
Journal of Applied Informatics and Computing (JAIC)

Vol.7, No.2, December 2023, pp. 141~149

e-ISSN: 2548-6861 141

http://jurnal.polibatam.ac.id/index.php/JAIC

Comparative Analysis of OpenMP and MPI Parallel Computing

Implementations in Team Sort Algorithm

Eko Dwi Nugroho 1*, Ilham Firman Ashari 2*, Muhammad Nashrullah 3*, Muhammad Habib Algifari 4*, Miranti

Verdiana 5*
* Teknik Informatika, Institut Teknologi Sumatera

eko.nugroho@if.itera.ac.id 1, firman.ashari@if.itera.ac.id 2, muhammad.118140136@student.itera.ac.id 3,

muhammad.algifari@if.itera.ac.id 4, miranti.verdiana@if.itera.ac.id 5

Article Info ABSTRACT

Article history:

Received …

Revised …

Accepted …

 Tim Sort is a sorting algorithm that combines Merge Sort and Binary Insertion Sort sorting

algorithms. Parallel computing is a computational processing technique in parallel or is

divided into several parts and carried out simultaneously. The application of parallel

computing to algorithms is called parallelization. The purpose of parallelization is to reduce

computational processing time, but not all parallelization can reduce computational processing

time. Our research aims to analyse the effect of implementing parallel computing on the

processing time of the Tim Sort algorithm. The Team Sort algorithm will be parallelized by

dividing the flow or data into several parts, then each sorting and recombining them. The

libraries we use are OpenMP and MPI, and tests are carried out using up to 16 core processors

and data up to 4194304 numbers. The goal to be achieved by comparing the application of

OpenMP and MPI to the Team Sort algorithm is to find out and choose which library is better

for the case study, so that when there is a similar case, it can be used as a reference for using

the library in solving the problem. The results of research for testing using 16 processor cores

and the data used prove that the parallelization of the Sort Team algorithm using OpenMP is

better with a speed increase of up to 8.48 times, compared to using MPI with a speed increase

of 8.4 times. In addition, the increase in speed and efficiency increases as the amount of data

increases. However, the increase in efficiency that is obtained by increasing the processor

cores decreases.

Keyword:

MPI,

OpenMP,

Parallel Computation,

Parallelization,

Team Sort Algorithm

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

A set of procedures or steps used to solve a problem can

be called an algorithm [1]. An algorithm is considered

efficient when it can produce the desired solution for each

input that matches the problem it needs to solve [2]. The

duration of data processing by each algorithm varies, also

determined by the amount of data input [3]. Efficiency in

solving problems can be disrupted due to protracted

computation time, even though the results are still as desired.

Parallel computing methods involve computer processing

that is carried out simultaneously or divided into several parts

[4]. In an effort to increase computational processing

efficiency, parallel computing was developed with the main

goal being to increase speed or reduce the time required.

Research by Aditya and Abba shows that the Quick Double

Merge Sort algorithm can increase its performance up to 3.6

times using eight processors [5]. However, not all algorithms

are suitable for implementing parallel computing. Findings

from research conducted by Favorisen, Aristotle, and Nadila

show that the radix sort algorithm can only be accelerated up

to 1.2 times even though it already uses four processors [6].

The information used by them is obtained through a random

number generation process.

In computer science and programming, there are two types

of parallel computing architectures which are based on

computer memory management. The first is shared memory

and the second is distributed memory [7]. To implement these

two types of architecture, we can use the help of libraries.

Shared memory has advantages over distributed memory if

the algorithm is not too complicated or the data is not too

large. However, if the algorithm is too complicated or the

data is too large, distributed memory is a better choice than

shared memory. The reason is that in distributed memory,

mailto:eko.nugroho@if.itera.ac.id
mailto:muhammad.118140136@student.itera.ac.id
mailto:muhammad.algifari@if.itera.ac.id
mailto:miranti.verdiana@if.itera.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 e-ISSN: 2548-6861

JAIC Vol. 7, No. 2, December 2023: 141 – 149

142

there can be more than one computer connected to each other

via a network [8], while in shared memory, usually only one

computer is used [9].

There are two measures that can be used to evaluate the

performance of a parallel algorithm. One way to measure

speed is to use speed up, which describes the comparison of

the time required by parallel algorithms and sequential

algorithms to solve similar problems. The speed up formula

is the result of dividing computational time sequentially with

parallel computing time [10]. Ideally, the more processors

used, the acceleration value will increase linearly. For

example, if n processors are used to run a parallel algorithm,

then the ideal value for speed increase is n. Parallelization has

the ability to increase computational speed in proportion to

the number of processors used [11]. In practice, it rarely

happens that the speed up value reaches its ideal value. The

reason is because not all parts of the algorithm can be

executed in parallel and the distribution of tasks between

processors is uneven.

Another measurement method is efficiency, which

indicates the degree to which the processor takes advantage

of the increase in speed on average. According to one source,

efficiency can be calculated by dividing the speed up by the

number of processors used [12]. In general, the desired

degree of parallel algorithm acceleration is linearly increased

as the number of processors used increases. In some

situations, the processing speed may reach optimal

performance when using multiple processing units. If the

processor used in the algorithm continues to be added, the

speed increase will not continue to increase linearly, but will

reach a certain limit.

This occurs as a result of Amdahl's law. According to

Amdahl's law, a program's speed up value is restricted by the

portion of the program that cannot be parallelized [13]. The

maximum speed up value is one divided by one minus the

part of the program that can be parallelized, regardless of how

much speed up is done to any component of the code.

Sorting algorithms are the most often employed algorithms

in a variety of issues, including biological data processing,

solving systems of many-dimensional linear equations, and

grid function compression [14]. Tim Sort is a combination of

the Merge Sort and Binary Insertion Sort sorting algorithms

[15]. Team Sort is the default algorithm in several

programming languages, including java, swift, rust, and

others. The method has an asymptotic time complexity of

O(n*log(n)) [16], an average asymptotic time complexity of

O(n), and an asymptotic time complexity of O(n). While O(n)

is the worst space complexity.

Our research uses OpenMP sources that support shared

memory systems and MPI supports distributed memory

systems, and we use the Tim Sort algorithm as our case study.

We conducted this research with the aim of increasing

computational speed, so that data processing can be

performed more efficiently. We also want to compare and test

the effect of using OpenMP and MPI parallel computing on

Tim Sort's algorithm processing time. The goal to be

achieved by comparing the application of OpenMP and MPI

to the Team Sort algorithm is to find out and choose which

library is better for the case study, so that when there is a

similar case, it can be used as a reference for using the library

in solving the problem. In addition, we want to investigate

how adding processor cores to MPI and increasing the

amount of data affect the performance of Tim Sort's

algorithm. The benefit of our research is gaining a better

understanding of which libraries are most suitable for use in

computational processing of various timing problems, as well

as the ability to involve parallel computing in solving these

problems.

II. METHODOLOGY

A. Research Flow

Our research consists of five main stages, namely

identifying problems and conducting related literature

studies, designing research models, implementing and testing

these models, as well as analysing data and writing research

reports. The relationship between these steps is explained

through a flow chart which can be seen in Figure 1. The study

was conducted for approximately 6 months.

Figure 1. Research Flowchart

1) Defining the problem and reviewing literature

sources: Researchers examine and evaluate the results of the

case studies that have been conducted, after which they create

questions, aims, and benefits of the research. Research

experts find challenges that can be overcome by several

methods obtained from reading sources such as journals and

books on parallel computing and algorithms, so as to ensure

that the problem has a clearly defined goal. The researchers

collected a variety of information about parallel programs,

Team Sort algorithms, and evaluation of sorting algorithm

performance. In this study, the researcher was able to obtain

information regarding guidelines for making parallel

programs, the implementation of the Team Sort algorithm,

the techniques used in parallel programs, the efficiency of

each technique used in parallel programs, and methods for

testing model performance. A small experiment was carried

out by the researcher to verify whether the method used was

appropriate and whether the results met the researcher's

expectations.

JAIC e-ISSN: 2548-6861

Comparative Analysis of OpenMP and MPI Parallel Computing Implementations in Team Sort Algorithm

(Eko Dwi Nugroho,et al.)

143

2) Model design: The researcher starts the process of

designing a model for Tim Sort's parallel algorithm after

obtaining the required information. In designing the model,

the researcher separated it into three main stages, namely task

mapping, task completion, and combining the results of each

task. The design will be described in the form of a flow chart

showing the results. In addition to making a model design,

the researchers also made a test design for the model. The

objective of this trial is to compare the performance of the

model and the original algorithm, and to see the impact of

adding processor cores on model performance.

3) Implementation and testing: In this stage,

researchers use and test the pre-designed model. This method

is implemented using the C++ programming language and the

OpenMP and MPI libraries. The program to be created

receives a file containing information that needs to be

arranged sequentially. After the program is executed, the

result file will contain the sorted data. For this study, we used

a dataset that included 4194304 random numbers. After that,

the researcher tested the results of the model implementation

using the test steps that had been prepared previously. The

test results will be used as a record for analysis in the next

stage.

4) Analysis and report writing: The researcher

analyses the data that has been obtained in the previous stage

and then writes it in a report. Performance comparison is done

by comparing the model and the original algorithm and

comparing the performance of the model when using various

number of processor cores. This research involves problem

analysis, model building, use of equipment, implementation,

discussion of results, evaluation, and drawing conclusions

which are all explained in the research report.

B. Tools and Materials

1) Tools: The equipment we used in this study

included: Computer with 16 Core processor specifications,

16 GB RAM, and Ubuntu Linux operating system; GCC

version 11.3 is used as the compiler; as well as the C++

programming language version 11.

2) Materials: The data used in our study came from a

study entitled "Parallel Divide-and-Conquer Algorithm for

Bubble Sort, Selection Sort, and Insertion Sort" by Pramod

and Rezaul [17]. The data in the study were obtained by

generating random numbers. There are 13 choices of numbers

in the data, in the order from 210 to 222.

C. Model Design

The illustration in Figure 2 explains how parallelization is

carried out in the Tim Sort algorithm. The data in the image

is divided into eight parts and processed in parallel using four

threads or processor cores. This process includes the stages

of allocating tasks, completing tasks, and combining the

results of each task.

Figure 2. Illustration of the Parallelization of the Tim Sort Algorithm using
4 Processor Threads/Cores

The following is an explanation for each step contained in

Figure 2. The first process that must be carried out is the

division of tasks, where the data will be divided evenly for

each process. The task is completed by sorting the data

obtained, using the Team Sort algorithm sequentially in each

process. The process of combining and unifying the results of

each task on the data parts that have been sorted into one unit.

This fusion is implemented using the merging technique in

the Team Sort algorithm. In each stage of aggregation, two

data sets will be combined into one at the same time, so that

the number of data sets in the next stage will be reduced by

half from the previous one in parallel.

In the illustration in Figure 3 on the left side, the software

receives input in the form of a file name which contains a list

of numbers that need to be sorted along with a number "n

threads/processor cores" which indicates the number of

threads/processor cores to be created. Then, the application

will take all the numbers contained in the file and divide it

into "n threads/processor cores" parts of almost the same size.

The program will also create an array of bools with the same

size as the number of "n threads/processor cores". The bool

array will be used as an indicator that a thread or processor

core has successfully completed its task. After that, the

program generates a number of "n threads/processor cores"

and assigns one piece of data to each thread. After all the

processor core threads have finished their work, the program

will return the results that have been arranged in the order.

 e-ISSN: 2548-6861

JAIC Vol. 7, No. 2, December 2023: 141 – 149

144

Figure 3. Main Program Flowchart (Left) and Parallel Process Program

Flowchart (Right)

The diagram on the right in Figure 3 illustrates the

workflow that occurs on each thread or processor core. First,

the processor thread/core will request an identification. The

data that has been obtained will be arranged sequentially

using the Team Sort algorithm technique successively. Then,

the first half thread or processor core will fetch information

from the second half thread or processor core. Part of the

second processor thread or core is considered complete. The

process will continue until there is only one processor

core/brain left. Processor threads/cores have the ability to

find out the extent to which part of the many processor

threads/cores can be identified based on their ID. There is an

illustrative in Figure 4 which showing data of 16 numbers and

4 threads or processor cores.

D. Test Design

1) Optimal minimal run testing: tests conducted to find

a method of determining the smallest number of runs that can

produce optimal computation time. There are differences in

the data used in the minimal optimal run test scheme

compared to other test schemes. The steps carried out in the

testing process are as follows:

 Determines how the minimum run value is determined.

There are two types of methods used, namely static

methods and dynamic methods. Regardless of the

amount of data, static methods are used to determine

the minimum run value.

 Implement the Team Sort method in an action

algorithm

 Observing the length of time it takes to execute the

algorithm

 Making comparisons regarding the length of execution

time of the algorithms and looking for the most optimal

one.

Figure 4. Data Illustration of 16 Numbers and 4 Processor Threads/Cores

2) Testing the accuracy of the algorithm: Testing is

carried out to evaluate the success of the parallel algorithm

that has been developed in sorting data accurately, without

any errors or discrepancies in the amount of data. Following

are the actions taken in the testing process:

 Generates a random sequence of data with values

between 1 and n. Variable n is the amount of data

generated.

 Executing the Team Sort parallel algorithm using the

data that has been created

 Verify the result of algorithm n

3) Comparative testing between parallel algorithms

and Sequential Algorithms: In this test, the main goal is to

compare the performance of parallel algorithms and

sequential algorithms. We will test how fast the parallel

algorithm can increase the speed compared to the existing

sequential algorithm. Following are the procedures carried

out in the testing phase:

 Generates data in a random way.

 Execute every available algorithm using the generated

data

 Observing the duration of the algorithm execution

 Comparing the execution time of each algorithm

JAIC e-ISSN: 2548-6861

Comparative Analysis of OpenMP and MPI Parallel Computing Implementations in Team Sort Algorithm

(Eko Dwi Nugroho,et al.)

145

4) Testing the effect of increasing core usage on speed

up: This test was conducted to determine the impact of

increasing processor core usage on algorithm acceleration.

The testing process involves a series of steps as follows:

 Generate random information

 Execute algorithms that run simultaneously using the

data that has been generated

 Measuring the time taken by the algorithm to execute

 Perform calculations to determine performance

improvements and efficiency of an algorithm. The

length of time for executing the algorithm sequentially

was found through previous experiments

 Measuring the speed increase achieved by a more

efficient parallel algorithm

III. RESULTS AND DISCUSSION

A. Research Results

1) Implementation of Tim Sort's algorithm using

OpenMP: Successfully coded to implement Team Sort's

algorithm in parallel using OpenMP. Input checking involves

verifying the input data (using multiple threads and file

directories) and the process of reading the file. The user

enters all input via arguments on the command line. The

preparation process includes sharing data for each thread and

initial setting of supporting variables. One of the supporting

factors is the variable "isFinish" which is an array that

functions as an indicator of the status of a thread. The

paraphrase of the text is "In a parallel process, previously

prepared data begins to be arranged in sequence." This

process includes organizing and combining information.

2) Implementation of Tim Sort algorithm using MPI:

Implementation of parallel code of Tim Sort algorithm with

MPI has been successfully completed. The process of

capturing input data involves verifying the input data

(including the number of processes and file addresses) and

entering files. The process is only executed by process

number 0. The number of processes can be obtained by using

the MPI_Comm_Size function. However, the file location is

obtained via command line arguments. Process preparation

involves dividing the data for each process and initializing

the supporting variables. In order to share data, the process is

carried out using two functions, namely MPI_Bcast and

MPI_Scatterv.

MPI_Bcast serves to spread a number of data to be sorted

to all processes in the MPI communicator. Later, this

information will be used to start the initial value of the

supporting variables. Meanwhile, the MPI_Scatterv function

will be used to spread the data to be sorted. The layout

process involves organizing and aggregating data. The

merging process involves two steps, but only one of those

steps will merge the process. The process involved will send

information about the amount of data and the amount of data

it has to the process that is doing the merging. This can be

done through the use of the MPI_Send function. To combine

data, the information will be received by the process through

the MPI_Recv function.

B. Analysis and Discussion

1) Analysis of the results of the optimum minimum run

test data: In Table 1 there is an average testing computation

time on the results of the optimum minimum run test data. In

Table 1 it can be seen that the computation time will decrease

when the minimum run value decreases from 2 to 16. By

using a small minimum run value, the process of forming one

run can be done more quickly. However, this phenomenon

also causes the number of runs that are formed to increase

when compared to the minimum value which is larger and the

time required to combine them becomes longer.

TABLE I

AVERAGE COMPUTATION TIME OF MINIMUM OPTIMUM TEST RUN

No.
Minimum Run

Value (Data)

Average Compute

Time (Milliseconds)

1 2 81,086

2 4 76,647

3 8 67,875

4 16 64,469

5 32 67,675

6 64 80,286

7 128 111,468

8 Dynamic 75,899

The solution to this problem is to increase the minimum

number of runs. By increasing the minimum run value limit,

the time needed to make one run will be longer, but the

number of runs formed will be reduced. Thus, the time

needed to combine the runs will be shorter. When compared,

the increase in computation time in forming the entire run is

less than the reduction in computation time in the

concatenation, so that the total computation time becomes

shorter.

Continuously increasing the minimum run value limit does

not necessarily result in a reduction in the total computation

time. From a minimum run value of 16 to a minimum run

value of 128, it can be observed in Table 1. During this

interval, increasing the minimum run value will cause the

overall computation time to become longer. This is due to the

fact that the time taken to calculate all the individual runs is

longer than the time taken to combine them. This is what

causes dynamic run to have a longer average computation

time. At a minimum run of 16, the difference between the

reduction of the combined computation time and the

computation time of the formation of all runs is the largest

compared to the other minimum run values. Therefore, the

best computation time performance can be achieved with a

minimum run value of 16.

2) Analysis of the results of testing the accuracy of the

algorithm: Testing the accuracy of the algorithm is carried

out to evaluate the extent to which modifications that have

 e-ISSN: 2548-6861

JAIC Vol. 7, No. 2, December 2023: 141 – 149

146

been made to the algorithm can produce correct results. After

testing, the results obtained reached an accuracy value of

100%. The results of these tests conclude that the algorithm

that has been made is successful in sorting the data correctly

and no data is lost during the sorting process.

3) Analysis of the results of comparative testing

between parallel algorithms and sequential algorithms: The

test is carried out using 16 processor cores and a minimum

number of operations of 16 (results of the most efficient test

with a minimum number of operations). Table 2 shows the

test results. In Table 2, it can be seen that the performance of

the parallel Sort Team has increased significantly. This

performance increase can be observed from the processing

time which can be up to 8.4 times faster on the MPI

implementation and 8.48 times faster on the MPI

implementation when compared to the processing time of the

Tim Sort algorithm sequentially on large amounts of data

4194304.

TABLE II

DATA RESULTS OF COMPARISON TESTING BETWEEN PARALLEL AND

SEQUENTIAL ALGORITHMS

No.
Lots of

Data

Compute Time (Milliseconds)

Sequential

Algorithm

Parallel Algorithm

OpenMP MPI

1 1024 0,273 0,737 0,157

2 2048 0,556 0,782 0,210

3 4096 1,226 1,037 0,322

4 8192 2,362 1,071 0,542

5 16384 4,864 1,418 0,969

6 32768 10,126 2,012 1,786

7 65536 20,988 3,648 3,652

8 131072 43,464 6,950 7,024

9 262144 89,743 12,224 14,110

10 524288 186,050 24,652 27,925

11 1048576 383,766 47,882 51,949

12 2097152 790,304 95,737 95,839

13 4194304 1642,169 193,330 195,899

From this information, it can be seen that the increase in

the amount of data is in line with the increase in speed. When

the amount of data to be sorted is small (less than or equal to

16384), the MPI implementation experiences a higher speed

increase than the MPI implementation. This is because

OpenMP involves creating threads.

The creation of the thread does not take a long time, less

than 1 millisecond, but even so, the short time has a

significant impact when compared to the time needed for

sequential computation. Similarly, a similar situation occurs

for MPI when faced with large data sets of 1024 and 2048.

The sequential processing time for that large amount of data

is less than 1 millisecond, so if the processing times are

increased from 0 to 1 millisecond, the processing time using

MPI can exceed the sequential processing time.

Success parameters include average execution time, fastest

time, and longest time for each implementation, as follows.

With a lot of data ≥ 65536, the OpenMP computing time is

smaller than the MPI computing time and MPI has a smaller

computing time than OpenMP with a lot of data < 65536. The

average execution time is 30.114 milliseconds for OpenMP

and 30.8 for MPI, so that in total on average OpenMP is faster

than MPI for all amounts of data and processor cores. The

fastest time for 1024 data and 16 processor cores from

OpenMP is 0.737 milliseconds and from MPI is 0.157

milliseconds. The longest time for the amount of data

4194304 and 16 processor cores from OpenMP is 193,330

milliseconds and from MPI is 195,899 milliseconds. This

happens because information is passed between threads in

OpenMP at a higher speed than information is passed

between processes in MPI. Although the process of creating

threads in OpenMP requires computation time, the total

computation time for thread creation plus OpenMP

communication time is smaller than MPI communication

time.

Communication in OpenMP can run more efficiently

because each thread in OpenMP uses the same memory to

communicate. As a result, threads can share information by

writing and reading messages directly from memory, without

the need to go through a complicated communication process.

Communication between processes in MPI is done by

sending messages to each other. The larger the message sent,

the longer it will take to send it.

4) Analysis of the results of testing the effect of

increasing the use of processor cores on increasing speed

(speed up): The process of analysing test results is carried out

with the aim of understanding how the use of more processor

cores can affect the increase in speed (speed up) resulting

from the algorithm that has been developed. The trial was

carried out using a minimum run of 16 times, which is the

result of the optimal minimum run test. Table 3 shows the test

results. The increase in speed in Table 3 is estimated based

on the difference in execution time of the sequential

algorithm in Table 2.

TABLE III

TESTING RESULTS DATA EFFECT OF USING MANY PROCESSORS CORE ON

SPEED UP

JAIC e-ISSN: 2548-6861

Comparative Analysis of OpenMP and MPI Parallel Computing Implementations in Team Sort Algorithm

(Eko Dwi Nugroho,et al.)

147

Table 3 shows the scalability of OpenMP and MPI

implementations with increasing number of processor cores

and data used. The performance of both implementations

improves as resources increase, but as data increases this will

affect the scalability of the OpenMP and MPI

implementations. In Table 3, it can be seen that the order of

increasing the speed from highest to lowest when using MPI

is when using 16 cores, 8 cores, 4 cores, and 2 cores

processor. The speed ups were 8.4 times, 5.69 times, 3.46

times and 1.91 times, respectively. When using OpenMP, the

speed increases from the highest to the lowest, including

when using 16 cores, 8 cores, 4 cores and 2 cores. The

addition of speed (speed up) each of 8.48 times, 5.74 times,

3.51 times, and 1.91 times. From this information, it can be

concluded that the increase in data usage will be in line with

the increase in speed obtained by using the same core

processor.

In OpenMP, the increase in processor core usage is

proportional to the speed up (speed up) of the same large

amount of data. However, this effect is only seen in the

amount of data that is greater than or equal to 32768. In many

cases, the speed up on data smaller than 32768 will

experience an increase which will then decrease or even

continue to decrease. The decrease in computation time

resulting from the increase in the use of processor cores, is

offset by the increase in the time required for communication.

As a result, the total time required for computation and

increased speed is lower.

Some data shows that OpenMP has a speed increase of less

than 1, which means that the sequential computation time is

faster than OpenMP. This situation occurs when using an 8-

core processor with a data set of 1024, and when using a 16-

core processor with a data base of 1024 and 2048. This occurs

because the time required to calculate the thread creation and

communication processes is longer than the time saved by

reducing computing.

The more threads to be created, the longer the computation

time required for the thread creation process. This

phenomenon is clearly seen in Table 3, where the use of a

processor with 8 cores results in a shorter computation time

for the thread creation process compared to the reduction in

computation time resulting when the data is multiplied up to

2048. When using a processor with 16 cores, the new

situation is similar occurs when the amount of data is

increased to 4096, or a 4-fold increase.

In Table 3, the more data ≥ 262144, the more similar the

speed up of OpenMP and MPI will be. This phenomenon

occurs because in that interval, the ratio between the

computation time when creating threads plus the computation

time when communicating and subtracting the computation

time in OpenMP will be increasingly similar to the

comparison between the computing time communicating and

reducing the computation time in MPI. MPI speed is not

always faster than OpenMP.

The efficiency of computing resource use is measured for

each implementation. Success parameters include the extent

to which the implementation utilizes the potential of available

computing resources compared to optimal resource use. The

efficiency figures in Table 4 are calculated based on the

information contained in Table 3. In Table 4, it can be seen

that the MPI implementation has varying levels of efficiency

depending on the number of cores used. The order of MPI

implementation efficiency from highest to lowest is using 2

cores, 4 cores, 8 cores, and 16 cores of processors. The

efficiency percentages are 95.53%, 86.38%, 71.08% and

52.47% respectively. In the OpenMP implementation,

processor efficiency levels based on the number of cores from

highest to lowest are 2 cores, 4 cores, 8 cores, and 16 cores.

The efficiency of each processor is 95.61%, 87.68%, 72.75%

and 52.99%.

Based on Table 4, it can be seen that using 8 processor

cores with 1024 data and using 16 processor cores with 1024

and 2048 data produces an efficiency below 10%. This

happens because when the speed of using the processor core

increases with the same amount of data, the speed (speed up)

does not exceed 1 or the computation time becomes longer

compared to the sequential computing time. The causes of

this phenomenon can be found in the explanations given in

Table 3. Apart from these three data, there is one additional

data which shows an efficiency below 10%. This occurs

when using as many as 16 processor cores with the amount

of data reaching 4096.

TABLE IV

TESTING RESULTS DATA EFFECT OF USING MANY PROCESSORS CORE ON

EFFICIENCY

The increase in the speed of the data has a ratio of more

than 1 or higher than the sequential computing time, but the

increase in time obtained is less than 1.8. This phenomenon

occurs because the difference in the time required to

enumerate threads, the time to send and receive

communications, and the reduction in computation time is

still insufficient to achieve a speed increase of 1.8 or more.

From the available information, it appears that the increase in

the use of processor cores is inversely related to the level of

efficiency achieved.

 e-ISSN: 2548-6861

JAIC Vol. 7, No. 2, December 2023: 141 – 149

148

The more processor cores are used, the less efficiency that

can be achieved. The reason is because there is inequality in

the division of tasks in the parallelization carried out in our

research. An imbalance in the division of tasks can be found

in the merging process. In the time of merging into one, only

half the number of processor cores are used. When combining

the two, a fraction of the total processor cores is currently

running. The activity will continue to run, using half the

processor core capacity of the previous activity, until it

reaches the log2(n) process.

Apart from that, the communication process between

processor cores and data transfer also causes a lack of

efficiency. This is in line with the concept of division, namely

when divided by two, the reduction is halved, but when

divided again by two, the reduction is not half, but smaller,

and so on. Therefore, the reduction in time can still be

smaller, but the amount of time reduced will decrease.

If the number of processor cores used is still small (≤ 4),

the impact of the unequal distribution of tasks is not too

visible. This can be seen from the test results in Table 3,

where the highest efficiency reached 95.53% and reached

86.38%. As the number of processor cores used increases, an

imbalance in the distribution of tasks becomes visible.

Evidence of this can be seen from the test results listed in

Table 4.5, where the highest efficiency reached 71.08 percent

and the lowest efficiency reached 52.47 percent.

The OpenMP implementation and the MPI

implementation are similar in terms of performance. The

difference in the highest level of efficiency obtained for each

processor core is only around 0% to 2% with the application

of OpenMP technology which shows better results compared

to MPI technology. Differences appear when the amount of

data to be sorted is small (less than 16384), in this case the

MPI implementation shows more optimal performance (with

an increase in efficiency of 5% to 25%) compared to the

OpenMP implementation. While there is a significant

difference in efficiency scores, the difference in execution

time between the two implementations is only slight

(between 50 microseconds to 500 microseconds), with the

MPI implementation outperforming the OpenMP

implementation in terms of speed.

The working concept of OpenMP is like people having a

discussion at a table, when one of them asks a question, the

others can immediately hear and answer. MPI's working

concept is like people having a discussion but not in the same

room, when one of them wants to ask a question, it is done

via sending messages, and the others cannot immediately

hear and answer. The ability of MPI implementation to

overcome disruptions or failures in communication is by

freeing up all kinds of data transferred on the same

communication line, thereby reducing tolerance for time

delays. However, the advantage of MPI over OpenMP is that

it is easier to implement for an increasing number of

processor cores and resources.

IV. CONCLUSION

The increase in speed using OpenMP in parallelizing the

Team Sort algorithm is better, reaching up to 8.48 times,

when compared to using MPI which only achieved a speed

increase of 8.4 times for testing using 16 processor cores and

data is also used. The speed increase is proportionally related

to the use of processor cores on the same large amount of

data, whether implementing OpenMP or MPI. OpenMP has a

faster computation than MPI when the data being processed

is large enough, which is more than or equal to 65536.

However, MPI has a smaller computation time than OpenMP

when the data is less than 65536. The more data that is used

on the use of processor cores the more the same, then the

speed and efficiency will increase proportionally. The use of

processor cores has a conflicting relationship with efficiency

when using a lot of similar data.

REFERENCES

[1] D. Maitra, Beginner's Guide to Code Algorithms, Boca Raton: CRC

Press, 2022.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction
to Algorithms, Fourth Edition, London: MIT Press, 2022.

[3] S. S. Skiena, The Algorithm Design Manual, New York: Springer,

2020.

[4] D. Eddelbuettel, “Parallel Computing With R: A Brief Review,”

WIREs Comput Stat, vol. 13, no. 2, p. e1515, 2021.

[5] I. N. A. Yudiswara and A. Suganda.

[6] F. R. Lumbanraja, A. and N. R. Muttaqina, “Analisa Komputasi

Paralel Mengurutan Data Dengan Metode Radix Dan Selection,”

Jurnal Komputasi, vol. 8, no. 2, pp. 77-93, 2020.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, Cambridge: Morgan Kaufmann, 2019.

[8] V. D. Thoke, “THEORY OF DISTRIBUTED COMPUTING AND
PARALLEL PROCESSING WITH ITS APPLICATIONS,

ADVANTAGES AND DISADVANTAGES,” in nternational
Conference on Innovative Minds, Vita, 2015.

[9] W. Tang, W. Feng, J. Deng, M. Jia and H. Zui, “Parallel Computing

for Geocomputational Modeling,” in GeoComputational Analysis and
Modeling of Regional Systems, New York, Springer, Cham, 2018, pp.

37-54.

[10] P. Czarnul, Parallel Programming for Modern High Performance
Computing Systems, Boca Raton: CRC Press, 2018.

[11] E. D. Nugroho, M. E. Wibowo and R. Pulungan, “Parallel

Implementation of Genetic Algorithm for Searching Optimal
Parameters of Artificial Neural Networks,” in International

Conference on Science and Technology-Computer, Yogyakarta, 2017.

[12] P. S. Pacheco and M. Malensek, An Introduction to Parallel
Programming, Massachusetts: Morgan Kaufmann, 2022.

[13] R. Trobec, B. Slivnik, P. Bulić and B. Robič, Introduction to Parallel

Computing From Algorithms to Programming on State-of-the-Art
Platforms, New York: Springer, Champ, 2018.

[14] V. Kasilov, P. Drobintsev and N. Voinov, “High-performance genome

sorting program,” in International Young Scientists Conference on
Computational Science, St. Petersburg, 2021.

[15] M. R. Hanafi, M. A. Faadhilah, D. Pradeka and M. T. Dwi Putra,

“Comparison Analysis of Bubble Sort Algorithm with Tim Sort
Algorithm Sorting Against the Amount of Data,” Journal of Computer

Engineering, Electronics and Information Technology, vol. 1, no. 1,

pp. 9-13, 2022.

JAIC e-ISSN: 2548-6861

Comparative Analysis of OpenMP and MPI Parallel Computing Implementations in Team Sort Algorithm

(Eko Dwi Nugroho,et al.)

149

[16] N. Auger, V. Juge, C. Nicaud and C. Pivoteau, “On the Worst-Case
Complexity of TimSort,” in Leibniz International Proceedings in

Informatics, Wadern, 2018.

[17] P. Ganapathi and R. Chowdhury, “Parallel Divide-and-Conquer
Algorithms for Bubble Sort, Selection Sort and Insertion Sort,” The

British Computer Society, vol. 00, no. 0, pp. 1-11, 2021.

