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 Cancer is one of the most challenging diseases to cure and is a chronic condition that 

contributes significantly to global mortality. With advancements in artificial 

intelligence (AI) technology, AI-integrated systems can provide quick and accurate 
diagnoses based on collected medical data. By leveraging machine learning 

techniques, this study aims to compare the performance of two models using the 

Decision Tree (DT) and Random Forest (RF) algorithms on routine blood test data. 

The research process involves data preprocessing techniques such as handling 

missing values, detecting outliers, and feature selection, followed by applying the 

bootstrap aggregating technique to enhance model performance. Feature selection is 

used to identify the most significant features in the data that contribute to cancer 

detection. Using the KBest feature selection technique, the study found that the 

features age, BMI, leptin, adiponectin, and MCP-1 had the highest correlation with 

the target variable. The resulting models were evaluated to compare the performance 

of each algorithm. The evaluation results showed that the RF algorithm 
outperformed DT, achieving an accuracy of 89.65% on the processed dataset using 

the bootstrap technique, compared to DT's accuracy of 80.17%. Additionally, the RF 

algorithm demonstrated superior metric values, including a precision of 91.66% and 

an F1-score of 87.12%. This study concludes that the RF algorithm is more effective 

than DT for detecting cancer in limited datasets, especially when used with the 

bootstrap technique. The findings are expected to support the development of 

decision support systems in healthcare services for more accurate early cancer 

detection. 
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I. INTRODUCTION 

Cancer is one of the leading causes of death worldwide. 

Based on data from the Global Cancer Observatory, in 2024 

there were 19.9 million new cancer cases and 9.7 million 

cancer-related deaths worldwide [1]. This disease is a global 

health threat because of its chronic nature, progressive 

development, and high mortality rate if not detected and 

treated early. Early detection of cancer plays an important role 

in increasing the chances of healing, especially through more 

appropriate and targeted treatment [2]. One type of cancer that 

is the main focus of this study is breast cancer. Breast cancer 
is the leading cause of cancer death in women worldwide [3]. 

Breast cancer is traditionally diagnosed through 

mammography, biopsy, or specific tumor markers like CA 

15-3. However, this study explores routine blood tests as a 

potential alternative or complementary screening tool. 

Previous research has identified metabolic dysregulation and 

biomarkers such as resistin and leptin as associated with 
breast cancer, particularly in obesity-related cases [4]. 

Routine blood data is considered relevant due to its ability to 

reflect metabolic and inflammatory states, which are often 

disrupted in cancer [5]. The dataset in this study includes both 

general parameters (e.g. age, BMI) and specific markers (e.g. 

resistin, glucose). Resistin, a pro-inflammatory cytokine, has 

previously been linked to cancer in postmenopausal women. 
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Glucose levels and BMI provide insight into metabolic health, 

which is often impaired in cancer patients [6]. 

Artificial Intelligence (AI) is a transformative field in 

computer science, focused on developing systems capable of 

performing tasks that normally require human intelligence. 

These tasks include reasoning, learning, problem solving, 

perception, and language comprehension [7]. Machine 

Learning (ML), a subset of AI, focuses on creating algorithms 
that allow computers to learn from data and make predictions 

or decisions. ML models are trained using large datasets, so 

they are able to recognize certain patterns and can 

continuously improve their abilities over time. This change in 

approach has driven major advances in a variety of 

application areas, such as natural language processing [8][9], 

prediction [10], computer vision and image processing [11], 

and robotics.  

In recent years, the development of artificial intelligence 

(AI) technology has opened up new opportunities in medical 

diagnosis, including early detection of cancer [12][13][14]. 
By using machine learning algorithms, AI-based systems are 

able to analyze medical data quickly and accurately, thus 

assisting doctors in making clinical decisions. This approach 

has been shown to provide promising results, especially in 

processing large and complex data such as medical images 

and biomarkers [15][16]. 

Algorithms such as Decision Tree (DT) and Random 

Forest (RF) have been widely used for early detection of 

breast cancer. DT offers easy interpretation due to its simple 

structure, while RF, which is a DT-based ensemble method, 

is able to improve prediction accuracy by reducing model 

variance through techniques such as bootstrap aggregating 
(bagging) [17]. A study conducted by Shiny et al. (2024) 

showed that the RF algorithm can overcome the challenges of 

high-dimensional data and the risk of overfitting, which are 

often found in medical data analysis, thus providing more 

reliable results in breast cancer diagnosis [3]. In addition, 

these algorithms have also been used to evaluate digital 

mammography images and associated biomarkers, with 

results showing that RF is able to distinguish suspicious 

lesions with high accuracy, reaching 91.66% in a particular 

study [3]. This approach not only improves diagnostic 

efficiency but also helps support more informed decision-
making by physicians, especially in detecting cancer at an 

early stage. 

Algorithms such as Gradient Boosting, SVM, or deep 

learning have the potential to provide higher accuracy, 

especially on large and complex datasets. However, this study 

uses Decision Tree (DT) and Random Forest (RF) for several 

reasons. First, DT and RF are more suitable for small datasets 

such as the one used in this study (116 samples), where 

simpler models can perform well without requiring large 

amounts of data. Second, DT offers a simple and easily 

interpretable structure, which is important for medical 

diagnosis, while RF maintains process efficiency with 
increased accuracy through ensemble learning. Finally, deep 

learning requires much larger computational resources than 

DT and RF, making DT and RF a more practical choice for 

small datasets and limited computing devices. 

Research in cancer detection often faces the challenge of 

limited data. Small datasets can cause machine learning 

models to be susceptible to overfitting, where the model 

cannot generalize well to new data. To overcome this, 

techniques such as bootstrap aggregating are used to improve 

model reliability. This technique involves creating multiple 
sample datasets by resampling the original dataset, which are 

then used to train multiple models. This process helps reduce 

model variability and improve prediction accuracy on limited 

datasets [18]. This study aims to evaluate the performance of 

DT and RF algorithms in detecting cancer by utilizing 

medical biomarker datasets. The evaluation was carried out 

using various metrics, including accuracy, precision, recall, 

and F1-score. In addition, this study also examines how 

bootstrap aggregating techniques can improve model 

performance in limited dataset conditions. It is hoped that the 

results of this study can provide significant contributions to 
the development of a more accurate and efficient AI-based 

early cancer detection system, especially in the context of 

breast cancer. 

II. METHODS 

This study has four main stages, namely data preprocessing to 

handle missing data (missing values), handling 
outliers/unusual values, feature selection, and bootstrap 

aggregating. The processed data is then given to the Decision 

Tree and Random Forest models to be trained and tested to 

obtain predictions. The predictions are then categorized with 

a confusion matrix containing True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

The predictions made by the model will then be evaluated 

with 4 indicators, namely: accuracy, precision, recall, and F1-

score. The stages of this study can be seen in Figure 1. The 

dataset used in this study is collected from UC Irvine Machine 

Learning Repository. This study investigated 116 individuals: 

64 diagnosed with breast cancer and 52 healthy participants. 
Ten quantitative attributes, including anthropometric 

measurements and routine blood test results, were collected 

for each individual. The primary outcome was the presence or 

absence of breast cancer, represented as a binary variable (0 

or 1). The attributes are Age, BMI, Glucose, Insulin, HOMA, 

Leptin, Adinopectin, Resistin, MCP.1, and the classification 

attribute. In the classification attribute, a value of 1 indicates 

"not cancer", and a value of 2 for "cancer". 

A. Data Preprocessing 

The first stage in data pre-processing is classification 

mapping to check the class distribution. It can be seen in 

Figure 2 that the distribution between classes is relatively 

balanced. The next step is to handle missing data (missing 

values). This dataset does not have any missing values 

initially. However, human adiponectin is generally around 3 

μg/mL to 30 μg/mL [19]. If there is an adiponectin level of 

more than 30 µg/mL in the dataset, then the data is considered 



               e-ISSN: 2548-6861  

JAIC Vol. 9, No. 2, April 2025:  302 – 309 

304 

a missing value. In addition to adiponectin, in the serological 

Enzyme-linked immunosorbent assay (ELISA), there is a tool 

designed to detect and measure MCP-1 levels for humans. 

This tool can only detect around 15.6 pg/mL to 1,000 pg/mL 

MCP-1 in the human body [20]. This study assumes MCP-1 

levels of more than 1000 pg/mL as missing values. 

 

 
 

Figure 1. Research Flow 

Based on that criteria, this dataset has 12 missing values (9 

for MCP.1, and 3 for adiponectin). After knowing the number 

of missing values, a skewness check will be carried out. The 

skewness for adiponectin is quite significant with a value of 

1.1579, so the missing value will be imputed using the median 

value (middle value). While the skewness for MCP.1 is not 

too large with a skewness value of 0.3575, so the missing 

value is imputed using the mean (average value).  

 

 
Figure 2. Class Distribution for all dataset 

A boxplot is a powerful visualization tool that provides 

insights into data distribution, including the median, quartiles, 

and extreme values. Outliers are typically represented as 

points lying outside the interquartile range (IQR) on a 

boxplot. The boxplot visualization used to detect outliers is 

shown in Figure 3, where each feature is mapped to give a 

clear overview of the data distribution and the presence of 

extreme values. These extreme data points are then further 

analyzed to determine how they should be handled—whether 
they should be removed, replaced, or transformed—based on 

their relevance and potential impact on the model. 

 
Figure 3. Outliers visualization boxplot for each attribute 

To check for outliers in each column, it can be used the 
Interquartile Range (IQR) formula to determine the lower 

bound and upper bound, with the formula: 

 

Data outside these limits are considered outliers, and will 

be considered missing values. These data will then be 

replaced (impute) with the mean value of each attribute 
column. After handling missing values and outliers, the 

feature selection process is carried out by removing attributes 

that do not have a large correlation with the classification 

results. Feature selection will begin by selecting features 

using KBest (K highest score). The SelectKBest method is a 

feature selection technique designed to identify and retain the 

most relevant features in a dataset based on their scores as 

determined by a specific scoring function. In this process, the 

scoring function evaluates the relationship between each 

feature and the target variable, assigning a numerical score 

that reflects their relevance to the classification or regression 
task. In this context, since the dataset in this study are 

numerical features, the f_classif function from the scikit-

learn library is utilized as the scoring metric. For each feature, 

f_classif computes the ANOVA F-value by comparing 

the means of the feature's values across different classes in the 

target variable. Features that show a significant difference in 

means across classes (i.e., strong correlation with the target) 

𝐼𝑄𝑅 = 𝑄1 − 𝑄3 (1) 
𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − (1.5 × 𝐼𝑄𝑅) (2) 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄3 + (1.5 ×  𝐼𝑄𝑅) (3) 
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will have higher F-statistic scores. The results of KBest will 

be mapped into a heatmap to make it easier to see the 

correlation between attributes. The attributes that will be 

trimmed are attributes with correlation values close to 0. 

Figure 4 shows the results of the attribute correlation 

visualization with a heatmap where in this study the attributes 

with correlation values close to 0 are age, BMI, leptin, 

adiponectin, and MCP.1. These attributes will be trimmed and 
stored in different variables from the intact dataset. This aims 

to compare the performance of the model with the trimmed 

dataset and the intact dataset. 

 
Figure 4. Heatmap Visualization of Attributes Correlation 

B. Model Evaluation 

After preprocessing phase, model evaluation is conducted. 

A 10-fold cross-validation technique is employed in this study 

to ensure the model's generalizability. This method is 

recognized for its ability to produce robust and unbiased 
evaluations of the model performance. 10-fold cross-

validation works by dividing the dataset into ten equal parts, 

or folds. Each fold serves as a test set exactly once, while the 

remaining nine folds will be used for training. To obtain a 

robust assessment of the model's predictive abilities, this 

process is executed ten times. The performance metrics 

collected from each iteration are then averaged to arrive at a 

comprehensive measure of the model's predictive 

performance [21]. The use of 10-fold cross-validation in this 

study aims to reduce overfitting and ensure that model 

performance is not overly dependent on a particular data 
partition. By testing on different subsets of the data, this 

method allows for a more accurate assessment of how well 

the model will generalize to unseen data. Furthermore, this 

method ensures that all data points are used for training and 

validation, optimizing dataset utilization, which is especially 

important in scenarios with limited data availability. 

After doing 10-fold cross-validation, the data in the dataset 

will be divided into 80% for training the model and 20% for 

testing the model. Both datasets are set with random state 1, 

which means that every time the program is run, the order of 
the data in the dataset will be the same, to facilitate the 

debugging process and get more certain results. If the random 

state is not declared, the program will continue to randomize 

the data order according to the seed generated at the time the 

program is run.  

Given the relatively small size of the dataset in this study, 

techniques to prevent overfitting are crucial. Small datasets 

may not accurately reflect the true diversity and distribution 

of real-world data. This can lead to models learning spurious 

patterns specific to the training data, potentially including 

noise and outliers. Therefore, in addition to dividing the 
dataset, bootstrap aggregating (bagging) also occurs at this 

stage. 

Bagging, as introduced by Breiman in 1996, is a 

straightforward yet effective technique for creating an 

ensemble of classifiers. Its primary goal is to enhance the 

performance of a classifier by aggregating the outputs of 

multiple models. In bagging, an ensemble is constructed using 

a single base learner (inducer), which generates multiple 

hypotheses. These hypotheses are produced independently, as 

each iteration of the training process involves the inducer 

working on a randomly selected subset of instances from the 

training data, with replacement. To ensure the model has 
adequate data for training, the size of each subset is equal to 

the size of the original training dataset. This approach allows 

for overlap among the subsets, meaning that some training 

examples may appear in multiple subsets, while others may 

be excluded altogether. This randomness leads to diverse 

predictions by the individual classifiers within the ensemble 

[22]. Bagging takes random samples in a dataset, and may re-

take rows of data that have been taken or rows of data not 

taken at all. Bagging will produce a new dataset, and will be 

stored in a different variable from the truncated and intact 

datasets.  
Model performance will be evaluated using four metrics, 

namely accuracy, precision, recall, and F1-score. The 

formulas for these indicators are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁 +  𝑇𝑁
 

 

(4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

(5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

(6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 
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III. RESULTS AND DISCUSSIONS 

Model development with the Decision Tree algorithm is 

carried out using the DecisionTreeClassifier from the sklearn 
library where the first parameter, namely the criterion 

parameter, states the function to measure the split quality of 

the tree to be built and the second parameter used is 

max_depth which states the maximum depth of the tree. The 

criterion used is entropy with max_depth = 3. Because the 

amount of data in the dataset is quite small, the max_depth 

used is three to avoid the risk of overfitting. Where with a 

small dataset, if the decision tree is allowed to grow to the 

maximum depth (without limit), the model will tend to learn 

all the details or noise in the data. As a result, the model 

becomes too complex so that it is only suitable for training 

data, but has poor performance on new data (test data). 
The development of the model with the Random Forest 

algorithm was carried out using the RandomForestClassifier 

from the sklearn library where the parameters used were 

n_estimators, criterion, and max_depth. The n_estimators 

parameter is the number of decision trees in a random forest. 

The more decision trees, the better the performance. Because 

the amount of data is quite small, this model only uses ten 

decision trees. The number of n_estimators that is too large 

will cause overfitting in the model. max_depth for the RF 

model is five, this is because RF is random, so max_depth is 

greater than the DT model so that RF performance is more 
stable. 

TABLE 1. 
10-FOLD CROSS VALIDATION RESULTS 

 

Table 1 presents the evaluation metrics of two machine 

learning algorithms, Decision Tree (DT) and Random Forest 

(RF), on two different datasets: the complete dataset and a 

trimmed dataset. The evaluation was conducted using a 10-

fold cross-validation technique. On all dataset, DT achieved 
an accuracy of 70.68%, precision of 71.38%, recall of 

63.33%, and an F1-score of 65.43% while the performance 

dropped significantly with an accuracy of 55.00%, precision 

of 53.17%, recall of 48.33%, and an F1-score of 47.40% on 

trimmed dataset. Random Forest, however, outperformed the 

Decision Tree on the complete dataset with an accuracy of 

74.09%, precision of 71.48%, recall of 71.33%, and an F1-

score of 70.36%. Similar to the Decision Tree, the Random 

Forest model also experienced a performance drop on the 

trimmed dataset, achieving an accuracy of 58.41%, precision 

of 47.50%, recall of 54.00%, and an F1-score of 49.79%. 

TABLE 2. 

EVALUATION RESULTS 

 

Table 2 shows the evaluation results for all kind of dataset. 

For all dataset, the Decision Tree model achieved an accuracy 

of 0.583333, indicating that the model correctly predicted 

approximately 58.33% of all test data. The precision value of 

0.166667 implies that only 16.67% of the positive predictions 

made by the model were actually correct. With a recall of 

0.166667, the model identified only 16.67% of the actual 
positive cases in the dataset. An F1 Score of 0.166667 reflects 

a very low balance between precision and recall for this 

dataset. The Random Forest model achieved an accuracy of 

0.75, which is higher than the Decision Tree on the same 

dataset. Precision was 0.5, meaning that 50% of the positive 

predictions were correct. The recall was 0.666667, indicating 

the model identified 66.67% of the actual positive cases. The 

F1 Score of 0.571429 reflects a moderate balance between 

precision and recall.  

For the trimmed dataset, the accuracy remained the same 

as in the All Dataset, at 0.583333. Precision increased to 0.3, 
suggesting improved performance in predicting positive cases 

compared to the All Dataset. Recall also increased to 0.5, 

indicating better ability to capture positive cases. The F1 

Score improved to 0.375, demonstrating a better balance 

between precision and recall compared to the All Dataset. 

With Random Forest model, the accuracy decreased to 

0.583333, matching the performance of the Decision Tree on 

the same dataset. Precision remained at 0.3, similar to the 

Decision Tree on the Trimmed Dataset. Recall also remained 

at 0.5, showing no difference compared to the Decision Tree. 

The F1 Score was 0.375, identical to the Decision Tree, 

indicating no significant advantage of using Random Forest 
on this dataset. 

 

 

Finally, for the boostrap dataset, the Decision Tree model 

showed a significant improvement in accuracy, reaching 

0.801724, meaning it correctly predicted approximately 

80.17% of the test data. Precision drastically increased to 

0.837209, indicating the model performed very well in 

predicting positive cases with much lower error rates. Recall 

Algorith

m 
Dataset 

Accurac

y 

Precisio

n 
Recall 

F1 

score 

Decision 

Tree 

(DT) 

All 

Dataset 
0.7068 0.7138 0.6333 0.6543 

Trimme

d 

Dataset 

0.5500 0.5317 0.4833 0.4740 

Random 

Forest 

(RF) 

All 

Dataset 
0.7409 0.7148 0.7133 0.7036 

Trimme

d 

Dataset 

0.5841 0.4750 0.5400 0.4979 

Algorith

m 
Dataset 

Accurac

y 

Precisio

n 
Recall 

F1 

score 

Decision 

Tree 

(DT) 

All 

Dataset 

0.58333

3 

0.16666

7 

0.16666

7 

0.16666

7 

Trimme

d 

Dataset 

0.58333

3 
0.3 0.5 0.375 

Bootstra

p 

Dataset 

0.80172

4 

0.83720

9 

0.69230

8 

0.75789

5 

Random 

Forest 

(RF) 

All 

Dataset 
0.75 0.5 

0.66666

7 

0.57142

9 

Trimme

d 

Dataset 

0.58333

3 
0.3 0.5 0.375 

Bootstra

p 

Dataset 

0.89655

2 

0.91666

7 

0.84615

4 

0.87128

7 
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reached 0.692308, showing the model identified 69.23% of 

the actual positive cases. With an F1 Score of 0.757895, the 

model achieved a much better balance between precision and 

recall compared to the previous datasets. The Random Forest 

model’s accuracy significantly improved to 0.896552, 

meaning it correctly predicted nearly 89.66% of the test data. 

Precision reached 0.916667, indicating that 91.67% of the 

positive predictions were correct. Recall was 0.846154, 
showing the model identified approximately 84.62% of all 

positive cases in the dataset. With an F1 Score of 0.871287, 

the model demonstrated excellent balance between precision 

and recall. 

Next, statistical analysis needs to be performed to show 

whether the performance differences between RF and DT are 

statistically significant using McNemar’s Test. Table 3 shows 

the confusion matrix for Random Forest and Decision Tree 

using the bootstrap dataset. Using the data in the confusion 

matrix, McNemar’s test is conducted to find the 𝑝 − 𝑣𝑎𝑙𝑢𝑒. 

After conducting the McNemar’s test it is found that the 𝑝 −
𝑣𝑎𝑙𝑢𝑒 is 0.01612. Meaning that there is a statistically 

significant difference between the two models. 

TABLE 3 

CONFUSION MATRIX RESULTS WITH BOOTSTRAP DATASET 

 

Figure 5 shows the Receiver Operating Characteristic 

(ROC) Curve for two models, namely Decision Tree (DT) and 

Random Forest (RF). The ROC Curve illustrates the 

relationship between True Positive Rate (TPR) (y-axis) and 

False Positive Rate (FPR) (x-axis) at various decision 

thresholds. Model performance can also be assessed through 

the Area Under the Curve (AUC), where a higher value 

indicates better performance in distinguishing positive and 

negative classes. The AUC value for DT in this study is 

0.4352, while RF is 0.3843. The DT curve shows better 
performance than the diagonal line (baseline), but is not 

smooth, indicating limitations in capturing complex patterns. 

 
Figure 5. AUC-ROC curves for DT and RF models without bootstrapping 
 

TPR and FPR at some points indicate that this model can 

detect some positive classes well, although at certain 

thresholds the FPR increases significantly. The AUC for DT 

is below Random Forest, confirming that Decision Tree's 

performance is not as good as Random Forest in this 

classification task. The RF curve shows a slower increase than 

DT at the beginning, but remains above the baseline (diagonal 

line). Although RF's performance seems less consistent at low 
FPR, this model shows better ability at certain points to 

achieve higher TPR with smaller FPR. The AUC for RF is 

larger than DT, indicating that RF has an advantage in 

detecting positive classes more accurately. 

The graphs presented in Figure 6 show the ROC curves for 

two classification models—Decision Tree (DT) and Random 

Forest (RF)—after bootstrap resampling. The AUC value 

obtained for DT with bootstrap is 0.8294, and the value for 

RF with bootstrap is 0.9312. The DT model shows a sharp 

increase in TPR at low FPR values, then levels off. This 

indicates good performance in the early stages, but struggles 
to maintain performance when the threshold changes. This 

behavior may be due to overfitting or sensitivity to noise in 

the data. The ROC curve of the Random Forest model is 

overall above the curve of the Decision Tree model. This 

indicates that the Random Forest model performs better in 

classifying the data. The Random Forest model is able to 

achieve higher TPR at lower FPR, meaning that it is better at 

identifying true positive instances without overclassifying 

negative instances as positive. 

 
Figure 6. ROC curves for DT and RF models with bootstrap 

The results presented in Table 1 highlight the differences 

in performance between the Decision Tree (DT) and Random 

Forest (RF) algorithms across datasets processed with 

different techniques. On the unprocessed (all) dataset, the DT 

algorithm exhibits poor performance, with Accuracy at 

58.33% and equally low Precision, Recall, and F1-Score 

values of 16.67%. These results suggest that the DT model 

struggled to identify meaningful patterns, likely due to the 
presence of noise, irrelevant features, or imbalanced class 

distributions in the raw dataset. The poor ability to distinguish 

between classes is evident in the low Precision and Recall 

Algorithm TP FP TN FN 

Decision Tree (DT) 60 4 30 22 

Random Forest (RF) 56 8 48 4 
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values, indicating significant misclassification of both 

positive and negative cases.  

When the dataset is trimmed, the DT model shows modest 

improvement, with Precision increasing to 30%, Recall to 

50%, and an F1-Score of 37.5%, reflecting a better trade-off 

between precision and recall. However, the unchanged 

Accuracy (58.33%) indicates that the trimming process, while 

helping reduce noise, may have also removed critical 

information, limiting the model’s ability to capture patterns 
comprehensively. A remarkable improvement is observed in 

the DT performance on the bootstrap dataset, with Accuracy 

increasing to 80.17%, Precision to 83.72%, Recall to 69.23%, 

and an F1-Score of 75.79%. This suggests that the bootstrap 

technique successfully reduced overfitting and enhanced the 

model's generalization by providing diverse training subsets 

that capture more robust relationships in the data. 

The RF algorithm consistently outperforms DT across all 

datasets, emphasizing its robustness in handling complex 

data. On the unprocessed dataset, RF achieves an Accuracy of 

75%, Precision of 50%, Recall of 66.67%, and an F1-Score of 
57.14%, reflecting its ability to manage noise and extract 

significant patterns even without preprocessing. The use of 

ensemble methods in RF enables better decision boundaries 

by averaging multiple trees, mitigating the impact of 

overfitting commonly observed in DT. On the trimmed 

dataset, RF performance drops significantly, with metrics 

aligning closely with those of DT (Accuracy = 58.33%, 

Precision = 30%, Recall = 50%, and F1-Score = 37.5%). This 

decline likely stems from the removal of important features or 

instances during trimming, which limits the algorithm's 

ability to construct robust decision boundaries.  

RF shows its strongest performance on the bootstrap 
dataset, achieving an Accuracy of 89.65%, Precision of 

91.67%, Recall of 84.62%, and an F1-Score of 87.13%. These 

results highlight the algorithm’s ability to capitalize on the 

diverse training samples generated by the bootstrap 

technique, which not only enhances feature utilization but 

also improves the model’s stability and accuracy. The high 

Precision indicates that RF minimizes false positives 

effectively, while the high Recall demonstrates its capability 

to capture a significant portion of actual positives. The 

superior performance of RF compared to DT across all 

datasets underscores the advantage of ensemble methods, 
particularly when paired with techniques like bootstrapping, 

which address overfitting and enable the model to generalize 

better in complex datasets. 

The significant improvement in performance observed for 

both algorithms after applying the bootstrap technique 

highlights the critical role of preprocessing in machine 

learning. It emphasizes that well-preprocessed data, 

especially with techniques like bootstrapping, can greatly 

enhance model generalization and reduce noise. The 

consistent superior performance of Random Forest across all 

datasets demonstrates the robustness of ensemble methods 

compared to single-model algorithms like Decision Tree. This 
can lead to a discussion about how Random Forest leverages 

multiple decision trees to overcome the limitations of 

overfitting and noise sensitivity in Decision Tree. Moreover, 

both Decision Tree and Random Forest experienced a drop in 

performance when trained on the trimmed dataset. This could 

be attributed to the loss of critical information during the 

trimming process, sparking a discussion on the trade-off 

between noise reduction and information preservation during 

preprocessing. 

The Random Forest algorithm's ability to perform well 
even on noisy or unprocessed datasets suggests its suitability 

for small and noisy datasets. This could open discussions on 

the practicality of RF in scenarios where extensive data 

preprocessing is not feasible. The differences in Precision, 

Recall, and F1-Score across datasets provide insights into 

each algorithm's strengths and weaknesses. For example, 

Random Forest demonstrated higher Precision and Recall on 

the bootstrap dataset, making it ideal for applications where 

both false positives and false negatives are critical. 

IV. CONCLUSION 

In this study, the Random Forest algorithm significantly 
performed better than Decision Tree. Performance evaluation 

was performed using accuracy, precision, recall, and F1-score 

metrics. Both algorithms achieved the best performance on 

the bootstrapped dataset. Random Forest achieved the highest 

score with an accuracy of 89.65%, precision of 91.66%, recall 

of 84.61%, and F1-score of 87.12%. This shows that adjusting 

the dataset through the bootstrap technique can significantly 

improve model performance. Overall, Random Forest on the 

bootstrap dataset was the most effective for detecting cancer 

in this dataset, with better results than Decision Tree which 

had an accuracy of 80.17%, precision of 83.72%, recall of 

69.23%, and F1-score of 75.78%. Based on the results of this 
study, Random Forest is more suitable for data with complex 

patterns or interacting features. This is because the ensemble 

approach allows the model to capture patterns more 

accurately. Decision Tree, although simpler, shows quite 

good results but is more susceptible to overfitting, especially 

on small or noisy datasets.  

The results of this study also show that the use of bootstrap 

resampling has provided benefits in improving the stability 

and generalization of both models. For the development of 

this research in the future, it is recommended to expand the 

dataset with more diverse variations to improve the accuracy 
and generalization of the model such as combining medical 

image data and genomic analysis. In addition, the application 

of deep learning methods such as CNN or transfer learning 

can be explored to improve detection performance. 

Hyperparameter optimization and deeper feature selection 

can also be done to strengthen the prediction results. The 

development of web-based or mobile applications integrated 

with hospital systems will expand the application of this 

model in the clinical environment. This development is 

expected to increase the effectiveness of the breast cancer 

early detection system and support more accurate medical 

decision making. 
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