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 Heart disease is still one of the leading causes of death worldwide, hence the need 

for effective diagnostic tools. Phonocardiogram (PCG) signals have been explored 

as a complementary approach to electrocardiogram (ECG) to detect cardiac 

abnormalities. This research investigates the classification of PCG signals using Fast 

Fourier Transform (FFT) features and deep learning models, including Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), and Temporal Convolutional 

Network (TCN). Hyperparameter tuning, particularly learning rate adjustment, is 

applied to optimize the performance of the models. The results show that the GRU 

and TCN models outperform the LSTM, achieving up to 92% accuracy at a learning 

rate of 0.0001. Ensemble learning with soft voting was also applied to combine the 

strengths of each model. Although the ensemble model showed strong performance 

with 92% accuracy and ROC AUC of 0.9636, it did not provide significant 

improvement over the base model. This finding highlights the importance of 

hyperparameter tuning in model optimization, with GRU and TCN showing slightly 

better performance in the time series classification task. This study concludes that 

ensemble learning offers stability but does not significantly improve classification 

accuracy beyond a well-tuned base model. 
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I. INTRODUCTION 

The heart is a vital organ in the human body that is 

responsible for pumping blood throughout the body and 

returning it after passing through the lungs [1]. In addition to 

the natural aging process, there is a tendency for cardiac 

function to decline [2]. It is therefore imperative to maintain 

a healthy heart in order to reduce the risk of disease and ensure 

a good quality of life. In 2021, the World Health Organization 

(WHO) published data indicating that heart disease is the 

underlying cause of 17.8 million deaths annually, 

representing one-third of all global deaths [3]. Furthermore, 

the American Heart Association (AHA) has indicated that 

cardiovascular disease represents the leading cause of 

mortality globally [4]. In Indonesia, the Institute for Health 

Metrics and Evaluation (IHME) has reported that from 2014 

to 2019, heart disease was the leading cause of mortality. 

Basic Health Research data indicates an increase in the 

incidence of heart disease to 1.5% in 2018, with the highest 

health costs reaching IDR 7.7 trillion, according to the Health 

Social Security Organizing Agency [5]. 

In the medical field, techniques such as 

electrocardiography (ECG) and phonocardiography (PCG) 

are employed for the monitoring of cardiac activity and the 

diagnosis of cardiovascular diseases. An ECG is capable of 

assessing the condition of the heart directly, but it is not 

always able to detect all abnormalities, such as heart murmurs 

[6][7]. This study employs PCG signal data as an alternative 

methodology. In the traditional practice of medicine, medical 

practitioners utilize a stethoscope to assess heart sounds. 

However, PCG offers a more comprehensive representation 

of the cardiovascular system, thereby making it a valuable 

tool in the diagnosis of heart disease [6][8][9]. PCG records 

the sounds and murmurs produced by the heart during its duty 

cycle. Murmurs represent additional sounds that indicate the 

presence of a cardiac disorder [6][7]. In normal conditions, 

PCG records the principal heart sounds, namely S1 and S2. 
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However, in abnormal conditions, murmurs that manifest as 

S3 and S4 sounds are also recorded [6][10]. 

The utilization of a stethoscope for conventional diagnosis 

is inherently challenging, as it necessitates the expertise and 

experience of medical professionals to accurately interpret 

heart sounds. Consequently, technology plays a pivotal role 

in streamlining and expediting the diagnostic process. 

Machine learning is a subfield of artificial intelligence (AI) 

that enables systems to learn from data and enhance their 

performance without the necessity for explicit programming 

[11]. In the field of machine learning, ensemble learning 

represents a powerful methodology that combines multiple 

models with the objective of improving prediction accuracy 

and robustness [12]. One of the most commonly utilized 

ensemble techniques is soft voting, wherein the prediction 

outcomes from each model are integrated and weighted to 

ascertain the final classification based on the most prevalent 

result [12][13]. This approach leverages the strengths of 

individual models, thereby enhancing the overall accuracy 

and reliability of predictions. Consequently, soft voting is 

gaining prominence in object classification tasks due to its 

capacity to optimize the performance of machine learning 

models. 

A number of previous studies have demonstrated the 

significant potential of PCG signal classification. These 

studies employed a straightforward diagnostic approach that 

utilized Computer-Aided Diagnosis (CAD) and Multi-Layer 

Perceptron (MLP) classification, resulting in more efficient 

and rapid calculations with satisfactory accuracy. 

Subsequently, the amplified cardiac PCG signal was 

subjected to a Fast Fourier Transform (FFT), which yielded 

characteristics in the form of a fundamental frequency and 

maximum amplitude. A total of 55 data points were tested, 

resulting in an accuracy rate of 90%, a sensitivity rate of 80%, 

a positive predictive value (PPV) of 100%, and a negative 

predictive value (NPV) of 83.33% [9]. 

Moreover, a study entitled "Convolutional and recurrent 

neural networks for the detection of valvular heart diseases in 

phonocardiogram recordings" concluded that the model was 

trained and tested using convolutional neural networks with 

bidirectional long short-term memory units as well as CNN 

with BiLSTM units individually. The highest performance 

was achieved using the CNN-BiLSTM network, with the 

following values for the statistical parameters: Cohen's kappa, 

accuracy, sensitivity, and specificity of 97.875%, 99.32%, 

98.30%, and 99.58%, respectively. Furthermore, the model 

demonstrated an average area under the curve (AUC) of 0.998 

when a 10-fold cross-validation scheme was employed [14]. 

The objective of recent research in this area is to classify 

PCG signals based on a feature extraction method that 

employs the Short Time Fourier Transform (STFT) and a 

classification method that utilizes a Convolutional Neural 

Network (CNN). A series of experiments was conducted to 

evaluate the efficacy of different windowing techniques, 

including Hamming, Hann, and Blackman-Harris, in the 

feature extraction phase, as well as various convolutional 

layer configurations in the classification phase. The 

combination of a Hamming window in the feature extraction 

process and four convolutional layers in the classification 

process yielded the most optimal results, with an accuracy rate 

of 88.11% [4]. 

A number of previous studies have contributed to the 

development of health diagnosis systems for detecting normal 

and abnormal conditions of the heart. This research project 

aims to enhance the performance of models in the 

classification of phonocardiogram (PCG) signals through the 

application of ensemble learning techniques. The 

methodology used is based on soft voting techniques, utilizing 

features extracted using Fast Fourier Transform (FFT), and 

applying Early Stopping techniques to optimize the model 

training process. 

 

II. METHOD  

The following flowchart is provided by the researcher as a 

visual representation of the research process. This diagram 

illustrates the steps and processes that will be carried out 

during the research. 

 

 

Image 1. Research flow diagram. 

A. Collecting Dataset 

This research employs open-source data from PhysioNet, 

specifically the dataset titled ‘Normal/Abnormal Heart Sound 

Recordings: the PhysioNet/Computing in Cardiology 

Challenge 2016’ [15]. This dataset comprises heart sound 

recordings, including normal and abnormal heart sounds, 
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collected as part of the 2016 Computing in Cardiology 

challenge. It consists of approximately 3240 audio files with 

the extension '.wav'. These heart sound recordings have been 

labelled and divided into segments for further analysis. 

Information regarding the labels and other metadata related to 

this dataset is presented in a separate Excel file, which 

provides a more detailed understanding of the characteristics 

of each sound recording. 

B. Environment Installation 

This research employs the use of the Python programming 

language, which is widely utilized in the field of computer 

science. At the outset of the research process, the investigator 

established the requisite working environment for data 

analysis and processing with Python. This entailed selecting 

the appropriate version of the programming language and 

installing libraries and other supporting dependencies through 

a package manager, designated 'pip'. Furthermore, a file, 

‘requirements.txt’, was created to store all the necessary 

libraries and the versions employed during this research. This 

step was undertaken with the objective of facilitating the 

replication of the work environment by future researchers. 

 

  

Image 2. Environment installation scripts. 

C. Data Preprocessing 

The objective of this stage is to guarantee that the data 

utilized for model training is of optimal quality and 

representative. In this research, data preprocessing is 

conducted in five principal stages, including data 

segmentation, denoising, normalization, fast fourier 

transform (FFT), and augmentation. 

1)   Segmentation: 

The segmentation process on the PCG signal entails the 

identification of discrete phases within the cardiac cycle, 

thereby facilitating the partitioning of the PCG signal into 

segments that correspond to each predefined class [16].  

TABEL I 

THE AMOUNT OF DATA BY CLASS DURING THE SEGMENTATION PROCESS 

Class Name Before process After process 

abnormal 2575 2464 

normal 665 848 

 

At this juncture, the data undergo a filtration process based 

on duration, with only data meeting a minimum duration of 

15 seconds being retained. In the event that the duration of the 

recording exceeds 15 seconds, the signal will be divided into 

segments of equal length, with each segment being a multiple 

of 15 seconds. Consequently, the quantity of data within each 

class within the dataset will be subject to alteration. 

The rationale behind the decision to assign a duration value 

of 15 seconds is based on a straightforward analysis that 

encompasses the determination of the minimum, maximum, 

and average duration values of all the data within the dataset. 

The minimum duration for the abnormal class is 6.61 seconds, 

while the normal class has a minimum duration of 5.31 

seconds. The average recording duration for the abnormal 

class is 21.66 seconds, while the normal class has an average 

duration of 25.57 seconds. Given these values, a duration of 

15 seconds was selected to prevent the deletion of voice 

recordings that were too brief. 

2)   Denoising: 

The denoising process of PCG signals in this study 

employs one of the signal processing techniques, specifically 

filtering techniques, to reduce or eliminate noise that may be 

present in the signal [17]. 

 

 

Image 3. Signal with normal class in the denoising process. 

 

Image 4. Signal with abnormal class in the denoising process. 

In this process, the signal containing noise is filtered first 

to retain the important information relevant for further 

analysis. Figure 3 shows the signal with normal class after 

denoising, while Figure 4 shows the signal with abnormal 

class in the same process. This denoising stage is an important 

part of preprocessing to improve the signal quality before it is 

applied to the model. After going through this process, the 

data becomes more meaningful, as shown in Figures 3 and 4. 

For both abnormal and normal signals, the difference can be 

seen more clearly than the condition before denoising, if 

visualized. 

3)   Normalization: 

The main purpose of normalization is to guarantee that 

each feature or variable contributes equally to the analysis or 

modeling, regardless of initial scale differences [18]. This 

procedure helps prevent the dominance of variables that 

exhibit a wider range of values, thus allowing the model to 

see patterns with higher precision. In this study, the 

normalized data will be in the range of -1 to 1, thus 
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simplifying the analysis process and increasing the 

effectiveness of the algorithm. 

 

 

Image 5. Signal with normal class in the normalization process. 

 

Image 6. Signal with abnormal class in the normalization process. 

By normalizing the data, the model can better capture the 

relationship between variables, as each feature has a uniform 

scale. The normalization process also minimizes potential 

biases that can arise due to scale differences, which can affect 

model performance. This normalization ensures that all 

features contribute equally, allowing the model to learn from 

the data in a more efficient manner. Figure 5 shows signals 

with normal classes in the normalization process, while 

Figure 6 shows signals with abnormal classes in the 

normalization process. This process clarifies the differences 

between the classes of signals, so that relevant patterns can be 

better recognized. 

4)   Fast Fourier Transform (FFT): 

The Fast Fourier Transform (FFT) is a method for 

converting signals from the time domain to the frequency 

domain. This transformation process enables the analysis of 

the frequency distribution of phonocardiogram (PCG) signals, 

which record heart sounds. The analysis of the frequency 

spectrum generated by the FFT provides deeper insight into 

the characteristics of heart sounds, including important 

information about the presence and strength of frequency 

peaks. Furthermore, the FFT can reveal the presence of 

murmurs, which are potential indications of abnormal 

conditions in the PCG signal [19]. Mathematically, the FFT 

or Fast Fourier Transform, can be represented as follows: 

 

𝑓𝑛 =
1

𝑁
∑ 𝑓𝑘  .  𝑒−𝑖

2𝜋

𝑁
𝑘𝑛𝑘=𝑁−1

𝑘=0   (1) 

 

Formula 1 states that the signal value 𝑓𝑛 is obtained by 

summing the product of the fourier transform values 𝑓𝑘 and 

the weighting factor 𝑒−𝑖
2𝜋

𝑁
𝑘𝑛

, where 𝑁 is the total number of 

samples in the signal. This weighting factor is a complex 

exponential function that transforms each frequency 

component 𝑓𝑘 in the frequency domain to the time domain. 

This process is performed for each value of 𝑛 from 0 to       

𝑁 − 1, resulting in a representation of the signal in the time 

domain based on the calculated frequency components [20]. 

 

 

Image 7. Signal with normal class in the fft process. 

 

Image 8. Signal with abnormal class in the fft process. 

By performing FFT, a more in-depth analysis of the heart 

sounds can be performed, allowing for more accurate 

identification of heart conditions. FFT provides a spectral 

overview of the PCG signal which helps in detecting the 

various frequency and amplitude components of heart sounds. 

Through spectrum analysis, it can provide an indication of 

abnormalities or pathological conditions, such as heart 

murmurs or other abnormal heart sounds. 

Figure 7 shows a normal-grade signal in the FFT process, 

where the frequency spectrum displays a pattern consistent 

with healthy heart sounds. In contrast, Figure 8 shows a signal 

with an abnormal class, which may exhibit additional 

frequencies or unusual peaks, which can be a sign of heart 

abnormalities. This FFT process is essential for interpreting 

changes in heart sound characteristics, as shifts or additions 

of certain frequencies can provide critical information 

regarding the patient's heart condition. 

5)   Augmentation: 

The objective of data augmentation techniques is to 

enhance model performance by introducing additional 

variation into a dataset. This is achieved by manipulating, 

transforming, or duplicating existing data. The aim is to 

ensure that the model can accurately recognize each class, 

without exhibiting bias towards classes that have more data. 

This phenomenon is known as the imbalance class condition. 

TABEL II 

THE AMOUNT OF DATA BY CLASS DURING THE AUGMENTATION PROCESS 

Class Name Before process After process 

abnormal 2464 1656 

normal 848 1656 

 

In order to address the issue of imbalance class, the 

researcher will employ a technique known as SMOTE 

(Synthetic Minority Over-sampling Technique). Synthetic 
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Minority Over-sampling Technique (SMOTE) is a method 

used to augment the number of instances in a minority class 

by generating a new synthetic sample based on existing data 

[21][22]. In this study, the researcher determines the mean 

value of the sum of the data in the dataset to be the final value 

of the dataset prior to the training process with the machine 

learning model and then divides it into two. This approach 

aims to ensure that the data in the class with the least amount 

is not too different from the data in the class with the most 

amount, thus balancing the distribution of data between 

classes (normal and abnormal). 

D. Base Model Training 

During the model training process, we will use several 

callback functions to streamline the training time of each 

model, such as the ‘ReduceLROnPlateau’, ‘EarlyStopping’, 

and ‘ModelCheckpoint’ callbacks. The ReduceLROnPlateau 

callback serves to dynamically reduce the learning rate if the 

evaluation metric does not show improvement within a 

certain number of epochs. The EarlyStopping callback is used 

to stop training early if the evaluation metric does not improve 

in a certain number of consecutive epochs, thus preventing 

overfitting. Meanwhile, the ModelCheckpoint callback serves 

to save the best model weights during training based on the 

specified evaluation metric. 

After the data preprocessing stage in the previous step, 

where the data has been prepared to be optimized as model 

input, researchers at this stage determine the model 

architecture configuration. This determination includes the 

number of layers and the number of neurons in each layer that 

will be used in the model. 

1)   Long Short Term Memory (LSTM): 

LSTM or Long Short-Term Memory is a type of artificial 

neural network architecture designed to overcome challenges 

in long and short-term memory in the analysis and prediction 

of sequential data. First introduced by Hochreiter and 

Schmidhuber in 1997, LSTM is able to handle vanishing 

gradient and exploding gradient problems that often occur in 

conventional neural networks when processing long 

sequences of data [23][24]. LSTMs use specialized memory 

units called 'cells', which have the ability to store, delete, and 

access information over long periods of time. This ability 

allows LSTM to capture long-term dependencies in data 

sequences, making it very effective in modeling complex 

patterns and temporal relationships [24]. 

After the data preprocessing process in the previous stage, 

where the data has been prepared to be optimized as model 

input, researchers at this stage determine the configuration of 

the model architecture. This determination includes the 

number of layers and the number of neurons in each layer 

used in the LSTM model. Parameters such as the number of 

hidden layers and the number of neurons per layer are 

optimized to achieve the best performance. 

 

 

Image 9. Architecture of LSTM algorithm. 

2)   Gated Recurrent Unit (GRU): 

GRU or Gated Recurrent Unit is one type of network 

architecture in Recurrent Neural Network designed to 

overcome some of the constraints in the LSTM model while 

still maintaining the ability to capture temporal dependencies 

on sequential data. Compared to LSTM, GRU has a simpler 

structure with only two main gates, namely reset gate and 

update gate [23][25]. GRU can adaptively learn and store 

relevant information from the past, so it can overcome 

vanishing gradient or exploding gradient problems. In 

addition, GRU is effectively able to capture temporal 

dependencies in sequential data. During training, GRU 

parameters are updated through a gradient-based learning 

process to improve the model's ability to understand patterns 

and relationships in temporal data. 

The GRU model, which is a simpler variant of the LSTM, 

is also used in this study. The model configuration includes 

adjustments to the number of layers and neurons to ensure 

efficiency and effectiveness in processing heart signal 

sequence data. 

 

 

Image 10. Architecture of GRU algorithm. 

3)   Temporal Convolutional Network (TCN): 

TCN or Temporal Convolutional Network is an artificial 

neural network architecture specifically designed to handle 

sequential data efficiently. Unlike the Convolutional Neural 

Network (CNN) that is commonly applied to image data, TCN 

is designed to capture patterns and temporal dependencies in 

sequential data. One of the key components in TCN is the 

dilated convolution layer, which allows the model to extend 

its temporal range without sacrificing computational 

efficiency [26]. The advantages of TCN make it a highly 

efficient and effective choice in a variety of tasks, including 
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time series prediction, time series data analysis, and other 

tasks involving sequential data [27]. With its ability to capture 

complex temporal information, TCN makes an important 

contribution in the development of models that can 

understand and process time series data with high accuracy. 

TCN is used to process sequential data with a convolutional 

approach. The number of layers and filters are determined and 

optimized to handle long-term dependencies efficiently. 

 

 

Image 11. Architecture of TCN algorithm. 

E. Ensemble Model Training 

The ensemble learning method is a machine learning 

approach in which a number of models or base learners are 

combined to produce more accurate predictions [28]. By 

combining the results of several models, ensemble learning 

has the potential to reduce overfitting on data [28][29]. One 

method that is often used in ensemble learning, especially in 

the stage of combining prediction results, is soft voting. In soft 

voting, each model provides predictions by generating 

probability values for each class in the classification [30]. The 

final prediction is taken by calculating the weighted average 

of the class probabilities generated by each model. 

Mathematically, soft voting can be represented as follows: 

 

𝑃(𝑐𝑖) =
∑ 𝑤𝑗 .  𝑃𝑗(𝑐𝑖)𝑀

𝑗=1

∑ 𝑤𝑗
𝑀
𝑗=1

  (2) 

 

The experiment was conducted twice with different 

weights: 1:1:1 and 2:1:1, where weight 2 is given to the best 

performing model based on the evaluation metric. The 

predicted probability of each model is weighted according to 

its contribution to the ensemble. These weights are 

normalized so that they total to 1. The predicted probability 

of each model is then multiplied by the corresponding weights 

and summed to get the ensemble prediction. This combined 

probability is compared with a threshold of 0.5 to determine 

the final class. This approach is expected to improve 

prediction accuracy by utilizing the strengths of each 

underlying model contributing to the ensemble. 

 

F. Model Evaluation 

This research utilizes one of the popular methods for 

assessing the performance of models that have been designed 

and trained, namely the confusion matrix. By analyzing the 

values in the confusion matrix, several commonly used 

evaluation metrics can be calculated to provide a 

comprehensive overview of model performance, including 

accuracy, precision, recall, f1-score, and ROC-AUC. 

Mathematically, it can be written as follows: 
 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (3) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

F1-score = 
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (6) 

ROC-AUC = ∑ (
𝑇𝑃𝑅𝑖+𝑇𝑃𝑅𝑖+1

2
) . (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖)

𝑛−1

𝑖=1
 (7) 

In the performance evaluation of classification models, 

some key terms from the confusion matrix are often used to 

calculate metrics that provide deep insights into the model's 

performance. True Positive (TP) refers to the number of cases 

where the model correctly predicts a positive class, while True 

Negative (TN) refers to the number of cases where the model 

accurately predicts a negative class. False Positive (FP) is 

when the model incorrectly predicts a positive class when it 

is actually negative, while False Negative (FN) occurs when 

the model misclassifies a negative class when it should be 

positive [31]. 

Two additional metrics that are often calculated from the 

confusion matrix are True Positive Rate (TPR) and False 

Positive Rate (FPR). TPR, also known as Recall, describes the 

model's ability to detect positive cases, calculated as the ratio 

of TP to the total number of positive cases (TP + FN). On the 

other hand, FPR measures the proportion of negative cases 

that are misclassified as positive, which is calculated as the 

ratio of FP to the total number of negative cases (FP + TN). 

These metrics are essential in providing a more 

comprehensive picture of the model's effectiveness in 

correctly classifying the data, especially in contexts involving 

class imbalance or the disparate impact of misclassification. 

 

III. RESULT AND DISCUSSION 

After describing the methods used in this research, the 

results of the research can be seen as follows 

A. Basic Model Training Process Results 

This study conducted the base model training process four 

times for each model architecture. The experiments were 

differentiated based on varying learning rate values: 0.01, 

0.001, 0.0001, and one additional experiment that utilized 
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automatic learning rate adjustment through the Keras library's 

ReduceLROnPlateau callback which will be abbreviated to 

RLRO, which automatically determines the most optimal 

learning rate for the training process. The performance 

indicator used as a parameter for the EarlyStopping and 

RLRO callbacks is based on the validation loss (val_loss) 

value, with the patience value set to 5 for EarlyStopping and 

2 for RLRO. The minimum learning rate in RLRO is set at 

1.0000e-04. In addition, the class writing in the table will be 

abbreviated to optimize the placement of data in the table, the 

normal class will be abbreviated as 'N', while the abnormal 

class will be abbreviated as 'AN'. 

1) Long Short Term Memory (LSTM): 

Based on the results given in Table III regarding the 

training of the LSTM model, it can be concluded that the 

hyperparameter settings, especially the learning rate and the 

number of epochs, have a significant influence on the 

performance of the model. The model with a learning rate of 

0.01 shows good results with 83% accuracy after 8 epochs, 

where precision and recall reach 0.85 and 0.81 respectively, 

with an F1-score of 0.83. Increasing the learning rate to 0.001 

resulted in better performance, with accuracy reaching 87% 

and improvements in precision and recall, to 0.86 and 0.89, 

respectively, and F1-score 0.87. The best performance was 

achieved with a learning rate of 0.0001 after 15 epochs, where 

the model achieved 91% accuracy, precision 0.90, and recall 

0.94, resulting in an F1-score of 0.91. Although using a 

learning rate of 1.0000e-04 gave slightly lower results 

compared to 0.0001, the model still performed well with 87% 

accuracy, precision 0.86, and recall 0.88. In general, there is 

a corresponding increase in precision, recall, and F1-score as 

the learning rate decreases and the number of epochs 

increases, which indicates that the model can better identify 

and classify classes more precisely. 

TABEL III 

LSTM MODEL TRAINING RESULTS 

learning rate Class epoch 
accu- 

racy 

preci- 

sion 
recall 

F1- 

score 

0.01 
N 

8 0.83 
0.85 0.81 0.83 

AN 0.82 0.85 0.84 

0.001 
N 

8 0.87 
0.86 0.89 0.87 

AN 0.88 0.85 0.87 

0.0001 
N 

15 0.91 
0.90 0.94 0.91 

AN 0.93 0.89 0.91 

RLRO 

1.0000e-04 

N 
96 0.87 

0.86 0.88 0.87 

AN 0.88 0.86 0.87 

2) Gated Recurrent Unit (GRU): 

Based on the results presented in Table IV regarding the 

GRU model training, it can be seen that the hyperparameter 

settings, especially the learning rate and the number of 

epochs, also significantly affect the model performance. At a 

learning rate of 0.01, the model shows an accuracy of 82% 

after 18 epochs, with precision and recall values reaching 0.87 

and 0.77, respectively, and an F1-score of 0.81. When the 

learning rate was reduced to 0.001, the model performance 

improved with accuracy reaching 87% after 16 epochs, where 

precision and recall increased to 0.85 and 0.90, and F1-score 

0.88. A smaller learning rate setting of 0.0001 gave the best 

results with 92% accuracy after 14 epochs. At this point, the 

model obtained a precision of 0.90 and recall of 0.95, 

resulting in an excellent F1-score of 0.92. Additionally, the 

use of a learning rate of 1.0000e-04 showed competitive 

performance, albeit with a slightly lower accuracy of 89% 

after 48 epochs, and with a precision of 0.87 and recall of 

0.93, resulting in an F1-score of 0.90. Overall, there was a 

clear improvement in all evaluation metrics as the learning 

rate decreased and the number of epochs was adjusted, 

reflecting the model's ability to better recognize and classify 

the classes. 

TABEL IV 

GRU MODEL TRAINING RESULTS 

learning rate Class epoch 
accu- 

racy 

preci- 

sion 
recall 

F1- 

score 

0.01 
N 

18 0.82 
0.87 0.77 0.81 

AN 0.79 0.88 0.83 

0.001 
N 

16 0.87 
0.85 0.90 0.88 

AN 0.89 0.84 0.87 

0.0001 
N 

14 0.92 
0.90 0.95 0.92 

AN 0.95 0.89 0.92 

RLRO 

1.0000e-04 

N 
48 0.89 

0.87 0.93 0.90 

AN 0.92 0.86 0.89 

3) Temporal Convolutional Network (TCN): 

Based on the results presented in Table V regarding the 

training of the TCN (Temporal Convolutional Network) 

model, it can be seen that the hyperparameter settings, 

including the learning rate and number of epochs, have a 

significant influence on the performance of the model. At a 

learning rate of 0.01, the model achieved 89% accuracy after 

10 epochs, with precision and recall values reaching 0.91 and 

0.86 respectively, and F1-score of 0.88. When the learning 

rate was reduced to 0.001, the model performance improved 

slightly with 90% accuracy after 12 epochs, and precision and 

recall reaching 0.89 and 0.91, resulting in an F1-score of 0.90. 

TABEL V 

TCN MODEL TRAINING RESULTS 

learning rate Class epoch 
accu- 

racy 

preci- 

sion 
recall 

F1- 

score 

0.01 
N 

10 0.89 
0.91 0.86 0.88 

AN 0.87 0.91 0.89 

0.001 
N 

12 0.90 
0.89 0.91 0.90 

AN 0.91 0.89 0.90 

0.0001 
N 

11 0.92 
0.90 0.95 0.92 

AN 0.94 0.90 0.92 

RLRO 

1.0000e-04 

N 
9 0.85 

0.83 0.90 0.86 

AN 0.89 0.81 0.85 

 

Furthermore, with a learning rate of 0.0001, the model 

showed the best results with 92% accuracy after 11 epochs, 

where precision reached 0.90 and recall 0.95, resulting in an 

F1-score of 0.92. However, using a learning rate of 1.0000e-
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04 resulted in a lower accuracy (85%) after 9 epochs, with a 

precision of 0.83 and recall of 0.90, resulting in an F1-score 

of 0.86. This shows that although a smaller learning rate can 

give better results in the previous settings, not all settings give 

optimal results, and too small a learning rate can lead to 

suboptimal performance. From this analysis, it can be seen 

that the TCN model shows consistent performance 

improvement as the learning rate decreases up to a certain 

point, with accuracy and other evaluation metrics increasing. 

B. Performance Evaluation of the Base Model 

Based on Tables III, IV, and V, it can be seen that the effect 

of hyperparameter settings, especially learning rate and 

number of epochs, is very significant on the performance of 

LSTM, GRU, and TCN models in training. All models show 

improved performance as the learning rate decreases, with the 

best results generally obtained at a learning rate of 0.0001. 

The LSTM model achieved the highest accuracy of 91% after 

15 epochs with a learning rate of 0.0001, showing a precision 

value of 0.90 and recall of 0.94, and an F1-score of 0.91. 

Although using a learning rate of 1.0000e-04 gave lower 

results, the model still showed an accuracy of 87%. The GRU 

model showed good performance, with 92% accuracy after 14 

epochs at a learning rate of 0.0001, where precision and recall 

reached 0.90 and 0.95, resulting in an F1-score of 0.92. The 

use of a learning rate of 1.0000e-04 also resulted in 89% 

accuracy after 48 epochs, which still showed competitive 

performance. Meanwhile, the TCN model showed consistent 

results, with 92% accuracy after 11 epochs using a learning 

rate of 0.0001, as well as precision of 0.90 and recall of 0.95, 

resulting in an F1-score of 0.92. Although the learning rate of 

1.0000e-04 showed lower results (85%), the model still 

showed an overall improvement in performance. 

From this analysis, it can be seen that all three models show 

positive results with proper hyperparameter adjustment, but 

GRU and TCN tend to perform slightly better than LSTM in 

some settings. All models show that reducing the learning rate 

helps improve accuracy and other evaluation metrics, 

reflecting that the models can learn better with finer settings. 

In general, optimal hyperparameter settings, including 

learning rate and number of epochs, are key to achieving the 

best performance in all three models. These results confirm 

that GRU and TCN models may be more effective in solving 

classifier tasks compared to LSTM in certain settings. 

Therefore, it is recommended to apply further cross-

validation and tuning strategies to these models to ensure 

generalization and optimal performance in real applications. 

C. Results of Ensemble Model Training Process 

After completing the training process on each model 

individually and obtaining the performance results for each 

trial, we then proceeded to the ensemble model training 

process. In this case, the three models that previously decided 

the classification results separately will be combined to 

produce one final decision. This integration process uses an 

ensemble learning technique with a soft voting approach. 

The ensemble model training was conducted through 

several experiments, with groupings based on the number of 

epochs and variations in the weights given to each base 

model. In addition, at this stage, researchers also added a new 

metric to assess the performance of the ensemble model, 

namely ROC AUC. The addition of the ROC AUC parameter 

is expected to provide a more thorough assessment of the 

ensemble model performance, because ROC AUC calculates 

the area under the ROC curve. The ROC curve is a plot that 

illustrates the trade-off between true positive rate and false 

positive rate at various thresholds. By using ROC AUC, 

researchers can get a comprehensive view of the model's 

ability to distinguish between positive and negative classes, 

and help identify the model's performance under various 

conditions. This provides a more complete view of the 

effectiveness of the ensemble model built. 

TABEL VI 
ENSEMBLE MODEL TRAINING RESULTS 

learning rate 

base model 
class 

accu- 

racy 

preci- 

sion 
recall 

F1- 

score 

ROC 

AUC 

0.01 
N 

0.86 
0.87 0.86 0.86 

0.9356 
AN 0.86 0.87 0.87 

0.001 
N 

0.91 
0.89 0.93 0.91 

0.9533 
AN 0.93 0.88 0.90 

0.0001 
N 

0.92 
0.90 0.95 0.92 

0.9636 
AN 0.94 0.89 0.92 

RLRO 
N 

0.89 
0.87 0.93 0.90 

0.9496 
AN 0.92 0.85 0.89 

 

Table VI presents the training results of the ensemble 

model, which displays the performance metrics of accuracy, 

precision, recall, F1-score, and ROC AUC across different 

learning levels and base models. At a learning rate of 0.01, the 

model achieved an accuracy of 0.86, with an ROC AUC of 

0.9356. With a learning rate of 0.001, the performance 

improved, resulting in an accuracy of 0.91, with a ROC AUC 

of 0.9533. The highest performance was observed at a 

learning rate of 0.0001, where accuracy reached 0.92, and 

ROC AUC peaked at 0.9636. The RLRO model also 

performed well, achieving an accuracy of 0.89 and an ROC 

AUC of 0.9496. Overall, these results show that optimizing 

the learning rate significantly improves the classification 

performance of the ensemble model. 

D. Ensemble Model Performance Evaluation 

After conducting the ensemble model training and 

collecting the performance metrics, the next step is to evaluate 

the effectiveness of the ensemble model in a detailed manner. 

The evaluation focuses on understanding the model's 

performance not only through traditional metrics but also by 

examining the behavior of the model under various 

conditions. 

The ensemble model's performance metrics, as indicated in 

Table VI, provide a clear picture of how the model performs 

at different learning rates. At a learning rate of 0.01, the model 

achieved an accuracy of 0.86, with a precision of 0.87, recall 
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of 0.86, F1-score of 0.86, and ROC AUC of 0.9356. Although 

the model demonstrated decent performance at this learning 

rate, there was still room for improvement, particularly in 

recall. With a learning rate of 0.001, a notable improvement 

was observed in all metrics: accuracy rose to 0.91, precision 

to 0.89, recall to 0.93, F1-score to 0.91, and ROC AUC to 

0.9533. This indicates an enhanced ability to identify true 

positive instances. The highest performance was recorded at 

a learning rate of 0.0001, where the accuracy reached 0.92, 

precision improved to 0.90, recall increased to 0.95, F1-score 

was 0.92, and ROC AUC peaked at 0.9636. These results 

show that finer adjustments in the learning rate can lead to 

substantial gains in classification capabilities. The RLRO 

model also showed respectable performance, achieving an 

accuracy of 0.89, precision of 0.87, recall of 0.93, F1-score of 

0.90, and ROC AUC of 0.9496, though it did not outperform 

the other configurations in terms of accuracy and ROC AUC.  

This research investigates the performance of three 

different deep learning architectures, namely Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Temporal Convolutional Network (TCN), with a focus on 

how hyperparameter tuning, specifically learning rate and 

number of training epochs, impacts their classification 

capabilities on heart signal fft feature objects. Through 

rigorous experiments with various learning rates, including 

the use of automatic learning rate adjustment 

(ReduceLROnPlateau), this research provides a 

comprehensive insight into the effectiveness of each model 

for classification tasks. The results consistently show that 

fine-tuning the learning rate has a significant impact on model 

performance across all architectures.  

Specifically, decreasing the learning rate generally 

improves accuracy, precision, recall, and F1-score. Among 

each model, the GRU and TCN architectures showed superior 

performance compared to LSTM in certain settings, achieving 

the highest accuracy of 92% at a learning rate of 0.0001. 

These findings suggest that GRU and TCN are potentially 

more effective in classification tasks, especially when the 

learning rate is fine-tuned. However, LSTM remains a 

competitive choice, achieving 91% accuracy under optimal 

conditions. 

The ensemble learning approach further strengthens these 

findings. By integrating the predictions of the LSTM, GRU, 

and TCN models through soft voting techniques, the 

ensemble model achieved strong performance, with a peak 

accuracy of 92% and a maximum ROC AUC of 0.9636 at a 

learning rate of 0.0001. The inclusion of ROC AUC as a 

metric provides a more nuanced understanding of the model's 

performance, especially in evaluating the model's ability to 

balance the correct positive and negative rates across various 

thresholds. This metric confirms that the ensemble approach, 

with proper tuning of the learning rate, offers a reliable and 

effective classification solution. 

The evaluation of ensemble models shows that combining 

the strengths of multiple architectures has not been able to 

significantly improve performance compared to individual 

models. The results also underscore the potential of GRU and 

TCN models, which slightly outperform LSTM in this study, 

suggesting that these architectures are more adept at handling 

the complexity of time series data classification. 

E. Discussion 

While this study provides important insights into the 

effectiveness of various deep learning architectures in 

classifying PCG signals, there are some limitations that need 

to be noted. Firstly, the size of the dataset used in this study is 

limited, which may affect the generalizability of the model. 

With a small amount of data, the model is at risk of 

overfitting, which is a state where the model learns very well 

on training data but cannot adapt to new data. Therefore, it is 

recommended to collect and use a larger and more diverse 

dataset to increase the validity of the research results. In 

addition, the quality of the existing dataset is not optimal 

enough to distinguish between normal and abnormal PCG 

signals. The unevenness in audio duration and less than ideal 

sampling caused the preprocessing applied to be ineffective, 

especially due to the high level of noise. 

Secondly, the challenges in PCG signal processing also 

need to be taken into account. Although preprocessing steps 

such as denoising, normalization and windowing have been 

applied to improve signal quality, the diverse complexity of 

PCG signals can make pattern identification difficult. Noise 

and artifacts resulting from the recording device or 

environmental conditions can affect classification results, 

thus demanding the use of more robust preprocessing 

methods. 

Thirdly, it is also worth noting the limitations of the chosen 

deep learning model architecture. Although LSTM, GRU, and 

TCN perform well, each has its own weaknesses. For 

example, LSTM is often slower in the training process 

compared to GRU and TCN due to the complexity of its 

structure. Conversely, although GRU is more efficient, it may 

not always be able to capture long-term dependencies in the 

data as well as LSTM. While TCN, although performing well, 

may be less effective in dealing with very long sequences 

without additional strategies such as residual connection or 

dilation. 

Given these limitations, future research should include 

larger datasets, more advanced preprocessing methods, as 

well as exploration of more diverse model architectures. 

Future research could also consider using more complex 

ensemble techniques to harness the power of different models. 

IV. CONCLUSIONS 

This research confirms that hyperparameter optimization, 

especially the learning rate, is key in maximizing the 

performance of LSTM, GRU, and TCN models for 

classification tasks. Experimental results show that GRU and 

TCN models consistently outperform LSTM; however, all 

models exhibit significant performance improvements when 

the learning rate is set appropriately. 
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Although the ensemble approach can enhance stability and 

overall classification performance, no significant 

improvement over the base model (single model), particularly 

in terms of accuracy, was observed. These findings provide 

practical implications for future research and applications, 

particularly in the field of PCG signal classification. Future 

work should focus on hyperparameter adjustment, more 

thorough cross-validation, and exploration of more diverse 

model architectures and ensemble methods to create more 

robust and generalized models. 

However, in the context of this study, refinements to the 

base model remain more effective in improving performance 

than the use of ensemble learning. Thus, the optimal approach 

depends on specific model settings and the particular case at 

hand. Additionally, the limitations identified in this study, 

such as the size and quality of the dataset, highlight the need 

for further investigation with larger and more diverse datasets 

to validate and enhance the findings. 
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