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 The Internet of Vehicles (IoV) represents a specialized application of the Internet of 

Things (IoT), enabling vehicles to communicate with their surrounding 

infrastructure to enhance transportation safety and efficiency. However, IoV systems 

are susceptible to various cyberattacks, including Denial of Service (DoS) and 

spoofing attacks, which necessitate effective and efficient detection mechanisms. 

This study investigates the enhancement of detection efficiency for DoS and 

spoofing attacks in IoV by employing Ensemble Learning methods combined with 

feature selection techniques. The selected feature selection methods include 
Information Gain Ratio, Chi-Square (X²), and Fast Correlation-Based Filter (FCBF). 

The CICIoV2024 dataset, utilized in this study, was balanced using the Random 

Under Sampling technique to address data imbalance issues. The ensemble 

algorithms evaluated in this research comprise Random Forest, Gradient Boosting, 

and XGBoost. Results indicate that all three algorithms achieved high accuracy and 

F1 scores, reaching 0.985. Moreover, the application of feature selection 

significantly reduced computational time without compromising detection 

performance. These findings are expected to contribute to the advancement of IoV 

security systems in the future. 
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I. INTRODUCTION 

The Internet of Things (IoT) is an evolving concept that 

offers innovative approaches to connecting electronic devices 

and sensors via the internet, enabling efficient communication 

between devices without the need for human intervention. 

Through IoT, devices such as temperature, pressure, and light 

sensors can autonomously collect, process, and share data, 

making this technology highly valuable across various 

domains of human life, including smart homes, 

transportation, and healthcare [1][2]. This technology not 

only enhances efficiency and convenience but also facilitates 
faster and more accurate data-driven decision-making 

processes in diverse sectors, ranging from business and 

government to industry [2][3]. In the industrial realm, IoT 

enables the automation of production processes and real-time 

asset management, aiding companies in reducing operational 

costs and improving productivity [3][4]. Furthermore, IoT 

significantly contributes to the development of smart cities, 

where interconnected infrastructures optimize energy usage, 

manage traffic, and enhance security [3]. With the annual 

increase in IoT devices, this technology is projected to 

become a critical element in driving the Fourth Industrial 

Revolution (Industry 4.0) and bolstering global economic 
competitiveness [1][2]. However, despite the numerous 

benefits offered by IoT, challenges such as  

data security and privacy remain key areas of focus in its 

future development [3]. 

The Internet of Vehicles (IoV) represents a more specific 

application of the Internet of Things (IoT), particularly within 

the transportation sector. This technology is envisioned to 

realize intelligent transportation systems (ITS), driving 

advancements in traffic management and mobility solutions. 

With the rapid development of communication technologies, 

high-throughput satellites, and cyber-physical systems, IoV 

enables smart vehicles to connect directly to the internet and 
interact with surrounding infrastructure components, such as 

roadways, pedestrians, and other vehicles [5][6]. IoV 
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integrates technologies such as cellular communication, cloud 

computing, and edge computing to enhance connectivity and 

safety between vehicles and related infrastructure, thereby 

improving traffic efficiency and safety [7][8]. Additionally, 

IoV facilitates the implementation of the Vehicle-to-

Everything (V2X) concept, supporting communication 

between vehicles and infrastructure, including other vehicles, 

traffic lights, and road sensors [6]. While IoV offers 

significant benefits, such as improved traffic management and 
reduced accidents, key challenges surrounding data security 

and privacy remain critical concerns in its development [8]. 

The adoption of blockchain technology is also being explored 

to ensure that IoV data exchange platforms are secure, 

transparent, and resistant to cyberattacks [6]. 

The Internet of Vehicles (IoV) plays a significant role in 

the development of smart cities, where the system is 

envisioned as an open and integrated network connecting 

various critical components. Consequently, IoV encompasses 

multiple types of communication, including Vehicle-to-

Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-
Pedestrian (V2P), and Vehicle-to-Network (V2N). This 

combination of communication types enables the exchange of 

information that significantly enhances traffic safety and 

efficiency [2][9]. V2V facilitates the sharing of data between 

vehicles regarding their position and speed to prevent 

collisions, while V2I supports communication between 

vehicles and road infrastructure to optimize traffic flow 

[2][9]. Moreover, V2P and V2N enable the management of 

interactions between vehicles and pedestrians and accelerate 

vehicle communication with broader networks, minimizing 

delays in responding to traffic conditions [9][10]. 

Denial of Service (DoS) attacks pose one of the most 
critical threats to IoV systems. The open and interconnected 

nature of IoV networks makes them particularly vulnerable to 

these attacks, as attackers can flood the network with false 

information. This results in severe disruptions to 

communication between vehicles and infrastructure, 

ultimately jeopardizing traffic safety and efficiency [11][12]. 

Although ongoing efforts aim to strengthen security, the 

limitations in detecting malicious nodes amidst a surge of 

fraudulent traffic remain a significant challenge [13]. These 

security gaps necessitate the development of more effective 

measures to ensure the system can maintain functionality 
during an attack, especially given the increasing complexity 

of IoV networks [12]. 

When a DoS attack occurs, core functionalities within an 

IoV system can become paralyzed as vehicle components fail 

to communicate with one another. Consequently, the data 

required by the central system becomes disorganized or 

entirely unavailable. For instance, radar systems responsible 

for maintaining automated lane safety may generate errors in 

decision-making processes [9][14]. In the case of Distributed 

Denial of Service (DDoS) attacks, the threat escalates as the 

attacks originate from multiple points, ultimately disrupting 

critical components across the entire network [13][14][11]. A 
SYN flood attack in the context of IoV, for example, 

exacerbates this issue by overwhelming the network with 

unresolved SYN requests, draining target resources and 

ignoring legitimate connection requests. This can lead to 

communication failures in autonomous vehicles, significantly 

impacting traffic safety [9][14]. Furthermore, botnets are 

frequently employed in DDoS attacks targeting IoV systems, 

where compromised devices launch simultaneous attacks on 

servers, denying legitimate user requests and triggering 

widespread system failures [11][14][15]. 
This research approach focuses on utilizing sensor data 

from vehicles, such as speedometer readings, steering angles, 

and accelerometer outputs, to accurately predict vehicle 

location shifts. These predictions are then compared with 

location shifts measured by the Global Navigation Satellite 

System (GNSS). This method enables faster and more 

accurate spoofing attack detection, particularly through 

machine learning approaches like Long Short-Term Memory 

(LSTM) neural networks, which are designed to identify 

discrepancies between GNSS data and predicted vehicle 

location shifts [16]. The LSTM-based detection system also 
integrates multiple data sources from vehicle sensors to 

enhance spoofing detection accuracy, demonstrating 

improved efficiency in attack prediction compared to 

conventional methods [16]. Furthermore, the integration of 

data from Inertial Measurement Units (IMU), Controller Area 

Network (CAN), and GNSS facilitates the development of 

more robust prediction systems against advanced spoofing 

attacks, including the detection of movement pattern 

anomalies caused by spoofing [16]. 

Research conducted by [17] focused on attack detection 

within the Internet of Vehicles (IoV) using the CICIoV2024 

dataset to evaluate the performance of three algorithms: 
Decision Tree, Naive Bayes, and Logistic Regression. The 

dataset comprised real-time IoV communication data, 

specifically targeting Denial of Service (DoS) and spoofing 

attacks. The findings revealed that the Naive Bayes algorithm 

achieved the best results, with an accuracy of 98.10% and an 

F1-Score of 98.00%. However, a limitation of this study lies 

in the use of an imbalanced dataset, which may lead to biased 

analysis and a model that tends to favor the majority class. 

A similar study by [18] also utilized the CICIoV2024 

dataset but adopted a different approach. In this research, five 

types of attacks were executed on a 2019 Ford vehicle, 
focusing on Denial of Service (DoS) and spoofing attacks 

conducted through the CAN-BUS protocol. The study 

employed various Machine Learning (ML) algorithms, 

including Random Forest, AdaBoost, Logistic Regression, 

and Deep Neural Networks, to detect IoV attacks. The results 

indicated that Deep Neural Networks outperformed other 

methods, achieving an accuracy of 95% for binary data and 

96% for decimal data. However, the study faced challenges 

due to imbalanced data and the absence of cross-validation, 

which increased the risk of overfitting in the resulting model. 

Additionally, [17][18] identified a limitation regarding the 

dataset's coverage, which is restricted to specific vehicle 
types. The studies emphasized the need for broader testing 
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across various vehicle models and communication protocols 

to develop a more generalized and robust detection model. 

Research by [19] evaluated the performance of the Random 

Under-Sampling (RUS) technique in cancer classification 

using multi-omic data from TCGA. The results indicated that 

while RUS helped balance the data, some algorithms 

experienced a decline in performance after its application. 

The PART model achieved an accuracy of 97.4%  
The study conducted by [20] compared the effectiveness of 

several data balancing techniques, including RUS, in the 

context of educational data classification. Using the High 

School Longitudinal Study of 2009 dataset, the research 

evaluated the performance of the Random Forest algorithm 

with various resampling techniques. The findings revealed 

that RUS effectively reduced model training time and slightly 

improved performance on datasets with extreme imbalance. 

However, the primary drawback remained the loss of 

information from the majority class, which could impact 

overall model reliability. 
In this research, RUS method was utilized to address the 

class imbalance problem in the CICIoV2024 dataset. By 

reducing the number of samples in the majority class to align 

with those of the minority class, RUS achieves a balanced 

class distribution [21]. This technique minimizes the risk of 

bias toward the majority class and ensures that critical yet 

infrequent attack patterns are not ignored. While RUS 

inevitably results in the removal of some majority-class data, 

it is favored in this study for its straightforward 

implementation and effectiveness in managing significant 

class imbalances without generating synthetic data. The 

primary objective of this study is to assess the performance of 
machine learning models on both the original and RUS-

balanced datasets [21]. 

Despite the numerous benefits that IoV offers, the 

involvement of internet technology introduces security 

vulnerabilities that pose significant risks. Attacks targeting 

IoV systems are emerging and increasing, ranging from 

Denial of Service (DoS) to Spoofing attacks. Therefore, 

effective methods are needed to detect these attacks to ensure 

that IoV systems remain secure and free from failures that 

could have fatal consequences for users, vehicles, and the 

surrounding environment. [17] 
The effectiveness of class balancing techniques plays a 

pivotal role in addressing class imbalance, especially in real-

world scenarios like IoV attack detection. Although 

oversampling methods like SMOTE are commonly 

employed, recent findings by [22] reveal significant 

drawbacks associated with these approaches. The study 

indicates that synthetic samples generated through 

oversampling often fail to capture the true characteristics of 

the minority class, resulting in poor generalization and 

inaccurate predictions in practical applications. These 

challenges highlight the necessity of choosing balancing 

methods that preserve data authenticity. By utilizing RUS, 
this study mitigates the risks linked to oversampling and 

contributes to the development of more robust techniques for 

managing class imbalance in critical areas such as IoV 

security. 

II. METHOD 

The stages undertaken in this study included data 

collection, preprocessing, modeling, and evaluation, as 

illustrated in Figure 1. 

 

 
Figure 1. Research stages 

A. Hardware and Software 

Hardware and software play a crucial role in the process of 

training machine learning models, especially when dealing 
with large-scale datasets. An optimal combination of 

appropriate hardware and software enhances training 

efficiency, reduces the required time, and improves overall 

model performance, ensuring more effective and optimal 

learning outcomes [23]. 

In this study, the hardware utilized was a personal laptop 

equipped with an Intel Core i5 11400H processor and an 

NVIDIA RTX 3050 graphics card. The software used 

included Orange Data Mining and Microsoft Excel. Orange 

Data Mining was employed to implement machine learning 

models on both imbalanced and balanced datasets, while 
Microsoft Excel was used to systematically and structurally 

document the results of the algorithm applications. 

B. Data Collection and Preparation 

This research utilizes a public dataset developed in 2024 by 

researchers from the University of New Brunswick, Canada, 

called the "CIC IoV Dataset 2024," which can be downloaded 

from their website [17]. The novelty of the dataset is crucial 

in information security research, considering the constantly 

evolving attack patterns in the cyber world. This dataset 
comprises 11 key features and inclusdes six target classes: 

Benign, DoS (Denial-of-Service), Gas-Spoofing, Steering 

Wheel-Spoofing, Speed-Spoofing, and RPM-Spoofing. 

CICIoV2024 focuses on the detection of spoofing and DoS 

attacks through simulations conducted on a 2019 Ford 

vehicle, aiming to provide a realistic benchmark for 

developing cybersecurity solutions in the IoV environment. 

This dataset is expected to facilitate advancements in 

cybersecurity systems for smart vehicles in the future [18]. 

C. Data Pre-processing 

Data preprocessing is a critical step in data analysis, aimed 

at ensuring the quality and consistency of the dataset before 

applying it to machine learning models. In this study, 

preprocessing was essential to address challenges in the 

CICIoV2024 dataset, particularly its highly imbalanced class 

distribution. The dataset contains a significantly higher 

number of benign instances compared to attack classes such 

as DoS and spoofing. Without proper preprocessing, the 
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resulting model may exhibit bias toward the majority class, 

ultimately reducing the model's accuracy and effectiveness 

[24]. Normalization plays a vital role in standardizing diverse 

data formats, minimizing potential errors during processing 

[24]. Through appropriate preprocessing, the model becomes 

more accurate in detecting cyberattacks within IoV 

environments [24]. 

The CICIoV2024 dataset comprises six files encompassing 

various types of attacks, with a total of over 1 million data 
instances. The benign class dominates the dataset with 

1,223,737 instances, while other classes, such as gas spoofing, 

contain only 9,991 instances. This significant imbalance in 

the number of instances per class indicates a vast disparity 

between classes, which may cause the model to bias toward 

the majority class. Figure 2 illustrates the class imbalance in 

the dataset. 

 
Figure 2. Graph before class balancing 

To address this issue, class balancing steps were 

implemented using the Random Under-Sampling (RUS) 

method. This technique reduces the number of instances in the 

majority class to balance the dataset, enabling machine 

learning algorithms to provide more accurate predictions for 

minority classes [20]. The RUS method was implemented 

using orange software, with the fixed data sample feature set 

to 9,991 instances for each file. Subsequently, the six data 

files were combined using the concatenate feature.  
After the merging process, the columns id, category, and 

specify_class were removed, leaving only the data columns 

from DATA_0 to DATA_7. The target was then set to 

specify_class, and the data was normalized using the min-max 

method within the range [0, 1]. 

In this study, feature selection was conducted using the 

rank method to reduce computational time without 

compromising model accuracy. The feature selection process 

involved a series of experiments, testing subsets of features 

ranging from the top-ranked single feature to the top eight. 

Several ranking techniques were applied, including 

Information Gain Ratio, Chi-square (X²), and Fast 
Correlation-Based Filter (FCBF), each chosen for their ability 

to identify the most relevant features. The Information Gain 

Ratio was used to evaluate the contribution of each feature to 

the target variable by quantifying the amount of information 

it provides. The Chi-square test assessed the statistical 

independence of each feature with respect to the target, 

identifying those with significant associations. FCBF was 

employed to address feature redundancy by selecting features 

that are highly correlated with the target, while ensuring 

minimal overlap. This approach, combining multiple ranking 

techniques, aimed to optimize model performance by 

reducing the dimensionality of the dataset. By retaining only 

the most statistically relevant features, we were able to 
improve computational efficiency and reduce the risk of 

overfitting. Ultimately, the goal was to enhance model 

interpretability, generalization, and robustness, ensuring that 

the final model would perform well on unseen data while 

being computationally efficient. 

In this study, experiments were conducted using ranked 

features. An illustration of these experiments can be seen in 

Figure 3. 

 
Figure 3. Feature Selection 

D. Machine Learning Modelling 

In this study, three classification algorithms were 

compared to evaluate their performance and identify the best 

algorithm. The three algorithms analyzed were Random 

Forest, Gradient Boosting, and Gradient Boosting (XGBoost). 
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Random Forest is a widely used machine learning 

algorithm for classification and regression tasks, leveraging 

the concepts of bootstrap aggregating (bagging) and decision 

trees. The following diagram provides an overview of the 

general structure of a Random Forest, illustrating its core 

processes and interactions [25]. 

In this algorithm, each decision tree is constructed from a 

random subset of the data, and predictions are made based on 
majority voting (for classification) or averaging (for 

regression), which enhances predictive accuracy. The primary 

advantage of Random Forest lies in its ability to reduce 

variance and handle noisy data, making it robust against 

overfitting. 

 
Figure 4. Illustration of Random Forest 

Research in [16] highlights that the success of Random 

Forest is largely attributed to the randomization elements that 

act as an implicit form of regularization, particularly effective 

in scenarios with low signal-to-noise ratios. Parameters such 

as mtry, which determines the number of features considered 

at each split, play a critical role in reducing model variance 

[24][25]. This algorithm offers several advantages, including 

high accuracy, the ability to handle large and complex 
datasets, and resilience to outliers and noise, making it 

reliable for a wide range of classification and regression 

scenarios. Additionally, Random Forest effectively mitigates 

overfitting by combining multiple independent decision trees 

[27]. However, it is not without limitations, which include 

relatively high computational time, difficulty in interpretation 

due to model complexity, and large model size that can 

demand substantial computational resources [23][24]. 

Gradient Boosting is a powerful machine learning 

algorithm widely used for both classification and regression 

tasks. The following diagram provides an overview of the 

Gradient Boosting process, illustrating its iterative structure 
and the flow of residual error corrections [28]. 

 
Figure 5. Illustration of Gradient Boosting 

This algorithm operates iteratively, where each new model 

aims to correct the prediction errors of the previous model. 

Gradient Boosting begins with an initial decision tree, 

followed by subsequent iterations that add new trees focused 

on addressing the residual errors from prior iterations. This 

process continues until the model optimally minimizes the 

loss function [29]. The primary strength of Gradient Boosting 
lies in its ability to produce highly accurate models, especially 

when applied to complex datasets [30]. The algorithm is also 

versatile, as it can be employed with various types of data. 

However, its drawbacks include a higher risk of overfitting if 

hyperparameter tuning is not properly managed, as well as 

significant computational and resource demands due to the 

large number of trees built during the iterative process [25], 

[26][27]. 

XGBoost (Extreme Gradient Boosting) is an algorithm 

based on the Gradient Boosting Decision Tree (GBDT) 

method, designed to enhance computational efficiency and 
model performance for classification and regression tasks. 

The following diagram illustrates the core components and 

workflow of the XGBoost algorithm, highlighting its 

computational optimizations and tree-based structure [31]. 

 
Figure 6. Illustration of XGBoost 
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One of XGBoost's standout features is its ability to perform 

efficient parallel processing and pruning, enabling the model 

to mitigate overfitting by reducing excessive tree complexity. 

Additionally, XGBoost can handle large-scale data more 

efficiently due to computational optimizations, including the 

effective utilization of CPU cores during the training process 

[32]. The primary advantage of XGBoost lies in its ability to 

control overfitting through mechanisms such as tree pruning 

and regularization, maintaining a balance between bias and 
variance, thereby producing more stable models. Its 

efficiency is further demonstrated by leveraging parallel 

processing, making it significantly faster in handling large 

and complex datasets. Moreover, its performance can be 

greatly improved through hyperparameter tuning techniques 

like grid search and random search. However, XGBoost has 

certain limitations. The hyperparameter tuning process 

required to achieve optimal performance can be intricate and 

resource-intensive. The algorithm is also sensitive to noisy 

data, potentially leading to suboptimal results if the data is not 

preprocessed effectively. Additionally, XGBoost demands 
substantial memory, particularly when dealing with very large 

datasets, due to its computationally intensive processes 

[28][29]. 

E. Machine Learning Model Evaluation 

Evaluation is a crucial phase in data mining aimed at 

assessing the performance of the developed model. The 

purpose of model evaluation is to ensure that the model 

achieves high levels of accuracy, reliability, and relevance in 

addressing the targeted problem. Prior to evaluation, the 
model must undergo validation. One of the validation 

methods utilized in this study is Cross-Validation with k = 10 

(10-fold Cross-Validation).  

In this method, the dataset is divided into 10 equally sized 

parts. Each part is used once as a test set, while the remaining 

9 parts are used for model training. This process is repeated 

10 times, with each subset serving as the test set in turn. This 

method is preferred over Split Validation as it effectively 

reduces the risk of overfitting [17]. 

The next step is to evaluate the model using appropriate 

metrics. In classification tasks, commonly used metrics 
include accuracy, recall, precision, and F1-Score. Each metric 

measures different aspects of model performance. In this 

study, accuracy and F1-Score are selected as the primary 

metrics to assess the model's performance. 

Accuracy is a metric that measures how often the model 

makes correct predictions overall. In the accuracy formula 

(Equation 1), TP (True Positive) represents the number of 

correct predictions for the positive class, while TN (True 

Negative) reflects correct predictions for the negative class. 

FP (False Positive) denotes the number of incorrect 

predictions where the positive class is mistakenly predicted, 

and FN (False Negative) occurs when the negative class is 
misclassified. In the context of attack detection in the Internet 

of Vehicles (IoV), accuracy provides a general overview of 

how well the model distinguishes various types of traffic, such 

as benign traffic, DoS, Gas-Spoofing, Steering Wheel-

Spoofing, Speed-Spoofing, and RPM-Spoofing [17] 

(Equation 1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
        (1) 

 

Precision measures the proportion of positive predictions 

that are truly correct, helping to evaluate the model's 

effectiveness in avoiding false positives [34] (Equation 2).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (2) 

 

Recall measures how well the model identifies all true 

positive instances. It reflects the proportion of positive cases 

correctly detected out of the total actual positive cases in the 

dataset [34] (Equation 3).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (3) 

 

The F1-Score provides a comprehensive view of the 

balance between precision and recall. It helps to harmonize 

these two metrics, particularly in scenarios where errors in 

both positive and negative predictions have significant 
consequences, such as in attack detection within the IoV [34] 

(Equation 4).  

 

𝐹1 = 2 𝑥 
𝑃𝑟𝑒𝑠𝑖𝑠𝑖 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖+𝑅𝑒𝑐𝑎𝑙𝑙
       (4) 

 

Evaluation results are used to compare various models, 

select the most optimal one, and identify aspects that require 

improvement. Effective evaluation ensures the development 
of high-quality data mining models and positively impacts 

further advancements.  

III. RESULT AND DISCUSSION 

This study utilizes the CICIoV2024 dataset, which consists 

of six separate files in decimal format. Each file contains 12 

columns, with one column, specific_class, designated as the 

target variable, while the remaining columns serve as 

features. The specific_class column comprises six classes: 

benign, DoS, GAS, Speed, RPM, and Steering Wheel. 

Overall, the dataset includes 1,408,219 instances. The six files 

were combined using the concatenate feature available in 
Orange. Irrelevant columns, such as ID, Label, and Category, 

were removed to reduce complexity and dataset size. Prior to 

balancing, the dataset exhibited significant class imbalance. 

The benign class accounted for 86.90%, dominating other 

classes such as DoS (5.30%), GAS (0.71%), Speed (1.77%), 

RPM (3.90%), and Steering Wheel (1.42%). 

To address the data imbalance, the Random Under 

Sampling (RUS) method was applied. This method reduces 

the number of instances in the majority class, creating a more 

balanced class distribution. After applying RUS, the total 
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number of instances in the dataset decreased from 1,408,219 

to 59,946 instances. As a result, each class—BENIGN, DoS, 

GAS, RPM, SPEED, and STEERING_WHEEL—now 

contains an equal number of instances, specifically 9,991 

instances, representing 16.67% of the total dataset. This more 

balanced class distribution is expected to assist machine 

learning models in making more accurate and fair predictions 

across all classes, as illustrated in Figure 7. This step was 
crucial in ensuring that no single class dominated the training 

process, which could potentially lead to biased model 

performance.  

 

 
Figure 7. Graph after class balancing 

After balancing the dataset distribution, the next step 

involves feature scaling by applying data normalization using 

the Min-Max method (0,1). This method transforms all values 

in the dataset from their original range to a scale between 0 

and 1. 
This study evaluates the performance of three classification 

algorithms: This study evaluates the performance of three 

classification algorithms: Random Forest, Gradient Boosting, 

and XGBoost. For Random Forest, the number of trees is set 

to 50, while Gradient Boosting is implemented with 100 trees. 

Similarly, the XGBoost algorithm is configured with 100 

trees. These configurations represent the optimal version of 

each algorithm and method. The numbers are the best for each 

algorithm when adjusted for these methods; changing these 

numbers either upward or downward will drastically affect 

the test time, training time, and accuracy—some will 

experience performance gains, while others will see a decline 
across all methods. 

To minimize the risk of overfitting, evaluation was 

conducted using the Cross-Validation method with a 10-fold 

scheme. The testing of these three algorithms was performed 

without applying feature selection, aiming to measure the 

models' performance comprehensively without reducing the 

data dimensionality. The results of this evaluation are 

presented in Table 1.  

TABLE I 

WITHOUT FEATURE SELECTION 

Algorithm Accuracy F1 – Score 
Random Forest 0.985 0.985 

Gradient Boosting 0.985 0.985 

XGboost 0.983 0.983 

 

Further testing was conducted using the same algorithms, 

but with the application of feature selection through several 

ranking methods: Information Gain Ratio, Chi-square (χ²), 

and Fast Correlation-Based Filter (FCBF). The results 

showed that accuracy and F1-Score remained consistent, even 
when only the top 5 features were used. In some cases, the 

model's performance improved compared to testing without 

feature selection.  

Notably, in the case of the XGBoost algorithm, feature 

selection contributed to increased accuracy and efficiency 

compared to previous tests. The complete results of this 

testing are presented in Table 2. 

TABLE II 

WITH FEATURE SELECTION 

Algorithm Feature Accuracy F1 - Score 

(IGR) (FCBF) (X2) (IGR) (FCBF) (X2) 

Random Forest 5 0.985 0.985 0.985 0.985 0.985 0.985 

Gradient Boosting 5 0.985 0.985 0.985 0.985 0.985 0.985 

XGBoost 5 0.985 0.985 0.985 0.985 0.985 0.985 

 

In addition to evaluating accuracy and F1-Score, this study 

places significant emphasis on train time and test time as key 

metrics for assessing the computational efficiency of each 

algorithm. Train time plays a critical role in the development 
of machine learning models, as it reflects the duration 

required for a model to process and learn from the training 

data, which directly impacts the feasibility of deploying the 

model in resource-constrained environments [35]. 

Similarly, test time measures the speed at which the trained 

model can generate predictions on new, unseen data, 

highlighting its efficiency in real-world applications [36]. In 

time-sensitive domains such as the Internet of Vehicles (IoV), 

where rapid decision-making is essential to address potential 

security threats and ensure safety, minimizing test time 

becomes a crucial consideration. The ability to quickly 

process data and respond to threats can significantly enhance 
the effectiveness of IoV systems. 

Table 3 provides a comprehensive overview of the train 

and test times recorded for the algorithms, both before and 

after applying feature selection techniques, offering valuable 

insights into the trade-offs between computational cost and 

model performance. 
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TABLE III 

COMPLETE RESULT OF THE EXPERIMENT 

Algorithm Train Time Test Time 
 (IGR) (FCBF) (X²)  (IGR) (FCBF) (X²) 

Random Forest 3.006 2.041 2.192 2.188 0.387 0.228 0.238 0.222 

Gradient Boosting 186.544 127.999 129.256 130.441 0.837 0.685 0.686 0.711 

XGBoost 10.711 6.403 6.403 6.831 0.182 0.125 0.133 0.121 

Table 3 provides a detailed summary of the experiment, 
including the training and testing times for Random Forest, 

Gradient Boosting, and XGBoost across three feature 

selection methods: Information Gain Ratio (IGR), Fast 

Correlation-Based Filter (FCBF), and Chi-Square (X²). For 

Random Forest, the training times were 3.006 seconds (IGR), 

2.041 seconds (FCBF), and 2.192 seconds (X²). Its testing 

times were 0.387 seconds (IGR), 0.228 seconds (FCBF), and 

0.238 seconds (X²). In the case of Gradient Boosting, the 

training times were notably higher, at 186.544 seconds (IGR), 

127.999 seconds (FCBF), and 129.256 seconds (X²). Its 

testing times, however, were 0.837 seconds (IGR), 0.685 
seconds (FCBF), and 0.686 seconds (X²). Lastly, XGBoost 

showed a more efficient performance, with training times of 

10.711 seconds (IGR), 6.403 seconds (FCBF), and 6.831 

seconds (X²). Its testing times were the shortest, recorded at 

0.182 seconds (IGR), 0.125 seconds (FCBF), and 0.133 

seconds (X²). 

These results highlight the differences in computational 

efficiency and speed among the algorithms, providing 

insights into their practical applications. With feature 

selection and data balancing, the algorithms in this study 

outperformed those in previous research, achieving higher 

accuracy and F1-Score. The comparison is shown in Table 4.  

TABLE IV 

COMPARISON WITH PREVIOUS RESEARCH 

Algorithm Method 

Feature 

Selection Accuracy 

F1-

Score 

Random Forest 

  

  RUS & 

Feature 

Selection 

  

  

  

  

IGR 0.985 0.985 

FCBF 0.985 0.985 

X2 0.985 0.985 

Gradient Boost 

  

  

IGR 0.985 0.985 

FCBF 0.985 0.985 

X2 0.985 0.985 

XGBoost 

  

  

IGR 0.985 0.985 

FCBF 0.985 0.985 

X2 0.985 0.985 

Naïve Bayes 

[17] Manual 

Selection 

 

 

 

 -  0.981 0.98 

Decision Tree 

[17]  -  0.975 0.971 

Logistic 

Regression [17]  -  0.876 0.842 

AdaBoost [18]  -   -  0.92 0.51 

Random Forest 

[18]  -   -  0.96 0.76 

Logistic 

Regression [18]  -   -  0.89 0.49 

Deep Neural 

Network [18]  -   -  0.96 0.78 

 

To provide a clearer depiction of the accuracy performance 
comparison for each algorithm, the findings of this study are 

visualized in the form of a graph. This graph highlights the 

superiority of the proposed methods in this study compared to 

the best methods suggested in previous research. The feature 

selection techniques are directly compared with those from 

prior studies, as illustrated in Figure 5.  

 
Figure 8. Comparison chart with previous researcher 

The visualization results indicate that the proposed method, 
which combines data balancing and feature selection, 

achieved higher and consistent accuracy at a value of 0.985 

compared to other algorithms tested in previous studies. The 

graph facilitates readers' understanding of the advantages of 

the approach used in this study in enhancing the accuracy of 

DoS and spoofing attack detection in IoV, while also 

highlighting the computational efficiency achieved through 

feature selection. 

IV. CONCLUSION 

This study successfully demonstrates that Ensemble 

Learning methods, particularly Random Forest, Gradient 

Boosting, and XGBoost, are effective in detecting DoS and 
spoofing attacks in IoV networks. Data balancing and feature 

selection improved computational efficiency without 

compromising accuracy and F1-Score, with XGBoost 

showing the best efficiency. With an accuracy and F1-Score 

of 0.985, this solution can enhance IoV security against cyber 

threats. 

Future research should focus on developing a self-

collected, balanced dataset from real-time IoV data to better 

represent real-world conditions. This approach would address 

overfitting risks and improve the model's generalizability to 

diverse vehicle types and protocols. 

0.75

0.85

0.95

Akurasi F1 - Score

All Comparison

The proposed method Naïve Bayes [18]

Deep Neural Network [19]
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