
Journal of Applied Informatics and Computing (JAIC)

Vol.8, No.2, December 2024, pp. 472~477

e-ISSN: 2548-6861 472

http://jurnal.polibatam.ac.id/index.php/JAIC

Comparison of Oversampling Techniques on Minority Data Using

Imbalance Software Defect Prediction Dataset

Deni Hidayat 1*, Lindung Parningotan Manik 2**
* Ilmu Komputer, Universitas Nusa Mandiri

** Research Center of Informatics, Badan Riset dan Informatika Nasional

14002445@nusamandiri.ac.id 1, lind008@brin.go.id 2

Article Info ABSTRACT

Article history:

Received 2024-09-30

Revised 2024-10-07

Accepted 2024-10-08

 Software Defect Prediction Dataset as a component of the Software Defect

Prediction model has a very vital role. However, NASA Software Defect Prediction

has a problem with imbalance in minority data. This study compares the performance

of oversampling techniques in overcoming this. A total of 90 oversampling

techniques in the form of SMOTE and its variants were used. The results of this

study indicate that there is no oversampling technique that is able to overcome this.

The original dataset without oversampling shows good performance at the level of

accuracy and f1-score but has low performance on auc-score and g-score. Several

oversampling techniques show increased performance on auc-score and g-score,

unfortunately at the same time showing a decrease in performance on accuracy and

f1-score.

Keyword:

Software Defect Prediction,

Oversampling,

SMOTE.

This is an open access article under the CC–BY-SA license.

I. PENDAHULUAN

Software Defect Prediction (SDP) model has been widely

researched to streamline software testing costs which

ultimately reduces software development costs. In general,

SDP models use various code and development metrics as

features to classify target code fragments as bugs or not[1].

Software Defect Prediction model uses datasets that have

been collected by various parties, one of which is NASA[2].

The problem that often occurs in this dataset is class

imbalance. This can be seen in table I. This means that the

data set contains more non-defective examples than defective

examples. This creates problems for data mining algorithms

because there is underrepresentation of defective examples

and overrepresentation of non-defective examples.

Resampling techniques can be used by data miners to account

for class imbalance. The resampling technique involves

changing the examples in the data set. This can be achieved

using under-sampling or over-sampling techniques [3].

Technique most widely used to overcome this on the

Software Defect Prediction dataset is SMOTE[3][4][5][6].

SMOTE[4] is called a synthetic oversampling technique

because it creates new synthetic examples rather than

duplicating existing ones. For each record in the minority

class of a dataset, SMOTE finds its k nearest neighbors. One

of the k nearest neighbors is chosen at random. For each

attribute, the new synthetic record takes a value between the

attribute value of the current instance and N. SMOTE uses

user-defined parameters that decide how many new records to

create. A value of 300 will create 300% more examples[7].

Methodological reviews and comparisons in imbalance

data mining have been widely carried out[8][9][10][11][12].

Even research on various variations of SMOTE has been

carried out [13]. However, this paper focuses on using

oversampling techniques on the NASA Software Defect

Prediction dataset which has not been carried out by previous

research.

In research conducted by Kovacs[13] using 85 variants of

the oversampling technique using 104 datasets without

including a single Defect Prediction Dataset Software,

therefore this research uses 12 datasets developed by NASA

[2].

This research aims to obtain the most appropriate

oversampling technique so that it can help improve the quality

of defect prediction in software.

mailto:14002445@nusamandiri.ac.id
mailto:lind008@brin.go.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861

Comparison of Oversampling Techniques on Minority Data Using Imbalance Software Defect Prediction Dataset

(Deni Hidayat, Lindung Parningotan Manik)

473

TABLE I

IMBALANCE DATASET SOFTWARE DEFECT PREDICTION

Dataset N N- N+ IR d

MC2 125 81 44 1.840909 39

PC5 1711 1240 471 2.632696 38

KC1 1183 869 314 2.767516 21

JM1 7782 6110 1672 3.654306 21

KC3 194 158 36 4.388889 39

PC4 1287 1110 177 6.271186 37

CM1 327 285 42 6.785714 37

PC3 1077 943 134 7.037313 37

MW1 253 226 27 8.37037 37

PC1 705 644 61 10.55738 37

MC1 1988 1942 46 42.21739 21

PC2 745 729 16 45.5625 36

II. METHODS

Research methodology that will be used in this research is

testing 90 variants of oversampling techniques on 12 NASA

datasets for defect prediction software. Testing was carried

out by dividing the dataset into two parts, namely training data

and testing data. Then the training data was carried out using

an oversampling technique to be implemented in 5

classification models, namely Decision Tree (DT), k-nearest

neighbors (KNN), Linear Discriminant Analysis (LDA),

Logistic Regression (LR), Gaussian Naive Bayes (GNB). To

further optimize the model, hyperparameters are used in each

model. Next, the model was tested with testing data and

performance data was collected in the form of accuracy, f1-

score, auc-score and g-score.

The research steps are as follows: First, twelve NASA

defect prediction software datasets from the “D” collection

are selected, including CM1, JM1, KC1, KC3, MC1, MC2,

MW1, PC1, PC2, PC3, PC4, and PC5. Next, dimensionality

reduction is applied to decrease the time and computational

resources needed, as an excess of features does not necessarily

enhance a machine learning model’s performance and can, in

fact, increase training time and resource demands. Principal

Component Analysis (PCA), an unsupervised dimensionality

reduction method, is used in this step to transform high-

dimensional features into a smaller set of meaningful,

uncorrelated principal components, retaining essential

information from the original features. This reduction is

achieved by transforming features into new variables, or

principal components, that capture as much variance as

possible from the original data without being correlated with

each other. PCA determines these principal components by

calculating the covariance matrix of the original data, along

with the eigenvectors and eigenvalues that indicate each

component's explained variance. The dataset is then projected

into a lower-dimensional space by selecting the top n

eigenvectors, with n representing the desired number of

principal components.

In this research, the value of n is determined using random

search from {𝑛 ∈ ℕ|5 ≤ 𝑛 ≤ 𝑁} so that the best model

performance is achieved, where 𝑁 is the number of features.

Before being entered into the classifier, the selected

components are scaled into the interval [0,1] to avoid the

dominance of certain components using the equation.

𝑥𝑠 =
x − min(x)

max(𝑥) − min(𝑥)

Where xs is the scaled component, x is the original

component, and max(x) and min(x) are the maximum and

minimum of the original component.

The next steps in the research process involve splitting the

dataset into two parts, with 85% allocated for training data

and 15% for testing data. An oversampling technique is then

applied, using 90 distinct oversampling techniques to balance

the dataset. After this, a classification model is built using the

hyperparameters specified in Table II. The model is

subsequently tested using the testing data, and performance

metrics are retrieved from the test results to evaluate the

model’s effectiveness.

a) Accuracy

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

b) F1-score

𝑓1 =
𝑃𝑅. 𝑅𝐸

𝑃𝑅 + 𝑅𝐸

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

c) AUC-score (FPR)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

d) G-score

𝑔 =√
𝑇𝑃

𝑃
.
𝑇𝑁

𝑁

Next, the same evaluation was carried out, but the dataset

was divided into two types, namely with data amounts of less

than 1,000 and data amounts of more than 1,000 to see

whether there was an influence of the amount of data on the

overall comparison that had been carried out previously.

III. RESULT AND DISCUSSION

The research results that we will present below are divided

into 3 parts, namely the results for the entire dataset, the

results for the dataset with more than 1.000 data and the

results for the dataset with less than 1.000 data. The results

displayed will only show the top 10 highest of each data

performance, then the baseline results will also be presented,

 e-ISSN: 2548-6861

JAIC Vol. 8, No. 2, December 2024: 472 – 477

474

namely the dataset performance without using the

oversampling technique.

TABLE II.

TOP 10 ACCURACY RANKING FOR OVERALL DATASET

R Oversampling DT KNN LDA LR GNB Mean

1

SMOTE_ENN

0.7969

0.8396

0.8455

0.8401

0.847

0.8338

2

SPY

0.7998

0.8257

0.8546

0.8453

0.8311

0.8313

3

SMOTE_RSB

0.7944

0.8337

0.8458

0.8401

0.837

0.8302

4

kmeans_SMOTE

0.8023

0.8446

0.8268

0.8312

0.8355

0.8281

5

NRAS

0.8266

0.8489

0.8242

0.8047

0.827

0.8263

6

NEATER

0.7898

0.7995

0.8409

0.8392

0.8289

0.8197

7

AHC

0.7648

0.7996

0.8431

0.8538

0.8262

0.8175

8

SOI_CJ

0.7977

0.8402

0.8271

0.8208

0.801

0.8173

9

DSMOTE

0.8007

0.837

0.8107

0.802

0.7812

0.8063

10

MDO

0.7751

0.8221

0.7764

0.7999

0.7936

0.7934

Baseline (Origin)

0.7985

0.8358

0.8455

0.8401

0.8383

0.8316

TABLE III.
TOP 10 ACCURACY RANKING FOR DATASETS WITH MORE THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

SMOTE_ENN

0.7642

0.8342

0.8336

0.832

0.8334

0.8195

2

SMOTE_RSB

0.7635

0.8342

0.8342

0.832

0.8326

0.8193

3

SPY

0.7698

0.8258

0.8299

0.8332

0.8334

0.8184

4

kmeans_SMOTE

0.7639

0.8348

0.8212

0.8134

0.8316

0.813

5

NRAS

0.8259

0.8283

0.7959

0.7895

0.8037

0.8087

6

NEATER

0.7637

0.7786

0.8069

0.812

0.8135

0.7949

7

AHC

0.7384

0.7796

0.8217

0.8184

0.8098

0.7936

8

SOI_CJ

0.7608

0.818

0.8011

0.7941

0.7661

0.788

9

AMSCO

0.7309

0.7696

0.7925

0.7879

0.8003

0.7762

10

LVQ_SMOTE

0.7417

0.7744

0.7682

0.7644

0.81

0.7717

Baseline (Origin)

0.7609

0.837

0.8336

0.832

0.8334

0.8194

In general, in the results shown in tables II, III and IV, there

is no significant increase in accuracy between the results with

and without oversampling. Even only the SMOTE ENN

oversampling technique has better results than without

oversampling. Datasets less than 1.000 show a higher level of

accuracy on all classification models than datasets more than

1.000. Meanwhile, the F1-score results shown in tables V, VI

and VII, show no improvement between the results with and

without oversampling. The average of the results without

oversampling is still in the top 10 range. Datasets less than

1,000 show a much better F1-score than datasets more than

1,000 in all classification models.

TABLE IV.

TOP 10 ACCURACY RANKING FOR DATASETS WITH LESS THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

SMOTE_ENN

0.8296

0.8449

0.8575

0.8482

0.8606

0.8482

2

SOI_CJ

0.8345

0.8624

0.8531

0.8475

0.8359

0.8467

3

DSMOTE

0.8356

0.861

0.8553

0.8283

0.8434

0.8447

4

NEATER

0.816

0.8205

0.8749

0.8663

0.8443

0.8444

5

SPY

0.8299

0.8256

0.8794

0.8574

0.8288

0.8442

6

NRAS

0.8273

0.8696

0.8524

0.82

0.8502

0.8439

7

kmeans_SMOTE

0.8408

0.8543

0.8324

0.849

0.8395

0.8432

8

AHC

0.7912

0.8196

0.8646

0.8892

0.8426

0.8414

9

SMOTE_RSB

0.8252

0.8331

0.8575

0.8483

0.8415

0.8411

10

Stefanowski

0.8334

0.7424

0.827

0.8414

0.8411

0.8171

Baseline (Origin)

0.8361

0.8345

0.8575

0.8482

0.8431

0.8439

TABLE V.

TOP 10 F1-SCORE RANKING FOR OVERALL DATASET

R Oversampling DT KNN LDA LR GNB Mean

1

AHC

0.8043

0.7903

0.8184

0.8317

0.8043

0.8098

2

SPY

0.804

0.8002

0.8202

0.8149

0.804

0.8087

3

kmeans_SMOTE

0.8075

0.8124

0.8039

0.811

0.8075

0.8085

4

NEATER

0.7997

0.7976

0.8188

0.8236

0.7997

0.8079

5

NRAS

0.8048

0.8151

0.8119

0.7955

0.8048

0.8064

6

SMOTE_ENN

0.8144

0.8018

0.8038

0.7858

0.8144

0.804

7

MDO

0.791

0.815

0.7926

0.8103

0.791

0.8

8

SOI_CJ

0.7946

0.8038

0.8018

0.7949

0.7946

0.798

9

SMOTE_RSB

0.8004

0.7953

0.8042

0.7868

0.8004

0.7974

10

Stefanowski

0.8119

0.735

0.8017

0.8073

0.8119

0.7936

Baseline (Origin)

0.803

0.7971

0.8038

0.7858

0.803

0.7985

TABLE VI.

TOP 10 F1-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

SPY

0.772

0.8017

0.7883

0.7958

0.8009

0.7918

2

NRAS

0.7964

0.7949

0.7881

0.7862

0.7843

0.79

3

NEATER

0.7655

0.7793

0.7838

0.7903

0.7908

0.7819

4

kmeans_SMOTE

0.7636

0.7942

0.7802

0.7799

0.7883

0.7813

5

SMOTE_ENN

0.76

0.7888

0.7835

0.7761

0.7916

0.78

6

SMOTE_RSB

0.7591

0.7888

0.7842

0.7761

0.7893

0.7795

7

AHC

0.7477

0.7714

0.7901

0.7909

0.7858

0.7772

8

MDO

0.7416

0.8083

0.7624

0.7842

0.7762

0.7745

9

SOI_CJ

0.7592

0.7802

0.7787

0.7804

0.7737

0.7745

10

SSO

0.7365

0.7967

0.7793

0.7733

0.7813

0.7734

Baseline (Origin)

0.7571

0.7939

0.7835

0.7761

0.7916

0.7804

JAIC e-ISSN: 2548-6861

Comparison of Oversampling Techniques on Minority Data Using Imbalance Software Defect Prediction Dataset

(Deni Hidayat, Lindung Parningotan Manik)

475

TABLE VII.

TOP 10 F1-SCORE RANKING FOR DATASETS WITH LESS THAN 1,000

R Oversampling DT KNN LDA LR GNB Mean

1

kmeans_SMOTE

0.835

0.8307

0.8276

0.8421

0.8267

0.8324

2

AHC

0.7994

0.8091

0.8468

0.8724

0.8228

0.8301

3

NEATER

0.8011

0.8159

0.8537

0.8569

0.8086

0.8272

4

SPY

0.8291

0.7986

0.852

0.8341

0.807

0.8242

5

NRAS

0.8191

0.8353

0.8356

0.8047

0.8252

0.824

6

DSMOTE

0.8225

0.842

0.8327

0.7972

0.8199

0.8229

7

MDO

0.8231

0.8218

0.8227

0.8365

0.8059

0.822

8

SOI_CJ

0.829

0.8273

0.8249

0.8094

0.8155

0.8213

9

SMOTE_ENN

0.8215

0.8147

0.8242

0.7955

0.8372

0.8186

10

Stefanowski

0.8323

0.7515

0.8192

0.8452

0.8335

0.8163

Baseline (Origin)

0.828

0.8002

0.8242

0.7955

0.8144

0.8125

TABLE VIII.

TOP 10 AUC-SCORE RANKING FOR OVERALL DATASET

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.6604

0.6807

0.6558

0.6676

0.6335

0.6596

2

PDFOS

0.6376

0.6581

0.6558

0.6605

0.6154

0.6455

3

polynom_fit_SMOT
E_mesh

0.6382

0.6543

0.6613

0.6627

0.6028

0.6438

4

ROSE

0.6016

0.6735

0.6449

0.6594

0.617

0.6393

5

polynom_fit_SMOT
E_bus

0.6185

0.6442

0.6586

0.6678

0.5993

0.6377

6

SMOTE_Cosine

0.6216

0.6428

0.6596

0.6619

0.599

0.637

7

SVM_balance

0.6259

0.6178

0.6302

0.6724

0.6338

0.636

8

SMOTE_AMSR

0.6139

0.6587

0.6482

0.6401

0.6159

0.6354

9

polynom_fit_SMOT
E_star

0.5747

0.648

0.6589

0.666

0.6226

0.6341

10

Assembled_SMOTE

0.608

0.6432

0.6507

0.6606

0.6061

0.6337

Baseline (Origin)

0.5559

0.5287

0.5386

0.529

0.5477

0.54

TABLE IX.

TOP 10 AUC-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.6069

0.691

0.6342

0.6509

0.6345

0.6435

2

SVM_balance

0.6247

0.6337

0.6296

0.6444

0.6198

0.6304

3

ROSE

0.5943

0.6561

0.6426

0.6483

0.6054

0.6293

4

KernelADASYN

0.6031

0.6394

0.6439

0.6458

0.6049

0.6274

5

SMOTE_Cosine

0.5743

0.6676

0.6399

0.6423

0.5963

0.6241

6

polynom_fit_SMOT
E_bus

0.5699

0.6512

0.6417

0.651

0.5989

0.6225

7

polynom_fit_SMOT
E_mesh

0.5691

0.6505

0.6404

0.6444

0.6072

0.6223

8

Gaussian_SMOTE

0.5689

0.6665

0.6375

0.6472

0.5768

0.6194

9

PDFOS

0.5917

0.6274

0.6351

0.649

0.5908

0.6188

10

ANS

0.5967

0.5996

0.6332

0.6496

0.6137

0.6185

Baseline (Origin)

0.5355

0.5456

0.5341

0.5246

0.5539

0.5387

TABLE X.

TOP 10 AUC-SCORE RANKING FOR DATASETS WITH LESS THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.7139

0.6704

0.6774

0.6842

0.6324

0.6757

2

PDFOS

0.6836

0.6888

0.6765

0.672

0.6399

0.6722

3

polynom_fit_SMOT
E_mesh

0.7073

0.6581

0.6821

0.6809

0.5983

0.6654

4

SMOTE_AMSR

0.6475

0.7008

0.6427

0.6454

0.6408

0.6554

5

polynom_fit_SMOT
E_star

0.6044

0.6695

0.6766

0.6873

0.6314

0.6538

6

polynom_fit_SMOT
E_bus

0.6672

0.6372

0.6755

0.6846

0.5998

0.6529

7

SMOTE_Cosine

0.6688

0.618

0.6793

0.6816

0.6018

0.6499

8

Assembled_SMOTE

0.6392

0.6708

0.6627

0.669

0.6067

0.6497

9

ROSE

0.6089

0.6909

0.6471

0.6705

0.6286

0.6492

10

OUPS

0.6123

0.6857

0.6764

0.6678

0.6006

0.6486

Baseline (Origin)

0.5763

0.5118

0.543

0.5334

0.5415

0.5412

TABLE XI.
TOP 10 G-SCORE RANKING FOR OVERALL DATASET

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.6443

0.6632

0.6362

0.6549

0.6135

0.6424

2

polynom_fit_SMOT
E_mesh

0.6318

0.6425

0.6463

0.6516

0.5511

0.6247

3

SMOTE_AMSR

0.6097

0.6436

0.6402

0.6313

0.5802

0.621

4

polynom_fit_SMOT
E_bus

0.6035

0.6375

0.6507

0.6591

0.5376

0.6177

5

ROSE

0.5946

0.6631

0.629

0.6495

0.5464

0.6165

6

SMOTE_Cosine

0.6141

0.6297

0.6453

0.6507

0.5389

0.6157

7

PDFOS

0.6308

0.618

0.6409

0.6502

0.5318

0.6143

8

SVM_balance

0.6155

0.5989

0.5945

0.6612

0.5983

0.6137

9

Assembled_SMOTE

0.5824

0.6232

0.6379

0.6513

0.5489

0.6087

10

polynom_fit_SMOT
E_star

0.5106

0.6194

0.6494

0.6557

0.5851

0.604

Baseline (Origin)

0.3696

0.2019

0.2437

0.1787

0.2948

0.2577

TABLE XII.

TOP 10 G-SCORE RANKING FOR DATASETS WITH MORE THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.5845

0.6734

0.6035

0.6376

0.6103

0.6219

2

SVM_balance

0.6091

0.6185

0.5802

0.6373

0.5692

0.6029

3

KernelADASYN

0.5997

0.6181

0.629

0.6371

0.5228

0.6013

4

ROSE

0.5893

0.6494

0.6202

0.6376

0.5102

0.6013

5

SMOTE_AMSR

0.5768

0.6007

0.6414

0.6267

0.5534

0.5998

6

polynom_fit_SMOT
E_bus

0.558

0.645

0.6335

0.644

0.5172

0.5995

7

SMOTE_Cosine

0.5686

0.6616

0.618

0.6301

0.512

0.598

8

polynom_fit_SMOT
E_mesh

0.5636

0.6385

0.6169

0.6327

0.5311

0.5966

9

ANS

0.5771

0.5698

0.6072

0.639

0.5686

0.5924

10

SMOTE_FRST_2T

0.5357

0.6079

0.645

0.6316

0.5309

0.5902

Baseline (Origin)

0.3757

0.2591

0.2546

0.1967

0.3427

0.2858

 e-ISSN: 2548-6861

JAIC Vol. 8, No. 2, December 2024: 472 – 477

476

TABLE XIII.

TOP 10 G-SCORE RANKING FOR FOR DATASETS WITH LESS THAN 1.000

R Oversampling DT KNN LDA LR GNB Mean

1

Gazzah

0.7041

0.6529

0.6689

0.6722

0.6167

0.663

2

polynom_fit_SMO
TE_mesh

0.7

0.6465

0.6757

0.6705

0.5711

0.6527

3

PDFOS

0.6753

0.6504

0.6697

0.6633

0.5811

0.6479

4

SMOTE_AMSR

0.6425

0.6865

0.6391

0.6358

0.607

0.6422

5

polynom_fit_SMO
TE_bus

0.6489

0.6301

0.6679

0.6743

0.558

0.6358

6

SMOTE_Cosine

0.6596

0.5978

0.6726

0.6713

0.5658

0.6334

7

ROSE

0.5999

0.6768

0.6378

0.6614

0.5826

0.6317

8

OUPS

0.5885

0.6781

0.6709

0.6593

0.5498

0.6293

9

Assembled_SMOT
E

0.6141

0.6407

0.6572

0.6601

0.5646

0.6273

10

SVM_balance

0.6219

0.5793

0.6088

0.6851

0.6273

0.6245

Baseline (Origin)

0.3635

0.1446

0.2327

0.1607

0.2468

0.2297

TABLE XIV.

TOP 10 OVERALL RANKING FOR OVERALL DATASET

R

Oversampling

Acc

Rank

f1

Rank

auc

Rank

g Rank

Average

Rank

1

PDFOS

33

23

2

7

16.25

2

Gazzah

40

30

1

1

18

3

ROSE

61

31

4

5

25.25

4

Supervised_SMOTE

16

14

23

54

26.75

5

MDO

11

7

29

66

28.25

6

V_SYNTH

38

32

16

33

29.75

7

Gaussian_SMOTE

49

28

22

21

30

8

polynom_fit_SMOT

E_star

57

46

9

10

30.5

9

SSO

29

29

28

38

31

10

Assembled_SMOTE

59

47

10

9

31.25

60

Baseline(Origin)

2

8

89

90

47.25

TABLE XV.

TOP 10 OVERALL RANKING FOR FOR DATASETS WITH MORE THAN 1.000

R

Oversampling

Acc

Rank

f1

Rank

auc

Rank

g Rank

Average

Rank

1

Gazzah

40

29

1

1

17.75

2

Gaussian_SMOTE

34

31

8

19

23

3

SSO

15

11

22

52

25

4

SVM_balance

53

50

2

2

26.75

5

SL_graph_SMOTE

37

36

15

23

27.75

6

ProWSyn

36

34

13

33

29

7

PDFOS

48

45

9

17

29.75

8

ROSE

60

54

3

4

30.25

9

polynom_fit_SMO

TE_pol y

49

49

11

15

31

10

Borderline_SMOTE1

44

46

16

20

31.5

55

Baseline(Origin)

2

5

87

89

45.75

TABLE XVI.

TOP 10 OVERALL RANKING FOR FOR DATASETS WITH MORE THAN 1.000

R

Oversampling

Acc

Rank

f1

Rank

auc

Rank

g Rank

Average

Rank

1

PDFOS

30

27

2

3

15.5

2

Gazzah

39

33

1

1

18.5

3

cluster_SMOTE

17

18

13

38

21.5

4

Supervised_SMOTE

15

15

18

49

24.25

5

V_SYNTH

31

30

11

25

24.25

6

MDO

13

7

17

61

24.5

7

polynom_fit_SMOTE_
star

54

49

5

11

29.75

8

GASMOTE

19

24

27

55

31.25

9

polynom_fit_SMOTE_
bus

57

57

6

5

31.25

10

Lee

14

12

33

67

31.5

63

Baseline(Origin)

7

13

89

90

49.75

The AUC-score results shown in tables VIII, IX and X,

show a significant increase between the results with and

without oversampling. The AUC-score on the qualification

model without oversampling shows a very low number.

Datasets over 1,000 show a lower AUC-score than datasets

over 1,000 in all classification models.

Meanwhile, the g-score results shown in tables XI, XII and

XIII show a significant increase between the results with and

without oversampling. The g-score on the qualification model

without oversampling is at a very low value and far from the

average value. These results show that even without

oversampling it shows very good accuracy, but only on the

majority of data. Datasets over 1,000 show almost the same

g-score compared to datasets over 1,000 in all classification

models.

V. CONCLUSION

From the research findings, it is evident that none of the

oversampling techniques achieve the highest ranking across

all metrics—accuracy, F1-score, AUC-score, and G-score—

simultaneously. Techniques that rank high in accuracy and

F1-score tend to perform lower in AUC-score and G-score,

while those with high AUC-score and G-score rankings

exhibit moderate rankings in accuracy and F1-score. The

original dataset, without any oversampling applied, similarly

shows high accuracy and F1-score, but performs poorly in

terms of AUC-score and G-score. This pattern suggests that

oversampling techniques with the highest accuracy rankings

are often influenced by a high True Negative count, coupled

with a low True Positive count and a high False Negative rate.

Consequently, the techniques with higher overall rankings are

typically those that score well in AUC-score and G-score.

The Gazzah oversampling technique demonstrates strong

performance across datasets larger and smaller than 1,000

instances, outperforming the PDFOS technique in smaller

datasets even though PDFOS ranks higher overall. This

indicates that while PDFOS is effective, its performance on

JAIC e-ISSN: 2548-6861

Comparison of Oversampling Techniques on Minority Data Using Imbalance Software Defect Prediction Dataset

(Deni Hidayat, Lindung Parningotan Manik)

477

larger datasets is less consistent. Further research is essential

to develop oversampling techniques capable of improving all

key metrics—accuracy, F1-score, AUC-score, and G-score—

simultaneously, optimizing the balance between these

performance measures.

ACKNOWLEDGEMENT

We would like to thank Nusa Mandiri University for

providing tremendous support in our research.

DAFTAR PUSTAKA

[1] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr.,
“Does Bug Prediction Support Human Developers?Findings from a

Google Case Study,” 2013.

[2] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some

comments on the NASA software defect datasets,” IEEE Transactions

on Software Engineering, vol. 39, no. 9, pp. 1208– 1215, 2013, doi:

10.1109/TSE.2013.11.
[3] M. J. Siers and M. Z. Islam, “Software defect prediction using a cost

sensitive decision forest and voting, and a potential solution to the

class imbalance problem,” Inf Syst, vol. 51, pp. 62–71, 2015, doi:
10.1016/j.is.2015.02.006.

[4] S. Choirunnisa, B. Meidyani, and S. Rochimah, “Software Defect

Prediction using Oversampling Algorithm: A-SUWO,” 2018
Electrical Power, Electronics, Communications, Controls and

Informatics Seminar, EECCIS 2018, pp. 337–341, 2018, doi:

10.1109/EECCIS.2018.8692874.
[5] H. Ghinaya, R. Herteno, M. R. Faisal, A. Farmadi, and F. Indriani,

“Analysis of Important Features in Software Defect Prediction using

Synthetic Minority Oversampling Techniques (SMOTE), Recursive
Feature Elimination (RFE) and Random Forest,” Journal of

Electronics, Electromedical Engineering, and Medical Informatics,

vol. 6, no. 2, pp. 276–288, 2024.

[6] S. Feng et al., “COSTE: Complexity-based OverSampling TEchnique

to alleviate the class imbalance problem in software defect prediction,”

Inf Softw Technol, vol. 129, no. September, p. 106432, 2021, doi:
10.1016/j.infsof.2020.106432.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, no. February, pp. 321– 357,

2002, doi: 10.1613/jair.953.

[8] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview,”
Data Mining and Knowledge Discovery Handbook, no. May, pp. 875–

886, 2009, doi: 10.1007/978-0-387-09823- 4_45.

[9] V. López, A. Fernández, and F. Herrera, “On the importance of the
validation technique for classification with imbalanced datasets:

Addressing covariate shift when data is skewed,” Inf Sci (N Y), vol.

257, pp. 1–13, 2014, doi: 10.1016/j.ins.2013.09.038.
[10] T. Raeder, G. Forman, and N. V. Chawla, “Learning from Imbalanced

Data: Evaluation Matters,” Intelligent Systems Reference Library, vol.

23, pp. 315–331, 2012, doi: 10.1007/978- 3-642-23166-7_12.

[11] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An

insight into classification with imbalanced data: Empirical results and

current trends on using data intrinsic characteristics,” Inf Sci (N Y),
vol. 250, pp. 113–141, 2013, doi: 10.1016/j.ins.2013.07.007.

[12] T. Ryan Hoens and N. V. Chawla, “Imbalanced datasets: From
sampling to classifiers,” Imbalanced Learning: Foundations,

Algorithms, and Applications, pp. 43–59, 2013, doi:

10.1002/9781118646106.ch3.
[13] G. Kovács, “An empirical comparison and evaluation of minority

oversampling techniques on a large number of imbalanced datasets,”

Applied Soft Computing Journal, vol. 83, no. July, 2019, doi:
10.1016/j.asoc.2019.105662.

[14] M. Z. F. N. Siswantoro and U. L. Yuhana, “Software Defect Prediction

Based on Optimized Machine Learning Models: A Comparative
Study,” Teknika, vol. 12, no. 2, pp. 166–172, 2023, doi:

10.34148/teknika.v12i2.634.

[15] I. T. Jolliffe, “Principal components,” Data Handling in Science and
Technology, vol. 20, no. PART A, pp. 519–556, 1998, doi:

10.1016/S0922-3487(97)80047-0.

