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 Container orchestration has become a widely adopted standard for application 

deployment among medium to large-scale organizations. Docker Swarm is one of 

the popular container orchestration tools due to its relatively simple configuration. 

However, if the Docker Swarm cluster architecture is not properly designed, the goal 

of container orchestration, which is availability, cannot be achieved optimally. 

Challenges such as centralized traffic on a single node and service dependency on a 

single node are critical issues that need to be addressed. This study proposes 

solutions through an experimental approach involving the design, implementation, 

testing, and evaluation of a Docker Swarm cluster architecture to address these 

challenges. The results of this study demonstrate that the proposed architecture 

successfully resolves these issues. Traffic can be distributed more evenly across all 

nodes. When only one node is available, 5 out of 10 requests can be handled with a 

response latency of 197.4 ms. With two nodes available, the number of requests 

handled increases to 7 out of 10, with a response latency of 534.86 ms. The greater 

the number of available nodes, the more requests can be successfully processed. 

Services also become more flexible, and capable of running on any node, while 

offering additional benefits such as dual load balancing through DNS-based load 

balancing and the default load balancing provided by Docker Swarm's routing mesh. 

However, limitations such as the need for more complex adjustments and 

configurations should be considered, especially when implementing this architecture 

in on-premise environments, to ensure the best adoption and results. 
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I. INTRODUCTION 

Containers are a virtualization technique that isolates a 

system without interfering with others. Unlike hypervisor-

based virtualization, applications are more commonly 

deployed and distributed using containers due to their small 

size and ease of distribution [1]. There are many 

containerization tools available, such as Docker, Podman, and 

others. Docker is one of the most popular platforms and tools 

currently in use [2].  With Docker, applications can run in 

various environments because Docker virtualizes the 

application's runtime into an isolated container [3]. However, 

when the scale of application deployment grows large, a tool 

is needed to manage these containers, commonly referred to 

as container orchestration [4]. Container orchestration has 

become the standard for medium to large-scale organizations. 

The primary goals of container orchestration are to automate 

tasks during application deployment, optimize resource 

usage, and ensure the high availability of applications [5]. 

Docker Swarm is one of the widely used container 

orchestration tools. Docker Swarm excels in deployment 

speed compared to Kubernetes or Apache Mesos [6]. Docker 

Swarm offers full support for Docker containerization tools. 

It operates with two types of nodes: one manager node and 

multiple worker nodes [7]. Docker Swarm is designed for 

small-scale deployments, with simpler configurations 

compared to other orchestration tools like Kubernetes and 

OpenShift, which require more complex configurations [8]. 

Unlike Kubernetes, which includes built-in Ingress 

technology for managing traffic from domains to services, 
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Docker Swarm does not offer a comparable feature. As a 

result, careful consideration is required when building 

container orchestration with Docker Swarm. An inadequately 

designed Docker Swarm cluster architecture can introduce 

new issues that undermine the goals of orchestration. 

In a study conducted by Mohamad Rexa et al., a solution 

was provided for using load balancing to distribute traffic and 

address resource issues [9]. When the architecture in that 

study was implemented, traffic became dependent on the 

manager node, as it was routed through the manager node 

first, causing uneven distribution. Research by Stefanus Eko 

Prasetyo et al. demonstrated the success of load balancing in 

Docker Swarm, while another study by Dimas Setiawan Afis 

et al. compared traffic distribution algorithms in Docker 

Swarm [10], [11]. In both studies, the architecture used also 

centralizes traffic on a single node, specifically the manager 

node, by directing traffic to one node running the load 

balancer before distributing it to the other nodes. This 

approach is quite risky because the load balancer is statically 

placed on a single node, meaning that if this node crashes or 

encounters issues, traffic flow will be disrupted. Such a 

problem would negatively impact the availability of the 

cluster. Additionally, since both incoming traffic 

management and load balancing are handled by the same 

node, there is a risk of resource exhaustion. Ahmad Rivaldi et 

al. succeeded in distributing traffic evenly to the worker nodes 

using an Nginx load balancer [12]. The architecture used in 

this study still follows the same design, where traffic is 

directed to the manager node running the load balancer before 

being distributed to the worker nodes. As a result, the same 

issue arises: the cluster becomes highly dependent on a single 

node, and the specifications of that node will significantly 

impact performance. 

Dani Maulana’s research utilized three manager nodes to 

address traffic dependence on a single node [13]. However, in 

this study, services were run on each manager node using 

persistent volumes that were not synchronized across nodes. 

As a result, data was not synchronized between nodes, and 

when one of the manager nodes failed or crashed, the data 

stored on that node became inaccessible to other nodes. 

Another study by Wahyu Aldiwidianto used Keepalived to 

automatically redirect traffic if a node failed [14]. This 

method can help solve the problem of node failure, but the 

challenge is that the application must be deployed globally 

across each node with local volume storage. As a result, if a 

server goes down and a request needs data from the failed 

server, the request cannot be completed. 

Based on the issues identified in the architecture of the 

previous studies, this research aims to optimize the 

architecture to address the centralization of traffic and node 

dependency, thereby reducing the potential for overloading a 

single node and improving the availability of the Docker 

Swarm cluster. The designed Docker Swarm cluster 

architecture will adopt the flow of Kubernetes' built-in Ingress 

technology. This study will also evaluate solutions to the 

problems identified previously, as well as the strengths and 

weaknesses of the implemented architecture. This research is 

expected to provide benefits to both academics and 

practitioners regarding architectures that can be explored and 

implemented when building container orchestration clusters, 

particularly Docker Swarm, or other orchestration 

technologies with similar issues. 

II. METHOD 

This study adopts an experimental approach to design, 

implement, and evaluate the new architecture. The research 

workflow comprises several stages, as shown in Figure 1. 

 

 

Figure 1. Research Flow 

A. Preparation and Implementation 

In this stage, all necessary preparations for the research are 

made. The first requirement is a domain and DNS 

management system to handle the management and routing of 

domains and subdomains. Traffic directed to the cluster 

follows standard routing concepts, where packets are 

forwarded from the source to the destination through a 

network [15]. In this study, Cloudflare DNS is used as the 

DNS management tool. The next requirement is the Docker 

Swarm cluster, which is set up using three virtual machines 

(VMs) hosted on a cloud service. The specifications of the 

VMs are provided in Table 1.  

TABLE I 

VIRTUAL MACHINE SPECIFICATION 

No Name Specification 

1 VM1 OS Ubuntu, 4GB RAM, 2 

vCPU, 80GB Storage 

2 VM2 OS Ubuntu, 4GB RAM, 2 

vCPU, 80GB Storage 

3 VM3 OS Ubuntu, 4GB RAM, 2 

vCPU, 80GB Storage 

 

The architectural design for the three VMs serving as 

cluster nodes is depicted in Figure 2. Based on the designed 

architecture, the first software requirement for the internal 

Docker Swarm cluster is a distributed file system. This system 

is essential for reducing data redundancy and solving data-

sharing issues by combining multiple disks into a single 

volume [16]. Among the various distributed file system 

options, this study employs GlusterFS, as research by 

Purwantoro et al. demonstrates that GlusterFS is faster than 

other systems, such as Ceph [17]. Another key requirement is 

a reverse proxy tool, which serves as an intermediary between 

the client represented in this study by Cloudflare and the 
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server, handling all incoming requests on behalf of the server 

[18]. 

 

 

Figure 2. Architecture Design 

While there are several reverse proxy tools available, 

including HAProxy and Traefik, this study chooses Nginx 

Proxy Manager due to its user-friendly interface and support 

for GUI-based configuration. The implementation process 

follows the architecture deployment algorithm outlined 

below. 

TABLE II 

IMPLEMENTATION ALGORITHM 

Algorithm 1. Architecture Implementation 
Step 1. 
Initialize the host on a virtual machine 
 node_1 = xxx.xxx.xxx.xx 
 node_2 = xxx.xxx.xxx.xx 
 node_3 = xxx.xxx.xxx.xx 

Step 2. 
Initialize the domain being used 
 domain = example.com 

Step 3. 
Initialize cluster 
 create a cluster on node_1 
 add node_2, node_3 as a workers 

Step 4. 
Initialize distributed file system 
 add node_1, node_2, node_3 to the 

GlusterFS pool list 
 create a shared volume for storage 
 add node_2,node_3 
 create a folder for the reverse proxy:  
  npm_volume = /mnt/npm 

Step 5. 
Initialize docker network proxiable 
 network = proxiable 
 driver = overlay 

Step 6. 
Initialize service reverse proxy 
 deploy = stack 
 service = npm 
 network = proxiable 
 volumes = npm_volume 

Step 7. 
Initialize DNS management 
 domain = domain 
 IP target = (node_1, node_2, node_3) 

Step 8. 
Routing reverse proxy traffic 
 domain = domain 
 service target = service 

 

When applied, this architecture is quite similar to the 

research conducted by Basel Magableh et al., where a reverse 

proxy is implemented within the cluster to manage traffic 

routing  [19]. However, this study introduces modifications 

and additions, with traffic management also being applied 

outside the cluster, directing it to all nodes. When a client 

accesses the prepared domain, the traffic is routed through 

DNS management to the IPs of each node in the Docker 

Swarm cluster. By directing the domain to all node IPs, DNS 

management automatically performs load balancing. This is 

because DNS management is generally equipped with classic 

load balancing algorithms such as round robin, meaning 

traffic will be distributed across all IP addresses registered in 

the DNS management [20]. This method is called DNS-Based 

Load Balancing, which enables load balancing based on DNS 

[21]. Since Cloudflare is used for DNS management, the load 

balancing algorithm follows the available options in 

Cloudflare. By default, Cloudflare uses the round-robin 

algorithm for DNS load balancing [22]. Once the traffic is 

directed to the three node IPs, the reverse proxy receives and 

forwards the request to the intended service name, as it is 

within the same network. Docker Swarm, by default, uses the 

routing mesh strategy, which performs load balancing using 

the round-robin algorithm [23].  

A. Testing 

At this stage, testing is conducted using scenarios based on 

the identified issues. Since the problem with the previous 

architecture was centralized traffic that had to pass through a 

single node, the first test focuses on traffic distribution across 

all nodes. In this phase, several DNS management 

misconfiguration scenarios will be carried out sequentially 

until all misconfigurations are resolved, and the minimum 

estimated traffic resolution during the request test will be 

calculated. The request test will involve simultaneous 

operations from different locations. For this initial test, the 

calculation of the minimum estimated number of resolved 

requests will be done using Formula 1. 

𝑃(𝐴) =
𝑛(𝐴)

𝑛(𝑆)
                              (1) 
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The formula represents a probability equation where A is 

the number of configured nodes, and S is the total number of 

nodes. This equation is then used to calculate the incoming 

traffic requests, as shown in Formula 2. 

𝐸 = 𝑅 × 𝑃(𝐴)                              (2) 

From the formula above, E represents the estimated 

minimum requests that will be completed, while R represents 

the total number of incoming requests. The second test is the 

node dependency test, which focuses on the node managing 

traffic. In this test, a reboot will be performed on the traffic 

management node, specifically the node running the reverse 

proxy service, to observe how the cluster, built with the new 

architecture, handles this issue. This ensures that traffic is not 

dependent on a specific node. The final test is conducted to 

observe the traffic distribution from the reverse proxy running 

the routing mesh with round-robin load balancing. The goal 

of this test is to evaluate the effectiveness of load balancing 

and traffic routing when service replicas are scaled up. 

B. Evaluation of Testing Results 

At this stage, the evaluation will be based on the data 

collected from the testing results. The first evaluation will 

compare the architectural flow specifications from previous 

studies to highlight the differences in each study’s approach. 

Next, an evaluation will address the issues that emerged and 

how they can be solved by the proposed architecture. Lastly, 

an assessment will be made of the strengths and weaknesses 

of the newly proposed architecture. 

C. Conclusion 

In the conclusion stage, conclusions will be drawn based 

on the evaluations conducted. The goal is to provide readers 

with key insights related to the solutions for the architectural 

issues discussed earlier. This way, both academics and 

practitioners can further develop, test, and use it as a reference 

to determine the suitability of the architecture for the case 

studies they are currently facing. 

 

III. RESULTS AND DISCUSSION 

A. Testing 

The service being run is called 'demo_app' with two 

replicas, located on the 'proxiable' network, and utilizing a 

distributed file system. For more details, please refer to Figure 

3. 

 

 

Figure 3. Demo App Service 

The first test, related to the issue of traffic distribution, 

involved the first scenario of misconfiguring the IPs of all 

nodes, which resulted in an estimated 0% of traffic being 

resolved. The results are shown in Table 3.  

TABLE III 

FIRST SCENARIO TESTING 

No Location Res 

1 Roubaix, FR, EU - OVH SAS (AS16276) failed 

2 Milan, IT, EU - Google LLC (AS396982) failed 

3 Toronto, CA, NA - NeuStyle (AS4508) failed 

 

Based on the results above, the expected estimate has been 

met, where all requests could not be resolved due to the 

misconfiguration of all node IPs. In the second scenario, two 

node IPs were misconfigured. Then, a test was conducted with 

10 requests from different regions, and the estimated 

minimum traffic that could be resolved was 3. The results can 

be seen in Table 4.  

TABLE IV 

SECOND SCENARIO TESTING 

No Location Res 

1 Ashburn, US, NA - Oracle Corporation 

(AS31898) 

475 ms 

2 Lille, FR, EU - OVH SAS (AS16276) 24 ms 

3 Beijing, CN, AS - Shenzhen Tencent 

Computer Systems Company Limited 

(AS45090) 

1 ms 

4 Los Angeles, US, NA - Aptum 

Technologies (AS13768) 
failed 

 

5 
Helsinki, FI, EU - Hetzner Online 

GmbH (AS24940) 

344 ms 

6 
Seoul, KR, AS - Microsoft 

Corporation (AS8075) 

failed 

7 
Yogyakarta, ID, AS - PT Media Sarana 

Data (AS55666) 

143 ms 

8 
Dronten, NL, EU - The Infrastructure 

Group B.V. (AS60404) 

failed 

9 
Sydney, AU, OC - Oracle 

Corporation (AS31898) 

failed 

10 
Brussels, BE, EU - M247 Europe 

SRL (AS9009) 

failed 

Average Latency 
197,4 

ms 

 

The results above show that 5 requests were completed, 

while 5 other requests failed, with an average response latency 

of 197.4 ms. The successful requests cover various 

geographic regions around the world, indicating network 

performance variations based on the server's geographical 

location. The estimate obtained was higher than the minimum 

resolution estimate, which was only 3 requests. In the third 

scenario, there was only one node misconfiguration. The 

minimum estimated number of requests that could be resolved 

was 6. Then, 10 requests from different regions were tested, 

and the results are shown in Table 5. 
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TABLE V 

THIRD SCENARIO TESTING 

No Location Res 

1 London, GB, EU - OVH SAS (AS16276) 238 ms 

2 Jakarta, ID, AS - PT JEMBATAN 

CITRA NUSANTARA (AS23951) 
150 ms 

3 Chengdu, CN, AS - Shenzhen Tencent 

Computer Systems Company 

Limited (AS45090) 

1387 ms 

4 Falkenstein, DE, EU - Hetzner Online 

GmbH (AS24940) 
634 ms 

5 Helsinki, FI, EU - Hetzner Online 

GmbH (AS24940) 
358 ms 

6 Berlin, DE, EU - Google 

LLC (AS396982) 
failed 

7 Belgrade, RS, EU - mCloud 

doo (AS35779) 
failed 

8 Tokyo, JP, AS - xTom Japan Co., 

Ltd. (AS3258) 
127 ms 

9 Bucharest, RO, EU - M247 Europe 

SRL (AS9009) 
850 ms 

10 Paris, FR, EU - Hivane 

Association (AS34019) 
failed 

Average Latency 
534,86 

ms 

 

Based on the results above, 7 out of 10 requests were 

completed, with an average response latency of 534.86 ms. 

This is slightly higher than the minimum estimated 

completion of requests. In the last scenario, Scenario 4, there 

was no misconfiguration of node IPs. The expected estimate 

for requests that could be completed was all incoming traffic. 

After conducting a test with 10 requests from different 

regions, the results were as shown in Table 6. 

TABLE VI 

FOURTH SCENARIO TESTING 

No Location Res 

1 Halifax, CA, NA - Free Range Cloud 

Hosting Inc. (AS53356) 
661 ms 

2 Mahoba, IN, AS - ReadyDedis 

LLC (AS140543) 
923 ms 

3 Matsuyama, JP, AS - ARTERIA 

Networks Corporation (AS17506) 
154 ms 

4 Vladivostok, RU, AS - PortTelekom 

LLC (AS34470) 
2908 ms 

5 Dallas, US, NA - Catalyst Host 

LLC (AS393336) 
487 ms 

6 Mumbai, IN, AS - Google 

LLC (AS396982) 
243 ms 

7 Warsaw, PL, EU - Liberty Global 

B.V. (AS6830) 
858 ms 

8 Ho Chi Minh City, VN, AS - Zenlayer 

Inc (AS21859) 
193 ms 

9 Amsterdam, NL, EU - Psychz 

Networks (AS40676) 
229 ms 

10 Moscow, RU, AS - Datacheap 

LLC (AS16262) 
400 ms 

Average Latency 
705,6 

ms 

Based on the results above, in the final scenario, all 

requests were completed as expected, with a response latency 

of 705.6 ms. This approach improves the availability and 

stability of the cluster. In the case of a single node failure, 7 

out of 10 requests were still completed, and in the case of two 

node failures, 5 out of 10 requests were successfully 

processed, preventing a total traffic halt in the cluster. Each 

node can handle incoming traffic, resulting in a more balanced 

load distribution and reducing the potential risk of resource 

exhaustion. Additionally, it provides time for the technical 

team to resolve issues without total downtime. Therefore, this 

architecture can be a solution for companies with limited 

resources that still prioritize uptime, such as e-commerce, 

media streaming, or SaaS (Software as a Service) providers.  

In this second test, a reboot will be conducted as a 

simulation of a node crash, specifically on the node running 

the reverse proxy, to see if the reverse proxy can be recreated 

on another node without causing the configuration to fail and 

crash other services. An initial overview can be seen in Figure 

4. 

 

Figure 4. Cluster Visualization Before Crash 

From the cluster visualization above, node 2, which is 

running the reverse proxy, was rebooted, and the resulting 

cluster visualization is shown in Figure 5. 

 

 

Figure 5. Cluster Visualization After Crash 
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From the image above, it can be seen that when node 2 goes 

down, a reverse proxy service is created on another node. 

When a request is made to the domain 

https://demo.rizal.codes, the service continues to operate 

normally without any issues. For further clarity, please refer 

to Figure 6. 

 

 

Figure 6. Request Response 

Based on the results above, the domain continues to 

function normally when requests are made, without requiring 

any reconfiguration. By implementing the reverse proxy as a 

service within the cluster, with its configuration distributed 

across nodes, significant benefits are gained in maintaining 

the cluster’s continuity. Traffic from DNS management is 

routed to the reverse proxy service, which is automatically 

migrated to another node if issues arise. This ensures 

continuous application accessibility, improves reliability, and 

provides resilience against system failures, ensuring high 

availability for critical applications. The final test was 

conducted to assess the success of the routing mesh with the 

load balancer. With the service running two replicas on 

different nodes, the first request was made, and the server 

address and server name were obtained, as shown in Figure 7.  

 

 

Figure 7. First Request Response 

The server address obtained is 10.0.1.10:80 with the server 

name b1f56ac3f861. Then, on the next request, using the same 

browser, the result is shown in Figure 8. 

 

 

Figure 8. Second Request Response 

From the results above, different server addresses and 

server names were obtained. Then, for the third and fourth 

request trials, using the same browser and connection, the 

results are shown in Figure 9.  

 

 

Figure 9. Third Request Response 

Traffic management with Nginx Proxy Manager 

successfully utilizes the default routing of Docker Swarm's 

routing mesh, effectively providing different server 

information for each request based on the running replicas. 

The implementation of load balancing with the round-robin 

algorithm ensures even traffic distribution, improving overall 

system performance. By using service names for routing, the 

need for manual IP node configuration is eliminated, 

simplifying infrastructure management. This approach allows 

service replication to meet high availability needs without 

overloading any node, while also supporting better scalability 

and reducing the risk of configuration errors. The 

combination of these features makes the solution reliable and 

efficient for modern container-based architectures. 

A. Evaluation of Testing Results 

Before evaluating further the tests of the solution that has 

been implemented, it is important to understand the 

specifications of the architectural flow in previous studies. A 

comparison of the architectural flows can be seen in Table 7. 
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TABLE VII 

COMPARISON OF ARCHITECTURE FLOW SPECIFICATIONS 

Researcher Architecture Flow Specifications 

[9] Traffic from the internet arrives and is directed to Nginx on the manager node. Once the manager node 

receives the traffic, it performs load balancing using Nginx, based on the memory usage of each connected 

worker node. After determining the worker node, the traffic is sent to the destination container, and the 

result is returned to the client. 

[11] Traffic from the internet arrives and is directly directed to the node running the Nginx Load Balancer. 

Once the traffic is received, load balancing is performed, directing the traffic to the web server containers. 

[10] Traffic from the internet arrives and is directed to the manager node running the Nginx service. Once the 

node receives the traffic, load balancing is performed on the backend service using Nginx with the least 

connection and round-robin algorithms. The worker node handling the service then receives the traffic and 

returns the result to the client. 

[12] Traffic from the internet arrives and is directed to Nginx on the manager node. Once the manager node 

receives the traffic, load balancing is performed by Nginx, directing the traffic to five target services. The 

worker node receiving the traffic then returns the result of the service. 

[13] Traffic from the internet does not know which manager node it will be directed to. Once the traffic enters 

the cluster, the node receiving the traffic will return the requested result to the client. 

[14] Traffic from the internet is directed to the virtual IP managed by Keepalived. Keepalived performs health 

checks on all nodes and directs the traffic to the node that is functioning normally. The primary priority is 

given to the node configured as the master. If the master node fails, the traffic will be forwarded to the 

backup node. The service on the node will then return the result to the client. 

Author Traffic from the internet is directed to DNS management. From DNS management, load balancing is 

performed using the round-robin algorithm, directing traffic to all IP addresses of the registered nodes. 

Once a node receives the traffic, it will be directed to the reverse proxy service, regardless of which node 

it resides on. After the reverse proxy receives the traffic, a routing mesh is performed on the target service, 

utilizing the round-robin load balancing algorithm. The node running the service will then return the 

requested result to the client. 

After thoroughly understanding the differences in the 

workflow of each architecture, an evaluation of the results 

from testing the new architecture was carried out, using the 

problem scenarios that were encountered in the previous 

architecture as a reference. This evaluation aimed to assess 

the effectiveness of the new architecture in addressing the 

issues that arose in the previous setup. The detailed results of 

this evaluation, which include a comparison of the 

performance and problem-solving capabilities of the new 

architecture, are presented in Table 8. This table provides a 

comprehensive breakdown of how the new solution tackles 

the challenges faced in the previous architecture, offering 

insights into the improvements and adjustments made.  

TABLE VIII 

EVALUATION OF ARCHITECTURE SOLUTIONS 

No Problem Solution 

1 Traffic 

Distribution 

For traffic distribution, all 

node IPs are added to the DNS 

management system to enable 

DNS-based load balancing, 

which in this case uses the 

round-robin algorithm from 

Cloudflare. This solution 

evenly distributes traffic 

across all nodes. In the 3-node 

scenario, if 1 node fails, 

approximately ⅔ of the traffic 

can still be processed, and 

testing shows that 7 out of 10 

requests were successfully 

handled. If 2 nodes fail, the 

estimate is that ⅓ of the traffic 

will be processed, with testing 

recording 5 out of 10 requests 

completed. This architecture is 

effective in distributing traffic 

and preventing resource 

exhaustion on the nodes. 

2 Node 

Dependability 

Previous research has shown 

that architectures relying on a 

single node to receive traffic 

(e.g., load balancers) increase 

the risk if that node crashes or 

reboots, as the service 

configuration is centralized 

only on that node. In the new 

architectural solution, the 

traffic receiver is a reverse 

proxy running as a service 

with configuration storage 

distributed across nodes. If the 

node running the reverse proxy 

encounters an issue, the 

service is automatically 

transferred to another node 

with the same configuration, 

ensuring the application 

remains accessible. This 

solution improves high 

availability, reduces cluster 
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downtime, and eliminates 

dependence on a single node. 

3 Routing and 

Traffic Load 

Balancing 

Since the reverse proxy 

operates on the same network 

as the application service, 

routing can be done using the 

service name without the need 

to manually define the node's 

IP address, meaning the 

reverse proxy does not need to 

know the node's location. 

Additionally, services do not 

have to be replicated on every 

node, allowing replication to 

be adjusted according to high 

availability requirements and 

organizational standards. This 

architectural solution also 

enables the reverse proxy to 

perform automatic load 

balancing using a routing mesh 

with a round-robin algorithm, 

as demonstrated in previous 

research and testing. 

 

Although this architecture successfully addresses the issues 

of the previous one, it comes with its own set of strengths and 

weaknesses. The evaluation of these aspects is provided in 

Table 9. This table outlines the advantages and potential 

limitations of the newly implemented architecture. 

TABLE IX 

STRENGTHS AND WEAKNESSES OF THE ARCHITECTURE 

No Strength Weakness 

1 Incoming traffic is 

more evenly 

distributed across 

all nodes, 

reducing the risk 

of resource 

exhaustion. 

A DNS management tool that 

supports DNS-based load 

balancing is needed to 

distribute traffic evenly across 

each node. 

2 Reduces 

dependency or 

concentration of 

traffic on a 

specific node 

running the 

reverse 

proxy/load 

balancer. 

The DNS-based load 

balancing algorithm depends 

on the DNS management tool 

being used. 

3 Application 

service replicas do 

not need to be 

evenly distributed 

across all nodes 

and can be 

adjusted 

according to 

needs. 

Configuration is slightly more 

complex due to the need for 

additional setup. 

4 The reverse proxy 

configuration 

When implemented in an on-

premise environment, the 

does not need to 

know which node 

the application 

service is running 

on. 

configuration becomes more 

complex and requires further 

adjustments. 

5 Two layers of load 

balancing are 

achieved: DNS-

based load 

balancer and 

routing mesh load 

balancer. 

 

The table above outlines the advantages and disadvantages 

of the newly designed architecture. From the perspective of 

its strengths, this architecture uses DNS management for 

routing across all nodes, ensuring that client traffic is 

distributed evenly among all registered nodes. The traffic 

distribution leverages a round-robin algorithm, meaning that 

during high traffic volumes, all traffic will be balanced evenly 

across all nodes. This equal distribution reduces the potential 

for overloading a single node, as no single node is solely 

responsible for handling the incoming traffic. Testing results 

also show that traffic handling improves as the number of 

available nodes increases. In other words, higher node 

scalability or the implementation of multi-master clustering 

significantly increases the chances of successfully managing 

incoming traffic. 

Additionally, the traffic management within the cluster is 

handled by Nginx Proxy Manager, which operates as a 

service, enabling it to run flexibly on any node. Furthermore, 

the data stored in the distributed volume ensures that the 

Nginx Proxy Manager can operate on another node without 

losing its configuration. This approach eliminates the need to 

deploy the service on every node, as was required in some 

previous studies. 

The Docker network proxiable configuration also 

simplifies routing additions from domains to target services. 

The key advantage here is that the target does not need to be 

defined using the IP address of the node hosting the 

application service; instead, only the service name is required. 

Nginx Proxy Manager does not need to know which node is 

running the application service—it simply calls the service 

name. When the application service is replicated, Nginx 

Proxy Manager automatically uses the default load balancing 

from Docker Swarm's routing mesh, applying a round-robin 

algorithm to distribute traffic among the service replicas. This 

architecture enables the cluster to benefit from dual load 

balancing using the round-robin algorithm: the first from 

DNS-based load balancing, which distributes traffic from the 

internet/clients to all registered nodes, and the second from 

Docker Swarm's routing mesh, which distributes traffic from 

Nginx Proxy Manager to the service replicas. This dual load 

balancing process enhances load distribution by balancing the 

load at both the node and service levels within the cluster. 

However, because this study applies the cluster 

environment in a cloud service setting, challenges may arise 
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when implementing it in on-premise environments, as 

highlighted in the disadvantages listed in Table 8. One of the 

main issues for some organizations could be selecting a DNS 

management solution that supports DNS-based load 

balancing. However, as demonstrated in this study, 

Cloudflare DNS management, which supports DNS-based 

load balancing, offers this feature for free. This makes it a 

cost-effective choice for DNS management, although the load 

balancing algorithm is limited to round-robin. 

Another challenge lies in the cluster configuration, which 

is slightly more complex than previous architectures. Unlike 

earlier setups, this architecture requires configuring 

GlusterFS volumes, ensuring DNS management supports 

DNS-based load balancing, and ensuring all running services 

use the same Docker network. While these configurations are 

not overly complicated, the previous architecture is still 

simpler. Moreover, when building the cluster in an on-

premise environment, the complexity increases. In a cloud 

setting, each virtual machine automatically receives a public 

IP address. However, in an on-premise setup, acquiring public 

IPs for all nodes is necessary for DNS management to route 

traffic to each node. This introduces additional costs since 

renting public IPs can be expensive. If only one public IP is 

used, additional equipment such as routers is required to route 

traffic through a single IP. These challenges highlight the 

trade-offs and should be carefully considered when 

implementing the architecture, particularly in on-premise 

environments. 

IV. CONCLUSIONS 

Based on the results of this study, it can be concluded that 

this architecture successfully addresses the issues that arose 

in the architecture of previous studies, namely the 

concentration of traffic on a single node and the dependence 

on one node running the reverse proxy service. Traffic was 

successfully handled for 5 out of 10 requests with a response 

latency of 197.4 ms across different locations, even when only 

one node was available. This improved to 7 out of 10 requests 

with a response latency of 534.86 ms when two nodes were 

available, with the success rate increasing as more nodes 

became available. Additionally, this architecture enables the 

reverse proxy service, used as a router and load balancer, to 

operate flexibly on any node, with data distributed across 

nodes. Another benefit is the dual load balancing achieved 

through the round-robin algorithm of DNS-based load 

balancing and the load balancing provided by the routing 

mesh, ensuring traffic is evenly distributed both to cluster 

nodes and services within the cluster. However, these 

weaknesses must still be considered to maximize the adoption 

results.  

In future similar research, the author suggests further 

exploring the architecture used in this study, such as load 

balancing methods, tools used, or even the implementation of 

multi-manager clusters to enhance high availability. 

Additionally, the author also recommends conducting more 

in-depth testing aligned with the objectives of container 

orchestration itself, to provide a more complex comparison 

and evaluation, which can be used as a reference for readers 

in more complex real-world case studies. 
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