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 Corn is one of the important food crops in the world. To ensure optimal results, 

farmers usually monitor crop conditions manually. Unfortunately, manual 

monitoring can take time and effort due to the large area of maize fields (approx.: 1 

ha). In addition, corn plants are also susceptible to diseases and pests which often 

result in corn farmers experiencing losses due to crop failure. This can be supported 

by several cases of corn crop failure in Lampung caused by pests and water 

shortages, such as in Bumidaya Village, South Lampung. Therefore, this research 

will develop a corn crop monitoring system using geohash and drones. The primary 

objective of this research is to develop a comprehensive design for a corn crop 

monitoring system, leveraging the capabilities of machine learning for corn plant 

recognition. The application of geohash is expected to assist farmers in handling and 

early detection of plants that experience a decrease in health quality before it spreads 

to all other maize crops. The results of the model training carried out with the R-

CNN are that the detection model is able to detect with an accuracy of 88.9% with a 

low distance of the drone in taking pictures or close to plants. 
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I. INTRODUCTION 

Maize, commonly known as corn, holds a prominent 

position as one of the most extensively grown and significant 

staple crops worldwide. It is an exceptionally versatile plant, 

utilized in various ways across diverse cultures and industries. 

Its primary cultivation purpose revolves around the 

production of edible grains, which find extensive use in 

numerous culinary applications, serving as both a key 

ingredient and a raw material for diverse food products [1].  

The kernels of maize exhibit a wide spectrum of colors, 

including yellow, white, red, blue, and even black, each 

boasting distinctive flavors and nutritional compositions. In 

the present day, maize is cultivated on a large scale in 

numerous regions globally, with major producers including 

the United States, China, Brazil, Mexico, and Indonesia. In 

Indonesia, particularly in the year 2020, the corn production 

is projected to reach a staggering 29.02 million tons, with the 

East Java Province emerging as the leading corn-producing 

province within the country [2]. This crop showcases 

remarkable adaptability, thriving in diverse climates and 

suitable for growth in tropical, subtropical, and temperate 

areas. The combination of its adaptability, high yields, and 

nutritional value has propelled maize to global recognition 

and widespread cultivation. Diseases play a significant role in 

reducing maize yield and productivity in Asia, as well as in 

other regions. Globally, it is estimated that diseases cause a 

yearly loss of 9.4% of the economic product, which is the 

grain. In the United States, this figure amounts to 12%, while 

in countries like India, an annual decrease in grain yield of at 

least 13.2% has been estimated. Considering a conservative 

estimate of 9.4%, the annual reduction in grain yield in Asia 

is approximately 9.1 million tons [3].  

Maize in Southeast Asia, particularly in Indonesia, is 

vulnerable to various prevalent diseases that can have a 

significant impact on crop yield and overall productivity. One 

commonly encountered disease is maize rust, which is caused 

by the fungus Puccinia polysora. This disease primarily 

affects the leaves, stems, and husks of maize plants, leading 

to a decrease in photosynthesis and premature aging of the 

plants. Another notable disease is maize lethal necrosis 

(MLN), which is caused by a combination of viruses 

including maize chlorotic mottle virus (MCMV) and 

sugarcane mosaic virus (SCMV). MLN is characterized by 

severe stunting, leaf discoloration, and eventual plant death. 

Additionally, southern corn leaf blight, caused by the fungus 
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Bipolaris maydis, can lead to lesions on the leaves, reducing 

the plant's ability to efficiently capture sunlight for 

photosynthesis. Indonesian farmers consistently encounter 

the challenge of addressing these diseases through integrated 

pest management strategies, crop rotation, utilizing resistant 

maize varieties, and timely application of fungicides. These 

measures are essential to minimize the adverse impacts on 

maize production.  

Many corn plant diseases can be readily recognized and 

observed visually. Leaf blight, rust, and wilt are common 

examples of diseases that affect corn plants and can be easily 

identified. Furthermore, the health condition of corn can also 

be assessed by examining the appearance of its tassels. Due to 

technological advancements, the identification of these 

diseases has become more accessible. In pursuit of this goal, 

the study aims to construct an integrated system that combines 

machine learning technology and agricultural practices. This 

system will facilitate real-time monitoring of corn crops, 

utilizing machine learning algorithms to accurately identify 

and assess the health and growth stages of the plants. By 

harnessing the power of machine learning, the research seeks 

to enhance the efficiency and precision of corn crop 

management, ultimately contributing to more sustainable and 

productive agricultural practices. Through this innovative 

approach, the study endeavours to advance our understanding 

of how technology can positively impact crop cultivation and 

food security. 

 A method to determine disease-infected plants involves 

the utilization of digital image recognition technology in 

conjunction with drones [4]. 

II. LITERATURE REVIEW  

There are several studies that form the basis and reference 

of this research, the first is this journal discusses the 

development of a generalized deep learning-based system for 

detecting pine wilt disease using RGB-based UAV images 

[5]. They used a UAV equipped with an RGB camera to 

capture images of pine forests infected with pine wilt disease. 

The collected data was then used to train a deep learning 

model, which consisted of three main stages: data pre-

processing, model development, and model testing using 

unseen data. The results of this study showed that the built 

deep learning model can be used to detect pine wilt disease 

with high accuracy, even in complex open field conditions. 

The model can also be used to detect other types of pine wilt 

disease with satisfactory accuracy. In conclusion, the use of 

deep learning to detect pine wilt disease from RGB-based 

UAV images can help forestry experts and farmers monitor 

and prevent the spread of the disease. This system can also be 

used to detect wilt disease in other crops, making its potential 

applications wide-ranging.  

Another paper discusses the application of CNN to detect 

transmission centres of wheat stripe rust under complex field 

conditions using high spatial resolution RGB-based images 

from UAV [6]. CNNs semantic segmentation architecture 

(deeplabv3+) was applied to per-pixel classify the imagery for 

the detection of healthy wheat and stripe-rust-infected wheat 

(SRIW). The authors collected data using a UAV equipped 

with an RGB camera to capture images of wheat plants 

infected with stripe rust. The data collected included high 

spatial resolution RGB images of a large field area. With the 

end-to-end deep learning segmentation method greatly 

reducing the need for intensive preprocessing, the 

combination of CNNs and RGBbased ultra-high spatial 

resolution images from UAVs provides a simple and rapid 

method for accurate detection of crop disease on a large scale.  

The extraction of maize seedling information from UAV 

images based on semi-automatic sample generation and the 

Mask R-CNN model discussed in this paper [7]. The authors 

used a UAV to capture images of maize seedlings in 

agricultural fields. They then used a semi-automatic method 

to generate data samples that included maize seedlings from 

different angles and varying lighting conditions. After 

collecting the data samples, the authors used the Mask R-

CNN model to process and analyze the data. The model was 

trained using the generated data samples and used to extract 

important information about the maize seedlings, such as 

height, leaf area, and leaf size. n conclusion, the use of a semi-

automatic method for sample generation and the Mask R-

CNN model for extracting important information from UAV 

images can help farmers and agricultural experts monitor and 

develop agriculture more effectively and efficiently.  

This journal discusses the detection and location of dead 

trees with pine wilt disease using deep learning and UAV 

remote sensing [8]. The authors used UAV technology to 

capture images of pine forests infected with pine wilt disease. 

These images were then processed using deep learning to 

detect and locate dead trees caused by the disease. In this 

study, the authors compared four different deep learning 

models, including Faster R-CNN, Mask R-CNN, YOLOv3, 

and SSD. The results showed that the Faster R-CNN model 

produced the highest accuracy in detecting and locating dead 

trees caused by pine wilt disease. The detection accuracy was 

improved and reached to about 90% after a series of 

optimizations to the network. Our new approach developed a 

corn crop monitoring system using geohash and drones. The 

application of geohash is expected to assist farmers in 

handling and early detection of plants that 3 experience a 

decrease in health quality before it spreads to all other maize 

crops. 

III. METHODOLOGY 

The experiment involves training the model using R-CNN 

on a publicly available dataset and a independently collected 

dataset. The independent dataset was collected using the DJI 

Mavic Air 2 drone and relied on geohash mapping. Geohash 

is a geocoding system that divides the Earth into small 

squares. By applying geohash to the cornfield, it is possible to 

obtain latitude and longitude coordinates that correspond to 

the specific location of the field. The sequence of processes 

performed in the system can be seen in Figure 1. 
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A. Geohash mapping 

Mapping the cornfield area with geohash aims to facilitate 

the drone in automatically capturing images based on the 

known geohash and coordinates. Each geohash represents 

exactly one coordinate of a location, so these coordinates will 

be used as a reference for the drone's flight. The coordinates 

representing each geohash are in the center of the geohash 

area. Therefore, in the upcoming experiment, the drone's 

altitude for capturing images will be 5 meters above the 

ground, assuming that the entire represented geohash area can 

be clearly visible. 

 

Figure 1. System Development Flowchart 

The cornfield location to be used in this study is a 

cornfield situated in the Kedamaian District of Bandar 

Lampung City, with the coordinates of the cornfield being -

5.412633, 105.28003. The total area of this cornfield is 

approximately 3.2 hectares, but for the experiments 

conducted in this study, a quarter of that area will be used, 

which is about 8 hectares. 

 

Figure 2. Experimental Area Location in the Kedamaian Cornfield 

The geohash characters used in this experiment are 9 

characters long, covering an area of 5 x 5 meters. The geohash 

codes used for the experimental area can be seen in Table 1. 

 

 

TABLE I 

GEOHASH CODE 

Area 1 2 3 4 

1 qr4c5wwt4 qr4c5wwsf qr4c5wwsd qr4c5wws6 

2 qr4c5wwt5 qr4c5wwsg qr4c5wwse qr4c5wws7 

3 qr4c5wwth qr4c5wwsu qr4c5wwss qr4c5wwsk 

4 qr4c5wwtj qr4c5wwsv qr4c5wwst qr4c5wwsm 

5 qr4c5wwtn qr4c5wwsy qr4c5wwsw qr4c5wwsq 

6 qr4c5wwtp qr4c5wwsz qr4c5wwsx qr4c5wwsx 

7 qr4c5wwv0 qr4c5wwub qr4c5wwu8 qr4c5wwu2 

8 qr4c5wwv1 qr4c5wwuc qr4c5wwu9 qr4c5wwu3 

The information in the form of coordinates, geohash 

codes, and drone positions will be stored in the database with 

details as shown in Figure 3. The dataset includes attributes 

such as a name attribute that stores the location's name, a 

geohash code attribute storing the geohash code based on 

Table 1, latitude and longitude attributes that are 

automatically stored based on the geohash, and a status 

attribute to determine whether the location has been visited by 

the drone, with a Boolean data type. 

 

Figure 3. Drone Flight Path Database 

Geohash plays a pivotal role in aiding the collection of 

crucial initial data essential for the development of models. 

Additionally, it is employed for capturing images during the 

monitoring process of corn crops. As depicted in Figure 4, 

illustrating the workflow of the monitoring system, the 

process unfolds in several stages. Initially, in the first phase, 

the system stores geohash data in a database while 

simultaneously preparing flight instructions for the drone. 

Subsequently, the constructed database, as seen in Figure 3, 

contains vital information including latitude, longitude, and 

geohash area codes. Once the system acquires location 

information and data capture directives, the drone embarks on 

its mission to capture images of the cornfields based on the 

predefined geohash sequence. The drone's flight duration for 

this task typically spans a period of approximately 30 minutes. 

In the subsequent stage, after completing the image 

capture operation, the drone proceeds to upload the gathered 

data to the central system. This data is then subjected to 

processing using a corn recognition model, thus facilitating 

further analysis and insights into the corn crops. 
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Figure 4. System Flow 

B. Dataset Collection 

The dataset used in this experiment consists of 969 images 

of corn plants available publicly, captured using a drone. 

These images were taken from a height of 5 meters. Apart 

from this dataset, there is an additional set of 50 images taken 

independently using the DJI Mavic Air 2 drone. This dataset 

is specifically annotated for corn tassels, as shown in Figure 

5. The image capture is performed automatically based on the 

predetermined geohash on the drone. 

 

Figure 5. Dataset 

Collecting this dataset serves as the foundation for the 

development of a deep learning model for monitoring corn 

plants. In this experiment, the developed model focuses on 

detecting corn tassels to assess rice productivity conditions. 

C. Model Development 

The development of the corn tassel detection model is 

divided into 5 stages: data acquisition, data pre-processing, 

model training, evaluation, and implementation of the model 

into the system. In the data acquisition stage, data is collected 

based on publicly available corn plant datasets and a 

collection of corn plant photos taken independently with the 

DJI Mavic Air 2 drone. Subsequently, the corn plant images 

to be used are standardized in size, and the image saturation 

is adjusted to enhance the clarity of the images. In the model 

training stage, the deep learning method used in this research 

is Fast R-CNN. The final stage in model development is the 

evaluation of model performance using the COCO validation 

method. If the model shows good performance, it is then ready 

for use in the system. The model development flowchart can 

be seen in Figure 6. 

 

Figure 6. Flowchart Model Development 

D. Model Evaluation 

The evaluation of the developed model's performance is 

conducted using average precision at 50, average precision at 

75, small average precision, and medium average precision. 

Average Precision (AP) condenses the Precision-Recall (PR) 

Curve into a single scalar value. High average precision 

indicates that both precision and recall are high, while low 

average precision suggests that either precision or recall (or 

both) are low across various confidence threshold values [9]. 

The AP value ranges from 0 to 1. 

IV. RESULTS AND ANALYSIS 

The datasets obtained from public sources or 

independently collected are annotated using Roboflow 

annotations. The annotation results can be seen in Figure 7 

below. The next annotated images are ready to undergo data 

pre-processing. The pre-processing technique applied to the 

data used in this experiment involves adjusting the brightness 

and contrast of the images. The subsequent step involves 

splitting the data into training, validation, and testing sets. The 

portions for each of these sets are 733 images for training, 205 

for validation, and 30 for testing. The deep learning method 

used in model training is Fast R-CNN with a total of 1000 

iterations. The prediction method utilized in this model 

development is Default Prediction, and the evaluation method 

employed is the COCO evaluator.  

 

 

Figure 7. Corn Tassel Annotation 
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In this experiment, model training yielded satisfactory 

results in terms of detecting corn tassels. At 1000 iterations, 

the accuracy of corn tassel detection reached 88.9%. Figure 8 

illustrates the accuracy graph of the model training, while 

Figure 8 shows the testing results. In the trained model, the 

average precision values were as follows: AP50 was 66.49%, 

AP75 was 16.83%, APs and APm did not yield satisfactory 

results, and Apl was 30.1%. 

 

 
Figure 8. Model Accuracy 

 

Based on these average precision results, it can be concluded 

that accurate detection of corn tassels can be achieved by 

using sufficiently large image sizes to visualize the corn 

plants. Furthermore, the average precision results also provide 

recommendations for the optimal flying height for drones. For 

more accurate detection, the drone should ideally fly at a 

height that is close to the corn plants. 

 

 

V. CONCLUSION 

Based on the results of the experiments conducted in this 

study, it can be concluded that the performance of R-CNN is 

quite good in detecting corn tubers with a detection accuracy 

of 88.9%. From the experimental results, it can also be 

concluded that capturing images and performing detection 

using a drone is better done at a relatively close distance to 

the plants, which would result in more accurate detection 

outcomes. The use of geohash in this experiment is considered 

highly beneficial for the research in gathering the required 

dataset. 

REFERENCES 

[1] S. M. Metev & V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., 

R. M. Osgood, Jr., Ed.  Berlin, Germany: Springer-Verlag, 1998. 
[2] J. Breckling, Ed., The Analysis of Directional Time Series: 

Applications to Wind Speed and Direction, seri Lecture Notes in 

Statistics.  Berlin, Germany: Springer, 1989, vol. 61. 
[3] S. Zhang, C. Zhu, J. K. O. Sin, &P. K. T. Mok, “A novel ultrathin 

elevated channel low-temperature poly-Si TFT,” IEEE Electron 

Device Lett., vol. 20, pp. 569–571, Nov. 1999. 
[4] M. Wegmuller, J. P. von der Weid, P. Oberson, & N. Gisin, “High 

resolution fiber distributed measurements with coherent OFDR,” 

Prosiding ECOC’00, 2000, paper 11.3.4, p. 109. 
[5] R. E. Sorace, V. S. Reinhardt, &S. A. Vaughn, “High-speed digital-to-

RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997. 

[6] (2002) The IEEE website. [Online].Tersedia: http://www.ieee.org/ 

[7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Tersedia: 
http://www.ctan.org/tex-

archive/macros/latex/contrib/supported/IEEEtran/ 

[8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996. 
[9] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland. 

[10] A. Karnik, “Performance of TCP congestion control with rate 

feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian 
Institute of Science, Bangalore, India, Jan. 1999. 

[11] J. Padhye, V. Firoiu, &D. Towsley, “A stochastic model of TCP Reno 

congestion avoidance and control,” Univ. of Massachusetts, Amherst, 
MA, CMPSCI Tech. Rep. 99-02, 1

 


