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 Pneumonia is a very common respiratory infection in low- and middle-income 

countries and is still a leading cause of death, especially among children under five 

years old. Modern technologies, such as machine learning, offer significant potential 

in improving the automatic detection of pneumonia through chest X-ray (CXR) 

image analysis. This study aims to develop a more accurate pneumonia diagnosis 

system by evaluating various feature extraction methods. CXR datasets of 

pneumonia patients were resized to 180x180 pixels and balanced using the SMOTE-

Tomek technique. Three main approaches were investigated: direct classification 

using Support Vector Machine (SVM) on the SMOTE-Tomek balanced dataset, 

feature extraction using Sobel edge detection followed by SVM classification, and 

feature extraction using MobileNet-V2 followed by SVM classification. The results 

showed that Scheme 1 achieved 97% accuracy, Scheme 2 decreased to 95%, and 

Scheme 3 achieved the highest accuracy at 98%. The lower accuracy in Scheme 2 is 

due to the limitations of Sobel edge detection, which reduces the key features in the 

CXR image. On the other hand, the improvement in Scheme 3 is due to the effective 

feature extraction capability of MobileNet-V2. In conclusion, the choice of feature 

extraction method plays an important role in determining the accuracy of an 

automated diagnostic system. This study builds on existing research and is expected 

to make a significant contribution to the development of more accurate and efficient 

automated diagnostic systems, which can ultimately help reduce pneumonia-related 

mortality. 
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I. INTRODUCTION 

Mycoplasma pneumonia, or more commonly known as 

atypical pneumonia, is a respiratory infection caused by the 

bacterium Mycoplasma pneumoniae[1].This disease spreads 

through respiratory droplets containing bacteria and can lead 

to various respiratory issues, ranging from tracheobronchitis 

to upper respiratory tract disease and pneumonia. The most 

common symptoms of this infection include a persistent dry 

cough, fever, shortness of breath, and excessive fatigue[2]. 

Pneumonia is one of the deadliest diseases, causing high 

mortality among adolescents, especially in low- and middle- 

income countries[3]. Every year, many people die because 

they do not receive proper treatment at the right time. 

Children under five years old are particularly vulnerable to 

this disease, with about 95% of deaths occurring in 

developing countries. For instance, in 2015, approximately 

17,850 children under the age of five died from pneumonia in 

Bangladesh, meaning about three children every hour, 67 

children every day, and 24,300 children every year[4]. 

Pneumonia is often misdiagnosed due to a lack of adequate 

medical resources. Appropriate antibiotic treatment can be 

administered earlier if pneumonia can be diagnosed at an 

early stage. For diagnosing pneumonia, chest X-rays (CXR) 

are used to show the location of the infection and the extent 

to which it has spread in the lungs[5]. Radiologists analyse 

these CXR images to detect the presence of pneumonia or 

other lung diseases[6]. However, this process is time- 

consuming and challenging, as CXR images are sometimes 

unclear and blurry, which can lead to detection errors. 

In this modern technological era, a reliable diagnostic 

system is urgently needed to reduce mortality rates[7]. 
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Machine learning (ML) plays a major role in automatically 

detecting diseases, such as heart disease, breast cancer, and 

brain cancer. Using CXR images, ML models can be trained 

to develop a reliable automated pneumonia detection system 

and reduce the workload of radiologists. 

Research in 2021 by MD. Nahiduzzaman et al. used 

extreme learning machine (ELM) with a hybrid convolutional 

neural network-principal component analysis (CNN-PCA) for 

CXR pneumonia images, concluding with a classification 

recall value of 98% and an accuracy of 98.32% for multiclass 

pneumonia classification. For binary classification, a recall 

value of 100% and an accuracy of 99.83% were achieved[4].  

Research by Adnan Hussain in 2023 leveraged the 

capabilities of the VGG-16, DenseNet-201, and Efficient-B0 

models using transfer learning techniques to extract deep 

features from images, showing that the proposed system 

outperforms contemporary techniques in terms of precision, 

recall, F1 score, and accuracy (acc). The proposed method 

achieved 97% acc, while scoring 96%, 95%, and 97% in 

precision, recall, and F1 respectively[8]. 

Further research by Elene Firmeza Ohata et al., in 2021 

utilized various convolutional neural network (CNN) 

architectures trained on ImageNet, adapting them to act as 

feature extractors for X-ray images. The CNN was then 

combined with consolidated machine learning methods such 

as k-Nearest Neighbor, Bayes, Random Forest, multilayer 

perceptron (MLP), and support vector machine (SVM). The 

best-performing combination was DenseNet201 with MLP, 

which achieved 95.6% accuracy and F1 score[9]. 

Research in 2023 by Shuohan Xue and Charith 

Abhayaratne employed pre-processing techniques including 

lung segmentation to identify regions of interest, volume 

resampling, and a novel approach for extracting significant 

slices. This was followed by proposing region-aware 3D 

ResNet for feature learning. The backbone networks used in 

this research included 3D ResNet-18, 3D ResNet-50, and 3D 

ResNet-101, resulting in an overall accuracy of 90%[10]. 

From several research studies, it can be concluded that to 

improve ML model accuracy, proper feature extraction is 

crucial in identifying pneumonia or other lung diseases. Edge 

detection is one of the main feature extraction tools used in 

image analysis and pattern recognition. The Sobel operator is 

often used in edge detection due to its fast computation speed 

and good detection results. MobileNet-V2 is one of the pre- 

trained models that can be used for feature extraction. 

MobileNet-V2, in particular, is effective in object detection 

for various image modalities, including CXR images that may 

show signs of pneumonia. 

With many feature extraction methods available, we 

propose to examine the impact of various feature extraction 

methods in improving the classification accuracy of X-ray 

images for pneumonia detection. Thus, it is hoped that this 

research can significantly contribute to the development of a 

more accurate and reliable automated diagnosis system, and 

help reduce the mortality rate due to pneumonia. 

II. METHODOLOGY 

Data scientists have utilized various machine learning 

(ML) architectures to predict life-threatening diseases such as 

COVID-19, pneumonia, and heart disease using medical 

images over the past few decades. This research aims to 

accurately identify pneumonia from X-ray (CXR) images by 

leveraging the benefits of ML algorithms. 

 

 

Figure 1. Research Method 

As illustrated in Figure 1, the initial step in this study 

involves collecting CXR images from pneumonia patients and 

resizing them to 180x180 pixels to expedite the research 

process. To address class imbalance within the dataset, the 

SMOTE Tomek technique is employed, which combines the 

Synthetic Minority Over-sampling Technique (SMOTE) with 

Tomek links. 

Once the data is balanced, the study is conducted in three 

schemes. The first scheme involves direct classification using 

Support Vector Machine (SVM) on the SMOTE Tomek 

dataset. The second scheme incorporates feature extraction 

using the Sobel edge detection method prior to classification 

with SVM. The third scheme uses MobileNet-V2 for feature 

extraction before applying SVM classification. These three 

schemes are analysed and compared to determine the most 

effective method for classifying CXR images of pneumonia. 

The findings of this research are anticipated to make a 

significant contribution to the development of more accurate 

and efficient automatic diagnosis systems, ultimately helping 

to reduce pneumonia-related mortality rates. 

A. Datasets 

Chest X-ray (CXR) images for pneumonia were collected 

from the Women and Children's Medical Center in 

Guangzhou and are also available on Kaggle. This dataset 

contains 5,938 CXR images with resolutions ranging from 

400 to 2,000 pixels. 

The images are categorized into three groups: normal, 

bacterial pneumonia, and COVID-19. The current dataset 

consists of 1,281 X-ray images for COVID-19, 3,270 images 

for normal cases, and 3,001 images for bacterial pneumonia. 
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TABLE 1. 

UNBALANCED DATASETS 

Class Jumlah Data 

Covid-19 1.281 

Pneumonia Bacterial 3.270 

Normal 3.001 

 

 

Figure 2. Sample Data From the Dataset 

To address the imbalance, oversampling and 

undersampling techniques are applied using the SMOTE-

Tomek method. This strategy balances the dataset, bringing 

the total number of images to 9,810, with each class 

containing 3,270 images. Once the dataset is balanced, it is 

split into training and testing sets with an 80:20 ratio. This 

split ensures a robust training process, providing 7,848 

images for training and 1,962 images for testing, facilitating 

the development of a more reliable model for classifying 

normal, bacterial pneumonia, and COVID-19 cases. This 

image collection offers a broad range of resolutions and 

categories, providing a solid foundation for in-depth analysis 

and disease detection model development. It not only 

increases the amount of data available for medical research 

but also supports the advancement of better classification 

methods for the diagnosis and monitoring of respiratory 

diseases such as pneumonia and COVID-19. 

B. Data Normalization 

Since each image contains numerous intensity values, 

normalization is performed to reduce complexity without 

handling a very large number of pixels. This process involves 

scaling the range from 0-255 to 0-1 by dividing each pixel 

value by 128. This simplification aids in streamlining the 

image and accelerating the analysis process. 

C. Data Balancing 

SMOTE (Synthetic Minority Over-sampling Technique) 

and Tomek Links are employed in this study to address class 

imbalance[11]. SMOTE is an oversampling technique that 

increases the number of samples in the minority class by 

generating synthetic data from existing samples[12]. This 

technique works by randomly selecting samples from the 

minority class, finding their nearest neighbors, and creating 

synthetic data by interpolating between the sample and its 

neighbors with a random multiplier. In contrast, Tomek Links 

is an undersampling strategy that reduces the number of 

samples in the majority class. This method identifies pairs of 

samples from different classes that are nearest neighbors to 

each other[13]. These pairs, known as Tomek Links, are then 

removed from the majority class. In addition, data balancing 

with SMOTE-Tomek affects the performance of models 

trained with balanced data tend to perform better in terms of 

precision, recall, and f1-score, especially in detecting 

bacterial pneumonia and COVID-19 cases, which were 

previously underrepresented in the unbalanced dataset. This 

balancing also helps to reduce bias in the majority class, thus 

improving the model's ability to provide more accurate and 

fairer predictions for all classes. 

D. Split Data 

 The next step involves splitting the data into training and 

testing subsets using a stratified label method with an 80:20 

ratio after completing data preprocessing and handling class 

imbalance. Preparing data for machine learning models is a 

crucial step. The Train-Test Split method divides the 

processed data into two subsets: training data and testing data 

[14]. With an 80:20 ratio, 80% of the data is used to train the 

model, while the remaining 20% is used to evaluate the 

model's effectiveness. The stratified label method ensures that 

the class distribution in the original dataset is preserved in 

both subsets, so the test data accurately represents all classes. 

E. Feature Extraction with Edge Detection Sobel 

Sobel edge detection is a technique in image processing 

used to detect edges or changes in intensity within an 

image[15]. This technique employs the Sobel operator, which 

is a mask (or kernel) used to compute the gradient of image 

intensity in both horizontal and vertical directions[16]. The 

intensity gradients are used to highlight sudden changes in 

intensity, typically indicating the edges of objects within the 

image. The Sobel operator utilizes two 3x3 kernels applied to 

the original image to estimate the derivatives in the horizontal 

(Gx) and vertical (Gy) directions. 

 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

]   𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] 

 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

The two kernels (Gx and Gy) are convolved with the 

original image to produce two new images representing the 

intensity changes in the horizontal and vertical directions. 

The results of this convolution are used to calculate the 

gradient magnitude at each point (x, y) in the image using 

the formula(G). 

F. Feature Extraction with MobileNet-V2 

MobileNet-V2 is a type of Convolutional Neural Network 

(CNN) architecture designed for devices with low 

computational power, such as mobile phones and single- 

board computers[17]. It is an improvement over previous 

cellular network architecture. One of the main differences 
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between cellular network architectures and CNNs in general 

is the use of convolutional layers. 

 

Figure 3. Architecture oh linear bottleneck 

In MobileNet-V2, convolutional layers use filter thickness 

that matches the input image's thickness. This technique 

involves the use of depthwise separable convolutions, 

pointwise convolutions, linear bottleneck, and shortcut 

connections between bottlenecks. The MobileNet-V2 

architecture consists of several bottleneck layers, as 

illustrated in Figure 3. These bottleneck layers perform three 

main operations: 1x1 expansion, 3x3 depthwise convolution, 

and 1x1 pointwise convolution. Additionally, there is a 

residual connection feature when the input size is the same as 

the output size. MobileNet-V2 features 53 convolutional 

layers and one average pooling layer. These changes in 

MobileNet-V2 architecture enhance classification accuracy 

and detection speed compared to both MobileNet-V2 and 

traditional CNN architectures. 

G. Modeling using Support Vector Machine (SVM) 

Support Vector Machines (SVM) are a classification 

method that works by finding a hyperplane with the maximum 

margin[18]. The hyperplane can be either linear or non-linear 

depending on the data conditions. The hyperplane is 

determined by the margin, which is the closest distance 

between data points in each class to the hyperplane. SVM 

operates on the principle of linear classification, meaning it 

can separate classes that are linearly separable[19]. However, 

SVM has been extended to handle non-linear problems by 

introducing the concept of kernels in a higher-dimensional 

space. In this higher-dimensional space, the goal is to find the 

hyperplane that maximizes the margin between data classes 

According to Santosa (2007), the linear SVM classification 

hyperplane is denoted as follows[20]. 

 

𝑓(𝑥, 𝑤, 𝑏) = 𝑠𝑖𝑔𝑛(𝑊𝑇𝑋𝑖 + 𝑏) 

In SVM classification, the method involves finding the 

optimal hyperplane that acts as a separator between two data 

classes. To find the best hyperplane, the margin of the 

hyperplane is measured, and the maximum margin is sought. 

The margin is defined as the distance between the hyperplane 

and the closest patterns from each class[21]. The closest 

patterns to the hyperplane are referred to as support vectors. 

 

 

Figure 4 Structure of SVM 

Based on the equation in Figure 4, Structure of SVM for 

Two-Class Separation (+1 and -1) Based on the Hyperplane 

Line, if 𝑤𝑥1 + 𝑏 = +1 represents the supporting hyperplane 

for class +1 and 𝑤𝑥2 + 𝑏 = −1 represents the supporting 

hyperplane for class -1, then the margin can be calculated by 

finding the distance between the two supporting hyperplanes. 

Thus, the margin is given by: 

 

(𝑤𝑥1 + 𝑏 = +1) − (𝑤𝑥2 + 𝑏 = −1) => 𝑤(𝑥1 − 𝑥2)
= 2 

(
𝑤

||𝑤||
 (𝑥1 − 𝑥2)) =

2

||𝑤||
 

 

The largest margin can be found by maximizing the 

distance between the hyperplane and its closest points, which 

isu 1/ ‖𝒘 →‖. Hal ini dapat dirumuskan sebagai Quadratic 

Programming (QP) Problem. his can be formulated as a 

Quadratic Programming (QP) Problem. For linear 

classification in the primal space, the SVM optimization 

formulation is as follows: 

Xi, X2, …, Xn are independent variables or factors that 

influence the dependent variable. These factors could include 

technical indicators, fundamental data, or any other relevant 

metrics. 
1

min (||𝑤||
2

) 2
 

𝐺𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑌𝑖(𝑊𝑇 . 𝑋𝑖 + 𝑏) ≥ 1,    𝑖 = 1,2,3, … 𝑛 

This problem can be solved using various methods, one of 

which is the Lagrange Multiplier. 

 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑊𝑇𝑊

− ∑
𝑛

𝑖=1 
𝛼𝑖{𝑌𝑖[(𝑊𝑇 . 𝑋𝑖) + 𝑏] − 1} (𝑖

= 1,2,3, … . , 𝑙) 

𝛼𝑖 are Lagrange multipliers, which are either zero or positive 

(𝛼𝑖 ≥ 0). The optimal values of the above equation can be 

found by minimizing L with 𝑤 → and b, and maximizing L 

with 𝛼𝑖. To handle non-linear problems, SVM is modified by 

incorporating a kernel function. In non-linear SVM, first x 



               e-ISSN: 2548-6861  

JAIC Vol. 8, No. 2, December 2024:  332 – 340 

336 

data is first mapped by a function Փ(x) to a higher-

dimensional vector space. The hyperplane that separates the 

two classes can then be constructed in this higher-dimensional 

space. As illustrated in Figure 4, the function Փ maps each 

data point in the input space to a new vector space with higher 

dimensions (dimension 3), allowing the two classes to be 

separated linearly by a hyperplane. Commonly used kernel 

functions in SVM include: 

TABLE 2.  

KARNEL FUNCTION 

Linier 𝐾(𝑋𝑖, 𝑋𝑗) = 𝑋𝑇𝑋𝑗 𝑖 

Polynomial 
𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑋𝑇𝑋𝑗 + 𝑟)𝑝, 𝛾 > 0 𝑖 

 

Radial Basis 

Function (RBF) 

2 𝐾(𝑋𝑖, 𝑋𝑗) = exp[−𝛾||𝑋𝑖 − 𝑋𝑗||] , 𝛾 > 0 

Sigmoid 𝐾(𝑋𝑖, 𝑋𝑗) = tanh(𝛾𝑋𝑇𝑋𝑗 + 𝑟)  𝑖 

H. Evaluating Model 

A confusion matrix is a tool used in machine learning and   

statistics to assess the performance of classification 

algorithms[22]. It is a square matrix commonly used to 

summarize the results of a classification problem. The 

confusion matrix provides detailed insights into the correct 

and incorrect predictions made by a classification model. This 

tool is particularly useful for binary classification problems 

(two classes) but can also be applied to multi-class 

classification[23]. 

In a confusion matrix, there are four terms that describe the 

results of the classification process. As shown in Table II, 

these terms are True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). TP and TN indicate 

correct classification results, while FP and FN represent 

incorrect classification results. The formula for calculating 

matrix evaluated is shown in Table 2. 

TABLE 3.  

FORMULA OF MATRIX EVALUATION 

Precision 

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

Sensitifity 

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

= 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑓𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑓𝑖𝑡𝑦
  

Accuracy 

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

 

III. RESULT AND DISCUSSION 

This research utilizes the Google Colab platform, 

leveraging a T4 GPU with 15 GB for computational tasks and 

12 GB of RAM to facilitate data processing and training 

across the three research schemes. Additionally, data analysis 

is conducted using plot_pca_scatter to visualize the 

distribution of the data that will be classified. 

 

 
 

Figure 5. Plot Before Classification 

 

As seen in Figure 5, the data distribution is still biased, 

necessitating preprocessing. The preprocessing process 

begins with applying the SMOTE-Tomek technique to 

address the class imbalance issue. To balance the distribution 

of images across each class, the SMOTE-Tomek technique is 

utilized. At this stage, the initial dataset of 5,938 CXR images, 

with the following distribution: 1,281 images for COVID-19, 

3,270 images for normal cases, and 3,001 images for bacterial 

pneumonia, is transformed into a more balanced dataset. 

SMOTE-Tomek combines Synthetic Minority Over-sampling 

Technique (SMOTE) with Tomek Links. SMOTE generates 

synthetic samples for the minority class, while Tomek Links 

removes examples from the majority class that are close to the 

minority class. 

The process starts by reshaping the image data from a 4D 

format (batch, height, width, channels) to a 2D format with 

data.reshape(-1, 128 * 128 * 3). With this data shape, 

SMOTE-Tomek can apply oversampling and cleaning to 

correct class imbalance. The result from 

smote_tomek.fit_resample(data.reshape(-1, 128 * 128 * 3), 

labels) includes data_resampled and labels_resampled, where 

data_resampled represents the resampled images, and 

labels_resampled are the corresponding labels after 

balancing. This data is then reshaped back to the 4D image 

format with data_resampled.reshape(-1, 128, 128, 3) for 

further analysis. The class distribution after balancing is 

plotted to visualize the changes. 
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Figure 6. Before and After Balancing 

 

Figure 6. Before and After Balancing shows the result of 

SMOTE-Tomek with the initial data consisting of 5,938 CXR 

images: 1,281 X-ray images for COVID-19, 3,270 images for 

normal cases, and 3,001 images for bacterial pneumonia. This 

data was transformed into 9,810 images, with each class 

having 3,270 images, grouped into the resampled data. 

The first scheme of this study involves classifying the 

SMOTE-Tomek processed data using Support Vector 

Machine (SVM). SVM is an effective classification algorithm 

that separates data with a maximum margin. The data is split 

into training and testing sets using train_test_split with 

parameters test_size=0.2 to ensure that 20% of the data is used 

for testing, and random_state=42 for result consistency. The 

SVM model with a linear kernel is trained using the training 

data and tested on the testing data. 

 

 
 

Figure 7.Confusion Matrix Scheme 1 

 

The evaluation of this classification reveals highly 

satisfactory results, with an impressive accuracy rate of 97%. 

Additionally, the model achieved an average precision of 

97%, indicating a strong ability to correctly identify positive 

cases out of all positive predictions. The sensitivity, also at 

97%, demonstrates the model's effectiveness in correctly 

detecting positive cases among all actual positives. Similarly, 

the F1 score, which balances precision and recall, stands at 

97%, reflecting the model's consistent and reliable 

performance across various metrics. These results underscore 

the robustness of the model in accurately identifying and 

classifying the tested cases. 

For further visualization, the evaluation matrix shown 

below provides a clear depiction of the model's predictions 

compared to the actual labels. This matrix offers insights into 

how well the model predicts different classes within the 

dataset and highlights where classification errors occur. 

Building on the success of Scheme 1, Scheme 2 involves 

resampling data followed by feature extraction using Sobel 

edge detection. The initial step involves converting images 

from color (RGB) to grayscale. Each image in the dataset is 

converted to grayscale using cv2.cvtColor(img, 

cv2.COLOR_RGB2GRAY), which simplifies the images and 

focuses solely on pixel intensity. 

Next, Sobel edge detection is applied to extract edge 

features from the grayscale images. This process involves two 

stages: detecting horizontal and vertical edges. The horizontal 

gradient is computed using sobelx = cv2.Sobel(gray, 

cv2.CV_64F, 1, 0, ksize=5), while the vertical gradient is 

computed with sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, 

ksize=5). The horizontal and vertical gradients are then 

combined to obtain the total edge magnitude using sobel = 

np.hypot(sobelx, sobely). Finally, the edge magnitude is 

normalized to ensure pixel values fall within the range of 0 to 

255,using sobel = (sobel/sobel.max()* 255).astype(np.uint8). 

TABLE 4.  
FEATURE SOBEL EXTRACTION 

feature 0 1 … 16382 16383 

count 9806 9806 … 9806 9806 

mean 0.0 35.41 … 21.88 0.0 

std 0.0 0.000 … 37.47 0.0 

min 0.0 2.000 … 0.0 0.0 

50% 0.0 13.00 … 4.000 0.0 

max 0.0 255.0 … 255.0 0.0 

 

Sobel edge detection extraction results in the generation of 

16,383 features in the form of array data, which are then used 

for classification with the SVM (Support Vector Machine) 

algorithm. This process is designed to predict the label of each 

image based on the edge features extracted by the Sobel 

method. The classification outcomes, summarized in Table 3, 

indicate a satisfactory performance with accuracy, recall, and 

F1 score values of 95% each. These results suggest that 

combining Sobel edge detection with SVM is effective for 

classifying the sampled images. However, it is important to 

consider that while Sobel edge detection is effective in 

highlighting edges and can improve classification 

performance in some cases, it may not capture finer details 

necessary for more nuanced classifications, especially in 

medical imaging contexts where subtle texture and pattern 

recognition are crucial. 
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Figure 8. Confusion Matrix Scheme 2 
 

For further visualization, the evaluation matrix image 

below provides a clear overview of the model's predictions 

compared to the actual labels. This matrix helps us understand 

how well the model predicts various classes within the dataset 

and where classification errors occur. 

The third scheme involves feature extraction using the 

MobileNet-V2 architecture, an efficient convolutional neural 

network designed for resource-constrained environments. 

Initially, the SMOTE-Tomek balanced dataset is 

preprocessed to match the input format expected by 

MobileNet-V2 using the preprocess_input(data_resampled) 

function. This step ensures the data is correctly scaled and 

prepared for the model. Once the data is preprocessed, 

features are extracted from the images using a pre-trained 

MobileNet-V2 model by calling 

mobilenet.predict(data_resampled_preprocessed), generating 

feature vectors that encapsulate the essential characteristics of 

each image. After feature extraction, the dataset is split into 

training and testing sets using the 

train_test_split(features_resampled, labels_resampled, 

test_size=0.2, random_state=42) method, allocating 80% of 

the data for training and 20% for testing. The extracted 

features are then fed into an SVM model, which is trained 

using the svm.fit(X_train, y_train) function. 

To further refine the model for this specific classification 

task, additional custom layers are added on top of the 

MobileNet-V2 base model. A GlobalAveragePooling2D 

layer is applied to the output of the base model, reducing the 

spatial dimensions of the feature maps by averaging them. 

This layer not only flattens the feature maps into a 1D vector 

but also reduces the overall number of parameters, helping to 

prevent overfitting. Following this, a fully connected Dense 

layer with a softmax activation function is added, where the 

number of units corresponds to the number of output classes. 

This layer provides the final classification predictions for the 

task. Once the model architecture is defined, it is compiled 

using the Adam optimizer with a learning rate of 0.0001, and 

categorical cross-entropy is used as the loss function, which 

is suitable for multi-class classification problems. The model 

is then trained for five epochs using a batch size of 32, with 

the training process monitored on the validation set (split 

using X_test and y_test), ensuring that the model learns 

effectively from the data while generalizing well to unseen 

examples. 

TABLE 5. 

FEATURE MOBILENET-V2 EXTRACTION 

feature 0 1 … 1278 1279 

count 9806 9806 … 9806 9806 

mean 0.007 0.510 … 0.433 0.056 

std 0.049 0.660 … 0.581 0.233 

min 0.0 0.0 … 0.0 0.0 

50% 0.0 0.220 … 0.158 0.0 

max 1.134 4.491 … 3.488 3.950 

 

Feature extraction using MobileNet-V2 produces 1279 

features in the form of array data and then classified using the 

SVM (Support Vector Machine) algorithm. This 

classification process aims to predict the label of each image 

based on the extracted edge features. Evaluation of this 

classification scheme showed that the average values for 

precision, sensitivity, and F1 score were very satisfactory 

with 98% accuracy. This high level of accuracy and consistent 

metrics indicate that the model effectively captures and 

distinguishes between different classes, making it a robust 

tool for image classification tasks. The impressive 

performance highlights the effectiveness of MobileNet-V2 in 

extracting meaningful features and the efficacy of SVM in 

classification. 

 

 
 

Figure 9. Confusion Matrix Schame 3 

 

For further visualization, the evaluation matrix shown 

below offers a clear overview of the model's predictions in 

comparison with the actual labels. This matrix provides 

insights into the model's performance across different classes 

in the dataset, highlighting where classification errors occur 
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and illustrating how effectively the model distinguishes 

between different categories. 

TABLE 6. 

EVALUATED MODELS 

Scheme 1 

Class Precision Sensitifity F1-Score Accuracy 

Normal 0.97 0.98 0.98 0.97 

Bacterial- 
Pneumonia 

0.96 0.97 0.97 0.96 

Covid-19 0.98 0.95 0.96 0.96 

Scheme 2 

Class Precision Sensitifity F1-Score Accuracy 

Normal 0.94 0.97 0.95 0.95 

Bacterial- 

Pneumonia 

0.95 0.93 0.94 0.94 

Covid-19 0.97 0.96 0.96 0.96 

Scheme 3 

Class Precision Sensitifity F1-Score Accuracy 

Normal 0.98 0.99 0.98 0.98 

Bacterial- 

Pneumonia 

0.98 0.97 0.98 0.97 

Covid-19 0.99 0.99 0.99 0.99 

 

Table 6 shows the results of scheme 1 where the average 

values of precision, sensitivity and f1-score were good 

enough to classify normal, pneumonia-bacterial, and covid-

19 CXR images as 0.97, 0.96, 0.93 respectively. scheme 2 

showed a decrease with the results of normal, pneumonia- 

bacterial, and covid-19 CXR classification as 0.95, 0.940, and 

0.96 respectively. Scheme 3 showed the best results from the 

previous two schemes with the classification results of normal 

CXR, pneumonia-bacteria, and covid-19 being 0.980, 0.97, 

and 0.99 respectively. 

V. CONCLUSION 

This This research is a further development of previous 

studies in an effort to create a more accurate automated 

pneumonia diagnosis system, especially in areas with limited 

medical resources. Pneumonia, whether caused by 

Mycoplasma bacteria, viruses, or COVID-19, remains a 

serious threat, especially for children. One of the main 

challenges in identifying the disease is the quality of chest X- 

ray (CXR) images which are often unclear and limited 

medical resources. Through the application of machine 

learning technology, we seek to develop a model that is able 

to detect pneumonia more quickly and accurately, thereby 

easing the burden on medical personnel and potentially saving 

more lives. 

In this study, we extend the previous approach by 

processing the CXR dataset of pneumonia patients, resizing 

the images to 180x180 pixels to speed up the analysis process. 

We also addressed class imbalance in the dataset using the 

SMOTE-Tomek technique, which combines synthetic over- 

sampling (SMOTE) with Tomek linkage to obtain a more 

balanced class distribution. After the balancing process, we 

performed three different approaches to evaluate how feature 

extraction methods can affect the classification accuracy of 

CXR images. 

In the first approach, Support Vector Machine (SVM) was 

used directly on the balanced dataset. The results were 

satisfactory, with precision, sensitivity, and F1 scores 

reaching 0.976, 0.966, and 0.963 for the classification of 

normal, pneumonia-bacterial, and COVID-19 CXR images, 

respectively. Although these results demonstrate 

effectiveness, we believe that there are still opportunities for 

improvement with the use of more advanced techniques. 

The second approach involves applying Sobel edge 

detection before classification with SVM. While this method 

is simple and computationally efficient, it results in a slight 

decrease in accuracy, with precision, sensitivity, and F1 

scores of 0.953, 0.940, and 0.963, respectively. This reduction 

in performance is attributed to the loss of crucial information 

in the images. Sobel edge detection primarily focuses on 

highlighting the edges within an image, which can lead to the 

omission of important details necessary for accurate 

diagnosis. Specifically, Sobel edge detection may remove 

subtle texture patterns and fine details that are essential for 

distinguishing between different classes in chest X-ray (CXR) 

images. These fine details are critical in medical imaging for 

identifying nuances in lung pathology, which are often not 

well captured by edge detection alone. Thus, while Sobel edge 

detection can be useful for some applications, it may not be 

effective for tasks requiring detailed texture analysis and 

nuanced pattern recognition, as is the case in CXR image 

classification. 

The third approach uses MobileNet-V2, an artificial neural 

network architecture, for feature extraction before 

classification with SVM. The results of this approach showed 

the best improvement, with precision, sensitivity, and F1 

scores of 0.980, 0.966, and 0.986, confirming that MobileNet-

V2 is highly effective in extracting critical features required 

for more precise classification. 

With the results obtained, this study extends existing 

insights regarding the importance of feature extraction 

method selection in automated pneumonia diagnosis systems. 

The combined use of MobileNet-V2 and SVM with data that 

has been balanced using SMOTE-Tomek proved to be very 

effective, outperforming previous approaches. The 

contribution of this research is expected to serve as a 

foundation for further development in a more accurate and 

reliable automated diagnosis system, so that it can help reduce 

mortality from pneumonia, especially in areas with limited 

medical resources. 
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