
Journal of Applied Informatics and Computing (JAIC)

Vol.8, No.1, July 2024, pp. 1~6

e-ISSN: 2548-6861 1

http://jurnal.polibatam.ac.id/index.php/JAIC

Crack Detection in Building Through Deep Learning Feature Extraction

and Machine Learning Approach

Afandi Nur Aziz Thohari 1*, Aisyatul Karima 2*, Kuwat Santoso 3**, Roselina Rahmawati 4***
* Informatic Engineering, Politeknik Negeri Semarang

** Computer Engineering Technology, Politeknik Negeri Semarang

*** Road and Bridge Design, Politeknik Negeri Semarang

afandi@polines.ac.id 1, aisya.karima@polines.ac.id 2, kuwatsantoso@polines.ac.id 3, roselina.rahmawati@polines.ac.id 4

Article Info ABSTRACT

Article history:

Received 2024-03-29

Revised 2024-05-14

Accepted 2024-05-15

 Buildings with cracks are extremely hazardous because they have the potential to

cause destruction. Numerous occupants of structures such as houses and buildings

are at risk when cracks appear. There are numerous techniques for identifying

fractures in structures, including visual inspection, tool use, and expert inspection.

The present study employed computer vision, a form of artificial intelligence, to

detect cracks in buildings. This research aims to improve the accuracy of the crack

detection model. The technique used is to perform a feature extraction process using

a deep learning architecture, and then the features will be processed by a machine

learning algorithm for image classification. Pre-processing was carried out using

CLAHE to increase image sharpness in the crack area prior to the feature extraction

process. In this study, the feature map produced by feature extraction was not

processed using a fully connected layer. However, for the classification process, it is

processed by a machine learning algorithm. This research employs MobileNetV2 as

its deep learning architecture and K-NN, Naive Bayes, SVM, XGBoost, and Random

Forest as its machine learning classifiers. Test results show that when dividing the

80:20 dataset, XGBoost algorithms can produce the highest accuracy, sensitivity,

and specificity values of 99%. Tests in the real environment are performed by

deploying Raspberry Pi. Test results show that the prototype can detect cracks in the

structure surfaceat a distance of 10 meters in a bright environment. The crack

detection process is carried out in real time at an average speed of 42fps.

Keyword:

Crack Detection,

Deep Learning,

Machine Learning Algorithm,

MobileNetV2,

Deployment,

Raspberry Pi.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Building construction without knowing this poses a high

risk. If these buildings are not maintained, the building's

structural strength will decrease rapidly and the building will

be damaged rapidly. Reduce or prevent damage to buildings

should be done regularly. One damage often found in

buildings is the crack on the surface of the walls [1].

Therefore, the cracks in building walls must be detected early

so as not to cause greater damage.

The detection of structural cracks is very important to

ensure the safety and reliability of structural structures.

Cracks in buildings are signs of structural problems that

require repair. There are several ways to detect structural

cracks, such as regular visual inspections, crack measurement

tools, and expert inspections [2][3]. The conventional

methods of finding structural cracks require a lot of money

and take a long time. Visually verifying structural fractures

requires constant accuracy and attention. Meanwhile, average

people only focus in the first 20 minutes [4]. Of course, this

condition is less practical when the building is large and

space-saving.

Another method that can be used to detect wall cracks is

using a camera. A camera or smartphone takes a picture of the

crack and then uses artificial intelligence technology to

process it [5][6]. The model accuracy for crack detection was

still relatively low in previous research [7]. Therefore, the aim

of this research is to establish a classification system of

structural defects that has high accuracy using computer

mailto:afandi@polines.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 e-ISSN: 2548-6861

JAIC Vol. 8, No. 1, July 2024: 1 – 6

2

vision technology. Computer vision technology has the

advantage of being able to monitor in real time, detection

processes are fast, and measurement results are accurate

because they are trained from thousands of data [8].

Previously, there were several studies examining the

construction of crack detection using artificial intelligence

technology. One of them is the study of concrete structures to

detect cracks using deep learning [9]. The algorithms used are

the Convolutional Neural Networks (CNNs) using the

VGG16 pre-selected model. There are three methods for

processing images used in the preprocessing, namely

grayscale, thresholding and edge detection. The test results

showed that the best accuracy was 98% in a total of 20

periods.

The next research is to use deep learning to detect damage

to buildings in real time [10]. The research used version 3 of

You Only Look Once (YOLOv3) algorithm. The test data

showed a precision value of 94.24% and a detection speed of

0.033 seconds. Then research into crack detection on concrete

surfaces using U-Net and DeepLabV3+ [11]. Comparing U-

Net and DeepLabV3+ architectures showed that U-Net's

accuracy was higher than 96.47% when detecting cracks on

concrete surfaces.

Damage to building structures can be caused not only in

buildings, but also in pavement. Research into the application

of deep learning for detecting paving cracks has produced 82

per cent recall values and 83 per cent mFscore [12]. The

method used in this study is to segment semantically by

changing the U-Net architecture. In addition to pavement,

crack detection is also useful for monitoring bridge age. The

study on bridge crack detection gave 96% accuracy and

precision [13]. This study uses a Single-shot Multibox

Detector (SSD), which has additional parameters in the form

of sliding windows.

In previous research, deep learning and computer vision

have been used to detect structural cracks. However, the

model built is only program code, and has not yet reached the

stage of deployment in embedded devices. In previous

research, the accuracy value was less than 90% and models

were still overfit. The research aims to improve the accuracy

of the construction crack detection by using deep learning and

mechanical learning. Deep learning is used to extract features,

while machine learning algorithms are used to classify.

The research uses a pre-trained MobileNetV2 model that is

the most accurate to detect wall cracks [14]. In the meantime,

five machine learning algorithms, K-NN, Nave Bayes, SVM,

XGBoost, and Random Forest, are used. One of the

improvements in this study is the deployment process. The

most accurate model will be deployed on embedded devices

for use in real environments.

II. METHODS

The methodology used in this research is shown in Figure

1. The novelty of other research is that the feature extraction

process uses pre-trained MobileNetV2 models, while

classification processes use machine learning algorithms.

There are two scenarios used to achieve the best accuracy. In

the first scenario, the data set is divided into 70% of training

data and 30% of test data. The second scenario divides the

data sets into 80% training data and 20% test data.

Figure 1. Proposed Method

A. Data Augmentation

Data used in this research is publicly available Structural

Defect Network (SDNET) 2018 database [15]. It consists of

500 images of cracked and uncracked concrete walls. These

images are 256x256 pixels standardized resolution. Figure 2

shows an example of the presentation of a set of data in the

class of damaged walls.

Fig.2. Cracked Wall from SDNET 2018 Database

In order to avoid overfitting in image acquisition, one

method is to use data augmentation techniques to increase the

number of datasets in order to improve the image recognition

of the system [16][17]. In the structural defects images

analysis task, convolutional networks proved very well with

large datasets [18]. The techniques used in this research were

rescale, shear, zoom and flip [19].

TABEL I
NUMBER OF DATASETS AFTER AUGMENTATION

Data
Before

Augmentation

After

Augmentation

Cracked 500 1.000

Non-Cracked 500 1.000

Total 1000 2.000

The augmentation process yielded a total of 2000 data

samples consisting of 1000 samples classified as cracked and

JAIC e-ISSN: 2548-6861

Crack Detection in Building Through Deep Learning Feature Extraction and Machine Learning Approach

(Afandi Nur Aziz Thohari, Aisyatul Karima, Kuwat Santoso, Roselina Rahmawati)

3

1000 samples classified as non-cracked. Therefore, the

quantity of data available to us is equitable. Table I presents

information on the number of files after augmentation.

B. Preprocessing

SDNET 2018 Datasets include RGB image channels. In

this study, RGB images are converted to grayscales to

facilitate crack detection. Then, the gray scale image will be

processed using Contrast Limited Adaptive Histogram

Equalization Technology (CLAHE) [20]. The purpose of

CLAHE is to increase contrast and clarity, allowing cracks to

be easily detected. Figure 3 shows the implementation of a

preprocessing for processing crack image data. The results of

image processing using CLAHE show that crack texture is

becoming increasingly visible [21].

Figure 3. Sample of Preprocessing Implementations

C. Feature Extraction by MobileNetV2

MobileNetV2 is a Convolutional Neural Network (CNN)

architecture that can be used for solving the problem of low

computing devices such as cell phones, single board

computers, etc [22]. MobileNetV2 is an improvement on the

mobile network architecture. Mobile Network architecture

and CNN architecture generally differ in the use of

convolutionary layers [23].

Figure 4. MobileNetV2 Bottleneck Layer

The MobileNetV2 convolution layer uses a filter thickness

corresponding to the input image thickness. MobileNetV2

uses a deep-side convolution, a point-side convolution, a

linear bottleneck, and a shortcut between bottlenecks. The

MobileNetV2 architecture consists of several bottleneck

layers. The operation at the bottleneck layer is shown in

Figure 4.

The bottleneck layer consists of three operations, namely

expansion 1x1, gradient 3x3, and point 1x1. There is another

feature, the invention of a residual connection if the input size

is the same as the output. MobileNetV2 has 53 convolutionary

layers and 1 average pool. The mobilenetV2 architecture

changes make the classification results more accurate and

detect faster than the mobilenet and traditional CNN

architectures [24].

D. Classification

The feature extraction conducted by MobileNetV2

produces 1024 features for each data. These features are

inputs for fully connected layers and are activated with

softmax as classification phase. MobileNetV2 has made

significant progress in developing a lightweight model, as

well as more complex and expensive computational models,

especially for tasks such as image classification. Its

architecture principles, such as inverting residuals and linear

bottlenecks, influenced the design of later efficient models in

the field of computer vision. The feature extraction and

classification process in MobileNetV2 is shown in Figure 5.

Figure 5. MobileNetV2 Architecture

In addition, machine learning classifiers can be used to

classify the features extracted by MobileNetV2 using the

features extraction algorithms. This research uses five

supervised learning algorithms commonly used for

classification: K-NN, Nave Bayes, SVM, XGBoost, and

Random Forest [25], [26]. Grid Search technique is used to

find optimal parameters for each algorithm [27]. The results

of a K-NN algorithm grid search search for the best

parameters show that the optimal neighbor number is 5. In the

Bayes nave algorithm, the optimal alpha value is 0.01. The

optimal hyperparameters of SVM algorithms use Radial Base

Function (RBF) values of 2 and C. The number of random

forests used in the classification algorithm is 100. Finally, for

the XGBoost algorithm, the optimal learning rate is 0.01.

 e-ISSN: 2548-6861

JAIC Vol. 8, No. 1, July 2024: 1 – 6

4

E. Performance Analysis

The confusion matrix is a tool used in machine learning and

statistics to evaluate the performance of a classification

algorithm [28]. It is a square matrix that is often used to

summarize the results of a classification problem. The

confusion matrix provides a detailed breakdown of the correct

and incorrect predictions made by the classifier. It is

particularly useful for solving binary classification problems

(two classes), but can be extended to multiclass classification.

The confusion matrix contains four terms that represent the

result of the classification process. As shown in Table II, it

includes True Positive (TP), False Positive (FP), True

Negative (TN), and False Negative (FN). TP and TN provide

the result of correct classification data, and FP and FN provide

inaccurate classification details. The accuracy, sensitivity and

specificity equations are found in (1), (2) and (3),

respectively.

TABEL II
CONFUSION MATRIX

 Prediction
Positive Negative

Actual Positive True Positive

(TP)
False Negative

(FN)
Negative False Positive

(FP)
True Negative

(TN)

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+ 𝑇𝑁)

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 (1)

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (2)

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+ 𝐹𝑁
 (3)

III. RESULTS AND DISCUSSION

Wall crack detection uses SDNET 2018 datasets. The data

used is a 2000 color image. The data is composed of 1000

cracked images and 1000 non-cracked images. Data addition

is implemented to increase the number of images. Prior to the

mobile network V2 feature extraction process, the

preprocessing was done using CLAHE to improve the quality

of image data.

TABEL III

THE EXPERIMENT RESULT USING 70:30 DATA COMPOSITION

No Classifier Accuracy Sensitivity Specificity

1 MobileNetV2 97.83% 98.31% 97.35%

2 K-NN 95.5% 92.78% 98.57%

3 Naïve Bayes 91.17% 87.76% 95.23%

4 SVM 97.67% 96.73% 98.63%

5 XGBoost 97.63% 97.04% 98.64%

6 Random Forest 96.17% 95.11% 97.26%

The metrics used to measure the success of the model are

accuracy, sensitivity and specificity. Test scenarios use the

dataset split ratio. In the first scenario, the data sets are

divided into 70% training and 30% testing data. The second

scenario is a ratio of 80% training data and 20% testing data.

The results of the first scenario test are shown in Table III.

The dataset is divided into 70 % training data and 30 %

testing data, resulting in measurement values of more than

90%. The MobileNetV2 classification has the highest

accuracy and sensitivity values, 97.83% and 98.31%.

Meanwhile, the XGBoost Classifier has a maximum accuracy

of 98.64%. MobileNetV2 models with a database

composition of 70:30 are the best performance.

MobileNetV2's feature extraction and classification process is

the result of 10 years of training. The number of periods

determined using callback technology by determining a

precision threshold of 98% [29]. When a threshold value is

reached, the training will stop. The visualization of the

training results of MobileNetV2 is shown in Figure 6.

Figure 6. MobileNetv2's Accurate and Loss Values Graph

According to Figure 6, the resulting model does not exhibit

overfitting. This is proved by the tendency to increase

accuracy in the training process. Meanwhile, the loss value

tends to continue to decrease or decrease. The accuracy

verification value is quite high and tends to continue to rise.

The validation loss is also relatively small and tends to

continue to decline.

TABEL IV

THE EXPERIMENT RESULT USING 80:20 DATA COMPOSITION

No Classifier Accuracy Sensitivity Specificity

1 MobileNetV2 97.25% 97.96% 96.55%

2 K-NN 96.0% 93.39% 98.93%

3 Naïve Bayes 91.50% 88.78% 94.62%

4 SVM 97.0% 96.07% 97.95%

5 XGBoost 99.0% 99.0% 99.0%

6 Random Forest 97.0% 95.63% 98.45%

JAIC e-ISSN: 2548-6861

Crack Detection in Building Through Deep Learning Feature Extraction and Machine Learning Approach

(Afandi Nur Aziz Thohari, Aisyatul Karima, Kuwat Santoso, Roselina Rahmawati)

5

Meanwhile, the results of the test of the model in the

dataset composition 80:20 are shown in Table IV. The

experimental results show that the accuracy value of the 80:20

dataset division is higher than the 70:30 dataset division. The

XGBoost Classifier produces the highest accuracy,

sensitivity, and specificity, at 99%. The accuracy, sensitivity

and specificity values are obtained using the calculation

confusion matrix shown in Figure 7.

Figure 7. Confusion Matrix

(a) MobileNetV2 Classifier with 70:30 Data Composition

(b) XGBoost Classifier with 80:20 Data Composition

Based on the results of the Confusion matrix calculation,

XGBoost classifiers have a lower prediction error rate than

MobileNetV2 classifiers. MobileNetV2 has 13 prediction

errors and XGBoost only 4 errors. XGBoost produces the

lowest error rate because of a gradient boosting technique,

where each machine learning model is built takes the residual

error from the previous model as the target variable. This way,

each model built will focus on the reduction of errors in the

previous model. The 80:20 composition of training and test

data produces a more accurate model with a low prediction

error rate. Thus, the 80:20 dataset-based XGBoost machine

learning model is chosen for single-board computers, namely

Raspberry Pi.

The results of model testing in real environment are very

high in terms of model accuracy as shown in table IV. In the

meantime, the accuracy values are relatively close to those in

the test environment. The model can detect wall cracks in real

time. The test results show that the camera displays a

bounding box and a condition of crack when it reaches a

damaged wall or building. The average speed of FPS (frame

per second) for crack detection is 42 fps. The results of crack

detection on the wall can be seen in Figure 8.

Figure 8. Model Deployment in a Raspberry Pi

Based on prototype test results, a threshold value for

camera distance and intensity can be obtained. The distance

from the object tested is 1 to 10 meters, and the light intensity

is classified as bright, dark, and dark depending on the

standards of The Iluminating Engineering Society (IES) [30].

According to IES standards, the bright category value is more

than 120 lux, dim is 40–119 lux, and dark is less than 40 lux.

TABEL V
THE EXPERIMENT RESULT USING 80:20 DATA COMPOSITION

Range light dim dark

> 120 lux 40 – 199 lux < 40 lux

1 meter detected detected detected

2 meter detected detected detected

3 meter detected detected Not detected

4 meter detected detected Not detected

5 meter detected detected Not detected

6 meter detected detected Not detected

7 meter detected detected Not detected

8 meter detected Not detected Not detected

9 meter detected Not detected Not detected

10 meter detected Not detected Not detected

Table V shows the results of the distance and light intensity

testing of the prototype. Based on Table V, the prototype is

known to be unable to identify objects (crack) at a distance of

more than 7 meters under dark conditions. At the same time,

in the dark, the prototype cannot identify objects more than 2

meters away. This is due to the camera's limited ability to

capture objects in the dark environment. According to the

results of the Table V, the ideal distance for crack detection is

2 meters with a bright light intensity.

IV. CONCLUSION

Previous research [7] reported that crack detection using

the CNN algorithm produced a model with an accuracy of

89%. Meanwhile, the accuracy of the resulting model is 94%

by using transfer learning CNN. In this research, a crack

detection model was built by combining deep learning

architecture with machine learning algorithms. Based on the

 e-ISSN: 2548-6861

JAIC Vol. 8, No. 1, July 2024: 1 – 6

6

test results, a model was obtained with an accuracy of 99%.

The process of achieving high accuracy is by dividing the

dataset with a composition of 80:20. Next, feature extraction

process was performed using MobileNetV2 and classification

process was performed using XGBoost. In addition to the

composition of the data sets, the use of CLAHE in the

preprocessing process also affects the accuracy of the model.

Model testing is not limited to simulation environments, but

also to real environments. Testing in real environments is

done by deploying the model to the Raspberry Pi. The test

results show that the model can detect building surface cracks

in real time at 42 fps detection speed. Further research will be

carried out to detect cracks in the pavement, bridge and road,

as well as in buildings.

ACKNOWLEDGMENT

We gratefully acknowledge the generous support provided

by Politeknik Negeri Semarang for funding this research.

REFERENCES

[1] A. Rohmat, “Analisis Kerusakan Struktur Dan Arsitektur Pada

Bangunan Gedung,” vol. 2, no. 2, pp. 134–140, 2020.

[2] Y. Ren et al., “Image-based concrete crack detection in tunnels
using deep fully convolutional networks,” Constr. Build. Mater.,

vol. 234, p. 117367, 2020, doi:

10.1016/j.conbuildmat.2019.117367.
[3] K. Mantani and M. Fauzan, “Desain dan Analisis Struktur

Bangunan Adat Sumatera Barat Terhadap Ketahanan Gempa,” J.

Tek. Sipil dan Lingkung., vol. 4, no. 1, pp. 25–36, 2019, doi:
10.29244/jsil.4.1.25-36.

[4] D. Cornish and D. Dukette, The Essential 20: Twenty Components

of an Excellent Health Care Team, First. Pittsburgh: RoseDog
Books, 2009.

[5] T. Ni, R. Zhou, C. Gu, and Y. Yang, “Measurement of concrete

crack feature with android smartphone APP based on digital image
processing techniques,” Measurement, vol. 150, p. 107093, 2020,

doi: https://doi.org/10.1016/j.measurement.2019.107093.

[6] H. Perez and J. H. M. Tah, “Deep learning smartphone application
for real-time detection of defects in buildings,” Struct. Control

Heal. Monit., vol. 28, no. 7, pp. 1–15, 2021, doi: 10.1002/stc.2751.

[7] Y. Chen, Z. Zhu, Z. Lin, and Y. Zhou, “Building Surface Crack
Detection Using Deep Learning Technology,” Buildings, vol. 13,

no. 7, 2023, doi: 10.3390/buildings13071814.

[8] N. O’Mahony et al., “Deep Learning vs. Traditional Computer
Vision BT - Advances in Computer Vision,” 2020, pp. 128–144.

[9] V. P. Golding, Z. Gharineiat, H. S. Munawar, and F. Ullah, “Crack

Detection in Concrete Structures Using Deep Learning,” Sustain.,
vol. 14, no. 13, 2022, doi: 10.3390/su14138117.

[10] P. Kumar, S. Batchu, N. Swamy S., and S. R. Kota, “Real-time

concrete damage detection using deep learning for high rise

structures,” IEEE Access, vol. 9, pp. 112312–112331, 2021, doi:

10.1109/ACCESS.2021.3102647.
[11] P. N. Hadinata, D. Simanta, L. Eddy, and K. Nagai, “Crack

Detection on Concrete Surfaces Using Deep Encoder-Decoder

Convolutional Neural Network: A Comparison Study Between U-
Net and DeepLabV3+,” J. Civ. Eng. Forum, vol. 7, no. 3, p. 323,

2021, doi: 10.22146/jcef.65288.

[12] Y. Zhang, X. Gao, and H. Zhang, “Deep Learning-Based Semantic
Segmentation Methods for Pavement Cracks,” Inf., vol. 14, no. 3,

2023, doi: 10.3390/info14030182.

[13] C. Wan et al., “Crack detection for concrete bridges with imaged

based deep learning,” Sci. Prog., vol. 105, no. 4, pp. 1–21, 2022,
doi: 10.1177/00368504221128487.

[14] S. B. Ali, R. Wate, S. Kujur, A. Singh, and S. Kumar, “Wall Crack

Detection Using Transfer Learning-based CNN Models,” 2020,
doi: 10.1109/INDICON49873.2020.9342392.

[15] M. Maguire, “Structural Defects Network (SDNET) 2018.”

https://www.deeplearningbook.org/ (accessed Oct. 18, 2023).
[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

press Cambridge, 2016.

[17] F. Chollet, Deep Learning with Python. Manning, 2017.
[18] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data

Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019,

doi: 10.1186/s40537-019-0197-0.
[19] A. Sangam, “Image-Augmentation-Using-OpenCV-and-Python.”

https://github.com/AISangam/Image-Augmentation-Using-

OpenCV-and-Python (accessed Oct. 18, 2023).

[20] F. M. Hana and I. D. Maulida, “Analysis of contrast limited

adaptive histogram equalization (CLAHE) parameters on finger

knuckle print identification,” J. Phys. Conf. Ser., vol. 1764, no. 1,
pp. 0–6, 2021, doi: 10.1088/1742-6596/1764/1/012049.

[21] M. Harichandana, V. Sowmya, V. V. Sajithvariyar, and R.

Sivanpillai, “Comparison of Image Enhancement Techniques for
Rapid Processing of Post Flood Images,” Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci., vol. XLIV-M-2–2, no. June, pp. 45–

50, 2020, doi: 10.5194/isprs-archives-xliv-m-2-2020-45-2020.
[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in

Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4510–4520,

doi: 10.1109/CVPR.2018.00474.

[23] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017. doi:

https://doi.org/10.48550/arXiv.1704.04861.

[24] K. Dong, C. Zhou, Y. Ruan, and Y. Li, “MobileNetV2 Model for

Image Classification,” in 2020 2nd International Conference on

Information Technology and Computer Application, ITCA 2020,

2020, pp. 476–480, doi: 10.1109/ITCA52113.2020.00106.
[25] A. N. A. Thohari and R. D. Ramadhani, “Performance Comparison

Supervised Machine Learning Models to Predict Customer

Transaction Through Social Media Ads,” J. Comput. Networks,
Archit. High Perform. Comput., vol. 4, no. 2, pp. 116–126, 2022,

doi: 10.47709/cnahpc.v4i2.1488.

[26] L. Savitri and R. Nursalim, “Klasifikasi Kualitas Air Minum
menggunakan Penerapan Algoritma Machine Learning dengan

Pendekatan Supervised Learning,” Diophantine J. Math. Its Appl.,

vol. 2, no. 01, pp. 30–36, 2023, doi:
10.33369/diophantine.v2i01.28260.

[27] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine
Learning: Methods, Systems, Challenges, 1st ed. Springer

Publishing Company, Incorporated., 2019.

[28] M. Sokolova and G. Lapalme, “A systematic analysis of
performance measures for classification tasks,” Inf. Process.

Manag., vol. 45, no. 4, pp. 427–437, 2009, doi:

10.1016/j.ipm.2009.03.002.
[29] R. Cai, “Automating bird species classification: A deep learning

approach with CNNs,” J. Phys. Conf. Ser., vol. 2664, no. 1, 2023,

doi: 10.1088/1742-6596/2664/1/012007.
[30] D. L. DiLaura, K. W. Houser, R. G. Mlstrick, and G. R. Steffy, The

Lighting Handbook 10th Edition, 10th ed. New York, USA: IES,

2011.

