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 Breast cancer remains a leading cause of mortality among women worldwide, 

emphasizing the urgent need for accurate diagnostic methods. This research 

addresses the challenges of early detection by leveraging Convolutional Neural 

Networks (CNNs) for the classification of Magnetic Resonance Imaging (MRI) data. 

Using a publicly available Kaggle dataset consisting of 54,676 MRI images 

categorized into "Normal" and "Cancer" classes, the dataset was split into 80% for 

training and 20% for validation. A modified CNN architecture was developed, 
incorporating optimized layers and hyperparameters, such as the ADAM optimizer, 

a learning rate of 0.0001, and a mini-batch size of 128. The proposed model achieved 

exceptional performance, with an accuracy of 99.72%, precision and recall of 

99.98% and 99.97%, respectively, and an F1-score of 99.98%, as evaluated through 

a confusion matrix. These results demonstrate the model’s robustness in 

distinguishing between healthy and cancerous tissues, providing a reliable and 

efficient diagnostic tool. This study highlights the potential of CNNs to improve 

diagnostic precision in medical imaging, aiding clinicians and advancing AI 

applications in healthcare. 
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I. INTRODUCTION 

Breast cancer is one of the most common cancers affecting 

female patients throughout the world. It involves uncontrolled 

growth of breast tissue cells [1]. The WHO reports that breast 

cancer contributes to about 25% of all cancer diagnoses 

among women and is first in the cause of cancer burdens 

worldwide [2]. This makes it a health priority for many low- 

and middle-income countries where early detection and 
access to advanced care are hard to come by. Given these 

challenges, selecting the appropriate imaging modality is 

crucial for improving diagnostic accuracy. Magnetic 

Resonance Imaging (MRI) was chosen as the imaging 

modality in this study due to its superior soft tissue contrast 

and high sensitivity in detecting breast abnormalities [3]. 

While mammography is widely used for early detection due 

to its cost-effectiveness and accessibility, it has limitations in 

imaging dense breast tissues, which can lead to false 

negatives. Ultrasonography (USG) is another alternative, 

often used as a complementary tool, but it is highly operator-

dependent and may not provide sufficient details in some 

cases. MRI, although more expensive and typically used as a 
secondary diagnostic tool, is advantageous in detecting small 

and invasive tumors, particularly in high-risk patients. This 

study leverages MRI to explore its potential in deep learning-

based breast cancer classification, emphasizing its ability to 

enhance diagnostic accuracy in complex cases. Whereas great 

strides have been achieved both in screening and in 

therapeutic approaches, equal access to health care with good 

diagnostics and proper patient management remains an 

unfulfilled dream [4], [5]. The WHO demands immediate 

implementation of integrated approaches, increasing 

awareness, early detection, and the use of new technologies, 
including artificial intelligence, to enhance diagnostic 

precision with consequential improved outcomes in this 

respect [6], [7], [8]. Such a measure is bound to reduce 

mortality rates and consequently disparity in care for this 

condition. 
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From the challenges of diagnosis and management of 

breast cancer that are at critical dimensions, the integration of 

advanced technological solutions offers a very promising 

pathway. Computer vision is one aspect of Artificial 

Intelligence serving with tremendous potentials in bringing 

greater precision and efficiency into the analyses related to 

medical imagery [9], [10]. Automation systems that will assist 

healthcare providers in detecting abnormalities within 

mammograms or MRI can surmount hurdles for early 
detection mainly where facilities are restricted to a minimal 

degree [11], [12]. It decreases the need for professional 

radiologists, reduces diagnosis errors, and fast-tracks 

treatment planning. Application of computer vision can 

facilitate bridging gaps in access to quality diagnostics for 

improving outcomes in breast cancer management worldwide 

[13]. 

In computer vision, Convolutional Neural Networks 

(CNNs) form a very important constituent in image analysis 

and interpretation in medical diagnostics [14], [15], [16]. 

CNNs are deep learning models that are elaborately 
developed to process pixel data in images; therefore, they are 

very useful in the detection of patterns that may be very 

intricate and indicative of breast cancer [17]. These networks 

are good at feature extraction, segmentation, and 

classification, hence enabling them to differentiate between 

healthy and cancerous tissues with precision [18]. Continuous 

learning and large-scale dataset training through CNNs have 

contributed to the development of robust diagnostic tools that 

enhance sensitivity and specificity, with informed decisions 

supported by clinicians [19], [20], [21]. The integration of 

CNNs into the workflow of breast cancer detection is 

representative of a paradigm shift in the use of artificial 
intelligence toward global health improvements. 

Pathan et al. (2022) [17] proposed an AI-based method for 

breast cancer detection using the Breast Ultrasound Images 

Dataset (BUSI), which includes benign, malignant, and 

normal categories with both grayscale and masked images. 

Their multi-headed CNN framework achieved a notable 

accuracy of 92.31% (±2) with a Mean Squared Error (MSE) 

of 0.05 by combining raw and masked image inputs, 

significantly improving diagnostic precision. Additionally, a 

web interface was developed to make the model accessible to 

non-technical users, highlighting its practicality and potential 
in reducing human diagnostic errors. 

Amadea et al. (2023) [2] proposed a deep convolutional 

neural network (CNN)-based model for detecting breast 

cancer from mammogram images. Their approach leverages 

the advanced capabilities of CNNs to analyze low-dose X-ray 

mammograms and identify tumor cells with high precision. 

The model was evaluated on a mammogram image dataset, 

achieving impressive performance metrics, including an 

accuracy of 99.52%, precision of 99.72%, recall of 99.31%, 

specificity of 99.72%, and an F-measure of 99.50%. These 

results demonstrate the model’s effectiveness in breast cancer 

detection, offering a reliable and advanced diagnostic tool to 

support radiological examinations and improve early 

diagnosis outcomes. 

Alqahtani et al. (2022) [22] proposed a deep learning-based 

approach for breast cancer histopathology image 

classification using a multiscale recalibrated channel model, 

msSE-ResNet34. This model refines feature channels through 

multiscale calibration, utilizing learned channel weights to 

minimize redundant features and improve classification 

accuracy. By combining multiscale channel properties and 
fusing them into successive calibration models, msSE-

ResNet34 enhances the recalibration process and boosts 

performance. Experiments conducted on the publicly 

available BreakHis dataset demonstrated its efficacy in 

benign/malignant classification across various 

magnifications, achieving an accuracy of 88.87%. The 

findings highlight msSE-ResNet34’s robustness in handling 

pathological images under different magnifications, making it 

a reliable tool for automatic histopathological image 

classification. 

This research is inspired by various approaches that 
leverage artificial intelligence, particularly CNN, for breast 

cancer detection using different types of medical images. 

Several previous studies have used CNNs to analyze breast 

ultrasound, mammogram, and histopathology images, 

demonstrating impressive results in cancer detection 

accuracy. Based on the success of CNN methods applied to 

these image types, this study aims to implement CNN training 

on breast MRI data obtained from a public Kaggle dataset. 

The MRI data will be divided into 80% for training and 20% 

for validation, with the expectation of achieving higher 

accuracy compared to the results obtained in previous studies. 

To enhance the model's performance, this research uses 
modified layers for adjusting the CNN training model to the 

chosen MRI dataset, optimizing the learning process and 

improving detection outcomes. 

II. METHOD 

Based on flow of Figure 1, the proposed method begins by 

utilizing a public dataset, which is split into 80% training data 

and 20% validation data. The training data is used to 

configure and train a model, where specific training 

parameters and CNN layer configurations are optimized to 

achieve the desired performance. Once the CNN model is 

trained, the reserved validation data is used to fine-tune and 
validate the model, ensuring its accuracy and robustness. 

After the training and validation process, the model enters the 

prediction phase, where it analyzes testing data to classify 

inputs as either "Normal" or "Cancer." The performance of 

the model is then evaluated using a confusion matrix, which 

provides metrics such as accuracy, precision, recall, and F1-

Score, ultimately concluding the process with a reliable 

classification result. 
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Figure 1. flow of proposed method 

A. Datasets 

The dataset used in this research consists of MRI images of 

breast tissue, gathered from the Kaggle open-source dataset. 

In all, the dataset contains 54,676 images, each with 256 x 256 

pixels in size. Their classes are "Normal" and "Cancer," which 

represent healthy breast tissues and cancerous tissues, 
respectively. Data were collected by downloading this dataset 

from Kaggle and preprocessing the data to train and validate 

the model. To ensure balance during model training, the data 

is evenly distributed, with 26,000 images for the "Normal" 

class and 26,000 images for the "Cancer" class used for 

training. The remaining 2,676 images are allocated for testing. 

With this balanced distribution, the risk of model bias toward 

one class is minimized, allowing the model to better recognize 

relevant patterns in both categories. Sample datasets used in 

this research can be seen in Figure 2. 

 

 
Figure 2. Sample of datasets 

 

This dataset is variegated, with a proper balance between 

the number of images representing the normal and cancerous 

conditions; thus, it should be quite efficient in performing 

comparative studies among its classes during classification. 

Definitely, this dataset can be used as a base for this research 

into the development of deep learning models in the 

classification of MRI images. Meaningful and comprehensive 

analysis is assured through the vastness of this dataset, 

opening up ways for more use of machine learning techniques 

in the screening of breast cancer and further improving the 

automated diagnostic tools. 

B. Training Parameter Option 

Based on Table 1, the training parameters utilized in this 
study include the ADAM optimizer, which is well-suited for 

handling sparse gradients and adaptive learning rates. A fixed 

learning rate of 0.0001 was chosen to ensure stable 

convergence during the training process. The mini-batch size 

was set to 128, allowing for efficient training while 

maintaining memory efficiency. The model was trained over 

a maximum of 16 epochs to prevent overfitting and to strike 

a balance between computational efficiency and performance. 

Additionally, the validation frequency was set to every 30 

iterations, enabling regular monitoring of the model's 

performance on the validation set. These parameter choices 

aim to optimize the training process, ensuring robust 
convergence and accurate classification results on the MRI 

dataset. 

The implementation of these training parameters was 

conducted prior to the deep learning training process. This 

step involved configuring the optimizer, learning rate, mini-

batch size, maximum number of epochs, and validation 

frequency to establish the foundational settings for the model. 

 
TABEL I 

TRAINING PARAMETER 
Optimizer ADAM 

Max Epoch 16 

Mini Batch Size 128 

Learning Rate 0,0001 

Validation Frequency 30 

 

The implementation of these training parameters is also 

intricately connected with the configuration of CNN layers, 

ensuring a harmonious integration between the model's 

architecture and the training process. 

C. Modified Layer Convolutional Neural Networks 

CNN is a type of artificial neural network architecture that 

is very important in image processing and pattern recognition 

[23]. CNN is specifically designed to handle image or grid 
data, such as medical images, and has made tremendous 

progress in various fields, including classification tasks [24]. 

The convolutional layers in this study were modified and 

tailored specifically to align with the characteristics of the 

dataset and the selected training parameters [25]. These 

adjustments were made to ensure that the CNN effectively 

learns the most relevant features from the MRI images while 

optimizing performance during training [26]. By fine-tuning 

the architecture, such as the number of filters, kernel sizes, 

and activation functions, the layers were configured to better 

capture critical patterns and distinctions between the 
"Normal" and "Cancer" categories. Modified CNNs Layer 

can be seen in Figure 3.
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Figure 3. CNN Layers

 

As see in figure 3, the proposed modified CNN layers were 

designed to process input images 𝐼 of size 256 × 256 × 3, 

where 𝑊𝑖𝑛 is the image width, 𝐻𝑖𝑛 is the height, and 𝐷𝑖𝑛 =
3 represents the RGB color channels. The first layer applies 

convolution operations to extract spatial and texture 

information. Using 𝐾 convolutional filters 𝐹, each of size 

256 × 256 × 3, the convolution operation generates a feature 

map 𝐶. This equation can be seen in eq (1). 

 

 
(1) 

 

where 𝑖, 𝑗 represent spatial positions in the input image, 

𝑘 indexes the filter, and 𝑏𝑘 is the bias for filter 𝑘. After 

obtaining 𝐶, the ReLU activation function 𝜎 (𝑥)  =
 𝑚𝑎𝑥 (0, 𝑥) is applied element-wise to introduce non-

linearity, helping the network to learn complex patterns 

effectively. 

The feature map 𝐶 is then passed through a pooling layer, 

typically max pooling, which downsamples the spatial 

dimensions, reducing 𝐶 from 𝑊𝐶  × 𝐻𝐶 × 𝐾 to a smaller size, 

e.g., 𝑊𝐶  /2 × 𝐻𝐶/2 × 𝐾. This reduces computational 

complexity and aids in feature generalization. The features are 
then flattened and passed through fully connected (FC) layers. 

The FC layer maps the pooled features 𝐹𝐶  to a higher-level 

representation using weights 𝑊𝑓𝑐 and bias 𝑏𝑓𝑐 as seen in eq 

(2). 

 

 
(2) 

 

Finally, the output layer applies a softmax function for 

classification. The probabilities for each class 𝑝𝑖 are 

calculated as seen in eq (3). 

 

 

(3) 

 

where 𝑧𝑖 is the output of the last FC layer for class 𝑖, and 𝑁 is 

the total number of classes. These modifications in the CNN 

architecture ensure better learning from the MRI dataset while 

optimizing accuracy in distinguishing between "Normal" and 

"Cancer" classes. 

D. Confusion Matrix Evaluation 

The confusion matrix is one of the most important types of 

evaluation metrics that helps in understanding the efficiency 

of the proposed CNN model on the classification task [27], 

[28]. It gives a complete breakdown of the predicted classes, 

which get organized into four classes: TP, FP, TN, and FN 

[29]. In this study, the confusion matrix presents the 

capability of the model in correctly identifying "Normal" and 

"Cancer" MRI images. The metrics derived from the 

confusion matrix, such as accuracy, precision, recall, and F1-

score, are computed as seen in eq (4) – (7). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

It integrates various advanced layers, custom parameters, 

and specially designed preprocessing techniques for fast 
feature extraction and a robust model. It also contains several 

metrics for evaluating the capability of the classifier with 

respect to true positive rate or accuracy, precision, and recall, 

which are calculated from the confusion matrix. In this way, 

the methodological approach adopted has all the ingredients 

for high accuracy in classification with less computational 

cost.  

III. RESULTS AND DISCUSSION 

The results in this section are obtained by implementing the 

proposed method described in the previous chapter. 

Systematic training was done with the hyperparameter setting 
in Table I, Adam optimizer with a learning rate of 0.0001, a 

mini-batch size of 128, maximum 16 epochs, and validation 

frequency of 30 iterations. In doing so, the model was ensured 

not to be overfitted but to converge efficiently. This ensures 

the best learning of the features of the MRI dataset. More 

importantly, as highlighted in Figure 3, the modified CNN 

layers played a big role in the extraction of meaningful feature 

representations from input images. Indeed, this has improved 

the performance of the model. The whole training pipeline 
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was performed in MATLAB, using the MATLAB framework 

of deep learning, and the implementation and optimization 

process was eased. 

The MATLAB software allowed us to give one holistic 

approach to the workflow of training by embedding the 

selected hyperparameters with the custom-designed CNN 

architecture. First, the dataset was split into 80% for training 

and 20% for validation; further preprocessing was done on it 
for unifying the dimensions and enhancing the quality of 

images. The changed convolutional layers became able to 

grab the minute patterns of MRI images, whereas the pooling 

and fully connected layers optimized dimensionality and the 

mapping of features accordingly. These obtained results are 

highlighted in detail below, along with the performance 

evaluation for the model related to accuracy, precision, recall, 

and overall classification efficiency. The progression and 

effectiveness of the training process are visualized in the 

training graph, as shown in Figure 4, which illustrates the 

model’s loss reduction and accuracy improvement over 
successive epochs. 

 

 
 

(a) Training progress (b) Loss validation 
Figure 4. Training and loss graph

Based on Figure 4 (a), The graph depicts the accuracy of a 

model over iterations (or epochs) during the training process. 

The blue line represents the accuracy for each iteration, 

showing fluctuations as the model learns and adjusts its 

parameters. The black dashed line likely represents the 

smoothed or average accuracy, providing a clearer trend over 

the training process. 
In the earlier epochs (0-200 iterations), there is significant 

variability in accuracy, indicating the model is still in the 

initial stages of learning. As training progresses (200-800 

iterations), the accuracy stabilizes and begins to increase 

consistently, reflecting the model's improved ability to 

generalize patterns in the data. In the later epochs (800-1200 

iterations), the accuracy approaches its maximum and 

fluctuates minimally, suggesting the model has largely 

converged to an optimal performance. The final point 

indicates the model's accuracy at the end of training. 

The loss graph depicted in Figure 4 (b) illustrates the 

relationship between the iteration number and the model’s 
loss during the training phase. Initially, the loss starts at a high 

value, reflecting the unoptimized state of the model. 

However, as the number of iterations increases, a significant 

decrease in loss is observed, indicating that the model is 

learning and adjusting its parameters to minimize error. After 

the training process is complete, as shown in the accuracy 

graph, the model reaches a stable and optimal level of 

accuracy. The evaluation model is performed using data 

testing, and the results are displayed in the form of a confusion 

matrix as shown in Table 2. 

 
 

TABEL II 
CONFUSION MATRIX EVALUATION 

Matrix 

Evaluation 

Class 

Cancer Normal 

Accuracy 99.72% 

Precision 99.98% 99.98% 

Recall 99.97% 99.97% 

F1-Score 99.98% 99.98% 

 
Based on Table 2, the matrix evaluation highlights the 

exceptional performance of the trained model in classifying 

data into "Cancer" and "Normal" categories. The model 

achieved an overall accuracy of 99.72%, indicating that the 

vast majority of predictions were correct. The precision for 

both "Cancer" and "Normal" classes is 99.98%, showing that 

almost all instances predicted as "Cancer" or "Normal" were 

correct. Similarly, the recall for both classes is 99.97%, 

demonstrating the model's ability to correctly identify nearly 

all actual instances of each class. Furthermore, the F1-Score 

for both "Cancer" and "Normal" is 99.98%, reflecting a 

balanced and outstanding combination of precision and recall. 
These metrics confirm that the model is highly reliable and 

effective in detecting and classifying cancer with minimal 

errors. 

After obtaining the evaluation results in Table II, a testing 

phase is carried out to determine whether the input data being 

tested is detected as TP or TN. If the input data is cancer and 

the model correctly predicts it as cancer, it is categorized as 

TP. Conversely, if the input data is normal and the model 

correctly predicts it as normal, it is categorized as TN. The 

results of this test are presented in Table III, which provides 

details of the number of correct predictions for each category. 
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TABEL III 

TESTING PHASE 

Image Name 

Class 

Conclusion Actual 
Class 

Predicte
d Class 

Glioma1.jpg Cancer Cancer TP 

Glioma7.jpg Cancer Cancer TP 

Glioma28.jpg Cancer Cancer TP 

Glioma71.jpg Cancer Cancer TP 

Glioma1003.jpg Cancer Cancer TP 

Normal21.jpg Normal Normal TP 

Normal356.jpg Normal Normal TP 

Normal11.jpg Normal Normal TP 

Normal95.jpg Normal Normal TP 

Normal721.jpg Normal Normal TP 

 

Based on Table III, the independent dataset used for testing 

was sourced from the TCGA-BRCA MRI dataset, a publicly 

available breast cancer MRI dataset from The Cancer Genome 

Atlas (TCGA). This dataset was selected to validate the 

generalizability of the model on MRI scans obtained from a 

different medical institution. for the Cancer class, the testing 

phase results demonstrate that all input images labeled as 

"Cancer" were accurately predicted as "Cancer" by the model, 

resulting in TP outcomes. For instance, images such as 

Glioma1.jpg, Glioma7.jpg, and Glioma1003.jpg represent 

cases where the model successfully identified the presence of 

cancer.  

For the Normal class, the model also performed accurately, 
correctly predicting all input images labeled as "Normal" as 

"Normal," resulting in TN outcomes. Images like 

Normal21.jpg, Normal356.jpg, and Normal721.jpg 

exemplify cases where the model effectively recognized the 

absence of cancer. This indicates the model's robustness in 

correctly identifying normal cases, minimizing false 

negatives and false positives, and further confirming its 

reliability in distinguishing between normal and cancerous 

conditions. 

 

TABEL IV 
COMPARISON WITH OTHER STUDY 

Researcher Deep Learning Methods Accuracy Precision Recall F1-Score 

Amadea et 

al. [2] 
Deep CNN (Classic Layers) 99.52% 99.72 99.31% 99.50% 

Our 
Deep CNN (Modified from 

Classic Layers) 
99.72 99.98% 99.97% 99.98% 

Table IV compares the results of this study with previous 

research conducted by Amadea et al. (2023) [2]. Their study 

utilized a traditional Deep CNN architecture to detect breast 

cancer from mammogram images, while this research 

implements a modified CNN architecture for breast cancer 

classification based on MRI images. The comparison 
highlights a notable improvement in accuracy, with this study 

achieving 99.72%, compared to 99.52% in the previous 

research. Furthermore, the proposed model demonstrates 

superior performance in precision (99.98%), recall (99.97%), 

and F1-score (99.98%), surpassing the results obtained by 

Amadea et al. [2]. 

To further determine whether the developed CNN model is 

genuinely superior to other existing models, the current 

results indicate significant improvements over a traditional 

CNN, evaluating its performance against more advanced 

architectures would help validate its effectiveness more 
comprehensively. Furthermore, testing the model on diverse 

datasets, including different imaging modalities like 

mammograms and histopathology slides, would ensure its 

robustness and generalizability. 

IV. CONCLUSIONS 

In this research study, a public MRI dataset consisting of 

54,676 images, equally distributed between "Normal" and 

"Cancer" classes, was used for training and validation of the 

Convolutional Neural Network (CNN) model. The dataset 

was preprocessed and then divided into 80% for training and 

20% for validation. Results showed outstanding performance 

of the model by using an optimized CNN architecture with the 

ADAM optimizer, learning rate 0.0001, and mini-batch size 

of 128. According to the confusion matrix, the model showed 

an accuracy value of 99.72%, precision-99.98%, recall-

99.97%, and F1-score value of 99.98% for the respective 
classes. This substantiates that the model is highly reliable and 

robust for classifying MRI images of breast tissues as 

"Normal" and "Cancer," therefore, this research will be of 

great importance in assisting diagnostic experts toward the 

early detection of this type of cancer and sharing with readers 

advanced AI techniques applied in medical imagery. 

Eventually, some proposals for future research involve 

implementing transfer learning to enhance the model's 

performance and efficiency. It allows using some pre-trained 

networks like ResNet, VGG, or DenseNet as a baseline, thus 

reducing the time taken for training and thus generalizing well 
on different datasets. Increasing the dataset to the 

involvement of more types of imaging modalities, such as 

mammography or ultrasound examinations, may further 

increase the model's versatility in medical diagnostics. All 

these developments, in turn, will allow developing a more 

complete and efficient automated diagnostic system for the 

detection of breast cancer. 
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