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 Software Defect Prediction Dataset as a component of the Software Defect 

Prediction model has a very vital role. However, NASA Software Defect Prediction 

has a problem with imbalance in minority data. This study compares the performance 

of oversampling techniques in overcoming this. A total of 90 oversampling 

techniques in the form of SMOTE and its variants were used. The results of this 

study indicate that there is no oversampling technique that is able to overcome this. 

The original dataset without oversampling shows good performance at the level of 

accuracy and f1-score but has low performance on auc-score and g-score. Several 

oversampling techniques show increased performance on auc-score and g-score, 

unfortunately at the same time showing a decrease in performance on accuracy and 

f1-score. 
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I. PENDAHULUAN 

Software Defect Prediction (SDP) model has been widely 

researched to streamline software testing costs which 

ultimately reduces software development costs. In general, 

SDP models use various code and development metrics as 

features to classify target code fragments as bugs or not[1]. 

Software Defect Prediction model uses datasets that have 

been collected by various parties, one of which is NASA[2]. 

The problem that often occurs in this dataset is class 

imbalance. This can be seen in table I. This means that the 

data set contains more non-defective examples than defective 

examples. This creates problems for data mining algorithms 

because there is underrepresentation of defective examples 

and overrepresentation of non-defective examples. 

Resampling techniques can be used by data miners to account 

for class imbalance. The resampling technique involves 

changing the examples in the data set. This can be achieved 

using under-sampling or over-sampling techniques [3]. 

Technique most widely used to overcome this on the 

Software Defect Prediction dataset is SMOTE[3][4][5][6]. 

SMOTE[4] is called a synthetic oversampling technique 

because it creates new synthetic examples rather than 

  

duplicating existing ones. For each record in the minority 

class of a dataset, SMOTE finds its k nearest neighbors. One 

of the k nearest neighbors is chosen at random. For each 

attribute, the new synthetic record takes a value between the 

attribute value of the current instance and N. SMOTE uses 

user-defined parameters that decide how many new records to 

create. A value of 300 will create 300% more examples[7]. 

Methodological reviews and comparisons in imbalance 

data mining have been widely carried out[8][9][10][11][12]. 

Even research on various variations of SMOTE has been 

carried out [13]. However, this paper focuses on using 

oversampling techniques on the NASA Software Defect 

Prediction dataset which has not been carried out by previous 

research. 

In research conducted by Kovacs[13] using 85 variants of 

the oversampling technique using 104 datasets without 

including a single Defect Prediction Dataset Software, 

therefore this research uses 12 datasets developed by NASA 

[2]. 

This research aims to obtain the most appropriate 

oversampling technique so that it can help improve the quality 

of defect prediction in software. 

 

 

mailto:14002445@nusamandiri.ac.id
mailto:lind008@brin.go.id
https://creativecommons.org/licenses/by-sa/4.0/


JAIC e-ISSN: 2548-6861   

 

Comparison of Oversampling Techniques on Minority Data Using Imbalance Software Defect Prediction Dataset 

(Deni Hidayat, Lindung Parningotan Manik) 

473 

TABLE I 

IMBALANCE DATASET SOFTWARE DEFECT PREDICTION 

Dataset N N- N+ IR d 

MC2 125 81 44 1.840909 39 

PC5 1711 1240 471 2.632696 38 

KC1 1183 869 314 2.767516 21 

JM1 7782 6110 1672 3.654306 21 

KC3 194 158 36 4.388889 39 

PC4 1287 1110 177 6.271186 37 

CM1 327 285 42 6.785714 37 

PC3 1077 943 134 7.037313 37 

MW1 253 226 27 8.37037 37 

PC1 705 644 61 10.55738 37 

MC1 1988 1942 46 42.21739 21 

PC2 745 729 16 45.5625 36 

 

II. METHODS 

Research methodology that will be used in this research is 

testing 90 variants of oversampling techniques on 12 NASA 

datasets for defect prediction software. Testing was carried 

out by dividing the dataset into two parts, namely training data 

and testing data. Then the training data was carried out using 

an oversampling technique to be implemented in 5 

classification models, namely Decision Tree (DT), k-nearest 

neighbors (KNN), Linear Discriminant Analysis (LDA), 

Logistic Regression (LR), Gaussian Naive Bayes (GNB). To 

further optimize the model, hyperparameters are used in each 

model. Next, the model was tested with testing data and 

performance data was collected in the form of accuracy, f1- 

score, auc-score and g-score. 

The research steps are as follows: First, twelve NASA 

defect prediction software datasets from the “D” collection 

are selected, including CM1, JM1, KC1, KC3, MC1, MC2, 

MW1, PC1, PC2, PC3, PC4, and PC5. Next, dimensionality 

reduction is applied to decrease the time and computational 

resources needed, as an excess of features does not necessarily 

enhance a machine learning model’s performance and can, in 

fact, increase training time and resource demands. Principal 

Component Analysis (PCA), an unsupervised dimensionality 

reduction method, is used in this step to transform high-

dimensional features into a smaller set of meaningful, 

uncorrelated principal components, retaining essential 

information from the original features. This reduction is 

achieved by transforming features into new variables, or 

principal components, that capture as much variance as 

possible from the original data without being correlated with 

each other. PCA determines these principal components by 

calculating the covariance matrix of the original data, along 

with the eigenvectors and eigenvalues that indicate each 

component's explained variance. The dataset is then projected 

into a lower-dimensional space by selecting the top n 

eigenvectors, with n representing the desired number of 

principal components. 

In this research, the value of n is determined using random 

search from {𝑛 ∈ ℕ|5 ≤ 𝑛 ≤ 𝑁} so that the best model 

performance is achieved, where 𝑁 is the number of features. 

Before being entered into the classifier, the selected 

components are scaled into the interval [0,1] to avoid the 

dominance of certain components using the equation. 

 

𝑥𝑠 =
x − min(x)

max(𝑥) − min(𝑥)
 

Where xs is the scaled component, x is the original 

component, and max(x) and min(x) are the maximum and 

minimum of the original component. 

The next steps in the research process involve splitting the 

dataset into two parts, with 85% allocated for training data 

and 15% for testing data. An oversampling technique is then 

applied, using 90 distinct oversampling techniques to balance 

the dataset. After this, a classification model is built using the 

hyperparameters specified in Table II. The model is 

subsequently tested using the testing data, and performance 

metrics are retrieved from the test results to evaluate the 

model’s effectiveness. 

a) Accuracy 

𝐴𝑐𝑐 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

b) F1-score 

𝑓1 = 
𝑃𝑅. 𝑅𝐸

𝑃𝑅 + 𝑅𝐸
 

𝑃𝑅 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝐸 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

c) AUC-score (FPR) 

𝐹𝑃𝑅 = 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

d) G-score 

𝑔 =√
𝑇𝑃

𝑃
.
𝑇𝑁

𝑁
 

Next, the same evaluation was carried out, but the dataset 

was divided into two types, namely with data amounts of less 

than 1,000 and data amounts of more than 1,000 to see 

whether there was an influence of the amount of data on the 

overall comparison that had been carried out previously. 

 

III. RESULT AND DISCUSSION 

 

The research results that we will present below are divided 

into 3 parts, namely the results for the entire dataset, the 

results for the dataset with more than 1.000 data and the 

results for the dataset with less than 1.000 data. The results 

displayed will only show the top 10 highest of each data 

performance, then the baseline results will also be presented, 



               e-ISSN: 2548-6861  

JAIC Vol. 8, No. 2, December 2024:  472 – 477 

474 

namely the dataset performance without using the 

oversampling technique. 

TABLE II.  

TOP 10 ACCURACY RANKING FOR OVERALL DATASET 

R Oversampling DT KNN LDA LR GNB Mean 

 

1 

 

SMOTE_ENN 

 

0.7969 

 

0.8396 

 

0.8455 

 

0.8401 

 

0.847 

 

0.8338 

 

2 

 

SPY 

 

0.7998 

 

0.8257 

 

0.8546 

 

0.8453 

 

0.8311 

 

0.8313 

 

3 

 

SMOTE_RSB 

 

0.7944 

 

0.8337 

 

0.8458 

 

0.8401 

 

0.837 

 

0.8302 

 

4 

 

kmeans_SMOTE 

 

0.8023 

 

0.8446 

 

0.8268 

 

0.8312 

 

0.8355 

 

0.8281 

 

5 

 

NRAS 

 

0.8266 

 

0.8489 

 

0.8242 

 

0.8047 

 

0.827 

 

0.8263 

 

6 

 

NEATER 

 

0.7898 

 

0.7995 

 

0.8409 

 

0.8392 

 

0.8289 

 

0.8197 

 

7 

 

AHC 

 

0.7648 

 

0.7996 

 

0.8431 

 

0.8538 

 

0.8262 

 

0.8175 

 

8 

 

SOI_CJ 

 

0.7977 

 

0.8402 

 

0.8271 

 

0.8208 

 

0.801 

 

0.8173 

 

9 

 

DSMOTE 

 

0.8007 

 

0.837 

 

0.8107 

 

0.802 

 

0.7812 

 

0.8063 

 

10 

 

MDO 

 

0.7751 

 

0.8221 

 

0.7764 

 

0.7999 

 

0.7936 

 

0.7934 

 

Baseline (Origin) 

 

0.7985 

 

0.8358 

 

0.8455 

 

0.8401 

 

0.8383 

 

0.8316 

TABLE III. 
TOP 10 ACCURACY RANKING FOR DATASETS WITH MORE THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
SMOTE_ENN 

 
0.7642 

 
0.8342 

 
0.8336 

 
0.832 

 
0.8334 

 
0.8195 

 
2 

 
SMOTE_RSB 

 
0.7635 

 
0.8342 

 
0.8342 

 
0.832 

 
0.8326 

 
0.8193 

 
3 

 
SPY 

 
0.7698 

 
0.8258 

 
0.8299 

 
0.8332 

 
0.8334 

 
0.8184 

 
4 

 
kmeans_SMOTE 

 
0.7639 

 
0.8348 

 
0.8212 

 
0.8134 

 
0.8316 

 
0.813 

 
5 

 
NRAS 

 
0.8259 

 
0.8283 

 
0.7959 

 
0.7895 

 
0.8037 

 
0.8087 

 
6 

 
NEATER 

 
0.7637 

 
0.7786 

 
0.8069 

 
0.812 

 
0.8135 

 
0.7949 

 
7 

 
AHC 

 
0.7384 

 
0.7796 

 
0.8217 

 
0.8184 

 
0.8098 

 
0.7936 

 
8 

 
SOI_CJ 

 
0.7608 

 
0.818 

 
0.8011 

 
0.7941 

 
0.7661 

 
0.788 

 
9 

 
AMSCO 

 
0.7309 

 
0.7696 

 
0.7925 

 
0.7879 

 
0.8003 

 
0.7762 

 
10 

 
LVQ_SMOTE 

 
0.7417 

 
0.7744 

 
0.7682 

 
0.7644 

 
0.81 

 
0.7717 

 
Baseline (Origin) 

 
0.7609 

 
0.837 

 
0.8336 

 
0.832 

 
0.8334 

 
0.8194 

 

In general, in the results shown in tables II, III and IV, there 

is no significant increase in accuracy between the results with 

and without oversampling. Even only the SMOTE ENN 

oversampling technique has better results than without 

oversampling. Datasets less than 1.000 show a higher level of 

accuracy on all classification models than datasets more than 

1.000. Meanwhile, the F1-score results shown in tables V, VI 

and VII, show no improvement between the results with and 

without oversampling. The average of the results without 

oversampling is still in the top 10 range. Datasets less than 

1,000 show a much better F1-score than datasets more than 

1,000 in all classification models. 

 

 

TABLE IV. 

TOP 10 ACCURACY RANKING FOR DATASETS WITH LESS THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 

 
1 

 
SMOTE_ENN 

 
0.8296 

 
0.8449 

 
0.8575 

 
0.8482 

 
0.8606 

 
0.8482 

 
2 

 
SOI_CJ 

 
0.8345 

 
0.8624 

 
0.8531 

 
0.8475 

 
0.8359 

 
0.8467 

 
3 

 
DSMOTE 

 
0.8356 

 
0.861 

 
0.8553 

 
0.8283 

 
0.8434 

 
0.8447 

 
4 

 
NEATER 

 
0.816 

 
0.8205 

 
0.8749 

 
0.8663 

 
0.8443 

 
0.8444 

 
5 

 
SPY 

 
0.8299 

 
0.8256 

 
0.8794 

 
0.8574 

 
0.8288 

 
0.8442 

 
6 

 
NRAS 

 
0.8273 

 
0.8696 

 
0.8524 

 
0.82 

 
0.8502 

 
0.8439 

 
7 

 
kmeans_SMOTE 

 
0.8408 

 
0.8543 

 
0.8324 

 
0.849 

 
0.8395 

 
0.8432 

 
8 

 
AHC 

 
0.7912 

 
0.8196 

 
0.8646 

 
0.8892 

 
0.8426 

 
0.8414 

 
9 

 
SMOTE_RSB 

 
0.8252 

 
0.8331 

 
0.8575 

 
0.8483 

 
0.8415 

 
0.8411 

 
10 

 
Stefanowski 

 
0.8334 

 
0.7424 

 
0.827 

 
0.8414 

 
0.8411 

 
0.8171 

 
Baseline (Origin) 

 
0.8361 

 
0.8345 

 
0.8575 

 
0.8482 

 
0.8431 

 
0.8439 

TABLE V. 

TOP 10 F1-SCORE RANKING FOR OVERALL DATASET 

R Oversampling DT KNN LDA LR GNB Mean 

 
1 

 
AHC 

 
0.8043 

 
0.7903 

 
0.8184 

 
0.8317 

 
0.8043 

 
0.8098 

 
2 

 
SPY 

 
0.804 

 
0.8002 

 
0.8202 

 
0.8149 

 
0.804 

 
0.8087 

 
3 

 
kmeans_SMOTE 

 
0.8075 

 
0.8124 

 
0.8039 

 
0.811 

 
0.8075 

 
0.8085 

 
4 

 
NEATER 

 
0.7997 

 
0.7976 

 
0.8188 

 
0.8236 

 
0.7997 

 
0.8079 

 
5 

 
NRAS 

 
0.8048 

 
0.8151 

 
0.8119 

 
0.7955 

 
0.8048 

 
0.8064 

 
6 

 
SMOTE_ENN 

 
0.8144 

 
0.8018 

 
0.8038 

 
0.7858 

 
0.8144 

 
0.804 

 
7 

 
MDO 

 
0.791 

 
0.815 

 
0.7926 

 
0.8103 

 
0.791 

 
0.8 

 
8 

 
SOI_CJ 

 
0.7946 

 
0.8038 

 
0.8018 

 
0.7949 

 
0.7946 

 
0.798 

 
9 

 
SMOTE_RSB 

 
0.8004 

 
0.7953 

 
0.8042 

 
0.7868 

 
0.8004 

 
0.7974 

 
10 

 
Stefanowski 

 
0.8119 

 
0.735 

 
0.8017 

 
0.8073 

 
0.8119 

 
0.7936 

 
Baseline (Origin) 

 
0.803 

 
0.7971 

 
0.8038 

 
0.7858 

 
0.803 

 
0.7985 

TABLE VI. 

TOP 10 F1-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 

 
1 

 
SPY 

 
0.772 

 
0.8017 

 
0.7883 

 
0.7958 

 
0.8009 

 
0.7918 

 
2 

 
NRAS 

 
0.7964 

 
0.7949 

 
0.7881 

 
0.7862 

 
0.7843 

 
0.79 

 
3 

 
NEATER 

 
0.7655 

 
0.7793 

 
0.7838 

 
0.7903 

 
0.7908 

 
0.7819 

 
4 

 
kmeans_SMOTE 

 
0.7636 

 
0.7942 

 
0.7802 

 
0.7799 

 
0.7883 

 
0.7813 

 
5 

 
SMOTE_ENN 

 
0.76 

 
0.7888 

 
0.7835 

 
0.7761 

 
0.7916 

 
0.78 

 
6 

 
SMOTE_RSB 

 
0.7591 

 
0.7888 

 
0.7842 

 
0.7761 

 
0.7893 

 
0.7795 

 
7 

 
AHC 

 
0.7477 

 
0.7714 

 
0.7901 

 
0.7909 

 
0.7858 

 
0.7772 

 
8 

 
MDO 

 
0.7416 

 
0.8083 

 
0.7624 

 
0.7842 

 
0.7762 

 
0.7745 

 
9 

 
SOI_CJ 

 
0.7592 

 
0.7802 

 
0.7787 

 
0.7804 

 
0.7737 

 
0.7745 

 
10 

 
SSO 

 
0.7365 

 
0.7967 

 
0.7793 

 
0.7733 

 
0.7813 

 
0.7734 

 
Baseline (Origin) 

 
0.7571 

 
0.7939 

 
0.7835 

 
0.7761 

 
0.7916 

 
0.7804 
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TABLE VII. 

TOP 10 F1-SCORE RANKING FOR DATASETS WITH LESS THAN 1,000 

R Oversampling DT KNN LDA LR GNB Mean 
 

1 
 
kmeans_SMOTE 

 
0.835 

 
0.8307 

 
0.8276 

 
0.8421 

 
0.8267 

 
0.8324 

 
2 

 
AHC 

 
0.7994 

 
0.8091 

 
0.8468 

 
0.8724 

 
0.8228 

 
0.8301 

 
3 

 
NEATER 

 
0.8011 

 
0.8159 

 
0.8537 

 
0.8569 

 
0.8086 

 
0.8272 

 
4 

 
SPY 

 
0.8291 

 
0.7986 

 
0.852 

 
0.8341 

 
0.807 

 
0.8242 

 
5 

 
NRAS 

 
0.8191 

 
0.8353 

 
0.8356 

 
0.8047 

 
0.8252 

 
0.824 

 
6 

 
DSMOTE 

 
0.8225 

 
0.842 

 
0.8327 

 
0.7972 

 
0.8199 

 
0.8229 

 
7 

 
MDO 

 
0.8231 

 
0.8218 

 
0.8227 

 
0.8365 

 
0.8059 

 
0.822 

 
8 

 
SOI_CJ 

 
0.829 

 
0.8273 

 
0.8249 

 
0.8094 

 
0.8155 

 
0.8213 

 
9 

 
SMOTE_ENN 

 
0.8215 

 
0.8147 

 
0.8242 

 
0.7955 

 
0.8372 

 
0.8186 

 
10 

 
Stefanowski 

 
0.8323 

 
0.7515 

 
0.8192 

 
0.8452 

 
0.8335 

 
0.8163 

 
Baseline (Origin) 

 
0.828 

 
0.8002 

 
0.8242 

 
0.7955 

 
0.8144 

 
0.8125 

TABLE VIII. 

TOP 10 AUC-SCORE RANKING FOR OVERALL DATASET 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.6604 

 
0.6807 

 
0.6558 

 
0.6676 

 
0.6335 

 
0.6596 

 
2 

 
PDFOS 

 
0.6376 

 
0.6581 

 
0.6558 

 
0.6605 

 
0.6154 

 
0.6455 

 
3 

 
polynom_fit_SMOT
E_mesh 

 
0.6382 

 
0.6543 

 
0.6613 

 
0.6627 

 
0.6028 

 
0.6438 

 
4 

 
ROSE 

 
0.6016 

 
0.6735 

 
0.6449 

 
0.6594 

 
0.617 

 
0.6393 

 
5 

 
polynom_fit_SMOT
E_bus 

 
0.6185 

 
0.6442 

 
0.6586 

 
0.6678 

 
0.5993 

 
0.6377 

 
6 

 
SMOTE_Cosine 

 
0.6216 

 
0.6428 

 
0.6596 

 
0.6619 

 
0.599 

 
0.637 

 
7 

 
SVM_balance 

 
0.6259 

 
0.6178 

 
0.6302 

 
0.6724 

 
0.6338 

 
0.636 

 
8 

 
SMOTE_AMSR 

 
0.6139 

 
0.6587 

 
0.6482 

 
0.6401 

 
0.6159 

 
0.6354 

 
9 

 
polynom_fit_SMOT
E_star 

 
0.5747 

 
0.648 

 
0.6589 

 
0.666 

 
0.6226 

 
0.6341 

 
10 

 
Assembled_SMOTE 

 
0.608 

 
0.6432 

 
0.6507 

 
0.6606 

 
0.6061 

 
0.6337 

 
Baseline (Origin) 

 
0.5559 

 
0.5287 

 
0.5386 

 
0.529 

 
0.5477 

 
0.54 

TABLE IX. 

TOP 10 AUC-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.6069 

 
0.691 

 
0.6342 

 
0.6509 

 
0.6345 

 
0.6435 

 
2 

 
SVM_balance 

 
0.6247 

 
0.6337 

 
0.6296 

 
0.6444 

 
0.6198 

 
0.6304 

 
3 

 
ROSE 

 
0.5943 

 
0.6561 

 
0.6426 

 
0.6483 

 
0.6054 

 
0.6293 

 
4 

 
KernelADASYN 

 
0.6031 

 
0.6394 

 
0.6439 

 
0.6458 

 
0.6049 

 
0.6274 

 
5 

 
SMOTE_Cosine 

 
0.5743 

 
0.6676 

 
0.6399 

 
0.6423 

 
0.5963 

 
0.6241 

 
6 

 
polynom_fit_SMOT
E_bus 

 
0.5699 

 
0.6512 

 
0.6417 

 
0.651 

 
0.5989 

 
0.6225 

 
7 

 
polynom_fit_SMOT
E_mesh 

 
0.5691 

 
0.6505 

 
0.6404 

 
0.6444 

 
0.6072 

 
0.6223 

 
8 

 
Gaussian_SMOTE 

 
0.5689 

 
0.6665 

 
0.6375 

 
0.6472 

 
0.5768 

 
0.6194 

 
9 

 
PDFOS 

 
0.5917 

 
0.6274 

 
0.6351 

 
0.649 

 
0.5908 

 
0.6188 

 
10 

 
ANS 

 
0.5967 

 
0.5996 

 
0.6332 

 
0.6496 

 
0.6137 

 
0.6185 

 
Baseline (Origin) 

 
0.5355 

 
0.5456 

 
0.5341 

 
0.5246 

 
0.5539 

 
0.5387 

 

TABLE X. 

TOP 10 AUC-SCORE RANKING FOR DATASETS WITH LESS THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.7139 

 
0.6704 

 
0.6774 

 
0.6842 

 
0.6324 

 
0.6757 

 
2 

 
PDFOS 

 
0.6836 

 
0.6888 

 
0.6765 

 
0.672 

 
0.6399 

 
0.6722 

 
3 

 
polynom_fit_SMOT
E_mesh 

 
0.7073 

 
0.6581 

 
0.6821 

 
0.6809 

 
0.5983 

 
0.6654 

 
4 

 
SMOTE_AMSR 

 
0.6475 

 
0.7008 

 
0.6427 

 
0.6454 

 
0.6408 

 
0.6554 

 
5 

 
polynom_fit_SMOT
E_star 

 
0.6044 

 
0.6695 

 
0.6766 

 
0.6873 

 
0.6314 

 
0.6538 

 
6 

 
polynom_fit_SMOT
E_bus 

 
0.6672 

 
0.6372 

 
0.6755 

 
0.6846 

 
0.5998 

 
0.6529 

 
7 

 
SMOTE_Cosine 

 
0.6688 

 
0.618 

 
0.6793 

 
0.6816 

 
0.6018 

 
0.6499 

 
8 

 
Assembled_SMOTE 

 
0.6392 

 
0.6708 

 
0.6627 

 
0.669 

 
0.6067 

 
0.6497 

 
9 

 
ROSE 

 
0.6089 

 
0.6909 

 
0.6471 

 
0.6705 

 
0.6286 

 
0.6492 

 
10 

 
OUPS 

 
0.6123 

 
0.6857 

 
0.6764 

 
0.6678 

 
0.6006 

 
0.6486 

 
Baseline (Origin) 

 
0.5763 

 
0.5118 

 
0.543 

 
0.5334 

 
0.5415 

 
0.5412 

TABLE XI. 
TOP 10 G-SCORE RANKING FOR OVERALL DATASET 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.6443 

 
0.6632 

 
0.6362 

 
0.6549 

 
0.6135 

 
0.6424 

 
2 

 
polynom_fit_SMOT
E_mesh 

 
0.6318 

 
0.6425 

 
0.6463 

 
0.6516 

 
0.5511 

 
0.6247 

 
3 

 
SMOTE_AMSR 

 
0.6097 

 
0.6436 

 
0.6402 

 
0.6313 

 
0.5802 

 
0.621 

 
4 

 
polynom_fit_SMOT
E_bus 

 
0.6035 

 
0.6375 

 
0.6507 

 
0.6591 

 
0.5376 

 
0.6177 

 
5 

 
ROSE 

 
0.5946 

 
0.6631 

 
0.629 

 
0.6495 

 
0.5464 

 
0.6165 

 
6 

 
SMOTE_Cosine 

 
0.6141 

 
0.6297 

 
0.6453 

 
0.6507 

 
0.5389 

 
0.6157 

 
7 

 
PDFOS 

 
0.6308 

 
0.618 

 
0.6409 

 
0.6502 

 
0.5318 

 
0.6143 

 
8 

 
SVM_balance 

 
0.6155 

 
0.5989 

 
0.5945 

 
0.6612 

 
0.5983 

 
0.6137 

 
9 

 
Assembled_SMOTE 

 
0.5824 

 
0.6232 

 
0.6379 

 
0.6513 

 
0.5489 

 
0.6087 

 
10 

 
polynom_fit_SMOT
E_star 

 
0.5106 

 
0.6194 

 
0.6494 

 
0.6557 

 
0.5851 

 
0.604 

 
Baseline (Origin) 

 
0.3696 

 
0.2019 

 
0.2437 

 
0.1787 

 
0.2948 

 
0.2577 

TABLE XII. 

TOP 10 G-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.5845 

 
0.6734 

 
0.6035 

 
0.6376 

 
0.6103 

 
0.6219 

 
2 

 
SVM_balance 

 
0.6091 

 
0.6185 

 
0.5802 

 
0.6373 

 
0.5692 

 
0.6029 

 
3 

 
KernelADASYN 

 
0.5997 

 
0.6181 

 
0.629 

 
0.6371 

 
0.5228 

 
0.6013 

 
4 

 
ROSE 

 
0.5893 

 
0.6494 

 
0.6202 

 
0.6376 

 
0.5102 

 
0.6013 

 
5 

 
SMOTE_AMSR 

 
0.5768 

 
0.6007 

 
0.6414 

 
0.6267 

 
0.5534 

 
0.5998 

 
6 

 
polynom_fit_SMOT
E_bus 

 
0.558 

 
0.645 

 
0.6335 

 
0.644 

 
0.5172 

 
0.5995 

 
7 

 
SMOTE_Cosine 

 
0.5686 

 
0.6616 

 
0.618 

 
0.6301 

 
0.512 

 
0.598 

 
8 

 
polynom_fit_SMOT
E_mesh 

 
0.5636 

 
0.6385 

 
0.6169 

 
0.6327 

 
0.5311 

 
0.5966 

 
9 

 
ANS 

 
0.5771 

 
0.5698 

 
0.6072 

 
0.639 

 
0.5686 

 
0.5924 

 
10 

 
SMOTE_FRST_2T 

 
0.5357 

 
0.6079 

 
0.645 

 
0.6316 

 
0.5309 

 
0.5902 

 
Baseline (Origin) 

 
0.3757 

 
0.2591 

 
0.2546 

 
0.1967 

 
0.3427 

 
0.2858 
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TABLE XIII. 

TOP 10 G-SCORE RANKING FOR FOR DATASETS WITH LESS THAN 1.000 

R Oversampling DT KNN LDA LR GNB Mean 
 
1 

 
Gazzah 

 
0.7041 

 
0.6529 

 
0.6689 

 
0.6722 

 
0.6167 

 
0.663 

 
2 

 
polynom_fit_SMO
TE_mesh 

 
0.7 

 
0.6465 

 
0.6757 

 
0.6705 

 
0.5711 

 
0.6527 

 
3 

 
PDFOS 

 
0.6753 

 
0.6504 

 
0.6697 

 
0.6633 

 
0.5811 

 
0.6479 

 
4 

 
SMOTE_AMSR 

 
0.6425 

 
0.6865 

 
0.6391 

 
0.6358 

 
0.607 

 
0.6422 

 
5 

 
polynom_fit_SMO
TE_bus 

 
0.6489 

 
0.6301 

 
0.6679 

 
0.6743 

 
0.558 

 
0.6358 

 
6 

 
SMOTE_Cosine 

 
0.6596 

 
0.5978 

 
0.6726 

 
0.6713 

 
0.5658 

 
0.6334 

 
7 

 
ROSE 

 
0.5999 

 
0.6768 

 
0.6378 

 
0.6614 

 
0.5826 

 
0.6317 

 
8 

 
OUPS 

 
0.5885 

 
0.6781 

 
0.6709 

 
0.6593 

 
0.5498 

 
0.6293 

 
9 

 
Assembled_SMOT
E 

 
0.6141 

 
0.6407 

 
0.6572 

 
0.6601 

 
0.5646 

 
0.6273 

 
10 

 
SVM_balance 

 
0.6219 

 
0.5793 

 
0.6088 

 
0.6851 

 
0.6273 

 
0.6245 

 
Baseline (Origin) 

 
0.3635 

 
0.1446 

 
0.2327 

 
0.1607 

 
0.2468 

 
0.2297 

TABLE XIV. 

TOP 10 OVERALL RANKING FOR OVERALL DATASET 

 

R 

 

Oversampling 

Acc 

Rank 

f1 

Rank 

auc 

Rank 

 

g Rank 

Average 

Rank 

 

1 

 

PDFOS 

 

33 

 

23 

 

2 

 

7 

 

16.25 

 

2 

 

Gazzah 

 

40 

 

30 

 

1 

 

1 

 

18 

 

3 

 

ROSE 

 

61 

 

31 

 

4 

 

5 

 

25.25 

 

4 

 

Supervised_SMOTE 

 

16 

 

14 

 

23 

 

54 

 

26.75 

 

5 

 

MDO 

 

11 

 

7 

 

29 

 

66 

 

28.25 

 

6 

 

V_SYNTH 

 

38 

 

32 

 

16 

 

33 

 

29.75 

 

7 

 

Gaussian_SMOTE 

 

49 

 

28 

 

22 

 

21 

 

30 

 

8 

 

polynom_fit_SMOT

E_star 

 

57 

 

46 

 

9 

 

10 

 

30.5 

 

9 

 

SSO 

 

29 

 

29 

 

28 

 

38 

 

31 

 

10 

 

Assembled_SMOTE 

 

59 

 

47 

 

10 

 

9 

 

31.25 

 

60 

 

Baseline(Origin) 

 

2 

 

8 

 

89 

 

90 

 

47.25 

TABLE XV. 

TOP 10 OVERALL RANKING FOR FOR DATASETS WITH MORE THAN 1.000 

  

R 

 

Oversampling 

Acc 

Rank 

f1 

Rank 

auc 

Rank 

 

g Rank 

Average 

Rank 

 

1 

 

Gazzah 

 

40 

 

29 

 

1 

 

1 

 

17.75 

 

2 

 

Gaussian_SMOTE 

 

34 

 

31 

 

8 

 

19 

 

23 

 

3 

 

SSO 

 

15 

 

11 

 

22 

 

52 

 

25 

 

4 

 

SVM_balance 

 

53 

 

50 

 

2 

 

2 

 

26.75 

 

5 

 

SL_graph_SMOTE 

 

37 

 

36 

 

15 

 

23 

 

27.75 

 

6 

 

ProWSyn 

 

36 

 

34 

 

13 

 

33 

 

29 

 

7 

 

PDFOS 

 

48 

 

45 

 

9 

 

17 

 

29.75 

 

8 

 

ROSE 

 

60 

 

54 

 

3 

 

4 

 

30.25 

 

9 

polynom_fit_SMO

TE_pol y 

 

49 

 

49 

 

11 

 

15 

 

31 

 

10 

 

Borderline_SMOTE1 

 

44 

 

46 

 

16 

 

20 

 

31.5 

 

55 

 

Baseline(Origin) 

 

2 

 

5 

 

87 

 

89 

 

45.75 

 

TABLE XVI. 

TOP 10 OVERALL RANKING FOR FOR DATASETS WITH MORE THAN 1.000 

 
R 

 
Oversampling 

Acc 

Rank 

f1 

Rank 

auc 

Rank 
 

g Rank 

Average 

Rank 

 
1 

 
PDFOS 

 
30 

 
27 

 
2 

 
3 

 
15.5 

 
2 

 
Gazzah 

 
39 

 
33 

 
1 

 
1 

 
18.5 

 
3 

 
cluster_SMOTE 

 
17 

 
18 

 
13 

 
38 

 
21.5 

 
4 

 
Supervised_SMOTE 

 
15 

 
15 

 
18 

 
49 

 
24.25 

 
5 

 
V_SYNTH 

 
31 

 
30 

 
11 

 
25 

 
24.25 

 
6 

 
MDO 

 
13 

 
7 

 
17 

 
61 

 
24.5 

 
7 

 
polynom_fit_SMOTE_
star 

 
54 

 
49 

 
5 

 
11 

 
29.75 

 
8 

 
GASMOTE 

 
19 

 
24 

 
27 

 
55 

 
31.25 

 
9 

 
polynom_fit_SMOTE_
bus 

 
57 

 
57 

 
6 

 
5 

 
31.25 

 
10 

 
Lee 

 
14 

 
12 

 
33 

 
67 

 
31.5 

 
63 

 
Baseline(Origin) 

 
7 

 
13 

 
89 

 
90 

 
49.75 

 

The AUC-score results shown in tables VIII, IX and X, 

show a significant increase between the results with and 

without oversampling. The AUC-score on the qualification 

model without oversampling shows a very low number. 

Datasets over 1,000 show a lower AUC-score than datasets 

over 1,000 in all classification models. 

Meanwhile, the g-score results shown in tables XI, XII and 

XIII show a significant increase between the results with and 

without oversampling. The g-score on the qualification model 

without oversampling is at a very low value and far from the 

average value. These results show that even without 

oversampling it shows very good accuracy, but only on the 

majority of data. Datasets over 1,000 show almost the same 

g-score compared to datasets over 1,000 in all classification 

models. 

V. CONCLUSION 

From the research findings, it is evident that none of the 

oversampling techniques achieve the highest ranking across 

all metrics—accuracy, F1-score, AUC-score, and G-score—

simultaneously. Techniques that rank high in accuracy and 

F1-score tend to perform lower in AUC-score and G-score, 

while those with high AUC-score and G-score rankings 

exhibit moderate rankings in accuracy and F1-score. The 

original dataset, without any oversampling applied, similarly 

shows high accuracy and F1-score, but performs poorly in 

terms of AUC-score and G-score. This pattern suggests that 

oversampling techniques with the highest accuracy rankings 

are often influenced by a high True Negative count, coupled 

with a low True Positive count and a high False Negative rate. 

Consequently, the techniques with higher overall rankings are 

typically those that score well in AUC-score and G-score. 

The Gazzah oversampling technique demonstrates strong 

performance across datasets larger and smaller than 1,000 

instances, outperforming the PDFOS technique in smaller 

datasets even though PDFOS ranks higher overall. This 

indicates that while PDFOS is effective, its performance on 
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larger datasets is less consistent. Further research is essential 

to develop oversampling techniques capable of improving all 

key metrics—accuracy, F1-score, AUC-score, and G-score—

simultaneously, optimizing the balance between these 

performance measures. 
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