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 Tim Sort is a sorting algorithm that combines Merge Sort and Binary Insertion Sort sorting 

algorithms. Parallel computing is a computational processing technique in parallel or is 

divided into several parts and carried out simultaneously. The application of parallel 

computing to algorithms is called parallelization. The purpose of parallelization is to reduce 

computational processing time, but not all parallelization can reduce computational processing 

time. Our research aims to analyse the effect of implementing parallel computing on the 

processing time of the Tim Sort algorithm. The Team Sort algorithm will be parallelized by 

dividing the flow or data into several parts, then each sorting and recombining them. The 

libraries we use are OpenMP and MPI, and tests are carried out using up to 16 core processors 

and data up to 4194304 numbers. The goal to be achieved by comparing the application of 

OpenMP and MPI to the Team Sort algorithm is to find out and choose which library is better 

for the case study, so that when there is a similar case, it can be used as a reference for using 

the library in solving the problem. The results of research for testing using 16 processor cores 

and the data used prove that the parallelization of the Sort Team algorithm using OpenMP is 

better with a speed increase of up to 8.48 times, compared to using MPI with a speed increase 

of 8.4 times. In addition, the increase in speed and efficiency increases as the amount of data 

increases. However, the increase in efficiency that is obtained by increasing the processor 

cores decreases. 
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I. INTRODUCTION 

A set of procedures or steps used to solve a problem can 

be called an algorithm [1]. An algorithm is considered 

efficient when it can produce the desired solution for each 

input that matches the problem it needs to solve [2]. The 

duration of data processing by each algorithm varies, also 

determined by the amount of data input [3]. Efficiency in 

solving problems can be disrupted due to protracted 

computation time, even though the results are still as desired. 

Parallel computing methods involve computer processing 

that is carried out simultaneously or divided into several parts 

[4]. In an effort to increase computational processing 

efficiency, parallel computing was developed with the main 

goal being to increase speed or reduce the time required. 

Research by Aditya and Abba shows that the Quick Double 

Merge Sort algorithm can increase its performance up to 3.6 

times using eight processors [5]. However, not all algorithms 

are suitable for implementing parallel computing. Findings 

from research conducted by Favorisen, Aristotle, and Nadila 

show that the radix sort algorithm can only be accelerated up 

to 1.2 times even though it already uses four processors [6]. 

The information used by them is obtained through a random 

number generation process. 

In computer science and programming, there are two types 

of parallel computing architectures which are based on 

computer memory management. The first is shared memory 

and the second is distributed memory [7]. To implement these 

two types of architecture, we can use the help of libraries. 

Shared memory has advantages over distributed memory if 

the algorithm is not too complicated or the data is not too 

large. However, if the algorithm is too complicated or the 

data is too large, distributed memory is a better choice than 

shared memory. The reason is that in distributed memory, 
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there can be more than one computer connected to each other 

via a network [8], while in shared memory, usually only one 

computer is used [9]. 

There are two measures that can be used to evaluate the 

performance of a parallel algorithm. One way to measure 

speed is to use speed up, which describes the comparison of 

the time required by parallel algorithms and sequential 

algorithms to solve similar problems. The speed up formula 

is the result of dividing computational time sequentially with 

parallel computing time [10]. Ideally, the more processors 

used, the acceleration value will increase linearly. For 

example, if n processors are used to run a parallel algorithm, 

then the ideal value for speed increase is n. Parallelization has 

the ability to increase computational speed in proportion to 

the number of processors used [11]. In practice, it rarely 

happens that the speed up value reaches its ideal value. The 

reason is because not all parts of the algorithm can be 

executed in parallel and the distribution of tasks between 

processors is uneven. 

Another measurement method is efficiency, which 

indicates the degree to which the processor takes advantage 

of the increase in speed on average. According to one source, 

efficiency can be calculated by dividing the speed up by the 

number of processors used [12]. In general, the desired 

degree of parallel algorithm acceleration is linearly increased 

as the number of processors used increases. In some 

situations, the processing speed may reach optimal 

performance when using multiple processing units. If the 

processor used in the algorithm continues to be added, the 

speed increase will not continue to increase linearly, but will 

reach a certain limit. 

This occurs as a result of Amdahl's law. According to 

Amdahl's law, a program's speed up value is restricted by the 

portion of the program that cannot be parallelized [13]. The 

maximum speed up value is one divided by one minus the 

part of the program that can be parallelized, regardless of how 

much speed up is done to any component of the code. 

Sorting algorithms are the most often employed algorithms 

in a variety of issues, including biological data processing, 

solving systems of many-dimensional linear equations, and 

grid function compression [14]. Tim Sort is a combination of 

the Merge Sort and Binary Insertion Sort sorting algorithms 

[15]. Team Sort is the default algorithm in several 

programming languages, including java, swift, rust, and 

others. The method has an asymptotic time complexity of 

O(n*log(n)) [16], an average asymptotic time complexity of 

O(n), and an asymptotic time complexity of O(n). While O(n) 

is the worst space complexity. 

Our research uses OpenMP sources that support shared 

memory systems and MPI supports distributed memory 

systems, and we use the Tim Sort algorithm as our case study. 

We conducted this research with the aim of increasing 

computational speed, so that data processing can be 

performed more efficiently. We also want to compare and test 

the effect of using OpenMP and MPI parallel computing on 

Tim Sort's algorithm processing time. The goal to be 

achieved by comparing the application of OpenMP and MPI 

to the Team Sort algorithm is to find out and choose which 

library is better for the case study, so that when there is a 

similar case, it can be used as a reference for using the library 

in solving the problem. In addition, we want to investigate 

how adding processor cores to MPI and increasing the 

amount of data affect the performance of Tim Sort's 

algorithm. The benefit of our research is gaining a better 

understanding of which libraries are most suitable for use in 

computational processing of various timing problems, as well 

as the ability to involve parallel computing in solving these 

problems. 

II. METHODOLOGY 

A. Research Flow 

Our research consists of five main stages, namely 

identifying problems and conducting related literature 

studies, designing research models, implementing and testing 

these models, as well as analysing data and writing research 

reports. The relationship between these steps is explained 

through a flow chart which can be seen in Figure 1. The study 

was conducted for approximately 6 months. 

 

Figure 1. Research Flowchart 

1)   Defining the problem and reviewing literature 

sources: Researchers examine and evaluate the results of the 

case studies that have been conducted, after which they create 

questions, aims, and benefits of the research. Research 

experts find challenges that can be overcome by several 

methods obtained from reading sources such as journals and 

books on parallel computing and algorithms, so as to ensure 

that the problem has a clearly defined goal. The researchers 

collected a variety of information about parallel programs, 

Team Sort algorithms, and evaluation of sorting algorithm 

performance. In this study, the researcher was able to obtain 

information regarding guidelines for making parallel 

programs, the implementation of the Team Sort algorithm, 

the techniques used in parallel programs, the efficiency of 

each technique used in parallel programs, and methods for 

testing model performance. A small experiment was carried 

out by the researcher to verify whether the method used was 

appropriate and whether the results met the researcher's 

expectations. 
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2)   Model design: The researcher starts the process of 

designing a model for Tim Sort's parallel algorithm after 

obtaining the required information. In designing the model, 

the researcher separated it into three main stages, namely task 

mapping, task completion, and combining the results of each 

task. The design will be described in the form of a flow chart 

showing the results. In addition to making a model design, 

the researchers also made a test design for the model. The 

objective of this trial is to compare the performance of the 

model and the original algorithm, and to see the impact of 

adding processor cores on model performance. 

3)   Implementation and testing: In this stage, 

researchers use and test the pre-designed model. This method 

is implemented using the C++ programming language and the 

OpenMP and MPI libraries. The program to be created 

receives a file containing information that needs to be 

arranged sequentially. After the program is executed, the 

result file will contain the sorted data. For this study, we used 

a dataset that included 4194304 random numbers. After that, 

the researcher tested the results of the model implementation 

using the test steps that had been prepared previously. The 

test results will be used as a record for analysis in the next 

stage. 

4)   Analysis and report writing: The researcher 

analyses the data that has been obtained in the previous stage 

and then writes it in a report. Performance comparison is done 

by comparing the model and the original algorithm and 

comparing the performance of the model when using various 

number of processor cores. This research involves problem 

analysis, model building, use of equipment, implementation, 

discussion of results, evaluation, and drawing conclusions 

which are all explained in the research report. 

B. Tools and Materials 

1) Tools: The equipment we used in this study 

included: Computer with 16 Core processor specifications, 

16 GB RAM, and Ubuntu Linux operating system; GCC 

version 11.3 is used as the compiler; as well as the C++ 

programming language version 11. 

2) Materials: The data used in our study came from a 

study entitled "Parallel Divide-and-Conquer Algorithm for 

Bubble Sort, Selection Sort, and Insertion Sort" by Pramod 

and Rezaul [17]. The data in the study were obtained by 

generating random numbers. There are 13 choices of numbers 

in the data, in the order from 210 to 222. 

C. Model Design 

The illustration in Figure 2 explains how parallelization is 

carried out in the Tim Sort algorithm. The data in the image 

is divided into eight parts and processed in parallel using four 

threads or processor cores. This process includes the stages 

of allocating tasks, completing tasks, and combining the 

results of each task. 

 

Figure 2. Illustration of the Parallelization of the Tim Sort Algorithm using 
4 Processor Threads/Cores 

The following is an explanation for each step contained in 

Figure 2. The first process that must be carried out is the 

division of tasks, where the data will be divided evenly for 

each process. The task is completed by sorting the data 

obtained, using the Team Sort algorithm sequentially in each 

process. The process of combining and unifying the results of 

each task on the data parts that have been sorted into one unit. 

This fusion is implemented using the merging technique in 

the Team Sort algorithm. In each stage of aggregation, two 

data sets will be combined into one at the same time, so that 

the number of data sets in the next stage will be reduced by 

half from the previous one in parallel. 

In the illustration in Figure 3 on the left side, the software 

receives input in the form of a file name which contains a list 

of numbers that need to be sorted along with a number "n 

threads/processor cores" which indicates the number of 

threads/processor cores to be created. Then, the application 

will take all the numbers contained in the file and divide it 

into "n threads/processor cores" parts of almost the same size. 

The program will also create an array of bools with the same 

size as the number of "n threads/processor cores". The bool 

array will be used as an indicator that a thread or processor 

core has successfully completed its task. After that, the 

program generates a number of "n threads/processor cores" 

and assigns one piece of data to each thread. After all the 

processor core threads have finished their work, the program 

will return the results that have been arranged in the order. 
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Figure 3. Main Program Flowchart (Left) and Parallel Process Program 

Flowchart (Right) 

The diagram on the right in Figure 3 illustrates the 

workflow that occurs on each thread or processor core. First, 

the processor thread/core will request an identification. The 

data that has been obtained will be arranged sequentially 

using the Team Sort algorithm technique successively. Then, 

the first half thread or processor core will fetch information 

from the second half thread or processor core. Part of the 

second processor thread or core is considered complete. The 

process will continue until there is only one processor 

core/brain left. Processor threads/cores have the ability to 

find out the extent to which part of the many processor 

threads/cores can be identified based on their ID. There is an 

illustrative in Figure 4 which showing data of 16 numbers and 

4 threads or processor cores. 

D. Test Design 

1) Optimal minimal run testing: tests conducted to find 

a method of determining the smallest number of runs that can 

produce optimal computation time. There are differences in 

the data used in the minimal optimal run test scheme 

compared to other test schemes. The steps carried out in the 

testing process are as follows: 

 Determines how the minimum run value is determined. 

There are two types of methods used, namely static 

methods and dynamic methods. Regardless of the 

amount of data, static methods are used to determine 

the minimum run value. 

 Implement the Team Sort method in an action 

algorithm 

 Observing the length of time it takes to execute the 

algorithm 

 Making comparisons regarding the length of execution 

time of the algorithms and looking for the most optimal 

one. 

 

 

Figure 4. Data Illustration of 16 Numbers and 4 Processor Threads/Cores 

2) Testing the accuracy of the algorithm: Testing is 

carried out to evaluate the success of the parallel algorithm 

that has been developed in sorting data accurately, without 

any errors or discrepancies in the amount of data. Following 

are the actions taken in the testing process: 

 Generates a random sequence of data with values 

between 1 and n. Variable n is the amount of data 

generated. 

 Executing the Team Sort parallel algorithm using the 

data that has been created 

 Verify the result of algorithm n 

3) Comparative testing between parallel algorithms 

and Sequential Algorithms: In this test, the main goal is to 

compare the performance of parallel algorithms and 

sequential algorithms. We will test how fast the parallel 

algorithm can increase the speed compared to the existing 

sequential algorithm. Following are the procedures carried 

out in the testing phase: 

 Generates data in a random way. 

 Execute every available algorithm using the generated 

data 

 Observing the duration of the algorithm execution 

 Comparing the execution time of each algorithm 
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4) Testing the effect of increasing core usage on speed 

up: This test was conducted to determine the impact of 

increasing processor core usage on algorithm acceleration. 

The testing process involves a series of steps as follows: 

 Generate random information 

 Execute algorithms that run simultaneously using the 

data that has been generated 

 Measuring the time taken by the algorithm to execute 

 Perform calculations to determine performance 

improvements and efficiency of an algorithm. The 

length of time for executing the algorithm sequentially 

was found through previous experiments 

 Measuring the speed increase achieved by a more 

efficient parallel algorithm 

III. RESULTS AND DISCUSSION 

A. Research Results 

1) Implementation of Tim Sort's algorithm using 

OpenMP: Successfully coded to implement Team Sort's 

algorithm in parallel using OpenMP. Input checking involves 

verifying the input data (using multiple threads and file 

directories) and the process of reading the file. The user 

enters all input via arguments on the command line. The 

preparation process includes sharing data for each thread and 

initial setting of supporting variables. One of the supporting 

factors is the variable "isFinish" which is an array that 

functions as an indicator of the status of a thread. The 

paraphrase of the text is "In a parallel process, previously 

prepared data begins to be arranged in sequence." This 

process includes organizing and combining information. 

2) Implementation of Tim Sort algorithm using MPI: 

Implementation of parallel code of Tim Sort algorithm with 

MPI has been successfully completed. The process of 

capturing input data involves verifying the input data 

(including the number of processes and file addresses) and 

entering files. The process is only executed by process 

number 0. The number of processes can be obtained by using 

the MPI_Comm_Size function. However, the file location is 

obtained via command line arguments. Process preparation 

involves dividing the data for each process and initializing 

the supporting variables. In order to share data, the process is 

carried out using two functions, namely MPI_Bcast and 

MPI_Scatterv. 

MPI_Bcast serves to spread a number of data to be sorted 

to all processes in the MPI communicator. Later, this 

information will be used to start the initial value of the 

supporting variables. Meanwhile, the MPI_Scatterv function 

will be used to spread the data to be sorted. The layout 

process involves organizing and aggregating data. The 

merging process involves two steps, but only one of those 

steps will merge the process. The process involved will send 

information about the amount of data and the amount of data 

it has to the process that is doing the merging. This can be 

done through the use of the MPI_Send function. To combine 

data, the information will be received by the process through 

the MPI_Recv function. 

B. Analysis and Discussion 

1) Analysis of the results of the optimum minimum run 

test data: In Table 1 there is an average testing computation 

time on the results of the optimum minimum run test data. In 

Table 1 it can be seen that the computation time will decrease 

when the minimum run value decreases from 2 to 16. By 

using a small minimum run value, the process of forming one 

run can be done more quickly. However, this phenomenon 

also causes the number of runs that are formed to increase 

when compared to the minimum value which is larger and the 

time required to combine them becomes longer. 

TABLE I 

AVERAGE COMPUTATION TIME OF MINIMUM OPTIMUM TEST RUN 

No. 
Minimum Run 

Value (Data) 

Average Compute 

Time (Milliseconds) 

1 2 81,086 

2 4 76,647 

3 8 67,875 

4 16 64,469 

5 32 67,675 

6 64 80,286 

7 128 111,468 

8 Dynamic 75,899 

 

The solution to this problem is to increase the minimum 

number of runs. By increasing the minimum run value limit, 

the time needed to make one run will be longer, but the 

number of runs formed will be reduced. Thus, the time 

needed to combine the runs will be shorter. When compared, 

the increase in computation time in forming the entire run is 

less than the reduction in computation time in the 

concatenation, so that the total computation time becomes 

shorter. 

Continuously increasing the minimum run value limit does 

not necessarily result in a reduction in the total computation 

time. From a minimum run value of 16 to a minimum run 

value of 128, it can be observed in Table 1. During this 

interval, increasing the minimum run value will cause the 

overall computation time to become longer. This is due to the 

fact that the time taken to calculate all the individual runs is 

longer than the time taken to combine them. This is what 

causes dynamic run to have a longer average computation 

time. At a minimum run of 16, the difference between the 

reduction of the combined computation time and the 

computation time of the formation of all runs is the largest 

compared to the other minimum run values. Therefore, the 

best computation time performance can be achieved with a 

minimum run value of 16. 

2) Analysis of the results of testing the accuracy of the 

algorithm: Testing the accuracy of the algorithm is carried 

out to evaluate the extent to which modifications that have 
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been made to the algorithm can produce correct results. After 

testing, the results obtained reached an accuracy value of 

100%. The results of these tests conclude that the algorithm 

that has been made is successful in sorting the data correctly 

and no data is lost during the sorting process. 

3) Analysis of the results of comparative testing 

between parallel algorithms and sequential algorithms: The 

test is carried out using 16 processor cores and a minimum 

number of operations of 16 (results of the most efficient test 

with a minimum number of operations). Table 2 shows the 

test results. In Table 2, it can be seen that the performance of 

the parallel Sort Team has increased significantly. This 

performance increase can be observed from the processing 

time which can be up to 8.4 times faster on the MPI 

implementation and 8.48 times faster on the MPI 

implementation when compared to the processing time of the 

Tim Sort algorithm sequentially on large amounts of data 

4194304. 

TABLE II 

DATA RESULTS OF COMPARISON TESTING BETWEEN PARALLEL AND 

SEQUENTIAL ALGORITHMS 

No. 
Lots of 

Data 

Compute Time (Milliseconds) 

Sequential 

Algorithm 

Parallel Algorithm 

OpenMP MPI 

1 1024 0,273 0,737 0,157 

2 2048 0,556 0,782 0,210 

3 4096 1,226 1,037 0,322 

4 8192 2,362 1,071 0,542 

5 16384 4,864 1,418 0,969 

6 32768 10,126 2,012 1,786 

7 65536 20,988 3,648 3,652 

8 131072 43,464 6,950 7,024 

9 262144 89,743 12,224 14,110 

10 524288 186,050 24,652 27,925 

11 1048576 383,766 47,882 51,949 

12 2097152 790,304 95,737 95,839 

13 4194304 1642,169 193,330 195,899 

 

From this information, it can be seen that the increase in 

the amount of data is in line with the increase in speed. When 

the amount of data to be sorted is small (less than or equal to 

16384), the MPI implementation experiences a higher speed 

increase than the MPI implementation. This is because 

OpenMP involves creating threads. 

The creation of the thread does not take a long time, less 

than 1 millisecond, but even so, the short time has a 

significant impact when compared to the time needed for 

sequential computation. Similarly, a similar situation occurs 

for MPI when faced with large data sets of 1024 and 2048. 

The sequential processing time for that large amount of data 

is less than 1 millisecond, so if the processing times are 

increased from 0 to 1 millisecond, the processing time using 

MPI can exceed the sequential processing time. 

Success parameters include average execution time, fastest 

time, and longest time for each implementation, as follows. 

With a lot of data ≥ 65536, the OpenMP computing time is 

smaller than the MPI computing time and MPI has a smaller 

computing time than OpenMP with a lot of data < 65536. The 

average execution time is 30.114 milliseconds for OpenMP 

and 30.8 for MPI, so that in total on average OpenMP is faster 

than MPI for all amounts of data and processor cores. The 

fastest time for 1024 data and 16 processor cores from 

OpenMP is 0.737 milliseconds and from MPI is 0.157 

milliseconds. The longest time for the amount of data 

4194304 and 16 processor cores from OpenMP is 193,330 

milliseconds and from MPI is 195,899 milliseconds. This 

happens because information is passed between threads in 

OpenMP at a higher speed than information is passed 

between processes in MPI. Although the process of creating 

threads in OpenMP requires computation time, the total 

computation time for thread creation plus OpenMP 

communication time is smaller than MPI communication 

time. 

Communication in OpenMP can run more efficiently 

because each thread in OpenMP uses the same memory to 

communicate. As a result, threads can share information by 

writing and reading messages directly from memory, without 

the need to go through a complicated communication process. 

Communication between processes in MPI is done by 

sending messages to each other. The larger the message sent, 

the longer it will take to send it. 

4) Analysis of the results of testing the effect of 

increasing the use of processor cores on increasing speed 

(speed up): The process of analysing test results is carried out 

with the aim of understanding how the use of more processor 

cores can affect the increase in speed (speed up) resulting 

from the algorithm that has been developed. The trial was 

carried out using a minimum run of 16 times, which is the 

result of the optimal minimum run test. Table 3 shows the test 

results. The increase in speed in Table 3 is estimated based 

on the difference in execution time of the sequential 

algorithm in Table 2. 

TABLE III 

TESTING RESULTS DATA EFFECT OF USING MANY PROCESSORS CORE ON 

SPEED UP 
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Table 3 shows the scalability of OpenMP and MPI 

implementations with increasing number of processor cores 

and data used. The performance of both implementations 

improves as resources increase, but as data increases this will 

affect the scalability of the OpenMP and MPI 

implementations. In Table 3, it can be seen that the order of 

increasing the speed from highest to lowest when using MPI 

is when using 16 cores, 8 cores, 4 cores, and 2 cores 

processor. The speed ups were 8.4 times, 5.69 times, 3.46 

times and 1.91 times, respectively. When using OpenMP, the 

speed increases from the highest to the lowest, including 

when using 16 cores, 8 cores, 4 cores and 2 cores. The 

addition of speed (speed up) each of 8.48 times, 5.74 times, 

3.51 times, and 1.91 times. From this information, it can be 

concluded that the increase in data usage will be in line with 

the increase in speed obtained by using the same core 

processor. 

In OpenMP, the increase in processor core usage is 

proportional to the speed up (speed up) of the same large 

amount of data. However, this effect is only seen in the 

amount of data that is greater than or equal to 32768. In many 

cases, the speed up on data smaller than 32768 will 

experience an increase which will then decrease or even 

continue to decrease. The decrease in computation time 

resulting from the increase in the use of processor cores, is 

offset by the increase in the time required for communication. 

As a result, the total time required for computation and 

increased speed is lower. 

Some data shows that OpenMP has a speed increase of less 

than 1, which means that the sequential computation time is 

faster than OpenMP. This situation occurs when using an 8-

core processor with a data set of 1024, and when using a 16-

core processor with a data base of 1024 and 2048. This occurs 

because the time required to calculate the thread creation and 

communication processes is longer than the time saved by 

reducing computing. 

The more threads to be created, the longer the computation 

time required for the thread creation process. This 

phenomenon is clearly seen in Table 3, where the use of a 

processor with 8 cores results in a shorter computation time 

for the thread creation process compared to the reduction in 

computation time resulting when the data is multiplied up to 

2048. When using a processor with 16 cores, the new 

situation is similar occurs when the amount of data is 

increased to 4096, or a 4-fold increase. 

In Table 3, the more data ≥ 262144, the more similar the 

speed up of OpenMP and MPI will be. This phenomenon 

occurs because in that interval, the ratio between the 

computation time when creating threads plus the computation 

time when communicating and subtracting the computation 

time in OpenMP will be increasingly similar to the 

comparison between the computing time communicating and 

reducing the computation time in MPI. MPI speed is not 

always faster than OpenMP. 

The efficiency of computing resource use is measured for 

each implementation. Success parameters include the extent 

to which the implementation utilizes the potential of available 

computing resources compared to optimal resource use. The 

efficiency figures in Table 4 are calculated based on the 

information contained in Table 3. In Table 4, it can be seen 

that the MPI implementation has varying levels of efficiency 

depending on the number of cores used. The order of MPI 

implementation efficiency from highest to lowest is using 2 

cores, 4 cores, 8 cores, and 16 cores of processors. The 

efficiency percentages are 95.53%, 86.38%, 71.08% and 

52.47% respectively. In the OpenMP implementation, 

processor efficiency levels based on the number of cores from 

highest to lowest are 2 cores, 4 cores, 8 cores, and 16 cores. 

The efficiency of each processor is 95.61%, 87.68%, 72.75% 

and 52.99%. 

Based on Table 4, it can be seen that using 8 processor 

cores with 1024 data and using 16 processor cores with 1024 

and 2048 data produces an efficiency below 10%. This 

happens because when the speed of using the processor core 

increases with the same amount of data, the speed (speed up) 

does not exceed 1 or the computation time becomes longer 

compared to the sequential computing time. The causes of 

this phenomenon can be found in the explanations given in 

Table 3. Apart from these three data, there is one additional 

data which shows an efficiency below 10%. This occurs 

when using as many as 16 processor cores with the amount 

of data reaching 4096. 

TABLE IV 

TESTING RESULTS DATA EFFECT OF USING MANY PROCESSORS CORE ON 

EFFICIENCY 

 

 

The increase in the speed of the data has a ratio of more 

than 1 or higher than the sequential computing time, but the 

increase in time obtained is less than 1.8. This phenomenon 

occurs because the difference in the time required to 

enumerate threads, the time to send and receive 

communications, and the reduction in computation time is 

still insufficient to achieve a speed increase of 1.8 or more. 

From the available information, it appears that the increase in 

the use of processor cores is inversely related to the level of 

efficiency achieved. 
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The more processor cores are used, the less efficiency that 

can be achieved. The reason is because there is inequality in 

the division of tasks in the parallelization carried out in our 

research. An imbalance in the division of tasks can be found 

in the merging process. In the time of merging into one, only 

half the number of processor cores are used. When combining 

the two, a fraction of the total processor cores is currently 

running. The activity will continue to run, using half the 

processor core capacity of the previous activity, until it 

reaches the log2(n) process. 

Apart from that, the communication process between 

processor cores and data transfer also causes a lack of 

efficiency. This is in line with the concept of division, namely 

when divided by two, the reduction is halved, but when 

divided again by two, the reduction is not half, but smaller, 

and so on. Therefore, the reduction in time can still be 

smaller, but the amount of time reduced will decrease. 

If the number of processor cores used is still small (≤ 4), 

the impact of the unequal distribution of tasks is not too 

visible. This can be seen from the test results in Table 3, 

where the highest efficiency reached 95.53% and reached 

86.38%. As the number of processor cores used increases, an 

imbalance in the distribution of tasks becomes visible. 

Evidence of this can be seen from the test results listed in 

Table 4.5, where the highest efficiency reached 71.08 percent 

and the lowest efficiency reached 52.47 percent. 

The OpenMP implementation and the MPI 

implementation are similar in terms of performance. The 

difference in the highest level of efficiency obtained for each 

processor core is only around 0% to 2% with the application 

of OpenMP technology which shows better results compared 

to MPI technology. Differences appear when the amount of 

data to be sorted is small (less than 16384), in this case the 

MPI implementation shows more optimal performance (with 

an increase in efficiency of 5% to 25%) compared to the 

OpenMP implementation. While there is a significant 

difference in efficiency scores, the difference in execution 

time between the two implementations is only slight 

(between 50 microseconds to 500 microseconds), with the 

MPI implementation outperforming the OpenMP 

implementation in terms of speed. 

The working concept of OpenMP is like people having a 

discussion at a table, when one of them asks a question, the 

others can immediately hear and answer. MPI's working 

concept is like people having a discussion but not in the same 

room, when one of them wants to ask a question, it is done 

via sending messages, and the others cannot immediately 

hear and answer. The ability of MPI implementation to 

overcome disruptions or failures in communication is by 

freeing up all kinds of data transferred on the same 

communication line, thereby reducing tolerance for time 

delays. However, the advantage of MPI over OpenMP is that 

it is easier to implement for an increasing number of 

processor cores and resources. 

IV. CONCLUSION 

The increase in speed using OpenMP in parallelizing the 

Team Sort algorithm is better, reaching up to 8.48 times, 

when compared to using MPI which only achieved a speed 

increase of 8.4 times for testing using 16 processor cores and 

data is also used. The speed increase is proportionally related 

to the use of processor cores on the same large amount of 

data, whether implementing OpenMP or MPI. OpenMP has a 

faster computation than MPI when the data being processed 

is large enough, which is more than or equal to 65536. 

However, MPI has a smaller computation time than OpenMP 

when the data is less than 65536. The more data that is used 

on the use of processor cores the more the same, then the 

speed and efficiency will increase proportionally. The use of 

processor cores has a conflicting relationship with efficiency 

when using a lot of similar data. 
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