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 The classification of mental states based on electroencephalogram (EEG) 

recordings has recently gained significant interest in cognitive monitoring and 

human-computer interaction fields. Due to high signal variability and sensitivity to 

noise, correct classification is still tricky, even with advances in the analysis of 

EEG signals. Among deep learning models, Gated Recurrent Unit (GRU) models 

have established great potential for sequential EEG data analysis. The applications 

of the GRUs are less reviewed in tasks concerning classification cases of mental 

states compared to hybrid and convolutional models. Based on this paper, we will 

propose a method for developing a model based on the GRU network trained with 

raw EEG data in the classification tasks of mental states of concentration and 

relaxed conditions. We analyzed 400 EEG recordings taken from 10 subjects 

within a controlled environment and collected using the Muse EEG Headband.  

The mean, standard deviation, skewness, kurtosis, power spectral density, zero-

crossing rate, and root mean square were extracted as statistical features from the 

raw EEG data. After parameter tuning, the GRU-based model achieved an 

excellent average accuracy value of 95.94% and also yielded precision, recall, and 

F1-scores within the range of 0.95 to 0.97 over 5-fold cross-validation. This shows 

that GRU works well in classifying mental states based on the EEG data. 
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I. INTRODUCTION 

The classification of mental states based on 

electroencephalogram (EEG) technology has become crucial 

in brain-computer interaction, cognitive state monitoring, 

and mental health status diagnosis. Non-invasive EEG gives 

real-time measurement of the brain's activity with high 

temporal resolution; hence, this technique is efficient for 

recognizing specific mental states such as concentration and 

relaxation conditions. Lightweight and portable versions of 

electroencephalogram devices, such as the Muse Headband, 

have been used recently. This headband is an inexpensive, 

non-invasive EEG sensor that uses four electrodes to track 

activity in the brain: TP9, AF7, AF8, and TP10. This 

provides an excellent opportunity for research and practical 

applications related to assessing one's mental state [1]. This 

technology holds promise for developing adaptive systems 

in various domains, including such exciting applications as 

cognitive load estimation and therapy tools for supporting 

mental health conditions [2], [3]. Subsequently, there came 

an increase in research relating to the classification of mental 

states using EEG and convincingly showed that EEG signals 

could provide good insight into an individual's cognitive and 

emotional states [1]. 

Numerous studies have investigated deep learning 

methodologies to address these challenges and enhance 

mental state classification. Researchers in [4] introduced a 

convolutional gated recurrent unit model incorporating an 

attention mechanism for emotion detection, attaining an 

accuracy of 96.5% in differentiating emotional states by 

utilizing both temporal and spatial EEG information. 

Researchers in [5] employed a hybrid 1D-CNN and GRU 

model for multi-class emotion identification, achieving 

accuracy values beyond 94% by integrating the feature 

extraction capabilities of CNNs with the sequence modeling 

proficiency of GRUs. Examination of mental and emotional 
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sentiment classification utilizing an EEG-based brain-

machine interface through deep learning was found in [6], 

achieving a classification accuracy of 87% with multi-class 

SVM. A further study by [7] employed a Bi-GRU 

architecture to improve emotion recognition, attaining an 

average F1-score of 0.82, demonstrating that recurrent 

networks like GRUs can proficiently manage the temporal 

dependencies of EEG data. [8] shown that recurrent neural 

networks surpass other deep learning methodologies for 

EEG neural classification, achieving an average accuracy of 

92% on a mental workload dataset. 

One of the main challenges in EEG-based mental state 

classification is that devices must be designed for high 

accuracy with limited data in real-time, especially in 

wearable sensors like Muse Headband. Traditional machine 

learning approaches suffer from the nonlinear and non-

stationarity nature of EEG signals [1] characteristics result in 

varying performance across different subjects and recording 

conditions. Furthermore, many previous works require 

complex hybrid models that combine CNNs with recurrent 

layers. This increases the computational demands and makes 

such models unsuitable for real-time applications [5]  [4]. 

The researchers in [5] also mentioned that while their 

proposed hybrid CNN-GRU model provides good accuracy, 

the computational cost was an issue when deploying the 

model in real-time applications. [4] also noted the trade-off 

between model complexity and real-time applicability, 

where their attention-based GRU model, though highly 

accurate, demanded heavy processing resources.  

 This research further develops previous research by 

applying a GRU network to classify mental states, such as 

concentration and relaxation, using EEG data acquired from 

the Muse Headband. GRU is used because it is more 

computationally efficient than other recurrent methods, like 

LSTM. Researchers in [9] state that GRU, which has fewer 

gates than LSTM, streamlines the architecture, resulting in 

faster training speeds, fewer parameters to update, and lower 

data requirements. CNN is especially suitable for extracting 

spatial characteristics, perfect for tasks like image 

processing when spatial dependencies are visible. 

Conversely, GRU can more effectively manage temporal 

patterns, which is usually quite crucial in EEG signal 

analysis; they are beneficial for processing sequential data 

[9]. Even though this research does not directly leverage raw 

sequential dependencies due to statistical features, GRUs are 

still advantageous over CNNs for EEG-based mental state 

classification. This is because GRUs can capture patterns 

across sequences of feature sets, effectively modeling 

temporal patterns in data where shifts and trends are still 

relevant, even in aggregated form. This research also used a 

more straightforward model architecture to provide an 

effective solution to mental state classification, thus showing 

the effectiveness of the GRU for EEG-based applications 

without hybrid designs' computational overhead.  

 

II. METHODS  

The current study classifies mental states using EEG data 

and a GRU model. These methodologies are divided into 

seven subsections: EEG data acquisition, preprocessing, 

feature extraction, model architecture, hyperparameter 

optimization, training and validation, and evaluation. 

A. EEG Data Acquisition 

The experiment used the non-invasive, low-cost EEG 

sensor Muse Headband equipped with four electrodes, TP9, 

AF7, AF8, and TP10, recording the brain wave activity from 

the specific brain regions [1]. The given sensors were put on 

temporal and frontal lobes, as shown in Figure 1, recording 

the raw EEG signals which can later be identified with 

mental states such as relaxation and concentration, 

represented by previous studies conducted, where [10] used 

Muse's sensors to recognize "relaxing, neutral, and 

concentrating" states.  

 
Figure 1. Muse Headband's TP9, AF7, AF8, and TP10 sensors on the 

international standard EEG layout system [10] 

 

A wireless connection of a Muse device to a computer 

was done using an open-source application called BlueMuse, 

which allowed a stable wireless transmission of EEG 

signals[1]. The EEG data was collected and preprocessed in 

Python, and various specific libraries were used to help deal 

with incoming data from the Muse Headband. One of the 

used libraries is Pylsl which can continuously capture data. 

Besides, NumPy and Matplotlib were used in fast EEG data 

calculations. 

The data collection process involving ten subjects was 

held in an empty classroom to minimize external 

disturbances. Some exercises were selected to induce certain 

mental states. During the concentration state, participants 

performed cognitively intensive activities such as reading 

news articles and attending online classes, which demanded 

high attention. In line with earlier research that used low-

tempo music and sound effects or muscle relaxation [1] to 

induce relaxation, participants in the relaxation condition in 

this research were instructed to close their eyes and take 

deep breaths, a technique frequently used to induce calm and 

reduce cognitive load. Data was recorded continuously with 
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a sampling rate of 256 Hz, sufficient to capture the spectral 

features of interest while balancing data processing 

requirements [4] [11]. 

B. Data Preprocessing 

The preprocessing pipeline for the EEG classification 

included a few steps: downsampling, filtering of the signal, 

normalization, segmentation, and windowing. First, 

downsampling was done to reduce the volume of data from 

256 Hz to 200 Hz while retaining important spectral 

information. The Python library SciPy was used for 

downsampling and efficiently processing records. Following 

downsampling, the signal was filtered to remove undesired 

frequency components and other artifacts, as recommended 

by [5]. Since frequency bands below 0.5 Hz and above 50 

Hz are usually noisy and carry little useful information 

regarding the classification of a subject's mental state, a 

bandpass filter was used between 0.5 Hz and 50 Hz to retain 

the prominent EEG frequency bands. This research also 

implemented a notch filter at 50 Hz, contributing to rejecting 

the power line noise [12]. The bandpass and notch filters 

were designed using the butter and lfilter tools of the SciPy 

library. 

After filtering, the EEG signals were normalized and 

scaled. Since the amplitude varies and could affect the 

classification performance, normalization is essential so that 

every EEG channel participates equally in the model's 

performance. It brings data consistency and comparability 

[4]. For every signal, NumPy library in python normalized 

the mean and variance. 

The filtered and standardized EEG data was then split into 

time periods. Every part, or a window, sets its duration to 

two seconds with a fifty percent overlap between 

consecutive frames. This was based on [1], who found that 

discriminant traits might be revealed from short time lapses 

of EEG data. This windowing method permits 

recording transitory EEG signals matching targeted 

concentration and relaxation changes. As stated in [13], the 

50% overlap will provide a continuation of EEG signals in 

the temporal dimension. Using overlapping windows could 

boost temporal resolution to detect minor changes in the 

mental state. 

C. Feature Extraction 

The current research has only analyzed EEG signals 

using statistical features instead of focusing on alpha, beta, 

and theta frequencies. This approach gathers many aspects 

of signal behavior data without limiting the study to the 

defined frequency ranges. The feature extraction step 

includes deriving statistical features from raw EEG data to 

produce a representative dataset for mental state 

classification. For every two-second windowed segment, the 

following statistical characteristics were computed: mean, 

standard deviation, skewness, kurtosis, power spectral 

density, zero-crossing rate, and root mean square.  

The variability and distribution of the EEG signals could 

be captured using the statistical selection criteria. In this 

respect, the mean and the standard deviation represent the 

central tendency and dispersion of the signal, respectively; 

thus, it makes the data consistent and comparable. Skewness, 

by definition, estimates the form and extremities of the EEG 

signal distribution. Because of this, it would inherently help 

in finding out data asymmetries and peak aberrations. These 

properties have been utilized to identify brief temporal 

intervals in EEG data that signify alterations in mental states 

[1] 

 Each EEG channel's frequency domain properties were 

analyzed using power spectral density (PSD). PSD shows 

power distribution across frequencies, which helps identify 

mental processes since various EEG frequency bands 

connect with concentration or relaxation [5]. As signal 

energy fluctuates with cognitive load, a zero-crossing rate 

(ZCR) was introduced to evaluate signal polarity changes 

within each segment [7]. Zero-crossing rates are relevant to 

distinguish between concentration and relaxation states, 

according to [12]. Finally, the RMS of each segment was 

calculated, which is specifically sensitive to changes in 

signal intensity, hence distinguishing other states of mental 

activation [14]. 

These features were calculated in Python with NumPy 

for core statistical calculations, SciPy for spectral density 

analysis using the welch function, and statsmodels for 

skewness and kurtosis.  

D. GRU Model Architecture 

GRU is a simple variant of the RNN architecture, 

comprising only two gates, update and reset, rather than the 

three gates used in the LSTM, making the GRU architecture 

lighter and faster [9]. The model in this work was developed 

with two GRU layers, optimized for speed while being 

simple—anything more complex may not be practical for 

real-time applications [5]. The GRU model was trained in 

Python using two of the most used open-source libraries: 

TensorFlow and Keras. Keras provides an easy interface to 

build a GRU layer and configure parameters such as units 

and dropout rate. 

The model, seen in Figure 2, started with a 64-unit GRU 

layer, followed by a dropout layer with a 0.2 rate to reduce 

overfitting by randomly removing a subset of the 

connections during training. After that, a second GRU layer 

with 32 units that did not return sequences ended the 

recurrent structure. Another dropout layer with the same rate 

was added to enhance generalization. It has an output layer 

with one neuron, where a sigmoid activation function is 

implemented for binary classification, mapping the output 

probability between 0 and 1 [8].  

The model was constructed using the Adam optimizer 

with a default learning rate of 0.0001, which can be 

modified during training to ensure efficient and flexible 

learning. Binary cross-entropy was chosen as the loss 



JAIC e-ISSN: 2548-6861   

 

Application of Gated Recurrent Unit in Electroencephalogram (EEG)-Based Mental State Classification 

(Gst. Ayu Vida Mastrika Giri, Ngurah Agus Sanjaya ER, I Ketut Gede Suhartana) 

11 

function since it is appropriate for binary classification, and 

accuracy was used as the significant assessment parameter. 

 

 

Figure 2. Initial GRU Architecture 

E. Hyperparameter Tuning 

Tuning the hyperparameter is essential for optimal 

performance of GRU in EEG data processing. The model’s 

effectiveness relies on these parameters’ configurations[11]. 

The Keras Tuner library tuned the GRU model's 

hyperparameters to best classify mental states based on EEG 

data. During this tuning process, key factors were changed to 

improve the model's performance in the validation set. The 

number of GRU units varied along with the learning rates to 

establish an optimum setting for the best classification. 

Various values were tried for each parameter to reach the 

optimum performance. While varying the units of the first 

GRU layer between 32 and 128, the units of the second layer 

were tried between 32 and 64. Prevention of overfitting was 

attempted by varying the dropout rates in steps of 0.1, 

starting from 0.1 and ending at 0.5. Lastly, the learning rate 

of the Adam optimizer was spread logarithmically between 

0.0001 and 0.01 such that both the accuracy and speed of 

convergence are excellent. Finally, Random Search tuning 

from Keras Tuner was used to navigate the hyperparameter 

space fast. Then, each model configuration was evaluated 

based on validation accuracy, and the best model was saved 

instantly to keep the best hyperparameters.   

F. Training and Validation 

In training and validation, the original data was divided 

into independent training, validation, and testing data. The 

data is divided into 80% training and 20% testing to ensure 

the model does not see the testing data during training. To 

make the model even better, 20% of the training data was 

used for validation at the end of each training period. 

This research used the K-fold cross-validation technique 

as part of the experimental setup to validate model 

performance [15].  This research used 5-fold cross-

validation to ensure that such results are more reliable. This 

method splits the dataset into five segments or folds. The 

model learns on four folds and verifies the work on the last 

fold, allowing each smaller segment to be used as a 

validation set. The GRU model was implemented using 

TensorFlow and Keras, with scikit-learn for cross-validation. 

G. Evaluation 

Accuracy, precision, recall, and F1-score were calculated 

to test the model's performance. The scores were computed 

using a Keras library. Accuracy shows how many correct 

predictions out of the total predictions were made. Precision 

describes the ability of a model to avoid false positives by 

showing the proportion of accurate positive predictions out 

of all cases predicted as positive. On the other hand, recall 

looks at the efficiency of the predictor that finds real positive 

cases using true positives compared to the total number of 

actual positive cases. The F1-score, or F1-Measure, seeks 

the harmonic mean of precision and recall and balances them 

into a single measure. A high F1-Score means that both 

accuracy and recall are high, which means the model works 

well [16]. The final model evaluation was based on averaged 

cross-validation metrics, which ensured stability over folds 

and reduced the likelihood of overfitting. 

Comparing predicted labels to data labels can assess 

classifier model performance. Confusion matrix tables 

summarize this information. The matrices highlighted 

correct and incorrect classifications, helping us understand 

common misclassification trends and improve the model 

[16]. The confusion matrix shows how much data the 

classifier predicted correctly or falsely using TP, FP, FN, 

and TN. 

III. RESULTS AND DISCUSSIONS 

This section presents the research findings by giving an 

account of the result after each methodological step was 

carried out and interpreting what that means for EEG-based 

mental state classification using a GRU model. The results 

are structured into subsections: data acquisition, data 

preprocessing, feature extraction, model architecture, 

hyperparameter tuning, training and validation, and final 

evaluation.  

A. Data Acquisition Results 

The Muse Headband is a non-invasive, portable EEG 

device with four electrodes across the temporal and frontal 

lobes of the head, which are TP9, AF7, AF8, and TP10. 

Continuous EEG data were collected from 10 subjects: five 

males and five females with ages ranging between 20 and 35 

years. Data collection was conducted in a controlled and 

isolated environment to ensure that the amount of known 

artifacts was as minimal as possible. In the concentration 

condition, participants read articles or attended online 
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lectures, while in the relaxation condition, they closed their 

eyes and focused on deep breathing. BlueMuse, an open-

source Bluetooth-enabled EEG signal transfer application, 

recorded EEG signals continuously at 256 Hz. Later, the 

data were downsampled to 200 Hz.  

The FFT plots for frequency analysis states of 

concentration and relaxation show different peaks at 

particular frequency ranges. The concentration state has 

higher peaks around 13–30 Hz, indicating the frontal 

sensors' active mental engagement in the attention 

state (AF7 and AF8). On the other hand, the relaxation state 

shows power distribution in 8-12 Hz. Figure 3 shows the 

frequency distribution from each sensor's concentration and 

relaxation state. 

 

 
Concentration AF7 

 
Relaxation AF7 

 
Concentration AF8 

 
Relaxation AF8 

 
Concentration TP9 

 
Relaxation TP9 

 
Concentration TP10 

 
Relaxation TP10 

Figure 3. Frequency plots for concentration and relaxation mental state from 

AF7, AF8, TP9, and TP10 sensors 

 

The visual assessment of the raw EEG data showed 

differences concerning different mental states. Time-domain 

plots reflect that the raw EEG graphs, especially in the AF7 

and AF8 sensors in the concentration state, have more 

significant amplitude variations. These reflect the cognitive 

load of activities like reading or online learning, thus 

implying more brain activity. In contrast, as shown in Figure 

4, the relaxed state manifests much smoother and less erratic 

signal patterns, especially in the temporal sensors, TP9 and 

TP10. 

  

Concentration AF7 Relaxation AF7 

 
Concentration AF8 

 
Relaxation AF8 

 
Concentration TP9 

 
Relaxation TP9 

 
Concentration TP10 

 
Relaxation TP10 

Figure 4. Raw EEG Plots for concentration and relaxation mental state from 

AF7, AF8, TP9, and TP10 sensors 

B. Data Preprocessing Results 

This research used structured data preprocessing to 

prepare the EEG signals for later feature extraction and 

modeling. Python's SciPy library downsampled 256-Hz EEG 

data to 200 Hz. This reduced the data volume while 

preserving critical signal properties related to mental state 

classification. Noise and other irrelevant features were 

removed by filtering the signals using the scipy. Signal 

functions butter and lfilter were used to create a band-pass 

filter between 0.5 Hz and 50 Hz to isolate the cognitively 

meaningful frequency bands of the EEG. A notch filter at 50 

Hz reduced power line interference, a common noise source 

in EEG. 

After filtering the data, NumPy normalized the signal 

amplitude across all channels. Normalization was followed 

by segmentation into 2-second sections with 50% overlap. 

Windowing captured transient patterns that may signal 

concentration and relaxation transitions. 

C. Feature Extraction Results 

From the feature extraction part of this research, statistical 

measures were computed across segmented EEG data, 

comprising a complete set of features for both the states of 

concentration and relaxation. The obtained features were 

mean, standard deviation, and PTP values showing power 

spectral properties that present the power distribution across 

frequency bands. Amplitude-based measures include RMS 

and ZCR, which estimate the overall signal strength and 

oscillatory behavior. Skewness and kurtosis are descriptive 

statistics highlighting the signal distribution and extremes, 

which may indicate data asymmetries and deviations from 

normality. Finally, fast Fourier transform statistics features 

included all statistical aspects. 

There are significant differences between the 

concentration and relaxation states. The mean amplitudes of 
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electrodes such as AF7 and AF8 were lower in the 

concentration state than during relaxation. Also, the standard 

deviation and PTP values showed higher variability during 

relaxation, sometimes indicating more scattered signal 

activity. Similarly, the kurtosis values, showing the 

'tailedness' of the data distribution for the two states, 

exhibited different peaks in the signal distribution. 

D. GRU Model Architecture Results 

The GRU model's initial performance was average, with 

an accuracy of 79.69%, precision, recall, and F1-score 

values of 79.34%, 80.74%, and 79.84%, respectively, after 

five-fold cross-validation. These measurements emphasized 

the model's initial ability to distinguish between 

concentration and relaxation states but indicated 

improvement areas. When tested on the test set, the model 

scored 78% accuracy, with balanced precision and recall 

between the concentration and relaxation states, around 0.78. 

The confusion matrix, shown in Figure 5, revealed that the 

model correctly detected 32 occurrences of concentration 

class and 30 cases of relaxation class but misclassified 18 

samples in total, indicating areas for additional refinement 

via hyperparameter tunings. 

 
Figure 5. Initial GRU Architecture Confusion Matrix 

E. Hyperparameter Tuning Results 

The GRU model's initial performance was fair. This 

underlined its reasonable initial ability to separate the states 

of concentration versus relaxation but also pointed out some 

areas for improvement. During hyperparameter tuning, 

changes to elements such as the number of GRU units, 

dropout rates, and learning rates were critical in refining the 

model. Trial 16, with optimized parameters, had the best 

validation accuracy. Despite this good performance, specific 

models other than  Trial 16 had inconsistent training curves, 

indicating that some configurations are occasionally 

unstable. 

The configuration of the GRU model can become 

unstable due to factors like a high learning rate, which can 

cause large fluctuations in parameter updates, and overly 

high dropout rates that disrupt the model's learning of 

consistent features. Additionally, the number of units in each 

GRU layer must balance complexity and stability; too many 

units can lead to overfitting, while too few can underfit the 

data. The model's capacity to detect stable patterns can also 

be challenged by the inherent variability and noise in EEG 

data as can the batch size, where lower sizes produce 

gradient noise and bigger sizes slow down learning. These 

elements taken together cause instability in model training, 

especially in sequential models such as GRUs. 

The GRU model's configuration was optimized through 

the hyperparameter tuning process, which involved 

executing 40 trials to enhance its ability to classify mental 

states from EEG data. The most optimal model configuration 

was identified through this search is shown in Figure 6, 

which featured 128 units in the initial GRU layer and 64 

units in the subsequent layer. The dropout rates for both 

layers were maintained at approximately 0.3. A learning rate 

of roughly 0.0071 was associated with this configuration. 

 

 
Figure 6. Optimized GRU Architecture 

F. Training and Validation 

Trained on the given dataset, the model was separated 

into training and validation subsets during and after 

development. This experiment consisted of 15 epochs, and 

the training accuracy grew steadily to almost perfection in 

the last epoch at a value of 99.61%. Figure 7's steep learning 

curve suggests that the model is robust in identifying the 

fundamental trends from the training set. Though with minor 

changes in some epochs, the validation accuracy is mostly 

steady at roughly 87.5% in the previous many epochs, 

indicating the generalizing capability of the model to unseen 

data. 

Starting relatively high, the training loss dropped 

progressively as the model finally changed its parameters to 

reach 0.0326. This decline shows how well the model 

absorbs internal training data attributes. Conversely, in the 

following epochs, the validation loss first dropped but then 
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plateaued and rose slightly before finally stabilizing at 

0.3168, as Figure 8 shows. This trend shows a small 

overfitting, in which case the model loses more generalism 

in favor of being tightly tuned to the training data. 

 

 
Figure 7. GRU Training and Validation Accuracy 

 

 

 
Figure 8. GRU Training and Validation Loss 

G. Evaluation Results 

The best combination of hyperparameters significantly 

improved the GRU model's performance. When evaluated 

on 5-fold cross-validation, the model gave an average 

accuracy of 95.94%. Precision, recall, and F1-score values 

varied between 0.95 and 0.97, showing that EEG-based 

mental state classification performance was outstanding.  

A classification report for one of the five-fold validations 

provides evidence of the model's performance. The precision 

for the concentration class was 0.96, the recall was 0.93, and 

the F1-score was 0.95, showing exceptional capabilities of 

correctly identifying actual attention states while keeping 

false positives low. Strong measures were also obtained for 

the relaxation class with a precision of 0.94, recall of 0.97, 

and an F1-score of 0.96. The total accuracy for this fold was 

95%. The accompanying confusion matrix, shown in Figure 

9, revealed a high actual positive rate and low 

misclassifications. 

 

 
Figure 9. Optimized GRU Confusion Matrix 

 

Comparing the GRU model's performance before 

hyperparameter adjustment indicates an improvement. The 

model initially had 79.69% cross-validation accuracy 

and 79–80% precision, recall, and F1 scores. This showed 

that the initial model captured common data patterns but 

needed optimization for efficiency. Testing set accuracy was 

78%, and a confusion matrix showed more major 

misclassifications than the tuned model. Hyperparameter 

tuning is needed to increase the model's accuracy, as the 

initial classification report showed reasonable precision and 

recall. 

These results show that hyperparameter tuning, including 

tweaks to GRU units, dropout rates, and learning rates, can 

enhance the model's performance. Using EEG data, this 

optimization produced a more accurate and stable model for 

mental state classification. 

Furthermore, the evaluation of the GRU model 

demonstrated the extremely competitive results that can arise 

from even basic model architecture. This emphasizes that, 

with proper optimization, smaller models can generate 

outstanding classification performance, hence balancing 

computational efficiency and great accuracy. 

Although it has limitations, the GRU model categorized 

mental states from EEG data with very great accuracy. The 

model's sensitivity to noise in EEG readings is a significant 

limitation, given EEG's sensitivity to environmental 

distortions and physiological movements. The noise was 

filtered, but residual noise could compromise model 

performance, especially in real-world conditions with less 

controlled EEG data. The model's generalizability across 

EEG datasets is another drawback. This study used a small 

sample using specific EEG equipment and controlled 

settings, which may limit the model's applicability to other 

EEG devices or participant groups with different 

demographics. The model's generalizability could be 

improved by adding noise robustness and testing it on 

different EEG datasets. 
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Despite these drawbacks, the GRU model is useful in 

cognitive monitoring and human-computer interaction. 

Neurofeedback therapy could help users focus or relax by 

providing real-time feedback on their mental state using the 

model's ability to distinguish mental states like concentration 

and relaxation in cognitive monitoring. This paradigm could 

enable adaptive systems that adapt to a user's cognitive load 

in HCI, improving usability and experience. 

IV. CONCLUSIONS 

A Gated Recurrent Unit (GRU) model identified mental 

states using EEG data, notably focus and relaxation, 

according to the current research findings. The performance 

of the GRU model was improved through hyperparameter 

adjustment, which led to an average cross-validation 

accuracy of 95.94%, good precision, recall, and F1-scores 

ranging from 0.95 to 0.97. This study's results also 

demonstrated that optimized, simplified structures could 

perform effectively despite the inherent complexity of EEG 

data. According to this, GRU-based models have the 

potential to be utilized in real-time cognitive monitoring and 

human-computer interaction by utilizing equipment that is 

both cost-effective and non-invasive, the Muse Headband 

being one example. 
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