lighting
conditions, inter-class performance variability was evident,
with some classes demonstrating greater robustness than
others

1) Prediction Latency Analysis: Table 9 shows the
results of the computation time required by the model to
predict a single hand sign (latency). These results were
obtained under three different lighting conditions: Normal,
Dim, and Very Dark. The latency tests were performed for
each sign language class from A to Z.

TABLE IX
PREDICTION LATENCY ANALYSIS
Isyarat Normal Dim Dark
A 0.066 0.099 0.099
B 0.066 0.102 0.075
C 0.071 0.071 0.067
D 0.098 0.069 0.068
E 0.067 0.067 0.065
F 0.066 0.067 0.068
G 0.065 0.094 0.065
H 0.074 0.064 0.067
| 0.064 0.066 0.065
J 0.072 0.096 0.064
K 0.144 0.064 0.066
L 0.066 0.065 0.085
M 0.065 0.066 0.064
N 0.065 0.064 0.087
0 0.070 0.096 0.081
P 0.144 0.067 0.068
Q 0.066 0.101 0.066
R 0.144 0.144 0.067
S 0.111 0.101 0.073
T 0.073 0.083 0.075
U 0.086 0.072 0.100
Vv 0.066 0.091 0.065
W 0.065 0.065 0.064
X 0.066 0.096 0.065
Y 0.064 0.109 0.078
z 0.064 0.113 0.078

According to the data in Table 9, the model's prediction time
(latency), measured in seconds, was generally very fast across
all lighting conditions, with most predictions completed in
under 0.1 seconds per sign. Further analysis indicated no
consistent trend suggesting that darker lighting conditions
(both dim and very dark) significantly and uniformly affected
the model's prediction speed. The impact of lighting changes
on latency appeared variable across sign classes, with certain
signs exhibiting minor, non-systematic decelerations or
accelerations  under  different  lighting  conditions.
Furthermore, some instances of relatively higher latency were
observed under normal conditions for specific signs (e.g., K,
P, R).
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TABLE VI

FUNCTIONAL DESCRIPTION OF USER INTERFACE COMPONENTS

classification.

Component ID Type Precondition(s) Function Interaction & Response
upload Icon Button None Initiates the selection and | Opens the operating system's file selection dialog.
loading ofaBISINDO hand | Upon selection, the image is displayed in the
gesture image from the | *Image* preview area. Enables the “submit™ and
user's local storage. “clear” buttons.
camera Icon Button Device has a | Activates the device's | Activates the device's camera stream. The captured
camera; User | camera interface for capture | image is displayed in the “image_preview_area’.
grants camera | BISINDO sign image. Enables the “submit™ and “clear” buttons.
access permission
(if required).
image_preview Image  Preview | Image loaded via | Displays the hand gesture | Displays image data received from ‘upload™ or
Area “upload® or | image selected or captured | “camera’ actions. Content is cleared by the “clear
captured via | by the user, prior to | action.
“camera’. submission for

displayed in the

removing the currently

submit Primary Button A valid image is | Initiates processing of the | Passesimage data to the integrated model. Receives
displayed in the | displayed image data using | classification results (predicted class, probability
Image preview | the integrated classification | score) directly from the integrated model and
area. model. updates the corresponding output areas.

clear Secondary Button | An image is | Resetstheimageinputarea, | Removes the image from the *Image* preview area.

Disables the “submit™ button until a new image is

Image preview | displayed image. provided (via "upload” or “camera’).
area.

“predicted_class® Text Output Area | Successful Displays the predicted class | Content is populated by the system based on the
completion of | label for the submitted hand | results returned by the local model function/process.
integrated model | gesture image, as | Displays the resulting class name (e.g., "A", "B",
processing determined by the model. "Hello").
following “submit’.

“probability” Text Output Area | Successful Displays the confidence | Content is populated by the system based on the
completion of | score (probability) | results returned by the local model function/process.
integrated  model | associated with the | Displays the probability score (e.g., "98.5%",
processing predicted class provided by | "0.985").
following “submit’. | the model.

2) Web Functional Testing: To verify that the sign  systems. The testing procedure was conducted online and

recognition web application functions as expected across
various user environments, functionality testing was
conducted. Table 10 summarizes the results of this
functionality testing, focusing on key application components

across different combinations of web browsers and operating
TABEL X
PREDICTION LATENCY ANALYSIS

involved 10 university student participants. These participants
were asked to access the web application from various devices
and then complete an online research questionnaire that
included usability testing questions.

Browser Operating Component ID

(version) Systems | upload | camera | preview | submit | clear | predicted class probability
Chrome Windows Passed | Passed | Passed Passed | Passed | Passed Passed
(135.0.7049.85) | 10
Firefox Windows Passed | Passed | Passed Passed | Passed | Passed Passed
(137.0.1) 10
Chrome Arch Passed | Passed | Passed Passed | Passed | Passed Passed
(135.0.7049.84) | Linux
Firefox Arch Passed | Passed | Passed Passed | Passed | Passed Passed
(137.0.1) Linux
Chrome Android 13 | Passed | Passed | Passed Passed | Passed | Passed Passed
(135.0.7)
Firefox (137.0) | Android 13 | Passed | Passed | Passed | Passed | Passed | Passed Passed
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The functionality testing results, presented in Table 10,
indicate that all key components of the web application—
including image upload, camera access, image preview,
submission for prediction, input clearing, as well as the
display of results (predicted class and probability) -
successfully passed testing (‘Passed’) across all tested
configurations. The tested configurations encompassed the
Chrome and Firefox web browsers on the Windows 10, Arch
Linux, and Android 13 operating systems. These results
indicate that the application's core functionality performs

correctly and exhibits sufficient cross-browser and cross-
platform compatibility across the tested environments.

D. Further Evaluation

1) Dataset Comparison: To provide context for the
dataset utilized in this study, a comparison was made with
datasets employed in previous related research focusing on
Indonesian Sign Language (BISINDO). Table 11 presents this
comparison, detailing key characteristics of these datasets,
including the number of images, acquisition source, number
of classes, and their corresponding reference citations.

TABEL XI
COMPARISON OF DATASET CHARACTERISTICS USED IN RELATED STUDIES
Reference Study Number Acquisition Number Notes
Images Source Classes
BISINDO (Bahasa Isyarat Indonesia) Sign Language | 1.100 Author's 10 None
Recognition Using CNN and LSTM [11] Collection
(Private)
Indonesian Sign Language Recognition using YOLO | 4.547 Author's 24 None
Method [22] Collection
(Private)
Indonesia Sign Language Recognition using Convolutional | 39.455 Author's 37 None
Neural Network [14] Collection
(Private)
Convolutional Neural Network (CNN) for Image | 2.659 Public Dataset 12 Identical dataset
Classification of Indonesia Sign Language Using referenced by
Tensorflow [7] the author could
not be located.
Integrating the CNN Model with the Web for Indonesian | 312 Public Dataset 26 None
Sign Language (BISINDO) Recognition

Table 11 reveals significant variations among the
characteristics of datasets employed in related research on
BISINDO recognition. This study utilizes a public dataset
containing 312 images across 26 sign classes. This dataset
size is relatively small compared to most listed prior studies,
several of which utilized thousands to tens of thousands of
images, often sourced from private collections [7], [11], [22].
Employing a public dataset in this study, similar to [7],
potentially enhances the reproducibility of the research
findings, although the specific dataset used by [7] could not
be definitively identified. The number of classes (26)

addressed in this study falls within the range commonly
investigated by previous studies (10-37 classes).

2) Model Performance comparison: As part of the
evaluation process, the performance of the model developed
in this study was compared with results from previous related
studies. Table 12 provides a comprehensive summary of this
comparison across several aspects, including the methods
employed, recognition type (e.g., static/dynamic), input
dimensions, training and validation accuracies (where
reported), and the presence or absence of user interface (Ul)
integration among this study and the referenced works.

TABEL XII
COMPARISON OF MODEL PERFORMANCE WITH PREVIOUS RESEARCH

Reference Study Method Recognition | Model Input | Train Val Acc ul

Type Dimension Acc (%) | (%) Integration
BISINDO (Bahasa Isyarat Indonesia) Sign | CNN and | Dynamic 100 x 89 96 Not No
Language Recognition Using CNN and LSTM | LSTM mentioned
[11]
Indonesian Sign Language Recognition using | CNN Dynamic 3024x3024; 100 Not No
YOLO Method [22] 640x640 mentioned
Indonesia Sign Language Recognition using | CNN Static 60 x 60 99,48 98,39 No
Convolutional Neural Network [14]
Convolutional Neural Network (CNN) for | CNN Static 150 x 150 96,80 100 No
Image Classification of Indonesia Sign
Language Using Tensorflow [7]
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Integrating the CNN Model with the Web for | CNN Static
Indonesian  Sign  Language (BISINDO)

Recognition

256 x 256 94,02 97,44 Yes

Table 12 contextualizes this research within the landscape
of related studies. Employing a CNN method for static sign
recognition, analogous to approaches in [14] and [7], this
study achieved a training accuracy of 94.02% and a validation
accuracy of 97.44%. While the training accuracy is
marginally lower than that reported in some studies (>96%),
the validation accuracy (97.44%) demonstrates competitive
generalization performance compared to [14] (98.39%) and
[7] (100%).

It is important to note, however, that direct accuracy
comparisons across studies are inherently limited due to
significant differences in the datasets used (as detailed in the
Table 11), variations in the number of classes and input
dimensions, and differing focuses on static versus dynamic
signs [11], [22]. A unique contribution of this study, setting it
apart from the compared works, is the successful integration
of the model into a web-based user interface, which
demonstrates the practical application potential of the
developed model.

IVV. CONCLUSION

Based on the research conducted, it is concluded that the
developed Deep Learning (DL) model effectively recognizes
static images containing hand gestures for the BISINDO
alphabet. This is evidenced by the model's high accuracy,
achieving 94.02% on the training data and 97.44% on the
validation data. Furthermore, evaluation metrics including the
confusion matrix, precision, recall, and F1-score also yielded
strong results, with respective average macro-scores of
approximately 98%, 97%, and 97.12%. Additionally,
functional and latency testing results confirm that the web-
integrated DL model functions correctly, is readily accessible,
and provides rapid recognition results. Although this research
successfully developed an accurate DL model and integrated
it into an accessible web recognition application, the study
was limited to the 26 alphabet classes of BISINDO and
utilized a dataset smaller than those in some prior studies.
Furthermore, direct performance testing involving users with
disabilities was not performed. Consequently, subsequent
development needs to overcome limitations related to data
scope, dataset variability, and end-user validation for real-
world applicability.
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