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 Buildings with cracks are extremely hazardous because they have the potential to 

cause destruction. Numerous occupants of structures such as houses and buildings 

are at risk when cracks appear. There are numerous techniques for identifying 

fractures in structures, including visual inspection, tool use, and expert inspection. 

The present study employed computer vision, a form of artificial intelligence, to 

detect cracks in buildings. This research aims to improve the accuracy of the crack 

detection model. The technique used is to perform a feature extraction process using 

a deep learning architecture, and then the features will be processed by a machine 

learning algorithm for image classification. Pre-processing was carried out using 

CLAHE to increase image sharpness in the crack area prior to the feature extraction 

process. In this study, the feature map produced by feature extraction was not 

processed using a fully connected layer. However, for the classification process, it is 

processed by a machine learning algorithm. This research employs MobileNetV2 as 

its deep learning architecture and K-NN, Naive Bayes, SVM, XGBoost, and Random 

Forest as its machine learning classifiers. Test results show that when dividing the 

80:20 dataset, XGBoost algorithms can produce the highest accuracy, sensitivity, 

and specificity values of 99%. Tests in the real environment are performed by 

deploying Raspberry Pi. Test results show that the prototype can detect cracks in the 

structure surfaceat a distance of 10 meters in a bright environment. The crack 

detection process is carried out in real time at an average speed of 42fps. 
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I. INTRODUCTION 

Building construction without knowing this poses a high 

risk. If these buildings are not maintained, the building's 

structural strength will decrease rapidly and the building will 

be damaged rapidly. Reduce or prevent damage to buildings 

should be done regularly. One damage often found in 

buildings is the crack on the surface of the walls [1]. 

Therefore, the cracks in building walls must be detected early 

so as not to cause greater damage. 

The detection of structural cracks is very important to 

ensure the safety and reliability of structural structures. 

Cracks in buildings are signs of structural problems that 

require repair. There are several ways to detect structural 

cracks, such as regular visual inspections, crack measurement 

tools, and expert inspections [2][3]. The conventional 

methods of finding structural cracks require a lot of money 

and take a long time. Visually verifying structural fractures 

requires constant accuracy and attention. Meanwhile, average 

people only focus in the first 20 minutes [4]. Of course, this 

condition is less practical when the building is large and 

space-saving. 

Another method that can be used to detect wall cracks is 

using a camera. A camera or smartphone takes a picture of the 

crack and then uses artificial intelligence technology to 

process it [5][6]. The model accuracy for crack detection was 

still relatively low in previous research [7]. Therefore, the aim 

of this research is to establish a classification system of 

structural defects that has high accuracy using computer 
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vision technology. Computer vision technology has the 

advantage of being able to monitor in real time, detection 

processes are fast, and measurement results are accurate 

because they are trained from thousands of data [8].  

Previously, there were several studies examining the 

construction of crack detection using artificial intelligence 

technology. One of them is the study of concrete structures to 

detect cracks using deep learning [9]. The algorithms used are 

the Convolutional Neural Networks (CNNs) using the 

VGG16 pre-selected model. There are three methods for 

processing images used in the preprocessing, namely 

grayscale, thresholding and edge detection. The test results 

showed that the best accuracy was 98% in a total of 20 

periods. 

The next research is to use deep learning to detect damage 

to buildings in real time [10]. The research used version 3 of 

You Only Look Once (YOLOv3) algorithm. The test data 

showed a precision value of 94.24% and a detection speed of 

0.033 seconds. Then research into crack detection on concrete 

surfaces using U-Net and DeepLabV3+ [11]. Comparing U-

Net and DeepLabV3+ architectures showed that U-Net's 

accuracy was higher than 96.47% when detecting cracks on 

concrete surfaces. 

Damage to building structures can be caused not only in 

buildings, but also in pavement. Research into the application 

of deep learning for detecting paving cracks has produced 82 

per cent recall values and 83 per cent mFscore [12]. The 

method used in this study is to segment semantically by 

changing the U-Net architecture. In addition to pavement, 

crack detection is also useful for monitoring bridge age. The 

study on bridge crack detection gave 96% accuracy and 

precision [13]. This study uses a Single-shot Multibox 

Detector (SSD), which has additional parameters in the form 

of sliding windows. 

In previous research, deep learning and computer vision 

have been used to detect structural cracks. However, the 

model built is only program code, and has not yet reached the 

stage of deployment in embedded devices. In previous 

research, the accuracy value was less than 90% and models 

were still overfit. The research aims to improve the accuracy 

of the construction crack detection by using deep learning and 

mechanical learning. Deep learning is used to extract features, 

while machine learning algorithms are used to classify. 

The research uses a pre-trained MobileNetV2 model that is 

the most accurate to detect wall cracks [14]. In the meantime, 

five machine learning algorithms, K-NN, Nave Bayes, SVM, 

XGBoost, and Random Forest, are used. One of the 

improvements in this study is the deployment process. The 

most accurate model will be deployed on embedded devices 

for use in real environments. 

II. METHODS 

The methodology used in this research is shown in Figure 

1. The novelty of other research is that the feature extraction 

process uses pre-trained MobileNetV2 models, while 

classification processes use machine learning algorithms. 

There are two scenarios used to achieve the best accuracy. In 

the first scenario, the data set is divided into 70% of training 

data and 30% of test data. The second scenario divides the 

data sets into 80% training data and 20% test data. 

 

 
Figure 1. Proposed Method 

A. Data Augmentation 

Data used in this research is publicly available Structural 

Defect Network (SDNET) 2018 database [15]. It consists of 

500 images of cracked and uncracked concrete walls. These 

images are 256x256 pixels standardized resolution. Figure 2 

shows an example of the presentation of a set of data in the 

class of damaged walls. 

 
Fig.2. Cracked Wall from SDNET 2018 Database 

 

In order to avoid overfitting in image acquisition, one 

method is to use data augmentation techniques to increase the 

number of datasets in order to improve the image recognition 

of the system [16][17]. In the structural defects images 

analysis task, convolutional networks proved very well with 

large datasets [18]. The techniques used in this research were 

rescale, shear, zoom and flip [19]. 

TABEL I 
NUMBER OF DATASETS AFTER AUGMENTATION 

Data 
Before 

Augmentation 

After 

Augmentation 

Cracked 500 1.000 

Non-Cracked 500 1.000 

Total 1000 2.000 

 

The augmentation process yielded a total of 2000 data 

samples consisting of 1000 samples classified as cracked and 
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1000 samples classified as non-cracked. Therefore, the 

quantity of data available to us is equitable. Table I presents 

information on the number of files after augmentation. 

B. Preprocessing 

SDNET 2018 Datasets include RGB image channels. In 

this study, RGB images are converted to grayscales to 

facilitate crack detection. Then, the gray scale image will be 

processed using Contrast Limited Adaptive Histogram 

Equalization Technology  (CLAHE) [20]. The purpose of 

CLAHE is to increase contrast and clarity, allowing cracks to 

be easily detected. Figure 3 shows the implementation of a 

preprocessing for processing crack image data. The results of 

image processing using CLAHE show that crack texture is 

becoming increasingly visible [21]. 

 

 
Figure 3. Sample of Preprocessing Implementations 

 

C. Feature Extraction by MobileNetV2 

MobileNetV2 is a Convolutional Neural Network (CNN) 

architecture that can be used for solving the problem of low 

computing devices such as cell phones, single board 

computers, etc [22]. MobileNetV2 is an improvement on the 

mobile network architecture. Mobile Network architecture 

and CNN architecture generally differ in the use of 

convolutionary layers [23]. 

 

 
Figure 4. MobileNetV2 Bottleneck Layer 

The MobileNetV2 convolution layer uses a filter thickness 

corresponding to the input image thickness. MobileNetV2 

uses a deep-side convolution, a point-side convolution, a 

linear bottleneck, and a shortcut between bottlenecks. The 

MobileNetV2 architecture consists of several bottleneck 

layers. The operation at the bottleneck layer is shown in 

Figure 4. 

The bottleneck layer consists of three operations, namely 

expansion 1x1, gradient 3x3, and point 1x1. There is another 

feature, the invention of a residual connection if the input size 

is the same as the output. MobileNetV2 has 53 convolutionary 

layers and 1 average pool. The mobilenetV2 architecture 

changes make the classification results more accurate and 

detect faster than the mobilenet and traditional CNN 

architectures [24]. 

D. Classification 

The feature extraction conducted by MobileNetV2 

produces 1024 features for each data. These features are 

inputs for fully connected layers and are activated with 

softmax as classification phase. MobileNetV2 has made 

significant progress in developing a lightweight model, as 

well as more complex and expensive computational models, 

especially for tasks such as image classification. Its 

architecture principles, such as inverting residuals and linear 

bottlenecks, influenced the design of later efficient models in 

the field of computer vision. The feature extraction and 

classification process in MobileNetV2 is shown in Figure 5. 

 

 

Figure 5. MobileNetV2 Architecture 

 
In addition, machine learning classifiers can be used to 

classify the features extracted by MobileNetV2 using the 

features extraction algorithms. This research uses five 

supervised learning algorithms commonly used for 

classification: K-NN, Nave Bayes, SVM, XGBoost, and 

Random Forest [25], [26]. Grid Search technique is used to 

find optimal parameters for each algorithm [27]. The results 

of a K-NN algorithm grid search search for the best 

parameters show that the optimal neighbor number is 5. In the 

Bayes nave algorithm, the optimal alpha value is 0.01. The 

optimal hyperparameters of SVM algorithms use Radial Base 

Function (RBF) values of 2 and C. The number of random 

forests used in the classification algorithm is 100. Finally, for 

the XGBoost algorithm, the optimal learning rate is 0.01. 
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E. Performance Analysis 

The confusion matrix is a tool used in machine learning and 

statistics to evaluate the performance of a classification 

algorithm  [28]. It is a square matrix that is often used to 

summarize the results of a classification problem. The 

confusion matrix provides a detailed breakdown of the correct 

and incorrect predictions made by the classifier. It is 

particularly useful for solving binary classification problems 

(two classes), but can be extended to multiclass classification. 

The confusion matrix contains four terms that represent the 

result of the classification process. As shown in Table II, it 

includes True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN). TP and TN provide 

the result of correct classification data, and FP and FN provide 

inaccurate classification details. The accuracy, sensitivity and 

specificity equations are found in (1), (2) and (3), 

respectively. 

TABEL II 
CONFUSION MATRIX 

 Prediction 
Positive Negative 

Actual Positive True Positive 

(TP) 
False Negative 

(FN) 
Negative False Positive 

(FP) 
True Negative 

(TN) 

 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+ 𝑇𝑁)

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
            (1) 

                𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
                  (2) 

                 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+ 𝐹𝑁
                 (3) 

 

III. RESULTS AND DISCUSSION 

 

Wall crack detection uses SDNET 2018 datasets. The data 

used is a 2000 color image. The data is composed of 1000 

cracked images and 1000 non-cracked images. Data addition 

is implemented to increase the number of images. Prior to the 

mobile network V2 feature extraction process, the 

preprocessing was done using CLAHE to improve the quality 

of image data.  

TABEL III 

THE EXPERIMENT RESULT USING 70:30 DATA COMPOSITION 

No Classifier  Accuracy Sensitivity Specificity 

1 MobileNetV2  97.83%  98.31%  97.35% 

2 K-NN  95.5%  92.78%  98.57% 

3 Naïve Bayes  91.17%  87.76%  95.23% 

4 SVM  97.67%  96.73%  98.63% 

5 XGBoost 97.63% 97.04% 98.64% 

6 Random Forest 96.17%  95.11%  97.26% 

 

The metrics used to measure the success of the model are 

accuracy, sensitivity and specificity. Test scenarios use the 

dataset split ratio. In the first scenario, the data sets are 

divided into 70% training and 30% testing data. The second 

scenario is a ratio of 80% training data and 20% testing data. 

The results of the first scenario test are shown in Table III. 

The dataset is divided into 70 % training data and 30 % 

testing data, resulting in measurement values of more than 

90%. The MobileNetV2 classification has the highest 

accuracy and sensitivity values, 97.83% and 98.31%. 

Meanwhile, the XGBoost Classifier has a maximum accuracy 

of 98.64%. MobileNetV2 models with a database 

composition of 70:30 are the best performance. 

MobileNetV2's feature extraction and classification process is 

the result of 10 years of training. The number of periods 

determined using callback technology by determining a 

precision threshold of 98% [29]. When a threshold value is 

reached, the training will stop. The visualization of the 

training results of MobileNetV2 is shown in Figure 6. 

 

 

 
Figure 6. MobileNetv2's Accurate and Loss Values Graph 

According to Figure 6, the resulting model does not exhibit 

overfitting. This is proved by the tendency to increase 

accuracy in the training process. Meanwhile, the loss value 

tends to continue to decrease or decrease. The accuracy 

verification value is quite high and tends to continue to rise. 

The validation loss is also relatively small and tends to 

continue to decline. 

TABEL IV 

THE EXPERIMENT RESULT USING 80:20 DATA COMPOSITION 

No Classifier  Accuracy Sensitivity Specificity 

1 MobileNetV2  97.25%  97.96%  96.55% 

2 K-NN  96.0% 93.39% 98.93% 

3 Naïve Bayes  91.50% 88.78% 94.62% 

4 SVM  97.0% 96.07% 97.95% 

5 XGBoost 99.0% 99.0% 99.0% 

6 Random Forest 97.0% 95.63% 98.45% 
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Meanwhile, the results of the test of the model in the 

dataset composition 80:20 are shown in Table IV. The 

experimental results show that the accuracy value of the 80:20 

dataset division is higher than the 70:30 dataset division. The 

XGBoost Classifier produces the highest accuracy, 

sensitivity, and specificity, at 99%. The accuracy, sensitivity 

and specificity values are obtained using the calculation 

confusion matrix shown in Figure 7. 

 

 
Figure 7. Confusion Matrix  

(a) MobileNetV2 Classifier with 70:30 Data Composition 

(b) XGBoost Classifier with 80:20 Data Composition 

 

Based on the results of the Confusion matrix calculation, 

XGBoost classifiers have a lower prediction error rate than 

MobileNetV2 classifiers. MobileNetV2 has 13 prediction 

errors and XGBoost only 4 errors. XGBoost produces the 

lowest error rate because of a gradient boosting technique, 

where each machine learning model is built takes the residual 

error from the previous model as the target variable. This way, 

each model built will focus on the reduction of errors in the 

previous model. The 80:20 composition of training and test 

data produces a more accurate model with a low prediction 

error rate. Thus, the 80:20 dataset-based XGBoost machine 

learning model is chosen for single-board computers, namely 

Raspberry Pi.  

The results of model testing in real environment are very 

high in terms of model accuracy as shown in table IV. In the 

meantime, the accuracy values are relatively close to those in 

the test environment. The model can detect wall cracks in real 

time. The test results show that the camera displays a 

bounding box and a condition of crack when it reaches a 

damaged wall or building. The average speed of FPS (frame 

per second) for crack detection is 42 fps. The results of crack 

detection on the wall can be seen in Figure 8. 

 
Figure 8. Model Deployment in a Raspberry Pi 

 

Based on prototype test results, a threshold value for 

camera distance and intensity can be obtained. The distance 

from the object tested is 1 to 10 meters, and the light intensity 

is classified as bright, dark, and dark depending on the 

standards of The Iluminating Engineering Society (IES) [30]. 

According to IES standards, the bright category value is more 

than 120 lux, dim is 40–119 lux, and dark is less than 40 lux. 

TABEL V 
THE EXPERIMENT RESULT USING 80:20 DATA COMPOSITION 

Range light dim dark 

> 120 lux 40 – 199 lux < 40 lux 

1 meter detected detected detected 

2 meter detected detected detected 

3 meter detected detected Not detected 

4 meter detected detected Not detected 

5 meter detected detected Not detected 

6 meter detected detected Not detected 

7 meter detected detected Not detected 

8 meter detected Not detected Not detected 

9 meter detected Not detected Not detected 

10 meter detected Not detected Not detected 

 

Table V shows the results of the distance and light intensity 

testing of the prototype. Based on Table V, the prototype is 

known to be unable to identify objects (crack) at a distance of 

more than 7 meters under dark conditions. At the same time, 

in the dark, the prototype cannot identify objects more than 2 

meters away. This is due to the camera's limited ability to 

capture objects in the dark environment. According to the 

results of the Table V, the ideal distance for crack detection is 

2 meters with a bright light intensity. 

IV. CONCLUSION 

Previous research [7] reported that crack detection using 

the CNN algorithm produced a model with an accuracy of 

89%. Meanwhile, the accuracy of the resulting model is 94% 

by using transfer learning CNN. In this research, a crack 

detection model was built by combining deep learning 

architecture with machine learning algorithms. Based on the 
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test results, a model was obtained with an accuracy of 99%. 

The process of achieving high accuracy is by dividing the 

dataset with a composition of 80:20. Next, feature extraction 

process was performed using MobileNetV2 and classification 

process was performed using XGBoost. In addition to the 

composition of the data sets, the use of CLAHE in the 

preprocessing process also affects the accuracy of the model. 

Model testing is not limited to simulation environments, but 

also to real environments. Testing in real environments is 

done by deploying the model to the Raspberry Pi. The test 

results show that the model can detect building surface cracks 

in real time at 42 fps detection speed. Further research will be 

carried out to detect cracks in the pavement, bridge and road, 

as well as in buildings. 
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