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 This study addresses the cybersecurity challenges within the Internet of Vehicles 

(IoV) by exploring the efficacy of Random Under-Sampling (RUS) in balancing the 

class distribution of the CICIoV2024 dataset for improved intrusion detection. IoV 

technology connects vehicles to digital infrastructure, fostering communication and 

enhancing safety but is simultaneously vulnerable to cyber threats such as Denial of 

Service (DoS) and spoofing attacks. This research employed RUS to mitigate data 

imbalance within the CICIoV2024 dataset, which often impedes effective threat 

detection in machine learning models. Four machine learning classifiers Random 

Forest, AdaBoost, Gradient Boosting, and XGBoost were evaluated on both 
imbalanced and balanced datasets to compare their performance. Results 

demonstrated that RUS significantly enhances model accuracy, precision, recall, and 

F1-score, reaching perfect scores across all classifiers post-balancing. Additionally, 

RUS contributed to substantial reductions in training and testing times, thereby 

boosting computational efficiency. These findings underscore the potential of RUS 

in addressing data imbalance in IoV cybersecurity, establishing a foundation for 

future research aimed at safeguarding IoV systems against evolving cyber threats. 
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I. INTRODUCTION 

Internet of Vehicles (IoV) is a technology that connects 

vehicles to digital infrastructure through the internet, enabling 

communication between vehicles (V2V), vehicles and 

infrastructure (V2I), and vehicles and pedestrians (V2P) [1]. 

This technology is expected to enhance transportation 

efficiency, reduce accidents, and support smart mobility in 

modern cities [2]. However, alongside these advancements, 

IoV has also become a target for cyberattacks that threaten the 

safety and security of the system [3]. Attacks such as Denial 

of Service (DoS) and spoofing can cause significant 

disruptions to the IoV network, ranging from manipulating 

vehicle data to blocking critical access, potentially leading to 
severe accidents [4]. 

In the context of the Internet of Vehicles (IoV), ensuring 

network security is crucial due to cyber threats that can 

compromise the integrity and functionality of the system. One 

of the most effective ways to protect the IoV network is by 

implementing an Intrusion Detection System (IDS) [5]. IDS 

serves as a protective layer by detecting suspicious or 

unauthorized activities within the network and preventing 

them before more serious damage occurs [6]. Without a 

reliable Intrusion Detection System (IDS), IoV systems are 

susceptible to attacks, including Denial of Service (DoS) and 

Spoofing [7]. 

The application of machine learning in intrusion detection 

within the Internet of Vehicles (IoV) offers significant 
advantages in identifying and responding to cyber threats [8]. 

This method is highly effective in analyzing large volumes of 

data, enabling real-time detection of attacks such as Denial of 

Service (DoS) and spoofing, which are crucial for maintaining 

system integrity [9]. Its ability to learn from historical data 

and update predictive models makes it more responsive than 

traditional approaches [10]. In the dynamic IoV environment, 

where attack patterns continuously evolve, machine learning 

plays a pivotal role in enhancing the overall security of the 

system [11]. 

Applying machine learning in IoV faces significant 

challenges related to data volume and sensor complexity [12]. 
One of the obstacles is class imbalance in datasets such as 

CiCIoV2024, where anomalous data is scarce, making it 

mailto:111202113774@mhs.dinus.ac.id
mailto:risqa.ifan@dsn.dinus.ac.id
mailto:fauziadi@research.dinus.ac.id
mailto:wildanil.ghozi@dsn.dinus.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


JAIC e-ISSN: 2548-6861   

 

Balancing CICIoV2024 Dataset with RUS for Improved IoV Attack Detection (Muhammad David Firmansyah, Ifan Rizqa, 
Fauzi Adi Rafrastara, Wildanil Ghozi) 

251 

difficult for algorithms to detect them [13]. The primary 

challenge in such datasets lies in balancing detection accuracy 

with computational efficiency for practical implementation 

[14]. Data imbalance can cause machine learning models to 

favor the majority class, increasing the risk of failing to detect 

rare but highly dangerous cyberattacks [15]. 

In this study, the researchers applied the Random Under-

Sampling (RUS) method to address the issue of data 
imbalance in the CICIoV2024 dataset. RUS balances class 

distribution by reducing the instances in the majority class to 

match the minority class [16]. This approach prevents the 

model from being biased toward the majority class and 

ensures that rare but critical attack patterns are not 

overlooked. Although RUS may lead to a loss of some 

majority-class data, it remains a practical choice for this study 

due to its simplicity and effectiveness in handling severe class 

imbalance without introducing synthetic data. The goal of this 

research is to evaluate the performance of machine learning 

models on both the original and balanced datasets using RUS. 
The research conducted by [9] aimed at creating a realistic 

CICIoV2024 dataset to identify attacks like Denial of Service 

(DoS) and spoofing in Internet of Vehicles (IoV) systems. 

This dataset was collected from the Controller Area Network 

(CAN) system of a stationary 2019 Ford vehicle to ensure 

safety during data collection. Various machine learning 

algorithms, including Logistic Regression (LR), Random 

Forest (RF), AdaBoost (AB), and Deep Neural Network 

(DNN), were used to analyze the attack data. The results 

indicated that DNN and RF models delivered the best 

performance with the highest F1-scores, reaching 0.63 for 

binary classification and 0.74 for decimal classification. 
However, the main limitation of this study was the significant 

class imbalance in the dataset, particularly with attacks like 

speed spoofing, which were challenging to detect, thereby 

reducing model accuracy as the number of analyzed classes 

increased. 

Research on the Internet of Vehicles (IoV) using the 

CICIoV2024 dataset has been conducted by [17], which 

evaluated three algorithms: Naïve Bayes, Decision Tree, and 

Logistic Regression for detecting attacks. The results showed 

that Naïve Bayes achieved the highest accuracy of 98.10% 

and an F1-score of 98.00. This study concentrated on 
detecting attacks, such as Denial of Service (DoS) and 

spoofing, which can disrupt communication between devices 

in the IoV environment. The research used specify_class as 

the target in classification. Innovation in the dataset used is 

crucial in security research, considering that cyberattack 

patterns continue to evolve over time [18]. 

The study by [19] demonstrated the success of applying the 

RUS method in enhancing the performance of the Random 

Forest algorithm on imbalanced datasets. Using a dataset from 

the UCI Machine Learning Repository with a class ratio of 

malware to goodware at 1:9.5, this method effectively 

balanced the data. It resulted in significant improvements in 
model performance. Random Forest with RUS achieved 

accuracy, recall, and specificity of 98.3%, showcasing its 

superiority over other algorithms such as kNN, Naïve Bayes, 

and Logistic Regression. This success illustrates the potential 

of RUS to address severe class imbalance challenges and 

serves as the foundation for its application in this research to 

optimize model performance on the CICIoV2024 dataset. 

The reliability of class balancing techniques is a critical 

factor in addressing class imbalance, particularly in real-

world applications like IoV attack detection. While 
oversampling methods such as SMOTE are widely used, 

recent research by [20], highlights their significant 

limitations. The study demonstrates that synthetic samples 

generated by oversampling methods often fail to represent the 

true characteristics of the minority class, leading to poor 

model generalization and inaccurate predictions in practical 

use cases. This limitation underscores the importance of 

selecting a balancing method that maintains data authenticity. 

By opting for RUS, this research avoids the risks associated 

with oversampling and contributes to advancing techniques 

for handling class imbalance in critical domains such as IoV 
security. 

The study by [21] aimed to identify Distributed Denial-of-

Service (DDoS) attacks on the CICDDoS 2019 dataset using 

boosting algorithms, namely LightGBM and XGBoost. The 

XGBoost algorithm delivered the best results with an 

accuracy of 94.89% and superior processing time efficiency, 

thanks to its implementation of parallel processing and the use 

of L1 and L2 regularization. With its proven ability to handle 

large datasets and reduce noise, XGBoost has become an ideal 

choice for detecting large-scale attacks in real-world 

applications. This research builds upon such findings by 

integrating RUS-balanced datasets with advanced algorithms 
like XGBoost to achieve high accuracy and efficiency in 

detecting IoV attacks. 

II. METHODOLOGY  

As illustrated in Figure 1, the stages conducted in this study 

include data collection, pre-processing, modeling, and 

evaluation. 

  

Figure 1.Research Stages 

A. Hardware and Software 

This study utilized a dataset comprising over 1 million 

instances. The selection of appropriate hardware and software 

is a key factor in the success of research. Without suitable 
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software, even high-specification hardware will not deliver 

optimal results. Similarly, effective software will face 

limitations if not supported by adequate hardware [22]. 

This study used a personal laptop equipped with an Intel 

Core i7 11800H processor and an NVIDIA RTX 3050ti 

graphics card. The software used included Orange Data 

Mining (downloaded from https://orangedatamining.com/) 

and Microsoft Excel. Orange Data Mining applied machine 

learning models to both imbalanced and balanced datasets. At 
the same time, Microsoft Excel was used to systematically 

and structurally record the results of the algorithm 

implementation. 

B. Data Collection and Preparation 

Cyberattack patterns continue to evolve. Therefore, the 

novelty of datasets is crucial in the context of network security 

[18]. In this study, the authors utilized the CICIoV2024 

dataset, published by researchers from the University of New 

Brunswick, Canada, 2024 as the primary data source [13]. 
This dataset includes two main attack classifications: 

spoofing and Denial-of-Service (DoS), and consists of 11 

features that support security analysis. Additionally, the 

dataset provides six distinct classes: Benign, Gas-Spoofing, 

RPM-Spoofing, Speed-Spoofing, Steering Wheel-Spoofing, 

and DoS. Details of the dataset used are presented in Table 1. 

TABLE I  

DETAIL DATASET 

Dataset Name CIC IoV Dataset 2024 

Release Year 2024 

Number of 

Features 11 

Number of 

Instances 

1408219 (1,223,737 Benign Class and 184,482 

Attack Class) 

Number of Class 
6 (Benign, Gas-Spoofing, RPM-Spoofing, Speed-

Spoofing, Steering Wheel-Spoofing, and DoS) 

 

In the data preparation stage, the dataset was divided into 

two parts for two experiments. The first experiment used 

imbalanced data, where the benign and attack class data 

quantities remained unchanged. The second experiment 

divided the dataset into two classes: benign and attack. The 

benign class data was extracted from a single file and 

balanced using the RUS method to prevent this class from 

dominating the model. 

Meanwhile, the attack class data consisted of five files: 
DoS, Steering Wheel-Spoofing, Gas-Spoofing, Speed-

Spoofing, and RPM-Spoofing. Both classes, benign and 

attack, were combined and balanced using the RUS method, 

resulting in a balanced dataset for use in the second 

experiment. Figure 2 illustrates the dataset preparation. 

 

Figure 2.Dataset Preparation 

C. Data Pre-processing 

Data preprocessing is a crucial step in data analysis aimed 

at improving the quality and consistency of the dataset before 

applying it to machine learning models [23]. In this study, 

preprocessing was necessary to address the challenges posed 

by the CICIoV2024 dataset, which exhibits a highly 

imbalanced class distribution. With proper preprocessing, the 

resulting model can avoid producing biased and 

unrepresentative outcomes, ultimately reducing the accuracy 

and effectiveness of the analysis [24]. 

The CICIoV2024 dataset consists of six files covering 
various types of attacks, with over 1 million rows of data. The 

benign class dominates with 1,223,737 rows, while other 

classes, such as gas spoofing, have only 9,991 rows. The 

significant imbalance in the number of instances across 

classes highlights their vast disparity, which may lead the 

model to become biased toward the majority class. A data 

balancing process was conducted using the RUS method to 

address this issue. 

RUS is an effective technique for handling class 

imbalances in datasets. It randomly reduces the instances in 

the majority class to equal the number of instances in the 
minority class [16]. The RUS method was implemented using 

“Orange” software, with the fixed data sample widget set on 

the file with the benign class to 184,482 instances. 

Subsequently, the six data files were combined using the 

concatenate widget. After merging, the id, category, and 

specify_class columns were removed, leaving only the data 

columns from DATA_0 to DATA_7. Data normalization was 

performed using the min-max normalization method as the 

final step in the preprocessing process. This method 

transforms feature values into the range [0, 1], ensuring all 

features have a uniform scale. 

https://orangedatamining.com/
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In this study, two experiments were conducted to evaluate 

the performance of machine learning models. The first 

experiment used an imbalanced dataset, where the benign 

class significantly dominated. The second experiment used a 

balanced dataset created with the RUS method. The objective 

of these two experiments was to compare the model's 

performance under both conditions and determine whether 

balancing the data could improve model accuracy 

D. Machine Learning Modelling 

This study will compare four classification algorithms to 

evaluate their performance and determine the best algorithm. 

The four algorithms to be analyzed are Random Forest, 

Adaptive Boosting, Gradient Boosting, and Extreme Gradient 

Boosting. 

The Random Forest algorithm is an ensemble method that 

builds multiple decision trees using random subsets of the 

training data, then combines their predictions through 
majority voting (for classification) or averaging (for 

regression) to enhance accuracy [25]. Random Forest was 

selected for its ability to address overfitting, which often 

occurs in single decision trees, and to handle data with 

numerous or complex variables [26]. One of the main 

advantages of Random Forest is its effectiveness in dealing 

with imbalanced datasets [27]. This algorithm leverages 

random subset selection and voting to make the model fairer 

to minority classes and reduce bias toward majority classes 

[27]. 

 

Figure 3.Illustration of Random Forest 

The Adaptive Boosting algorithm, or AdaBoost, is a 

machine learning technique that merges several simple 

models to create a more robust model [28]. This algorithm 

works by assigning higher weights to data that are difficult to 

classify, so each new model is built based on the errors of the 

previous model [29]. The main advantage of AdaBoost is its 

ability to improve accuracy without causing overfitting, 

especially on data with low noise [30]. This algorithm was 

chosen for its ease of implementation and effectiveness, 

mainly when used on imbalanced data [31]. 

The Gradient Boosting algorithm is a machine learning 
method that incrementally builds predictive models by 

combining multiple simple models, typically decision trees 

[32]. This algorithm works by minimizing a loss function 

using a gradient-based approach, where each new model is 

created to reduce the prediction errors of the previous model 

[32]. The main advantage of Gradient Boosting is its ability 

to handle complex data and deliver accurate predictions [33]. 

This algorithm is often chosen for its flexibility in handling 

data with uneven distributions and outliers [34].  

The Extreme Gradient Boosting (XGBoost) algorithm is an 
ensemble-based machine learning algorithm that uses 

boosting techniques to improve prediction accuracy [35]. 

Unlike Gradient Boosting, XGBoost optimizes computation 

through parallelism and better memory management, 

enabling it to handle large datasets more efficiently 

Additionally, XGBoost incorporates L1 and L2 

regularization, which helps prevent overfitting, making it 

more robust for complex data [36]. This algorithm is also 

designed to handle imbalanced data and sparsity more 

effectively, making it a stronger choice for large and diverse 

datasets [37]. 

E. Machine Learning Evaluation 

The evaluation assesses how well a model can predict or 

classify new data based on the training data. The assessment 

ensures the model performs well on known data and can 

generalize to unseen data. This study used a cross-validation 

method with a value of k=10 as the initial step of the 

evaluation process. The 10-fold cross-validation method 

divides the dataset into ten subsets or "folds." This method 

seeks to repeatedly partition the data into testing and training 
sets, offering a more precise assessment of model 

performance and minimizing the likelihood of overfitting. In 

each iteration, 9-fold are used as training data, while 1-fold is 

used as validation data. This process is repeated ten times, 

with each fold used as the validation data once. After ten 

iterations, the average results from each iteration are used to 

provide an overall view of the model's performance. A visual 

illustration of the cross-validation process is shown in Figure 

4. 

 

Figure 4.Illustration of 10-Fold Cross-Validation 

The next step is to evaluate the model using various 

appropriate metrics. This study will assess the model using 

two categories of evaluation metrics: effectiveness and 

efficiency. Effectiveness metrics, such as accuracy, precision, 

recall, and F1-score, focus on how well the model performs 
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prediction or classification tasks. Meanwhile, efficiency 

metrics measure the "cost" or "time" required to achieve these 

results, including train and test times. 

Accuracy is a metric used to evaluate the overall 

correctness of a model's predictions. In the accuracy formula 

(Equation 1), TP (True Positive) represents correct 

predictions for positive examples, while TN (True Negative) 

refers to accurate predictions for negative examples. False 

Positive (FP) happens when the model mistakenly classifies 
an instance as positive, while False Negative (FN) occurs 

when the model incorrectly classifies an instance as 

unfavorable. In the context of attack detection in the Internet 

of Vehicles (IoV), accuracy provides an overview of how 

effectively the model identifies benign or attack instances. 

Accuracy is calculated using the formula in Equation (1): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
  (1) 

 

In addition to accuracy, precision is a metric used to 

measure the accuracy of the model's optimistic predictions. 

Precision indicates the extent to which the model correctly 

predicts whether an instance belongs to the benign or attack 

class. Precision is calculated using the formula in Equation 

(2): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

 

Recall, also known as sensitivity, is a metric that measures 

how well the model can detect positive instances out of all 
existing positive instances. Recall evaluates how effectively 

the model can detect actual cyber threats between benign and 

attack classes, representing the ratio of threats successfully 

detected to the total threats present. Recall is calculated using 

the formula in Equation (3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

Finally, the F1-score is a metric that integrates precision 

and recall into a single value. The F1-score helps evaluate the 

model more balanced, ensuring that the model not only 

focuses on detecting all threats (high recall) but also maintains 

detection quality by reducing false alarms (high precision). 

The F1-score is determined as the harmonic mean of precision 

and recall, as shown in the formula in Equation (4): 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

In addition to predictive performance measured by 
accuracy, precision, recall, and F1-score, computational 

efficiency is also a crucial consideration, especially in real-

world applications that require fast processing times. 

Therefore, this study also evaluates training time (train time) 

and testing time (test time) to assess how efficiently the model 

performs in large datasets. 

Train time measures the time required to train the model 

from start to finish using the training data. Train time is an 

important indicator when applying the model to large 

datasets, especially when the methods involve numerous or 

complex iterations, as in Gradient Boosting and XGBoost 

algorithms. Training time is calculated using a time function 

that measures the duration of model training in seconds or 

minutes. The formula for calculating training time is provided 

in Equation (5): 
 

𝑇𝑟𝑎𝑖𝑛 𝑇𝑖𝑚𝑒 = 𝑡𝑒𝑛𝑑 𝑡𝑟𝑎𝑖𝑛 −  𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑟𝑎𝑖𝑛   (5) 

 

Test time measures the time the model requires to predict 

outcomes on test data. Test time is significant when the model 

is applied in applications requiring fast or real-time 

predictions, such as Internet of Vehicles (IoV) threat 

detection. Testing time is calculated in the same manner as 

training time. The formula for calculating testing time is 

provided in Equation (6): 

 

𝑇𝑒𝑠𝑡 𝑇𝑖𝑚𝑒 = 𝑡𝑒𝑛𝑑 𝑡𝑒𝑠𝑡 −  𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑒𝑠𝑡  (6) 

 

By measuring train time and test time and comparing the 

models applied to balanced and imbalanced datasets, 

conclusions can be drawn about how effective the balancing 

methods are in improving the model's performance and 

efficiency. The use of a balanced dataset is expected to 

enhance the model's performance on minority classes and 

maintain or improve computational efficiency. 

III. RESULT AND DISCUSSION 

The CICIoV2024 dataset exhibits a significant imbalance, 

with the benign class containing 1,223,737 instances 

compared to 184,482 instances in the attack classes. This 

imbalance results in a ratio of 6.63:1, heavily biasing model 

predictions toward the majority class and reducing detection 

rates for the minority class (Figure 5). Under these conditions, 

machine learning models often fail to identify rare but critical 

patterns in the minority class, significantly affecting their 

ability to detect cyberattacks. 

 

Figure 5.Comparison Between the Benign Class and the Attack Class 
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To address this issue, the Random Under-Sampling (RUS) 

method was applied. This method reduces the number of 

instances in the benign class to match the size of the attack 

class, resulting in a balanced distribution across all classes. 

After applying RUS, the dataset was restructured, with each 

class containing an equal number of 184,482 instances. This 

balancing ensures that all classes are equally represented 

during the training process, enhancing the model’s ability to 
detect patterns in the minority class. A visualization of the 

balanced dataset is presented in Figure 6, clearly showing the 

equal distribution of instances across all classes. 

 
Figure 6. Comparison of the Dataset After Balancing 

TABLE II  

EFFECTIVENESS PERFORMANCE BEFORE REBALANCING 

Model Acc Precision Recall F1-Score 

Random Forest [9] 0.96 0.76 0.76 0.76 

XGBoost 1 1 1 1 

AdaBoost [9] 0.92 0.48 0.66 0.51 

Gradient Boosting 1 1 1 1 

 

Before balancing, the performance of the machine learning 

models on the CICIoV2024 dataset varied significantly across 

effectiveness metrics. Random Forest achieved an accuracy 

of 0.96, indicating its ability to correctly classify the majority 

of instances. However, its precision, recall, and F1-score were 

limited to 0.76, suggesting that the model struggled to 
accurately identify and generalize patterns in the minority 

class. Similarly, AdaBoost demonstrated a high accuracy of 

0.92, but its recall (0.66) and F1-score (0.51) revealed a 

significant bias toward the majority class. This discrepancy 

between high accuracy and lower recall and F1-score 

highlights the limitations of these models in detecting rare 

attack patterns, as accuracy primarily reflects the dominance 

of the benign class in the dataset. 

In contrast, Gradient Boosting and XGBoost achieved 

perfect scores (1.00) across all effectiveness metrics, but this 

result likely reflects the influence of overfitting on the 

imbalanced dataset. The dominance of the benign class may 
have allowed these models to correctly classify most 

instances by focusing on the majority class, resulting in 

seemingly flawless performance metrics. However, such 

metrics do not necessarily indicate effective minority class 

detection, especially in real-world scenarios where data 

distribution is often unpredictable. 

TABLE III  

EFFICIENCY PERFORMANCE AFTER REBALANCING 

Model Train Time Test Time 

Random Forest [9] 278.678 15.665 

XGBoost 32.271 0.683 

AdaBoost [9] 439.548 16.937 

Gradient Boosting 833.339 3.678 

 

From an efficiency perspective, significant variation was 

observed across the models. AdaBoost exhibited the longest 

training time at 439.548 seconds, followed by Gradient 
Boosting at 833.339 seconds, which was the slowest model in 

the experiment. Random Forest required 278.678 seconds for 

training, while XGBoost was notably more efficient with a 

training time of only 32.271 seconds. In terms of testing time, 

XGBoost maintained its efficiency at 0.683 seconds, 

outperforming Gradient Boosting (3.678 seconds), Random 

Forest (15.665 seconds), and AdaBoost (16.937 seconds). 

These results indicate that while some models demonstrate 

better computational efficiency, others require extensive 

resources, limiting their applicability in real-time scenarios. 

TABLE IV  

EFFECTIVENESS PERFORMANCE AFTER REBALANCING 

Model Acc Precision Recall F1-Score 

Random Forest [9] 1 1 1 1 

XGBoost 1 1 1 1 

AdaBoost [9] 1 1 1 1 

Gradient Boosting 1 1 1 1 

 

The application of Random Under-Sampling (RUS) 

brought significant changes to the performance metrics of all 

models evaluated on the CICIoV2024 dataset. Before 

balancing, the models demonstrated varied effectiveness and 

efficiency, with significant limitations in their ability to detect 

minority class patterns. For instance, Random Forest achieved 

an accuracy of 0.96 but had lower precision, recall, and F1-

scores at 0.76, reflecting bias toward the majority class. 

Similarly, AdaBoost exhibited a high accuracy of 0.92 but 

struggled with recall and F1-score, indicating its difficulty in 
recognizing attack patterns effectively. Gradient Boosting and 

XGBoost, while achieving perfect scores before balancing, 

likely overfit the imbalanced dataset by relying heavily on 

patterns from the dominant benign class. 

After balancing the dataset using RUS, all models achieved 

perfect scores (accuracy, precision, recall, and F1-score of 

1.00), indicating their complete ability to classify both benign 

and attack classes. This improvement suggests that balancing 

successfully eliminated bias toward the majority class, 

allowing models to focus equally on both classes. 

Additionally, the reduction in data imbalance likely 
simplified the learning process, enabling models like Random 

Forest and AdaBoost to perform at the same level as XGBoost 

and Gradient Boosting. 
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However, while the perfect metrics are noteworthy, they 

also raise concerns about the generalizability of these results. 

The balanced dataset may have introduced a level of 

uniformity that does not reflect real-world IoV scenarios, 

where data often contain noise and diverse attack patterns. 

This uniformity could lead to overfitting, especially for 

models like XGBoost and Gradient Boosting, which are 

sensitive to data characteristics. Thus, while the balanced 

dataset improves performance within this controlled 
experiment, further testing on more complex or noisy datasets 

is necessary to validate these findings. 

TABLE V  

EFFICIENCY PERFORMANCE AFTER REBALANCING 

Model Train Time Test Time 

Random Forest [9] 43.047 3.142 

XGBoost 5.610 0.092 

AdaBoost [9] 139.590 5.031 

Gradient Boosting 189.807 0.953 

 

From an efficiency perspective, balancing the dataset 

reduced the computational demands for all models. For 

instance, the training time for Random Forest decreased from 

278.678 seconds to 43.047 seconds, while XGBoost’s already 

efficient training time improved further to 5.610 seconds. 

Gradient Boosting, although maintaining high computational 
costs (189.807 seconds for training), demonstrated improved 

test time efficiency at 0.953 seconds compared to its pre-

balancing performance. These improvements highlight the 

dual benefits of balancing: enhanced predictive performance 

and reduced computational complexity. 

IV. CONCLUSION 

This study utilized the RUS technique to balance the 

CICIoV2024 dataset and reduce bias toward the majority 

class. Experimental results showed that this balancing 

significantly improved model performance, with accuracy, 

recall, precision, and F1-score achieving perfect values across 

all algorithms. Balancing using RUS also reduced train and 
test time, leading to enhanced computational efficiency. 

Therefore, RUS effectively improves model performance on 

imbalanced datasets, and this method holds potential as a 

relevant solution for improving security in IoV applications. 
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