
Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.2, April 2025, pp. 383~392

e-ISSN: 2548-6861 383

http://jurnal.polibatam.ac.id/index.php/JAIC

Optimization of Application Deployment Architecture in Container

Orchestration

Mochamad Rizal Fachrudin 1*, Ahmad Rofiqul Muslikh 2*
* Department of Information System, Faculty of Information Technology, Universitas Merdeka Malang

mrizalf.email@gmail.com 1, rofickachmad@unmer.ac.id 2

Article Info ABSTRACT

Article history:

Received 2024-11-27

Revised 2024-12-07

Accepted 2025-01-21

 Container orchestration has become a widely adopted standard for application

deployment among medium to large-scale organizations. Docker Swarm is one of

the popular container orchestration tools due to its relatively simple configuration.

However, if the Docker Swarm cluster architecture is not properly designed, the goal

of container orchestration, which is availability, cannot be achieved optimally.

Challenges such as centralized traffic on a single node and service dependency on a

single node are critical issues that need to be addressed. This study proposes

solutions through an experimental approach involving the design, implementation,

testing, and evaluation of a Docker Swarm cluster architecture to address these

challenges. The results of this study demonstrate that the proposed architecture

successfully resolves these issues. Traffic can be distributed more evenly across all

nodes. When only one node is available, 5 out of 10 requests can be handled with a

response latency of 197.4 ms. With two nodes available, the number of requests

handled increases to 7 out of 10, with a response latency of 534.86 ms. The greater

the number of available nodes, the more requests can be successfully processed.

Services also become more flexible, and capable of running on any node, while

offering additional benefits such as dual load balancing through DNS-based load

balancing and the default load balancing provided by Docker Swarm's routing mesh.

However, limitations such as the need for more complex adjustments and

configurations should be considered, especially when implementing this architecture

in on-premise environments, to ensure the best adoption and results.

Keyword:

Optimization,

Cluster Architecture,

Container Orchestration,

Docker Swarm,

Load Balancing.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Containers are a virtualization technique that isolates a

system without interfering with others. Unlike hypervisor-

based virtualization, applications are more commonly

deployed and distributed using containers due to their small

size and ease of distribution [1]. There are many

containerization tools available, such as Docker, Podman, and

others. Docker is one of the most popular platforms and tools

currently in use [2]. With Docker, applications can run in

various environments because Docker virtualizes the

application's runtime into an isolated container [3]. However,

when the scale of application deployment grows large, a tool

is needed to manage these containers, commonly referred to

as container orchestration [4]. Container orchestration has

become the standard for medium to large-scale organizations.

The primary goals of container orchestration are to automate

tasks during application deployment, optimize resource

usage, and ensure the high availability of applications [5].

Docker Swarm is one of the widely used container

orchestration tools. Docker Swarm excels in deployment

speed compared to Kubernetes or Apache Mesos [6]. Docker

Swarm offers full support for Docker containerization tools.

It operates with two types of nodes: one manager node and

multiple worker nodes [7]. Docker Swarm is designed for

small-scale deployments, with simpler configurations

compared to other orchestration tools like Kubernetes and

OpenShift, which require more complex configurations [8].

Unlike Kubernetes, which includes built-in Ingress

technology for managing traffic from domains to services,

mailto:mrizalf.email@gmail.com
mailto:rofickachmad@unmer.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://www.zotero.org/google-docs/?5kjIF1
https://www.zotero.org/google-docs/?aITQYn
https://www.zotero.org/google-docs/?5AWSs2
https://www.zotero.org/google-docs/?EgWSpw
https://www.zotero.org/google-docs/?rWrwe9
https://www.zotero.org/google-docs/?n0sWxg
https://www.zotero.org/google-docs/?qdIuVE
https://www.zotero.org/google-docs/?wtfB2L

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 2, April 2025: 383 – 392

384

Docker Swarm does not offer a comparable feature. As a

result, careful consideration is required when building

container orchestration with Docker Swarm. An inadequately

designed Docker Swarm cluster architecture can introduce

new issues that undermine the goals of orchestration.

In a study conducted by Mohamad Rexa et al., a solution

was provided for using load balancing to distribute traffic and

address resource issues [9]. When the architecture in that

study was implemented, traffic became dependent on the

manager node, as it was routed through the manager node

first, causing uneven distribution. Research by Stefanus Eko

Prasetyo et al. demonstrated the success of load balancing in

Docker Swarm, while another study by Dimas Setiawan Afis

et al. compared traffic distribution algorithms in Docker

Swarm [10], [11]. In both studies, the architecture used also

centralizes traffic on a single node, specifically the manager

node, by directing traffic to one node running the load

balancer before distributing it to the other nodes. This

approach is quite risky because the load balancer is statically

placed on a single node, meaning that if this node crashes or

encounters issues, traffic flow will be disrupted. Such a

problem would negatively impact the availability of the

cluster. Additionally, since both incoming traffic

management and load balancing are handled by the same

node, there is a risk of resource exhaustion. Ahmad Rivaldi et

al. succeeded in distributing traffic evenly to the worker nodes

using an Nginx load balancer [12]. The architecture used in

this study still follows the same design, where traffic is

directed to the manager node running the load balancer before

being distributed to the worker nodes. As a result, the same

issue arises: the cluster becomes highly dependent on a single

node, and the specifications of that node will significantly

impact performance.

Dani Maulana’s research utilized three manager nodes to

address traffic dependence on a single node [13]. However, in

this study, services were run on each manager node using

persistent volumes that were not synchronized across nodes.

As a result, data was not synchronized between nodes, and

when one of the manager nodes failed or crashed, the data

stored on that node became inaccessible to other nodes.

Another study by Wahyu Aldiwidianto used Keepalived to

automatically redirect traffic if a node failed [14]. This

method can help solve the problem of node failure, but the

challenge is that the application must be deployed globally

across each node with local volume storage. As a result, if a

server goes down and a request needs data from the failed

server, the request cannot be completed.

Based on the issues identified in the architecture of the

previous studies, this research aims to optimize the

architecture to address the centralization of traffic and node

dependency, thereby reducing the potential for overloading a

single node and improving the availability of the Docker

Swarm cluster. The designed Docker Swarm cluster

architecture will adopt the flow of Kubernetes' built-in Ingress

technology. This study will also evaluate solutions to the

problems identified previously, as well as the strengths and

weaknesses of the implemented architecture. This research is

expected to provide benefits to both academics and

practitioners regarding architectures that can be explored and

implemented when building container orchestration clusters,

particularly Docker Swarm, or other orchestration

technologies with similar issues.

II. METHOD

This study adopts an experimental approach to design,

implement, and evaluate the new architecture. The research

workflow comprises several stages, as shown in Figure 1.

Figure 1. Research Flow

A. Preparation and Implementation

In this stage, all necessary preparations for the research are

made. The first requirement is a domain and DNS

management system to handle the management and routing of

domains and subdomains. Traffic directed to the cluster

follows standard routing concepts, where packets are

forwarded from the source to the destination through a

network [15]. In this study, Cloudflare DNS is used as the

DNS management tool. The next requirement is the Docker

Swarm cluster, which is set up using three virtual machines

(VMs) hosted on a cloud service. The specifications of the

VMs are provided in Table 1.

TABLE I

VIRTUAL MACHINE SPECIFICATION

No Name Specification

1 VM1 OS Ubuntu, 4GB RAM, 2

vCPU, 80GB Storage

2 VM2 OS Ubuntu, 4GB RAM, 2

vCPU, 80GB Storage

3 VM3 OS Ubuntu, 4GB RAM, 2

vCPU, 80GB Storage

The architectural design for the three VMs serving as

cluster nodes is depicted in Figure 2. Based on the designed

architecture, the first software requirement for the internal

Docker Swarm cluster is a distributed file system. This system

is essential for reducing data redundancy and solving data-

sharing issues by combining multiple disks into a single

volume [16]. Among the various distributed file system

options, this study employs GlusterFS, as research by

Purwantoro et al. demonstrates that GlusterFS is faster than

other systems, such as Ceph [17]. Another key requirement is

a reverse proxy tool, which serves as an intermediary between

the client represented in this study by Cloudflare and the

https://www.zotero.org/google-docs/?JKJtOv
https://www.zotero.org/google-docs/?PuGZg7
https://www.zotero.org/google-docs/?LgE3EK
https://www.zotero.org/google-docs/?CSKmPV
https://www.zotero.org/google-docs/?j4r7N5
https://www.zotero.org/google-docs/?j5gRxh
https://www.zotero.org/google-docs/?UDTDEp
https://www.zotero.org/google-docs/?utGr4Z

JAIC e-ISSN: 2548-6861

Optimization of Application Deployment Architecture in Container Orchestration

(Mochamad Rizal Fachrudin, Ahmad Rofiqul Muslikh)

385

server, handling all incoming requests on behalf of the server

[18].

Figure 2. Architecture Design

While there are several reverse proxy tools available,

including HAProxy and Traefik, this study chooses Nginx

Proxy Manager due to its user-friendly interface and support

for GUI-based configuration. The implementation process

follows the architecture deployment algorithm outlined

below.

TABLE II

IMPLEMENTATION ALGORITHM

Algorithm 1. Architecture Implementation
Step 1.
Initialize the host on a virtual machine
 node_1 = xxx.xxx.xxx.xx
 node_2 = xxx.xxx.xxx.xx
 node_3 = xxx.xxx.xxx.xx

Step 2.
Initialize the domain being used
 domain = example.com

Step 3.
Initialize cluster
 create a cluster on node_1
 add node_2, node_3 as a workers

Step 4.
Initialize distributed file system
 add node_1, node_2, node_3 to the

GlusterFS pool list
 create a shared volume for storage
 add node_2,node_3
 create a folder for the reverse proxy:
 npm_volume = /mnt/npm

Step 5.
Initialize docker network proxiable
 network = proxiable
 driver = overlay

Step 6.
Initialize service reverse proxy
 deploy = stack
 service = npm
 network = proxiable
 volumes = npm_volume

Step 7.
Initialize DNS management
 domain = domain
 IP target = (node_1, node_2, node_3)

Step 8.
Routing reverse proxy traffic
 domain = domain
 service target = service

When applied, this architecture is quite similar to the

research conducted by Basel Magableh et al., where a reverse

proxy is implemented within the cluster to manage traffic

routing [19]. However, this study introduces modifications

and additions, with traffic management also being applied

outside the cluster, directing it to all nodes. When a client

accesses the prepared domain, the traffic is routed through

DNS management to the IPs of each node in the Docker

Swarm cluster. By directing the domain to all node IPs, DNS

management automatically performs load balancing. This is

because DNS management is generally equipped with classic

load balancing algorithms such as round robin, meaning

traffic will be distributed across all IP addresses registered in

the DNS management [20]. This method is called DNS-Based

Load Balancing, which enables load balancing based on DNS

[21]. Since Cloudflare is used for DNS management, the load

balancing algorithm follows the available options in

Cloudflare. By default, Cloudflare uses the round-robin

algorithm for DNS load balancing [22]. Once the traffic is

directed to the three node IPs, the reverse proxy receives and

forwards the request to the intended service name, as it is

within the same network. Docker Swarm, by default, uses the

routing mesh strategy, which performs load balancing using

the round-robin algorithm [23].

A. Testing

At this stage, testing is conducted using scenarios based on

the identified issues. Since the problem with the previous

architecture was centralized traffic that had to pass through a

single node, the first test focuses on traffic distribution across

all nodes. In this phase, several DNS management

misconfiguration scenarios will be carried out sequentially

until all misconfigurations are resolved, and the minimum

estimated traffic resolution during the request test will be

calculated. The request test will involve simultaneous

operations from different locations. For this initial test, the

calculation of the minimum estimated number of resolved

requests will be done using Formula 1.

𝑃(𝐴) =
𝑛(𝐴)

𝑛(𝑆)
 (1)

https://www.zotero.org/google-docs/?894KJ8
https://www.zotero.org/google-docs/?2VBvEw
https://www.zotero.org/google-docs/?Nli4iy
https://www.zotero.org/google-docs/?QnBt4k
https://www.zotero.org/google-docs/?aIP23V
https://www.zotero.org/google-docs/?0qzMla

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 2, April 2025: 383 – 392

386

The formula represents a probability equation where A is

the number of configured nodes, and S is the total number of

nodes. This equation is then used to calculate the incoming

traffic requests, as shown in Formula 2.

𝐸 = 𝑅 × 𝑃(𝐴) (2)

From the formula above, E represents the estimated

minimum requests that will be completed, while R represents

the total number of incoming requests. The second test is the

node dependency test, which focuses on the node managing

traffic. In this test, a reboot will be performed on the traffic

management node, specifically the node running the reverse

proxy service, to observe how the cluster, built with the new

architecture, handles this issue. This ensures that traffic is not

dependent on a specific node. The final test is conducted to

observe the traffic distribution from the reverse proxy running

the routing mesh with round-robin load balancing. The goal

of this test is to evaluate the effectiveness of load balancing

and traffic routing when service replicas are scaled up.

B. Evaluation of Testing Results

At this stage, the evaluation will be based on the data

collected from the testing results. The first evaluation will

compare the architectural flow specifications from previous

studies to highlight the differences in each study’s approach.

Next, an evaluation will address the issues that emerged and

how they can be solved by the proposed architecture. Lastly,

an assessment will be made of the strengths and weaknesses

of the newly proposed architecture.

C. Conclusion

In the conclusion stage, conclusions will be drawn based

on the evaluations conducted. The goal is to provide readers

with key insights related to the solutions for the architectural

issues discussed earlier. This way, both academics and

practitioners can further develop, test, and use it as a reference

to determine the suitability of the architecture for the case

studies they are currently facing.

III. RESULTS AND DISCUSSION

A. Testing

The service being run is called 'demo_app' with two

replicas, located on the 'proxiable' network, and utilizing a

distributed file system. For more details, please refer to Figure

3.

Figure 3. Demo App Service

The first test, related to the issue of traffic distribution,

involved the first scenario of misconfiguring the IPs of all

nodes, which resulted in an estimated 0% of traffic being

resolved. The results are shown in Table 3.

TABLE III

FIRST SCENARIO TESTING

No Location Res

1 Roubaix, FR, EU - OVH SAS (AS16276) failed

2 Milan, IT, EU - Google LLC (AS396982) failed

3 Toronto, CA, NA - NeuStyle (AS4508) failed

Based on the results above, the expected estimate has been

met, where all requests could not be resolved due to the

misconfiguration of all node IPs. In the second scenario, two

node IPs were misconfigured. Then, a test was conducted with

10 requests from different regions, and the estimated

minimum traffic that could be resolved was 3. The results can

be seen in Table 4.

TABLE IV

SECOND SCENARIO TESTING

No Location Res

1 Ashburn, US, NA - Oracle Corporation

(AS31898)

475 ms

2 Lille, FR, EU - OVH SAS (AS16276) 24 ms

3 Beijing, CN, AS - Shenzhen Tencent

Computer Systems Company Limited

(AS45090)

1 ms

4 Los Angeles, US, NA - Aptum

Technologies (AS13768)
failed

5
Helsinki, FI, EU - Hetzner Online

GmbH (AS24940)

344 ms

6
Seoul, KR, AS - Microsoft

Corporation (AS8075)

failed

7
Yogyakarta, ID, AS - PT Media Sarana

Data (AS55666)

143 ms

8
Dronten, NL, EU - The Infrastructure

Group B.V. (AS60404)

failed

9
Sydney, AU, OC - Oracle

Corporation (AS31898)

failed

10
Brussels, BE, EU - M247 Europe

SRL (AS9009)

failed

Average Latency
197,4

ms

The results above show that 5 requests were completed,

while 5 other requests failed, with an average response latency

of 197.4 ms. The successful requests cover various

geographic regions around the world, indicating network

performance variations based on the server's geographical

location. The estimate obtained was higher than the minimum

resolution estimate, which was only 3 requests. In the third

scenario, there was only one node misconfiguration. The

minimum estimated number of requests that could be resolved

was 6. Then, 10 requests from different regions were tested,

and the results are shown in Table 5.

JAIC e-ISSN: 2548-6861

Optimization of Application Deployment Architecture in Container Orchestration

(Mochamad Rizal Fachrudin, Ahmad Rofiqul Muslikh)

387

TABLE V

THIRD SCENARIO TESTING

No Location Res

1 London, GB, EU - OVH SAS (AS16276) 238 ms

2 Jakarta, ID, AS - PT JEMBATAN

CITRA NUSANTARA (AS23951)
150 ms

3 Chengdu, CN, AS - Shenzhen Tencent

Computer Systems Company

Limited (AS45090)

1387 ms

4 Falkenstein, DE, EU - Hetzner Online

GmbH (AS24940)
634 ms

5 Helsinki, FI, EU - Hetzner Online

GmbH (AS24940)
358 ms

6 Berlin, DE, EU - Google

LLC (AS396982)
failed

7 Belgrade, RS, EU - mCloud

doo (AS35779)
failed

8 Tokyo, JP, AS - xTom Japan Co.,

Ltd. (AS3258)
127 ms

9 Bucharest, RO, EU - M247 Europe

SRL (AS9009)
850 ms

10 Paris, FR, EU - Hivane

Association (AS34019)
failed

Average Latency
534,86

ms

Based on the results above, 7 out of 10 requests were

completed, with an average response latency of 534.86 ms.

This is slightly higher than the minimum estimated

completion of requests. In the last scenario, Scenario 4, there

was no misconfiguration of node IPs. The expected estimate

for requests that could be completed was all incoming traffic.

After conducting a test with 10 requests from different

regions, the results were as shown in Table 6.

TABLE VI

FOURTH SCENARIO TESTING

No Location Res

1 Halifax, CA, NA - Free Range Cloud

Hosting Inc. (AS53356)
661 ms

2 Mahoba, IN, AS - ReadyDedis

LLC (AS140543)
923 ms

3 Matsuyama, JP, AS - ARTERIA

Networks Corporation (AS17506)
154 ms

4 Vladivostok, RU, AS - PortTelekom

LLC (AS34470)
2908 ms

5 Dallas, US, NA - Catalyst Host

LLC (AS393336)
487 ms

6 Mumbai, IN, AS - Google

LLC (AS396982)
243 ms

7 Warsaw, PL, EU - Liberty Global

B.V. (AS6830)
858 ms

8 Ho Chi Minh City, VN, AS - Zenlayer

Inc (AS21859)
193 ms

9 Amsterdam, NL, EU - Psychz

Networks (AS40676)
229 ms

10 Moscow, RU, AS - Datacheap

LLC (AS16262)
400 ms

Average Latency
705,6

ms

Based on the results above, in the final scenario, all

requests were completed as expected, with a response latency

of 705.6 ms. This approach improves the availability and

stability of the cluster. In the case of a single node failure, 7

out of 10 requests were still completed, and in the case of two

node failures, 5 out of 10 requests were successfully

processed, preventing a total traffic halt in the cluster. Each

node can handle incoming traffic, resulting in a more balanced

load distribution and reducing the potential risk of resource

exhaustion. Additionally, it provides time for the technical

team to resolve issues without total downtime. Therefore, this

architecture can be a solution for companies with limited

resources that still prioritize uptime, such as e-commerce,

media streaming, or SaaS (Software as a Service) providers.

In this second test, a reboot will be conducted as a

simulation of a node crash, specifically on the node running

the reverse proxy, to see if the reverse proxy can be recreated

on another node without causing the configuration to fail and

crash other services. An initial overview can be seen in Figure

4.

Figure 4. Cluster Visualization Before Crash

From the cluster visualization above, node 2, which is

running the reverse proxy, was rebooted, and the resulting

cluster visualization is shown in Figure 5.

Figure 5. Cluster Visualization After Crash

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 2, April 2025: 383 – 392

388

From the image above, it can be seen that when node 2 goes

down, a reverse proxy service is created on another node.

When a request is made to the domain

https://demo.rizal.codes, the service continues to operate

normally without any issues. For further clarity, please refer

to Figure 6.

Figure 6. Request Response

Based on the results above, the domain continues to

function normally when requests are made, without requiring

any reconfiguration. By implementing the reverse proxy as a

service within the cluster, with its configuration distributed

across nodes, significant benefits are gained in maintaining

the cluster’s continuity. Traffic from DNS management is

routed to the reverse proxy service, which is automatically

migrated to another node if issues arise. This ensures

continuous application accessibility, improves reliability, and

provides resilience against system failures, ensuring high

availability for critical applications. The final test was

conducted to assess the success of the routing mesh with the

load balancer. With the service running two replicas on

different nodes, the first request was made, and the server

address and server name were obtained, as shown in Figure 7.

Figure 7. First Request Response

The server address obtained is 10.0.1.10:80 with the server

name b1f56ac3f861. Then, on the next request, using the same

browser, the result is shown in Figure 8.

Figure 8. Second Request Response

From the results above, different server addresses and

server names were obtained. Then, for the third and fourth

request trials, using the same browser and connection, the

results are shown in Figure 9.

Figure 9. Third Request Response

Traffic management with Nginx Proxy Manager

successfully utilizes the default routing of Docker Swarm's

routing mesh, effectively providing different server

information for each request based on the running replicas.

The implementation of load balancing with the round-robin

algorithm ensures even traffic distribution, improving overall

system performance. By using service names for routing, the

need for manual IP node configuration is eliminated,

simplifying infrastructure management. This approach allows

service replication to meet high availability needs without

overloading any node, while also supporting better scalability

and reducing the risk of configuration errors. The

combination of these features makes the solution reliable and

efficient for modern container-based architectures.

A. Evaluation of Testing Results

Before evaluating further the tests of the solution that has

been implemented, it is important to understand the

specifications of the architectural flow in previous studies. A

comparison of the architectural flows can be seen in Table 7.

JAIC e-ISSN: 2548-6861

Optimization of Application Deployment Architecture in Container Orchestration

(Mochamad Rizal Fachrudin, Ahmad Rofiqul Muslikh)

389

TABLE VII

COMPARISON OF ARCHITECTURE FLOW SPECIFICATIONS

Researcher Architecture Flow Specifications

[9] Traffic from the internet arrives and is directed to Nginx on the manager node. Once the manager node

receives the traffic, it performs load balancing using Nginx, based on the memory usage of each connected

worker node. After determining the worker node, the traffic is sent to the destination container, and the

result is returned to the client.

[11] Traffic from the internet arrives and is directly directed to the node running the Nginx Load Balancer.

Once the traffic is received, load balancing is performed, directing the traffic to the web server containers.

[10] Traffic from the internet arrives and is directed to the manager node running the Nginx service. Once the

node receives the traffic, load balancing is performed on the backend service using Nginx with the least

connection and round-robin algorithms. The worker node handling the service then receives the traffic and

returns the result to the client.

[12] Traffic from the internet arrives and is directed to Nginx on the manager node. Once the manager node

receives the traffic, load balancing is performed by Nginx, directing the traffic to five target services. The

worker node receiving the traffic then returns the result of the service.

[13] Traffic from the internet does not know which manager node it will be directed to. Once the traffic enters

the cluster, the node receiving the traffic will return the requested result to the client.

[14] Traffic from the internet is directed to the virtual IP managed by Keepalived. Keepalived performs health

checks on all nodes and directs the traffic to the node that is functioning normally. The primary priority is

given to the node configured as the master. If the master node fails, the traffic will be forwarded to the

backup node. The service on the node will then return the result to the client.

Author Traffic from the internet is directed to DNS management. From DNS management, load balancing is

performed using the round-robin algorithm, directing traffic to all IP addresses of the registered nodes.

Once a node receives the traffic, it will be directed to the reverse proxy service, regardless of which node

it resides on. After the reverse proxy receives the traffic, a routing mesh is performed on the target service,

utilizing the round-robin load balancing algorithm. The node running the service will then return the

requested result to the client.

After thoroughly understanding the differences in the

workflow of each architecture, an evaluation of the results

from testing the new architecture was carried out, using the

problem scenarios that were encountered in the previous

architecture as a reference. This evaluation aimed to assess

the effectiveness of the new architecture in addressing the

issues that arose in the previous setup. The detailed results of

this evaluation, which include a comparison of the

performance and problem-solving capabilities of the new

architecture, are presented in Table 8. This table provides a

comprehensive breakdown of how the new solution tackles

the challenges faced in the previous architecture, offering

insights into the improvements and adjustments made.

TABLE VIII

EVALUATION OF ARCHITECTURE SOLUTIONS

No Problem Solution

1 Traffic

Distribution

For traffic distribution, all

node IPs are added to the DNS

management system to enable

DNS-based load balancing,

which in this case uses the

round-robin algorithm from

Cloudflare. This solution

evenly distributes traffic

across all nodes. In the 3-node

scenario, if 1 node fails,

approximately ⅔ of the traffic

can still be processed, and

testing shows that 7 out of 10

requests were successfully

handled. If 2 nodes fail, the

estimate is that ⅓ of the traffic

will be processed, with testing

recording 5 out of 10 requests

completed. This architecture is

effective in distributing traffic

and preventing resource

exhaustion on the nodes.

2 Node

Dependability

Previous research has shown

that architectures relying on a

single node to receive traffic

(e.g., load balancers) increase

the risk if that node crashes or

reboots, as the service

configuration is centralized

only on that node. In the new

architectural solution, the

traffic receiver is a reverse

proxy running as a service

with configuration storage

distributed across nodes. If the

node running the reverse proxy

encounters an issue, the

service is automatically

transferred to another node

with the same configuration,

ensuring the application

remains accessible. This

solution improves high

availability, reduces cluster

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 2, April 2025: 383 – 392

390

downtime, and eliminates

dependence on a single node.

3 Routing and

Traffic Load

Balancing

Since the reverse proxy

operates on the same network

as the application service,

routing can be done using the

service name without the need

to manually define the node's

IP address, meaning the

reverse proxy does not need to

know the node's location.

Additionally, services do not

have to be replicated on every

node, allowing replication to

be adjusted according to high

availability requirements and

organizational standards. This

architectural solution also

enables the reverse proxy to

perform automatic load

balancing using a routing mesh

with a round-robin algorithm,

as demonstrated in previous

research and testing.

Although this architecture successfully addresses the issues

of the previous one, it comes with its own set of strengths and

weaknesses. The evaluation of these aspects is provided in

Table 9. This table outlines the advantages and potential

limitations of the newly implemented architecture.

TABLE IX

STRENGTHS AND WEAKNESSES OF THE ARCHITECTURE

No Strength Weakness

1 Incoming traffic is

more evenly

distributed across

all nodes,

reducing the risk

of resource

exhaustion.

A DNS management tool that

supports DNS-based load

balancing is needed to

distribute traffic evenly across

each node.

2 Reduces

dependency or

concentration of

traffic on a

specific node

running the

reverse

proxy/load

balancer.

The DNS-based load

balancing algorithm depends

on the DNS management tool

being used.

3 Application

service replicas do

not need to be

evenly distributed

across all nodes

and can be

adjusted

according to

needs.

Configuration is slightly more

complex due to the need for

additional setup.

4 The reverse proxy

configuration

When implemented in an on-

premise environment, the

does not need to

know which node

the application

service is running

on.

configuration becomes more

complex and requires further

adjustments.

5 Two layers of load

balancing are

achieved: DNS-

based load

balancer and

routing mesh load

balancer.

The table above outlines the advantages and disadvantages

of the newly designed architecture. From the perspective of

its strengths, this architecture uses DNS management for

routing across all nodes, ensuring that client traffic is

distributed evenly among all registered nodes. The traffic

distribution leverages a round-robin algorithm, meaning that

during high traffic volumes, all traffic will be balanced evenly

across all nodes. This equal distribution reduces the potential

for overloading a single node, as no single node is solely

responsible for handling the incoming traffic. Testing results

also show that traffic handling improves as the number of

available nodes increases. In other words, higher node

scalability or the implementation of multi-master clustering

significantly increases the chances of successfully managing

incoming traffic.

Additionally, the traffic management within the cluster is

handled by Nginx Proxy Manager, which operates as a

service, enabling it to run flexibly on any node. Furthermore,

the data stored in the distributed volume ensures that the

Nginx Proxy Manager can operate on another node without

losing its configuration. This approach eliminates the need to

deploy the service on every node, as was required in some

previous studies.

The Docker network proxiable configuration also

simplifies routing additions from domains to target services.

The key advantage here is that the target does not need to be

defined using the IP address of the node hosting the

application service; instead, only the service name is required.

Nginx Proxy Manager does not need to know which node is

running the application service—it simply calls the service

name. When the application service is replicated, Nginx

Proxy Manager automatically uses the default load balancing

from Docker Swarm's routing mesh, applying a round-robin

algorithm to distribute traffic among the service replicas. This

architecture enables the cluster to benefit from dual load

balancing using the round-robin algorithm: the first from

DNS-based load balancing, which distributes traffic from the

internet/clients to all registered nodes, and the second from

Docker Swarm's routing mesh, which distributes traffic from

Nginx Proxy Manager to the service replicas. This dual load

balancing process enhances load distribution by balancing the

load at both the node and service levels within the cluster.

However, because this study applies the cluster

environment in a cloud service setting, challenges may arise

JAIC e-ISSN: 2548-6861

Optimization of Application Deployment Architecture in Container Orchestration

(Mochamad Rizal Fachrudin, Ahmad Rofiqul Muslikh)

391

when implementing it in on-premise environments, as

highlighted in the disadvantages listed in Table 8. One of the

main issues for some organizations could be selecting a DNS

management solution that supports DNS-based load

balancing. However, as demonstrated in this study,

Cloudflare DNS management, which supports DNS-based

load balancing, offers this feature for free. This makes it a

cost-effective choice for DNS management, although the load

balancing algorithm is limited to round-robin.

Another challenge lies in the cluster configuration, which

is slightly more complex than previous architectures. Unlike

earlier setups, this architecture requires configuring

GlusterFS volumes, ensuring DNS management supports

DNS-based load balancing, and ensuring all running services

use the same Docker network. While these configurations are

not overly complicated, the previous architecture is still

simpler. Moreover, when building the cluster in an on-

premise environment, the complexity increases. In a cloud

setting, each virtual machine automatically receives a public

IP address. However, in an on-premise setup, acquiring public

IPs for all nodes is necessary for DNS management to route

traffic to each node. This introduces additional costs since

renting public IPs can be expensive. If only one public IP is

used, additional equipment such as routers is required to route

traffic through a single IP. These challenges highlight the

trade-offs and should be carefully considered when

implementing the architecture, particularly in on-premise

environments.

IV. CONCLUSIONS

Based on the results of this study, it can be concluded that

this architecture successfully addresses the issues that arose

in the architecture of previous studies, namely the

concentration of traffic on a single node and the dependence

on one node running the reverse proxy service. Traffic was

successfully handled for 5 out of 10 requests with a response

latency of 197.4 ms across different locations, even when only

one node was available. This improved to 7 out of 10 requests

with a response latency of 534.86 ms when two nodes were

available, with the success rate increasing as more nodes

became available. Additionally, this architecture enables the

reverse proxy service, used as a router and load balancer, to

operate flexibly on any node, with data distributed across

nodes. Another benefit is the dual load balancing achieved

through the round-robin algorithm of DNS-based load

balancing and the load balancing provided by the routing

mesh, ensuring traffic is evenly distributed both to cluster

nodes and services within the cluster. However, these

weaknesses must still be considered to maximize the adoption

results.

In future similar research, the author suggests further

exploring the architecture used in this study, such as load

balancing methods, tools used, or even the implementation of

multi-manager clusters to enhance high availability.

Additionally, the author also recommends conducting more

in-depth testing aligned with the objectives of container

orchestration itself, to provide a more complex comparison

and evaluation, which can be used as a reference for readers

in more complex real-world case studies.

REFERENCES

[1] RedHat, “Containers vs VMs.” Accessed: Nov. 14, 2024. [Online].

Available: https://www.redhat.com/en/topics/containers/containers-

vs-vms
[2] Stack Overflow, “Technology | 2024 Stack Overflow Developer

Survey.” Accessed: Oct. 07, 2024. [Online]. Available:

https://survey.stackoverflow.co/2024/technology/
[3] A. M. Potdar, N. D G, S. Kengond, and M. M. Mulla, “Performance

Evaluation of Docker Container and Virtual Machine,” Procedia

Computer Science, vol. 171, pp. 1419–1428, 2020, doi:
10.1016/j.procs.2020.04.152.

[4] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim,

“Horizontal Pod Autoscaling in Kubernetes for Elastic Container
Orchestration,” Sensors, vol. 20, no. 16, p. 4621, 2020, doi:

10.3390/s20164621.

[5] IBM, “Apa yang dimaksud dengan orkestrasi kontainer.” Accessed:
Nov. 14, 2024. [Online]. Available: https://www.ibm.com/id-

id/topics/container-orchestration
[6] A. Pankowski and P. Powroźnik, “Comparison of application

container orchestration platforms,” Journal of Computer Sciences

Institute, vol. 29, pp. 383–390, Dec. 2023, doi: 10.35784/jcsi.3823.
[7] A. Farshteindiker and R. Puzis, “Leadership Hijacking in Docker

Swarm and Its Consequences,” Entropy, vol. 23, no. 7, p. 919, 2021,

doi: 10.3390/e23070914.
[8] L. Mercl and J. Pavlik, “The Comparison of Container

Orchestrators,” in Third International Congress on Information and

Communication Technology, X.-S. Yang, S. Sherratt, N. Dey, and A.
Joshi, Eds., Singapore: Springer Singapore, 2019, pp. 677–685. doi:

10.1007/978-981-13-1165-9_62.

[9] M. R. Mei Bella, M. Data, and W. Yahya, “Implementasi Load
Balancing Server Web Berbasis Docker Swarm Berdasarkan

Penggunaan Sumber Daya Memory Host,” Jurnal Pengembangan

Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 4, pp. 3478–
3487, Jan. 2019.

[10] D. S. Afis, M. Data, and W. Yahya, “Load Balancing Server Web

Berdasarkan Jumlah Koneksi Klien Pada Docker Swarm,” Jurnal
Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no.

1, pp. 925–930, Jan. 2019.

[11] S. E. Prasetyo and A. Wijaya, “Analisis Load Balancing
Menggunakan Docker Swarm,” CoMBInES, vol. 1, no. 1, pp. 527–

538, 2021.

[12] A. Rivaldi, U. Darusalam, and D. Hidayatullah, “Perancangan Multi
Node Web Server Menggunakan Docker Swarm dengan Metode

Highavability,” Jurnal Media Informatika Budidarma, vol. 4, p. 529,

Jul. 2020, doi: 10.30865/mib.v4i3.2147.
[13] D. M. Ferdiansyah and A. Prihanto, “Analisis Perbandingan Kinerja

High Availability Pada Cluster Docker Swarm Dan K3S,” Journal of

Informatics and Computer Science, vol. 06, no. 2, pp. 210–218, 2024.
[14] W. Aldiwidianto, G. Lanang, and E. Prismana, “Analisis

Perbandingan High Availibility Pada Web Server Menggunakan

Orchestration Tool Kubernetes Dan Docker Swarm,” Journal of
Informatics and Computer Science, vol. 05, no. 2, pp. 138–148, 2023,

doi: 10.26740/jinacs.v5n02.p138-148.

[15] R. D. Marcus, A. S. Ilmananda, L. Indana, and H. A. Aswari,
“Optimalisasi Manajemen Jaringan pada Laboratorium Komputer

Melalui Implementasi Remote Installation Services,” Jurnal

MediaTIK, vol. 6, no. 3, pp. 79–85, 2023, doi:
10.26858/jmtik.v6i3.51964.

[16] J.-Y. Lee, M.-H. Kim, S. A. Raza Shah, S.-U. Ahn, H. Yoon, and S.-

Y. Noh, “Performance Evaluations of Distributed File Systems for
Scientific Big Data in FUSE Environment,” Electronics, vol. 10, no.

12, p. 1471, 2021, doi: 10.3390/electronics10121471.

[17] S. P. E.S.G.S, “Perbandingan Kinerja Clustered File System pada
Cloud Storage menggunakan GlusterFS dan Ceph,” INOVTEK

Polbeng - Seri Informatika, vol. 7, p. 319, Nov. 2022, doi:

https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 2, April 2025: 383 – 392

392

10.35314/isi.v7i2.2753.

[18] P. Satya Saputra, P. Aditya Pratama, and L. Putu Ary Sri Tjahyanti,
“Perancangan Dan Komparasi Web Server Nginx Dengan Web

Server Apache Serta Pemanfaatan Reverse Proxy Server Pada

Nginx,” Jurnal Komputer dan Teknologi Sains (KOMTEKS), vol. 2,
no. 1, pp. 16–21, 2023.

[19] B. Magableh and M. Almiani, “A Self Healing Microservices

Architecture: A Case Study in Docker Swarm Cluster,” in Advanced
Information Networking and Applications, L. Barolli, M. Takizawa,

F. Xhafa, and T. Enokido, Eds., Cham: Springer International

Publishing, 2020, pp. 846–858. doi: 10.1007/978-3-030-15032-7_71.
[20] J. Ruohonen, “Measuring Basic Load-Balancing and Fail-Over

Setups for Email Delivery via DNS MX Records,” in 2020 IFIP

Networking Conference (Networking), Institute of Electrical and
Electronics Engineers, 2020, pp. 815–820.

[21] K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen, and R. K.

Sitaraman, “Akamai DNS: Providing Authoritative Answers to the

World’s Queries,” in Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Protocols for

Computer Communication, in SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 465–478. doi:

10.1145/3387514.3405881.

[22] Cloudflare, “Round-robin DNS.” Accessed: Nov. 14, 2024. [Online].
Available: https://developers.cloudflare.com/dns/manage-dns-

records/how-to/round-robin-dns/

[23] M. Ileana, O. Maria Ioana, and C. Marian, “Using Docker Swarm to
Improve Performance in Distributed Web Systems,” in 17th

International Conference on Development And Application Systems,

Institute of Electrical and Electronics Engineers, 2024, pp. 1–6. doi:
10.1109/DAS61944.2024.10541234.

https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D
https://www.zotero.org/google-docs/?M8eX0D

