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 As the number of occurrences of skin cancer increases year, it becomes more and 

more crucial to identify the disease accurately and effectively. This study aims to 

implement and evaluate the MobileNet architecture for classifying nine types of skin 

lesions using the ISIC 2020 dataset and to compare MobileNet's performance with 

other CNN architectures, such as VGG-16 and LeNet, in terms of accuracy and 

computational efficiency. The study also investigates the impact of image 

preprocessing on model accuracy. The methodology comprises data collection, 

preprocessing, and model development, leveraging transfer learning from MobileNet 

pre-trained on ImageNet. Data preprocessing involves resizing images to 224 x 224 

pixels and normalizing pixel values. To augment the dataset, techniques such as 

rotation, zooming, horizontal flipping, and brightness and contrast adjustment are 

applied. To address class imbalance, oversampling is used to obtain 500 images per 

class. The model architecture includes Global Average Pooling, a Dense layer with 

1024 units and ReLU activation, and a Dropout layer with a 0.2 probability. Various 

training scenarios with batch sizes (8, 16, 32, 64) and learning rates (0.001, 0.0001) 

are evaluated, incorporating dropout and ReLU activations. The optimal 

performance was achieved with oversampling, dropout, and a learning rate of 

0.0001, yielding a training accuracy of 99.64% and a validation accuracy of 86.89% 

after oversampling, resulting in 3,600 training and 900 validation images with an 

80:20 data split. The results suggest overfitting due to dataset limitations. Future 

work should focus on fine-tuning and ensemble methods to improve validation 

performance. 
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I. INTRODUCTION 

The number of skin cancer cases continues to rise each 

year, making it one of the most common types of cancer 

worldwide. The World Health Organization (WHO) says that 

skin cancer can be successfully treated if diagnosed early [1]. 

However, issues such as variability and subjectivity in 

assessment often become problematic with traditional 

detection approaches that rely on visual examinations by 

dermatologists [2]. The level of hospital services in Indonesia 

is relatively low, as indicated by the difficulties faced by the 

community in accessing medical services at several hospitals 

[3]. This condition indicates the need for an automated system 

that can assist in more efficiently identifying and categorizing 

skin cancer. Additionally, to enhance patient experience and 

optimize healthcare services, AI has begun to be integrated 

into digital healthcare services [4]. 

Advancements in machine learning and AI have improved 

the accuracy of medical diagnoses. To address image 

classification problems such as detecting skin cancer, various 

Deep Neural Network architectures have been used. In this 

case, MobileNet is a promising model, intended to improve 

efficiency and performance, especially on devices with 

limited resources [5]. It is hoped that by utilizing the 

capabilities of MobileNet, the burden on medical workers will 

be reduced and diagnosis will be more accessible.  
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Deep learning methods have been used in several previous 

studies to investigate skin cancer classification. The first 

study used a Convolutional Neural Network (CNN) 

architecture consisting of eight 2D Convolutional layers and 

successfully classified skin cancer into two categories: 

malignant and benign. This CNN achieves an accuracy of 

75%. This model is more complex than the MobileNet 

architecture, which is lighter and suitable for devices with 

limited resources [6]. 

The second study used a larger dataset to classify eight 

types of skin cancer. However, the results only achieved an 

accuracy of 73.22% for VGG-16 and 68.11% for LeNet, 

which are still considered low accuracy levels. Therefore, this 

study proposes the use of MobileNet, which is expected to 

improve accuracy while also providing advantages in terms of 

model efficiency in classifying nine types of skin cancer [7]. 

The study objectives included implementing and 

evaluating MobileNet for skin cancer classification using the 

ISIC 2020 dataset, as well as comparing MobileNet's 

performance with other CNN architectures like VGG-16 and 

LeNet in terms of accuracy and computational efficiency. 

This research will also investigate the impact of image 

preprocessing on the model’s accuracy. 

The study primary goal is to deploy and assess the 

MobileNet architecture for skin cancer classification using 

image datasets. Additionally, this study compares the 

performance of MobileNet by providing several experimental 

scenarios to assess its effectiveness and efficiency in 

detecting skin cancer. This research will also investigate the 

impact of image preprocessing on the model’s accuracy. 

It is hoped that this study will open our eyes to the potential 

use of MobileNet in skin cancer diagnosis. The result of this 

research can help medical professionals improve the speed 

and accuracy of detection as well as develop user-friendly 

mobile applications. As a result, this research can help raise 

awareness of the importance of early detection of skin cancer 

[8]. 

Finally, this research is expected to encourage 

collaboration between technology experts and medical 

professionals to create innovative solutions in the field of 

health. By combining expertise in medicine and information 

technology, we can create diagnostic tools that are not only 

effective but also sustainable and accessible to everyone [9]. 

This, this research not only examines the use of MobileNet 

in skin cancer classification but also aids in the development 

of automated diagnosis system that can enhance the overall 

quality of healthcare services. 

II. METHOD 

In this chapter, the method used in the research to detect 

and classify skin cancer employs the MobileNet architecture. 

This approach was chosen because it uses computational 

resources efficiently and can operate on Mobile devices while 

still achieving a high degree of image categorization 

accuracy. The outcomes of validation accuracy, training 

accuracy, validation loss, and training loss will be used to 

assess the model [10]. 

A. Data Collecting 

The International Skin Imaging Collaboration (ISIC) 2020 

provided the dataset for this study. This is a most recent 

iteration of the ISIC archive and was chosen because it is a 

comprehensive and validated source of Dermatoscopic 

images that can be used for skin cancer research, with 2242 

images for the training data from various types of skin lesions 

and 107 images for the test data. 

In this study, the dataset consists of 9 main classes of skin 

diseases, namely:  

TABLE I 

SAMPLE CLASSES OF SKIN CANCER 

Name Total 

Sample 

Actinic Keratosis 114 

Basal Cell Carcinoma 376 

Dermatofibroma 95 

Melanoma 438 

Nevus 357 

Pigmented Benign Keratosis 462 

Seborrheic Keratosis 77 

Squamous Cell Carcinoma 181 

Vascular Lesion 139 

 

Each class has a varying number of samples, with some 

classes, such as Seborrheic Keratosis and Dermatofibroma, 

having a relatively small number of samples compared to 

other classes, which can lead to data imbalance issues. Here 

are sample images from each class, as shown in Figure 1. 

 

 

Figure 1. Sample Class Skin Cancer Disease 
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Apply the oversampling technique to the class with a few 

samples in order to rectify this imbalance. The training data is 

supplemented with fake samples using the random 

oversampling technique. The objective is to prevent prejudice 

against the majority class and enhance the representation of 

minority classes in the training model [11]. With 

oversampling, it is expected that the model can be more 

accurate in predicting classes with limited data. 

The dataset is divided into three subsets [12]:  

a) Training Data: The model is trained using this data. 

b) Validation Data: To confirm how well the model 

performed throughout training. 

c) Test Data: assess the model’s ultimate performance. 

TensorFlow is used to load the dataset, which is then 

randomly divided into training and validation data in an 80:20 

ratio. The test data is prepared independently for assessment 

of the model’s generalization. All images are resized to 224 x 

224 pixels to be consistent with MobileNet input. 

B. Preprocessing Data  

An important stage in this research is data preprocessing to 

ensure that the images have the appropriate size and format 

for the MobileNet model. The preprocessing stage includes 

image resizing, pixel normalization, and data batching [13]. 

Proper preprocessing ensures correct training of the model, 

free from bias resulting from differences in image size or 

scale. 

MobileNet requires images of 224 x 224 pixels with three 

color channels (RGB) [14]. Therefore, each image in the 

dataset is resized. This ensures that the input dimensions are 

consistent and align with the model. To improve training 

efficiency and stability, each image’s pixel values are 

normalized to fall between 0 and 1. To do this, divide the 

value of each pixel by 255, which is the maximum value of an 

RGB pixel. This way, all features are on the same scale, which 

speeds up the convergence process during training. 

To enable training, the dataset is divided into several 

batches. Each batch contains a number of images, and the 

batch sizes in this study are 8, 16, 32, and 64. The dataset is 

cached and prefetched using TensorFlow to speed up the 

process. This ensures that the data is ready before it is needed 

by the model, thus reducing idle time during training. The 

model can train more efficiently because the caching and 

prefetching processes help reduce latency when reading data 

from memory or disk [15]. 

During the dataset preprocessing stage, TensorFlow is 

automatically used to perform all preprocessing processes, 

including measurement, normalization, and batching. 

C. Augmentation 

Augmentation increases image variation and the model’s 

generalization ability [16]. Increasing image variation allows 

the model to recognize objects even when they are moving, 

enlarging, or experiencing changes in brightness. 

Some of the development methods used in this study are: 

a) Rotate: the image is randomly rotated by up to 10 

degrees more or less to depict angle variation. 

b) Zoom_random: the image is enlarged up to 80% to 

illustrate different viewing distances. 

c) Flip_left_right: To increase orientation variation, rotate 

the image horizontally. 

d) Random_contrast: To simulate various lighting 

conditions, the image contrast is randomly altered. 

e) Random_brightness: The brightness of the image is 

changed randomly. 

By using this augmentation, each class of skin lesions 

generates 500 new images to improve data distribution and 

avoid bias during training. 

D. Building a Model with MobileNet 

This study’s goal is to employ Mobilenet (feature 

extractor) as a foundational model along with weights that 

have been pre-trained on the ImageNet dataset. The goal is to 

leverage the model’s initial knowledge of common image 

features, such as patterns and textures so that training can start 

from a better point compared to training on initial data. The 

initial classification layer of MobileNet was removed to be 

replaced with a new layer specifically designed to detect 9 

classes of skin lesions. 

MobileNet reduces the number of parameters and 

computational operations compared to conventional 

convolutional models, making it faster and lighter [17]. This 

is very helpful when applied to devices with computational 

limitations, such as smartphones or real-time systems. Here is 

Figure 2, which contains a summary of the model that will be 

crated in this study. 

 

 

Figure 2. Summary Model MobileNet 

In this research, a new layer was added to adjust the 

model’s output to this multi-class classification task. The 

additional layers include: 

a) Global Average Pooling: Figuring out the feature 

map’s overall average to reduce the feature dimensions 

of MobileNet. By reducing the number of parameters 

that need to be trained, this method successfully 

prevents overfitting [18].  
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b) Dense Layer: Added to enable the model to learn 

intricate and particular skin lesion patterns, this layer 

has 1024 units and a ReLU activation function.  

c) Dropout layer with a value of 0.2: To avoid overfitting, 

dropout is applied after the dense layer [19]. 20% of the 

neurons in the thick layer will be randomly deactivated 

during training by dropout. This makes the model less 

reliant on particular attributes and more universal. 

To provide the model with initial knowledge about 

common visual features, transfer learning uses pretrained 

weights from ImageNet. The initial layers of MobileNet are 

frozen during training, so the pretrained weights do not 

change, and only the additional layers are trained. This speeds 

up the training process and prevents the model from losing the 

initial knowledge from ImageNet. 

After several epochs, the model can be fine-tuned by 

unfreezing the last layer of MobileNet for retraining. At this 

point, a lower learning rate is used to maintain training 

stability and ensure that the model does not lose previous data. 

Following the addition of each layer, the Adam Optimizer 

was used to assemble the model with Learning Rates of 0.001 

and 0.0001. The Adam optimizer was used because it can 

accelerate convergence by modifying the learning rate during 

training [20]. Accuracy metrics were employed to assess the 

model’s performance during training. 

The model is trained using data training and validation, and 

its performance is assessed at each epoch to prevent 

overfitting. In this process, dropout is essential since it 

improves the model generalization to fresh data and motivates 

it to learn more broad characteristics. 

To make sure the model can correctly predict skin lesion 

classifications, test data is used after training is finished. The 

fine-tuning techniques aid in the model’s adaption to the 

unique features of the skin lesion dataset, while the 

application of Dropout and Global Average Pooling 

guarantees that the model stays effective and does not overfit. 

E. Result Visualization 

Accuracy and loss graphs are used to display the model’s 

performance during training and validation. This graph 

facilitates the analysis of the model evolution throughout 

time. Additionally, the graph aids in identifying indications of 

either overfitting or underfitting.  

a) Accuracy: The proportion of all test data that were 

correctly predicted. 

b) Loss: Assessing the discrepancy between the actual 

labels and the model prediction. 

c) Confusion Matrix: Used to examine how well the 

model performs for every class and pinpoint those that 

are hard to forecast. 

d) Classification Report: Shows the precisions, recall, f1-

score, and support for each class as well as the 

classification outcomes. 

The accuracy and loss curves for training and validation 

data. If the validation accuracy curve stagnates or decreases 

while the training accuracy curve increases, it indicates that 

the model is overfitting. 

III. RESULT AND DISCUSSION 

This chapter will discuss the result of implementing the 

MobileNet model for skin cancer image classification, as well 

as analyze the model’s performance based on several 

established evaluation metrics. This model was trained using 

a dataset of images and skin lesions and optimized with data 

augmentation techniques to improve its performance in 

detecting 9 classes of skin cancer. In this evaluation, the 

results of the MobileNet model will be compared by batch 

size to determine which one has the best accuracy. 

A. Result of Preprocessing and Augmentation 

At the preprocessing and augmentation stage, the training 

data is prepared to improve the model’s performance in 

classifying skin lesions. 

 

 

Figure 3. Number of Data per Class After Performing Oversampling 

Figure 3 shows the results of oversampling and the 

distribution of the training data used in this study. The total 

number of images used is 4500 images evenly divided into 9 

classes of skin lesions. Each class has 500 images, making up 

11.11% of the entire training dataset. Oversampling with 

augmentation was chosen to address class imbalance within 

the dataset. This technique is effective for avoiding bias 

toward the majority class, allowing the model to learn 

adequately from each class during training. Compared to 

other data balancing methods like SMOTE or undersampling, 

physical augmentation is more suitable in this case, as visual 

models often require more variation in visual features.  

    Given that the dataset consists of skin images, this 

augmentation technique enhances the diversity of patterns 

seen by the model without reducing data from majority 

classes. The selection of 500 samples per class is intended to 

balance the data without excessive inflation, which could 

increase the risk of overfitting. This ensures each class is 



JAIC e-ISSN: 2548-6861   

 

Implementation of MobileNet Architecture for Skin Cancer Disease Classification 

(Haniifa Aliila Faudyta, Jesica Trivena Sinaga, Egia Rosi Subhiyakto) 

593 

sufficiently represented in training while maintaining an 

efficient dataset size. 

 

Figure 4. Result of the Dataset After the Augmentation Process 

In Figure 4, an example of the dataset that has undergone 

the augmentation process is shown. Augmentation is done to 

increase image variation without manually adding more 

images. The augmentation techniques used include rotation, 

zoom, flip, contrast, and brightness. The generated image 

retains the main characteristics of the skin lesions, but with a 

different appearance. This helps the model train its 

generalization ability so it can accurately classify images of 

skin lesions under various conditions. 

 

B. Model Results 

The result of the model training with an 80:20 data split 

ratio, where 80% of the total dataset is used as training 

data, while the remaining 20% is used as validation data. 

With a Dense layer of 1024.

 

TABLE II 
SCENARIO WITHOUT OVERSAMPLING AUGMENTATION, DROPOUT, AND RELU

Batch 

Size 

Epoch  Learning Rate Training 

Accuracy 

Training 

Loss  

Validation 

Accuracy  

Validation 

Loss 

8 25 0.001 99.17% 0.0249 58.68% 2.4766 

16 25 0.001 99.45% 0.0330 57.14% 2.1709 

32 25 0.001 99.53% 0.0337 59.56% 1.6665 

64 25 0.001 80.28% 0,6129 49.67% 1.5548 

The outcomes of the model testing with different batch 

sizes across 25 epochs at a learning rate of 0.001 are displayed 

in Table II. The findings of this investigation are without 

augmentation, dropout, and ReLU. Overall, the increase in 

batch size does not yield consistent results in validation. For 

example, small batch sizes like 8 and 16 show very high 

training accuracy, namely 99.17% and 99.45%, but their 

validation accuracy is relatively low, 58.68% and 57.14%. 

Meanwhile, although larger batch sizes like 32 and 64 show 

significant improvements in training accuracy (99.53% and 
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80.28%), the validation accuracy does not follow a clear 

pattern, with validation loss decreasing at batch size 64 but 

validation accuracy remaining low. This indicates that there 

may be overfitting or a mismatch between the batch size and 

the dataset used.

 
 

TABLE III 

SCENARIO WITHOUT OVERSAMPLING AUGMENTATION

Batch 

Size 

Epoch  Learning Rate Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

8 25 0.0001 100.00% 0.0019 63.50% 1.6089 

16 25 0.0001 100.00% 2.0149 66.37% 2.6671 

32 25 0.0001 99.94% 0.0093 62.83% 1.4464 

64 25 0.0001 99.61% 0.0151 63.27% 1.4517 

 

Table III shows the test results without any augmentation. 

This model adds dropout, ReLU, and a learning rate of 

0.0001.  Because, the first experiment without oversampling 

augmentation, dropout, ReLU, and learning rate 0.001 

resulted in very low validation accuracy and severe 

overfitting, so the learning rate was lowered to reduce the 

model’s aggressive updates during training and allow for 

more stable convergence. This model achieved a very high 

training accuracy of 99.62% to 100%. However, the 

validation accuracy ranged from 62.83% to 66.37%, which is 

much lower than the training accuracy. In addition, the 

validation loss remains high, even though the batch size 

changes, with validation loss values ranging from 1.4464 to 

2.6671. this allows for the occurrence of overfitting. 

However, the validation accuracy after adding dropout and 

ReLU is slightly higher compared to the previous scenario.

 
 

TABLE IV 

SCENARIO WITH OVERSAMPLING AUGMENTATION, DROPOUT, AND RELU 

Batch 

Size 

Epoch  Learning Rate Training 

Accuracy 

Training 

Loss 

Validation 

Accuracy 

Validation 

Loss 

8 25 0.0001 99.64% 0.0115 86.89% 0.6128 

16 25 0.0001 99.81% 0.0058 85.49% 0.5854 

32 25 0.0001 99.94% 0.0054 85.22% 0.6156 

64 25 0.0001 100.00% 0.0033 84.00% 0.5762 

Table IV during the training process, tests were conducted 

with various combinations of batch size, this is the quantity of 

samples processed across 25 epochs prior to updating the 

model weights, using augmentation, and an Adam learning 

rate of 0.0001. Because in the previous experiment when 

adding a learning rate of 0.0001 the validation accuracy had 

increased sufficiently, the learning rate of 0.0001 was 

maintained, as lowering it further would result in slower 

convergence and longer training times. The results obtained 

show variations in training and validation accuracy, as well as 

loss for both categories. 

In earlier experiments using basic augmentation without 

oversampling, the model’s performance showed only minimal 

improvement compared to previous trials. Therefore, 

oversampling with augmentation was incorporated to increase 

validation accuracy and reduce the potential for high 

overfitting. This approach allows the model to better 

generalize by balancing the data effectively across classes, 

ensuring each class has sufficient representation, and 

enhancing the diversity of features in the dataset. 

The model obtained a training accuracy of 99.64% with a 

loss of 0.0115 at a batch size of 8. Nevertheless, the model 

only obtained an accuracy of 86.89% with a loss of 0.6218 for 

the validation data. A decrease in accuracy on the validation 

data, suggesting possible overfitting, was seen despite the 

excellent training accuracy. 

The model increased training accuracy to 99.81% with a 

batch size of 16 and with a loss of 0.0058, but validation 

accuracy slightly decreased to 85.49% with a loss of 0.5854. 

This indicates a slight improvement in training, but not 

significant in validation. 

At a batch size of 32, the training accuracy of the model 

reached 99.94% with a loss of 0.0054, but the validation 

accuracy dropped to 85.22% with a loss of 0.6156. Although 

the training is getting closer perfect, the decline in 

performance during validation remains a concern. 
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At a batch size of 64, the model achieved a perfect training 

accuracy of 100% with a very low loss of 0.0033. However, 

the validation accuracy actually decreased to 94.00% with a 

loss of 0.5762. this indicates that increasing the batch size 

does improve training, but it causes the model to overfit more, 

resulting in a continuous decline in validation accuracy. 

 

C. Result Visualization 

The results of the model training will be visualized to give 

a more comprehensive view of the model’s functionality in 

classifying data. Several methods used include the confusion 

matrix, accuracy and loss graphs, and the classification report. 

The results below represent the model, which achieved an 

accuracy of 99.64% and a validation accuracy of 86.89%.  

1)   Accuracy and Loss Graph 

 

Figure 5. Accuracy and Loss Graph 

The model’s performance during training and validation is 

displayed in Figure 5. On the left graph, the accuracy of 

training and validation is displayed in relation to the number 

of epochs. The training accuracy (blue line) consistently 

increases with the addition of epochs and approaches a value 

close to 1 (100%). However, the validation accuracy (orange 

line), although initially increasing, starts to stabilize and 

slightly decrease after a certain number of epochs. In the 

second graph (right), it is evident that as the number of epochs 

rises, the training loss keeps declining, indicating that the 

model is learning better from the training data. However, the 

validation loss shows a fluctuating pattern, initially 

decreasing but then starting to increase. 

2)   Confusion Matrix 

The validation accuracy after adding augmentation, 

dropout, and ReLU improved and was better than the previous 

scenarios. Therefore, the best result was an accuracy of 

99.64% with a validation accuracy of 86.89%. 

The confusion matrix showing the classification is shown 

in Figure 6, results of the model on the skin cancer detection 

dataset. Rows in the matrix represent the true labels, while 

columns represent the model predictions (predict label). Each 

cell contains the number of cases where the actual label and 

the prediction match or do not match.  

Overall, the model works quite well in classifying several 

categories, such as “Vascular Lesion” with 108 correct 

predictions and “Dermatofibroma” with 100 correct 

predictions. However, there are some prediction errors, such 

as in the case of “Melanoma”, which is often misclassified as 

“Venus” or “Seborrheic Keratosis”. Darker colors indicate 

larger numbers, with errors spread across several categories, 

highlighting the challenge of distinguishing between different 

types of skin cancer.  

 

Figure 6. Confusion Matrix 

3)   Classification Report 

 

Figure 7. Classification Report 

Figure 7 displays the classification report from the skin 

cancer detection model results, which includes important 

metrics such as precision, recall, f1-score, and support for 

each class.  

Precision shows the accuracy of the model predictions for 

each class, with the highest value for “Vascular Lesion” 

(0.96) and the lowest value for “Nevus” (0.75). Recall 

measures the model’s ability to find all instances of a 

particular class, with “Vascular Lesion” having a perfect 

recall value (1.00), while “Melanoma” has the lowest recall 

value (0.62). The f1-score is a combination of precision and 

recall, with the highest value for “Vascular Lesion” (0.98) and 

the lowest for “Melanoma” (0.72). Support shows the number 

of samples tested for each class.  

Overall, the MobileNet model used in this study achieved 

an accuracy of 0.87, with the macro and weighted averages 
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for precision, recall, and f1-score also being 0.87. This result 

shows that the model has consistent performance across all 

classes. This model works very well in categories such as 

“Vascular Lesion” and “Dermatofibroma”, but still faces 

challenges in more difficult categories like “Melanoma” and 

“Nevus”.  

Compared to two previous studies, this study shows better 

results. In the first study, which used a Convolutional Neural 

Network (CNN) with eight 2D convolutional layers to 

classify skin cancer into two categories, namely “Malignant” 

and “Benign”, an accuracy of 75% was achieved.  

The second study, which used VGG-16 and LeNet for the 

classification of 8 types of skin cancer, recorded accuracies of 

73.22% and 68.11%, respectively. Both showed lower results 

compared to MobileNet in this study, which was able to 

achieve a higher accuracy (99.64%) across 9 classes. Thus, 

MobileNet shows a significant improvement in both accuracy 

and efficiency compared to the more complex CNN and 

VGG-16, making it a superior alternative for multi-class 

classification in 9 categories of skin cancer. 

IV. CONCLUSION 

Classification of skin cancer images using the MobileNet 

architecture has been successfully created, leveraging the 

ISIC 2020 dataset as the sole data source. The ISIC dataset 

was selected for its high-quality, well-organized images with 

clear classifications, which facilitated a structured training 

process. Alternative datasets explored were found lacking in 

terms of image quality, classification clarity, and 

organization, which would have complicated the 

identification of classes. The study objectives is 

implementing and evaluating MobileNet for skin cancer 

classification using the ISIC 2020 dataset, and comparing 

MobileNet's performance with other CNN architectures like 

VGG-16 and LeNet in terms of accuracy and computational 

efficiency. The architecture applied to this categorization uses 

a 224 x 224 input shape, a Learning Rate of 0.0001, 25 

epochs, and a Dense Layer of 1024, with an oversampling of 

500. Oversampling was especially beneficial in balancing 

data distribution across classes without sacrificing 

information quality, while the dropout and ReLU 

combination enhanced model generalization and helped 

prevent overfitting. Initial experiments using only basic 

augmentation showed only marginal performance 

improvements, prompting the addition of oversampling to 

increase validation accuracy and further reduce overfitting 

risks. This choice ensured balance across classes and 

introduced meaningful variability in visual features, a crucial 

factor for skin cancer image analysis. After the oversampling 

process, the training data amounted to 3600, and the 

validation data amounted to 900. The result of the model 

training with an 80:20 data split ratio, where 80% of the total 

dataset is used as training data, while the remaining 20% is 

used as validation data. With a Dense layer of 1024. 

As a result, the model’s validation accuracy was only 

86.89%, but its training accuracy was 99.64%. This indicates 

that although the MobileNet model works incredibly well 

with the training data, its performance for skin cancer 

classification on the validation data is less than optimal. The 

model tends to overfit, where it memorizes inadequate 

capacity to generalize to new data from the training data. 

Analysis shows that this limitation is caused by a lack of 

quantity and diversity of the datasets used. 

Future work could involve advanced transfer learning 

techniques, such as employing ensemble methods that 

combine multiple architectures like ResNet-50 and 

EfficientNet using weighted voting based on individual 

validation performances. Following this, fine-tuning specific 

layers of pre-trained models at a lower learning rate (1e-4 to 

1e-5) could be applied to capture task-specific features. With 

larger and more diverse datasets, these approaches have the 

potential to further improve validation performance, leading 

to more accurate and robust classifications. 
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