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 This research classifies acoustic instruments using Convolutional Neural Network 

(CNN). We utilize a dataset from Kaggle containing audio recordings of piano, 

violin, drums, and guitar. The training set consists of 700 guitar, percussion, violin, 

and 528 piano samples. The test set contains 80 samples of each instrument. 

Features such as Mel spectrograms, MFCCs, and other spectral and non-spectral 

characteristics are extracted using the Librosa package. Three feature sets—

spectral-only, non-spectral-only, and a combined set—are employed to evaluate the 

efficacy of CNN models. Various CNN configurations are tested by adjusting the 

number of convolutional filters, learning rates, and epochs. The combined feature 

set achieves the highest performance, with a validation accuracy of 71.8% and a 

training accuracy of 76.9%. In comparison, non-spectral features achieve a 

validation accuracy of 68.4%, and spectral-only features achieve 69.3%. These 

findings highlight the benefits of using a comprehensive feature set for accurate 

classification. 
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I. INTRODUCTION 

Classifying musical instruments based on audio 

recordings is a fundamental challenge in Music Information 

Retrieval (MIR). There are practical applications of the 

classification of musical instruments in the development of 

musical aids, the recognition of sound patterns, and 

educational tools. Precise classification can help to improve 

interactive experiences in music education, enable automatic 

music transcription, and strengthen music recommendation 

systems. Nevertheless, the complex structure of audio 

signals containing spectral and temporal features poses 

considerable difficulties. Traditional methods frequently 

need help capturing these complex subtleties, resulting in 

below-optimal classification performance. 

Previous research has explored various methods for 

classifying musical instruments, with early methods 

primarily relying on classical machine-learning algorithms 

and handcrafted features. Spectral feature-based methods, as 

utilized in the research by [1], employed the IRMAS dataset 

for instrument classification. The classification techniques 

included logistic regression, decision tree classifiers, 

Support Vector Machine (SVM) classifiers, and 

unsupervised algorithms like K-means and hierarchical 

clustering. Among these, SVM outperformed the others, 

achieving an accuracy of 79%. In another study by [2], 

Indian musical string instruments, particularly struck and 

plucked instruments, were classified using audio features, 

feature selection techniques (MANOVA and Chi-square), 

and SVM classifiers with different kernels. The highest 

accuracy of 93.4% was achieved using the top 5 features 

selected by MANOVA and an SVM with a linear kernel. A 

different approach was proposed by [3], which used Mel 

Frequency Cepstral Coefficients (MFCC) as features and 

Gaussian Mixture Models (GMM) as the classification 

algorithm, achieving an overall accuracy of 86.98% in 

classifying ten different musical instruments. 

Deep learning methods have shown outstanding results in 

audio classification tasks in recent years. For instance, the 

YOLOv7 model used by [4] distinguished similar musical 
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instruments and evaluated performance on the PPMI dataset 

of 12 musical instrument classes, achieving the highest 

average accuracy of 86.7%. An RNN model combined with 

MFCC features, as used by [5], classified the emotions of 

musical instruments, demonstrating that the combination of 

MFCC and RNN provided greater accuracy in recognizing 

instrument emotion, with an accuracy rate of 89.3%. 

Machine learning and deep learning models have been 

examined for monophonic instrument recognition. Research 

by [6] compared K-NN, SVM, GMM, Artificial Neural 

Network (ANN), Convolutional Neural Networks (CNN), 

and RNN. Among these, CNN was the most accurate model 

for instrument classification, achieving a 96.82% accuracy 

rate. Additionally, the CNN model outperformed a previous 

feedforward neural network model in [7], achieving higher 

F1 scores across classes and an excellent ROC-AUC score 

of 0.999 for classifying 20 musical instrument classes using 

MFCC as input features. These experiments demonstrate 

that CNN can efficiently capture spectral and temporal 

patterns in audio data, outperforming conventional 

techniques.  

Mel-frequency cepstral Coefficients (MFCCs), chroma 

features, and spectral descriptors have been extensively used 

due to their ability to represent instruments' timbral 

characteristics accurately. For instance, MFCC proved more 

effective than the power spectrum in identifying Chinese 

musical instruments using Gaussian mixture models 

(GMM), as shown by [8]. Using MFCC features and CNN, 

[9] achieved high precision (93%) and F1 score (0.93) in 

identifying instruments in musical recordings.  

Previous research shows that the combination of MFCC 

and CNN produces higher accuracy in classifying musical 

instruments than other machine learning methods, such as 

SVM, or deep learning methods, such as RNN. However, 

further investigation into feature combinations and network 

architectures is needed to improve classification accuracy. 

This research aims to create and examine a CNN model 

capable of classifying acoustic musical instruments based on 

audio features, thereby significantly contributing to the 

Music Information Retrieval (MIR) field. At first, it aims to 

determine the most influential architecture of CNN for 

classifying musical instruments by conducting experiments 

with various combinations of spectral and temporal audio 

data. Furthermore, it analyzes the influence of several 

feature sets, such as exclusively spectral and exclusively 

temporal features, and their combination on the effectiveness 

of a CNN classification model. 

This research offers several advantages. The proposed 

method aims to achieve higher classification accuracy by 

systematically exploring and choosing feature combinations 

and CNN configurations. The outcomes of this research are 

expected to improve the accuracy and applicability of 

instrument recognition systems significantly. 

 

 

II. METHODS  

This research used an organized approach, shown in 

Figure 1, to develop and test a Convolutional Neural 

Network (CNN) model for classifying musical instruments 

using audio recordings. The approach begins with dataset 

collection, followed by a series of preprocessing processes to 

extract relevant features and handle class imbalances; after 

preprocessing, the CNNs Model was constructed, the 

features were selected, and its performance was evaluated. 

 
Figure 1. Research Overview 

A. Dataset Collection 

The dataset utilized in this research was obtained from 

Kaggle and includes audio recordings in WAV format for 

four different musical instruments: guitar, drums, violin, and 

piano [10]. The dataset was compiled from collecting data 

from the Pixabay site, as well as from a few other sites and 

open-source datasets. The training set consists of 700 sounds 

for guitar, 700 for drums, 700 for violin, and 528 for piano, 

as shown in Figure 2. The test set consists of 80 audio files, 

with 20 from each class.  

 
Figure 2. Dataset Label Distribution 

The sound files in this dataset have different lengths, 

sample rates, tracks, and widths. The lengths of these audio 

files are different. The smallest clip is 1.06 seconds long, 

and the longest is 128.06 seconds long. The length of the 

audio files is, on average, 20.86 seconds. The files also vary 

significantly in sample rate and the number of audio clips 

sent per second. The slowest sample rate can be taken is 
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16,000 Hz, and the fastest is 48,000 Hz. The average sample 

rate for all files is about 42,734.86 Hz, which shows that the 

dataset has a range of sound quality. Regarding the number 

of audio channels, most files are mono (single channel), with 

one channel being the smallest and two being the largest. 

The files have an average of 1.22 channels, suggesting that 

most are mono. However, there are also some stereo files. 

The sample width, which shows the many bits in the audio 

files, can be anywhere from 2 to 4 bytes. The dataset has an 

average sample width of 2.13 bytes, which means that most 

of the files have a bit depth of about 16 bits per sample. 

B. Preprocessing 

The following steps were undertaken to preprocess the 

audio data: 

1) Feature Extraction 

Fourteen features were retrieved from audio sources using 

the Librosa, Numpy, and Scipy packages, including spectral 

and non-spectral features. Spectral features can be 

determined from the frequency domain representation of the 

acoustic signal. These characteristics offer a glimpse into the 

sound's timbral characteristics. Non-spectral features either 

represent the statistical properties of the signal or are derived 

from the time-domain representation of the audio signal. 

There are nine spectral features extracted they are Mel 

Frequency Cepstral Coefficient (MFCC), Chroma Feature, 

Spectral Centroid, Spectral Bandwidth, Spectral Contrast, 

Spectral Rolloff, Spectral Flux, Spectral Flatness, and Zero 

Crossing Rate. Five non-spectral features were extracted: 

maximum amplitude, minimum amplitude, root mean square 

(RMS) energy, kurtosis, and skewness.   

MFCC is an audio file series of short-term power spectra 

[11]. MFCC is obtained by applying the 

librosa.feature.mfcc function to the logarithm of the Mel 

spectrogram. The feature.melspectrogram function in 

librosa computes the Mel spectrogram. It displays audio 

signals in the Mel scale, which approximates human hearing. 

Spectrogram settings include Mel band count (64) and 

frequency range (2000 Hz to half the sampling rate). 

librosa.power_to_db is used to logarithmically scale the Mel 

spectrogram, standardizing the feature values by limiting the 

amplitude range. To get the MFCC values, Librosa 

condenses the spectral envelope of the audio stream, 

capturing the timbral texture. In this research, 13 Mel-

frequency cepstral coefficients (MFCCs) were calculated, 

and their average, standard deviation, and variance were 

determined across a series of time frames.  

Chroma features represent the 12 distinct pitch classes 

included in the audio [11]. They are calculated using the 

librosa.feature.chroma_stft function.  

The center of mass of the spectrum is determined by 

calculating the spectral centroid [11]. It is calculated using 

the librosa.feature.spectral_centroid function. The 

weighted mean of the frequencies in the signal determines 

the central point of the frequency spectrum. The average 

value over periods is utilized. 

The spectral bandwidth measures the breadth of the 

spectrum [11] and may be determined using the function 

librosa.feature.spectral_bandwidth. It offers a concept of the 

spectrum of frequencies present. The average value is 

obtained from the time frames. 

The calculation of spectral contrast is performed using the 

librosa.feature.spectral_contrast function. It quantifies 

the variation in amplitude between the highest and lowest 

points in a sound spectrum, aiding in the differentiation of 

various sound qualities.  

Spectral rolloff refers to the frequency at which a certain 

percentage of the overall spectral energy is located[11]. The 

calculation is performed using the librosa 
feature.spectral_rolloff function, which offers 

information about the spectrum's asymmetry. The average 

value over periods is utilized. 

The Zero Crossing Rate measures the frequency at which 

the signal changes polarity, showing its rate of oscillation 

[12]. The computation is performed using the librosa 

feature.zero_crossing_rate function and the resulting mean 

value is extracted across time frames. 

Spectral flatness measures the level of evenly dispersed 

frequencies in a power spectrum. It is calculated by taking 

the ratio of the geometric mean to the arithmetic mean of the 

subbands [13]. The computation is performed using the 

librosa.feature.spectral_flatness function and the resulting 

mean value is used. 

The RMS energy, which quantifies a signal's loudness, 

can be calculated using the librosa feature.rms function. The 

value is the square root of the average of the squared 

amplitude values [12]. The average root mean square (RMS) 

value is used across time frames. 

The maximum and minimum amplitude features represent 

the highest and lowest values of amplitude in the signal, 

which indicate the audio's dynamic range. The maximum 

and minimum values are calculated using the max and min 

functions from the Numpy library applied to the audio 

signal. 

Spectral flux measures the speed at which the power 

spectrum varies, reflecting the magnitude of abrupt 

variations in the sound. The computation is performed using 

the librosa.onset.onset_strength function, and the 

resulting mean value is utilized. 

Kurtosis quantifies the degree of deviation from a normal 

distribution in a signal's amplitude distribution. It is 

computed using the scipy.stats.kurtosis function. 

Skewness quantifies the degree of asymmetry in a signal's 

amplitude distribution. It is computed using the 

scipy.stats.skew function. 

Features such as MFCCs, chroma, spectral centroid, 

spectral bandwidth, spectral contrast, spectral roll-off, zero 

crossing rate, RMS energy, and spectral flux are calculated 

by taking the average value across different time frames. 

Normalization decreases variability and accurately depicts 

the overall characteristics of the audio signal. 

1. Class Encoding 
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The instrument classes were converted into numerical 

values using a label encoder. This phase guarantees that the 

categorical labels are transformed into an appropriate format 

for model training. 

2) Under Sampling 

Class imbalance in a dataset happens when one or more 

classes have more instances than others (s). A significant 

difference in the number of majority and minority class 

instances, such as in a substantial class imbalance, may bias 

the results of classification tasks [12]. Random Under 

Sampling (RUS) was used to compensate for the class 

imbalance in the dataset. Under-sampling aims to balance 

the class populations by eliminating majority class 

examples. It consists of randomly picking and eliminating 

some examples from the majority class until the number of 

cases in each class is about equal. After resampling, each 

class had 549 samples, resulting in a balanced training 

dataset. 

3) Scaling 

Differences in the data range for each feature can cause 

the data to be poorly distributed and affect the classification 

results. Data normalization is performed to equalize all 

feature data ranges obtained. A Min-Max scaler was used to 

scale the features, bringing the data into the range of 0 to 1, 

using Equation 1 [13]. This scaling step is required to ensure 

that all features contribute equally to the model training 

process. 

  (1) 

 

4) Data Splitting 

The dataset was divided into training and testing sets in an 

80:20 ratio. The training set had 439 samples per class, 

while the test set featured 110 samples for each class. This 

split ensures that the model may be efficiently trained while 

evaluated on a different, unknown test set. 

C. CNNs Model Construction 

The architecture shown in Figure 2 consisted of two 

convolutional layers, each followed by a max-pooling layer 

to reduce the spatial dimensions and regulate overfitting. 

The initial convolutional layer employed a filter size 

equivalent to the number of evaluated units. Subsequently, 

the second convolutional layer doubled the number of filters. 

The ReLU activation function was used for non-linear 

transformations, and both layers employed a kernel size of 2. 

After convolution and pooling, the model was flattened 

and passed through a dense layer with 50 neurons and a 

ReLU activation function. A softmax activation function 

was employed to generate class probabilities in the final 

layer, composed of four neurons, each corresponding to one 

of the four instrument classes. 

The Adam optimizer was employed to compile the model, 

adjusting the learning rate by the specified configurations. 

Sparse categorical cross-entropy was selected as the loss 

function for our multi-class classification problem. The 

models were trained on the training dataset with a batch size 

of 32 and subsequently evaluated on the validation dataset 

after each epoch to monitor performance and overfitting. 
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Figure 3. CNNs Model Architecture 

D. Parameter Tuning 

Adjusting the number of convolutional filters, learning 

rates, and epochs allows for various CNN configurations. To 

be more precise, we conducted experiments with filter units 

of 128, 256, and 512, learning rates of 0.0001, 0.001, and 

0.01, and training epochs of 50, 75, and 100. By 

systematically testing these combinations, we identified the 

optimal parameters for our classification task.  

A sequential CNN model was developed for each 

configuration. Each combination of these parameters was 

tested separately, doing a full grid search to observe the 

CNN's performance across many configurations. 

E. Features Selection 

Our research implemented three distinct experiments to 

assess the influence of diverse audio feature sets on the 

functionality of our CNN-based musical instrument 

classification system. The Librosa package was employed to 

extract the features, and each experiment concentrated on a 

distinct combination of these features. 

The first experiment was exclusively concerned with 

spectral features. These features are particularly effective in 

capturing audio signals' frequency content and temporal 

characteristics, which are essential for distinguishing 

between various musical instruments. The CNN model was 

trained and tested using these spectral features to evaluate its 

standalone effectiveness in the classification assignment. 

The spectral features were left out of the second 

experiment, and instead, other pertinent audio features were 

employed. These nonspectral features offer supplementary 

information regarding the audio signal's complexity, 

dynamics, and distribution. This investigation aimed to 
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ascertain the classification performance when these non-

spectral features were exclusively employed. 

The third experiment integrated spectral and non-spectral 

features to establish an exhaustive feature set. This method's 

objective was to capitalize on the advantages of both types 

of features, thereby delivering a more comprehensive 

representation of the audio signals. This research aimed to 

optimize the CNN model's utilization of information by 

integrating all available features, which could enhance its 

classification accuracy and robustness. 

The same CNN architecture, shown in Figure 2, was 

employed in each of these experiments, and the parameters 

were varied by the previously specified protocols for 

training and testing. Subsequently, the results were 

contrasted to ascertain which feature set demonstrated the 

most effective performance. 

F. Model Evaluation 

The accuracy and loss were documented during the 

training procedure for both the training and validation sets. 

These metrics were plotted to identify potential overfitting 

or underfitting issues and visualize the learning curves. 

The performance of a classifier model can be evaluated by 

comparing the predicted labels with the actual data labels. 

This information can be summarized in a table called the 

confusion matrix. The matrices emphasized the occurrences 

of correct and incorrect classifications, which facilitated our 

comprehension of prevalent misclassification patterns and 

the further refinement of the model. The confusion matrix 

summarizes the amount of data that was correctly or 

incorrectly predicted by the classifier using the True Positive 

(TP), False Positive (FP), False Negative (FN), and True 

Negative (TN). 

While the confusion matrix already provides the 

information needed to determine how well a classification 

model performs, summarizing this information into a single 

number in the form of an accuracy value makes it easier to 

compare the relative performance of different models. The 

accuracy value calculates the overall ratio of the amount of 

data that correctly predicted the class to the total number of 

predictions. Equation 2 is used to calculate the accuracy 

value[14]. 

  (2) 

 

Precision measures how many positive predictions are 

true positives. The precision value is the ratio between true 

positives and the amount of data predicted to be positive. 

Equation 3 can be used to calculate the value of precision 

[14]. 

  (3) 

 

The recall value measures how many positive cases the 

classifier correctly predicted overall positive cases in the 

data. It can be calculated by comparing the actual positive 

value with the amount of positive data. Equation 4 can be 

used to calculate the recall value [14]. 

  (4) 

 

F1-Score or F1-Measure is a measure that combines 

precision and recall. F1-Score can describe the harmonic 

mean of precision and recall. A high F1-Score value 

represents high precision and recall values as well. Equation 

5 is used to calculate the F1 Score [14]. 

  (5) 

The macro average scores were calculated by averaging 

these metrics across all courses, which allowed for a fair 

assessment of the model's performance on various 

instruments. 

III. RESULTS AND DISCUSSIONS 

This research evaluated the performance of CNN models 

for musical instrument classification using three different 

feature sets: all features combined, spectral features only, 

and non-spectral features only. The results were assessed 

using a variety of critical metrics, such as macro average 

precision, recall, F1-score, validation loss, and accuracy. 

CNN models demonstrated a remarkable overall 

performance when employing the complete feature set of 

spectral and non-spectral features. The optimal configuration 

for this feature set was attained by utilizing 512 units, a 

learning rate of 0.01, and 75 epochs, resulting in a training 

accuracy of 76.9% and a validation accuracy of 71.8%. The 

macro average precision, recall, and F1-score for this 

configuration were 70.3%, 71.8%, and 67.7%, respectively, 

as shown in Figure 4, emphasizing a balanced performance 

across all classes.  

 

 
 

Figure 4. Classification report on CNNs model, which uses complete feature 

sets. 

 

The combination of spectral and non-spectral data yielded 

superior results in classifying musical instruments using 

Convolutional Neural Networks (CNNs). Several things can 

be attributed to this. Spectral features capture the frequency-

domain information essential for understanding a musical 

instrument's timbral qualities. The mentioned features 

include Mel Frequency Cepstral Coefficients (MFCCs), 

spectral centroid, spectral bandwidth, spectral contrast, 

spectral rolloff, and chroma features, among other 

characteristics. Conversely, non-spectral features offer 

additional information about audio signals' time-domain and 
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statistical characteristics, including RMS energy, zero-

crossing rate, kurtosis, and skewness. By incorporating these 

characteristics, a thorough depiction of the audio signals is 

achieved, covering both the spectral composition and the 

range of sound intensity. 

Combining several features results in a more equitable 

performance across diverse instrument categories. The 

results indicate that the macro average precision, recall, and 

F1-score are more significant when using the combined 

feature set than when employing spectral or non-spectral 

features individually. This suggests the model consistently 

performs well classifying various instrument types, 

minimizing the chances of biased or distorted categorization. 

 

 
Figure 5. Training and validation performance of CNNs model, which uses 

complete feature sets. 
 

The training and validation performance visualizations in 

Figure 5 show the model's learning process, which spans 75 

epochs. The validation accuracy stabilized at approximately 

72%, while the training accuracy progressively increased, 

reaching approximately 77%. The training loss consistently 

decreased, suggesting that learning was practical. However, 

some fluctuations in the validation loss indicate the 

possibility of overfitting in specific epochs. 

 
Figure 6. The confusion matrix of the CNN model uses complete feature 

sets. 

 

The confusion matrix shown in Figure 6 revealed that the 

model correctly classified 11 instances of Guitar Sound but 

misclassified 98 instances as Piano Sound. It accurately 

identified 108 instances of Drum Sound, with minimal 

misclassifications. Violin Sound had 107 correct 

classifications with only a few errors. Piano Sound showed 

many correct classifications (90) but also some confusion 

with Guitar Sound and other classes. 

Models trained exclusively with spectral features, 

including the Mel spectrogram, MFCCs, chroma, and other 

spectral parameters, also demonstrated satisfactory 

performance; however, they could not duplicate the levels 

attained by the comprehensive feature set. The most 

effective configuration in this category achieved a training 

accuracy of 79.8% and a validation accuracy of 69.3%. The 

details of validation performance can be seen in Figure 6. 

The training accuracy showed an increasing pattern, 

reaching almost 80%, whereas the validation accuracy 

displayed fluctuations before stabilizing at around 69.3%. 

The disparity between the model's accuracy on the training 

and validation data indicates the presence of overfitting. 

Overfitting occurs when the model performs well on the 

training data but needs to generalize better to unknown 

validation data. The training loss exhibited a continuous 

decline, whereas the validation loss increased at a certain 

point, providing further evidence of overfitting. This 

configuration consisted of 128 units with a learning rate 

0.001 and 75 epochs. The spectral feature set still offered 

substantial information for classification despite marginally 

higher loss values than the all-features model.  
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Figure 7. The training and validation performance of the CNNs model uses 

only spectral feature sets. 

 

The macro average precision, recall, and F1-score were 

63.9%, 65.0%, and 64.2%, as shown in Figure 8. The 

precision, recall, and F1 scores of each class—Guitar Sound, 

Drum Sound, Violin Sound, and Piano Sound—are 

displayed in the classification report. With a precision of 

0.97, recall of 0.98, and an F1-score of 0.98, the Violin 

Sound class achieved the highest scores, suggesting that the 

model can accurately identify violin notes. The Drum Sound 

class also demonstrated exceptional performance, with 

scores ranging from 0.96 to 0.97. Nevertheless, the Piano 

Sound and Guitar Sound classes had substantially lower 

scores, with the Piano Sound class having a precision of 

0.25, a recall of 0.18, and an F1 score of 0.21. This implies 

that the model encountered difficulty in differentiating piano 

notes from those of other instruments. 

The confusion matrix shown in Figure 9 offers more 

information regarding the model's performance. The model 

accurately classified 51 instances of Guitar Sounds but 

misclassified 58 as Piano Sounds. The notable 

misclassification of Guitar and Piano Sounds underscores a 

potential opportunity for enhancement. The identification of 

the Drum and Violin Sounds was accurate in most cases, 

with only a few misclassifications. Nevertheless, the Piano 

Sounds were frequently misidentified as Guitar Sounds (86 

occurrences), highlighting the model's challenge in 

differentiating between these categories. 

 
Figure 8. A classification report on the CNN model uses only spectral 

feature sets. 

 

 

 
Figure 9. The confusion matrix of the CNN model only uses spectral feature 

sets. 

 

Among the three feature sets, the CNN models that only 

employed non-spectral features, such as statistical measures 

of MFCCs, amplitude-based features, and various measures 

of the audio signal's dynamics and complexity, exhibited the 

lowest performance. The configuration that demonstrated the 

highest performance, which consisted of 128 units, a 

learning rate of 0.001, and 75 epochs, attained a validation 

accuracy of 68.4% and a training accuracy of 75.5%. The 

loss values for these models were higher, suggesting that the 

learning process was less efficient. The training and 

validation performance can be seen in Figure 9. The training 

accuracy steadily improves, reaching around 75.5%, while 

the validation accuracy peaks at approximately 68.4%. The 

validation accuracy fluctuates more than the training 

accuracy, indicating potential overfitting where the model 

performs well on training data but less consistently on 

unseen validation data. The loss curves highlight this further, 

with training loss decreasing continuously, whereas 

validation loss decreases initially but then shows variability, 

reflecting the challenges in generalizing the learning. 
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Figure 10. The training and validation performance of the CNNs model uses 

only nonspectral feature sets. 

 

Precision, recall, and F1-score were 66.5%, 66.4%, and 

66.2%, respectively, for the macro average, as shown in 

Figure 10. The classification report indicates that the model 

attained a 66% overall accuracy across the four categories: 

Guitar Sound, Drum Sound, Violin Sound, and Piano Sound. 

The precision, recall, and F1-score metrics for each class 

provide insights into the model's capacity to accurately 

classify different types of sounds. The model performs 

exceptionally accurately in classifying drum sounds, 

achieving a precision of 0.95, recall of 0.90, and F1-score of 

0.93. These metrics indicate a high level of dependability 

and consistency in this particular category. On the other 

hand, the model has difficulties reliably detecting Guitar 

Sounds, as noted in a precision of 0.42, recall of 0.35, and 

F1-score of 0.38. The performance metrics of Violin Sounds 

and Piano Sounds are both at an intermediate level, with 

Violin Sounds exhibiting comparatively high scores and 

Piano Sounds displaying moderate scores. 

The confusion matrix in Figure 12 shows a substantial 

misclassification rate for guitar sounds, frequently predicted 

as piano sounds. Conversely, the model's robustness in this 

category is illustrated by the fact that Drum Sounds are 

predominantly classified accurately. The classification of 

violin sounds is also highly accurate, although there are 

occasional misclassifications as drum sounds. Piano Sounds 

demonstrate a balanced distribution of correct and incorrect 

classifications, with errors dispersed across all other 

categories. Non-spectral features provide vital information 

regarding the distribution and dynamics of the audio signals; 

however, they do not capture the detailed frequency content 

that spectral features do, which is crucial for high-accuracy 

classification. 

 
Figure 10. A classification report on the CNN model uses only spectral 

feature sets. 

 
Figure 12. The confusion matrix of the CNN model only uses spectral 

feature sets. 

 

Multiple configurations of the CNN model were 

evaluated by modifying factors such as the number of 

convolutional filters, learning rates, and epochs. Based on 

the performance of different configurations, an evaluation 

was conducted to determine the most effective arrangement 

for the classification task. The quantity of filters also 

increases the model's ability to acquire more intricate 

patterns in the data. The peak performance was attained 

using 512 filters, which offered ample capacity to capture 

detailed features in the audio signals without experiencing 

overfitting. 

The learning rate controls the speed at which the model 

updates its weights during training. A learning rate of 0.01 

was optimal, balancing convergence speed and stability. 

This learning rate allowed the model to learn effectively 

without causing large oscillations in the loss function. 

The model achieved optimal results after being trained for 

75 epochs. The time was adequate for the model to acquire 

the underlying patterns in the data without succumbing to 

overfitting. The training and validation performance curves 

show that the validation accuracy reached a plateau at 

approximately 71.8%, indicating that further epochs did not 

result in substantial enhancements and may have caused 

overfitting. 
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IV. CONCLUSION 

In this study, we investigated the efficacy of 

Convolutional Neural Networks (CNNs) in classifying 

acoustic instruments by utilizing a variety of audio feature 

sets. Our objective was to determine the most effective CNN 

configurations for this classification task by methodically 

adjusting the number of convolutional filters, learning rates, 

and epochs. 

Combining spectral and non-spectral features significantly 

improves the performance of CNNs for classifying musical 

instruments, as shown by the results of this research. 

Spectral features, which record the frequency-domain 

features of audio data, give us essential information about 

how instruments sound. On the other hand, non-spectral 

features add important information from the time domain 

and statistical traits, which helps the model understand how 

dynamics and amplitude change. This combination leads to 

better accuracy in classifying sounds and more even 

performance across all instrument types. This shows the 

importance of using an integrated feature selection method 

when making deep learning models that work well for 

complex audio tasks. 

The study of different CNN configurations shows that 

carefully tuning model parameters is the key to getting the 

best results in classifying musical instruments. We got the 

best results using 512 convolutional filters, a learning rate 

0.01, and 75 epochs.  This model obtained a validation 

accuracy of 71.8% and a training accuracy of 76.9%. The 

performance of this configuration was balanced and robust, 

as evidenced by the macro average precision, recall, and F1-

score of 70.3%, 71.8%, and 67.7%, separately. The number 

of chosen filters lets the model pick out fine details, and the 

learning rate selected makes convergence steady and 

reliable. The training period was long enough to keep the 

model's performance stable, which led to solid classification 

accuracy. These results show how important it is to fine-tune 

CNN settings to get the most out of the model's ability to tell 

the difference between things and generally do well in 

complex classification tasks. 
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