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 Diabetes Mellitus presents a global health challenge necessitating accurate early 

detection to prevent fatal complications. However, clinical data often exhibit 

imbalanced class distributions, hindering standard prediction models from 

effectively detecting positive patients. This study aims to compare the performance 

of two modern Gradient Boosting algorithms, LightGBM and CatBoost, in 

predicting diabetes risk. Random Forest and Logistic Regression algorithms were 
included as baseline models to benchmark effectiveness. To address data imbalance, 

the Synthetic Minority Over-sampling Technique (SMOTE) was applied during the 

training data preprocessing stage. The dataset was sourced from the Kaggle public 

repository (Diabetes Prediction Dataset), comprising 100,000 patient medical 

records with clinical attributes such as age, body mass index (BMI), and HbA1c 

levels. Performance evaluation utilized Accuracy, Precision, Recall, F1-Score, and 

Area Under the Curve (AUC) metrics. Experimental results demonstrated a tight 

competition, where LightGBM achieved the highest Accuracy of 97.16%. However, 

CatBoost demonstrated superior sensitivity (Recall) of 69.71% and the highest F1-

Score of 80.48%. This makes CatBoost the most reliable model in minimizing False 

Negatives compared to LightGBM and Random Forest, whereas Logistic Regression 
showed the lowest performance. Furthermore, interpretability analysis using SHAP 

(SHapley Additive exPlanations) revealed that HbA1c and blood glucose levels were 

the most dominant features in detection, validating the model's alignment with 

clinical diagnosis. This study concludes that the CatBoost algorithm combined with 

SMOTE offers a more sensitive, transparent, and efficient diabetes prediction for 

medical screening. 
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I. PENDAHULUAN 

Diabetes Melitus (DM) merupakan penyakit metabolik 
kronis yang menjadi tantangan kesehatan global utama 

dengan prevalensi yang terus meningkat signifikan. 

Berdasarkan data dari IDF Diabetes Atlas dan studi global 

oleh Ong et al. (2023) [1], beban penyakit DM diproyeksikan 

akan terus meningkat signifikan hingga tahun 2050, 

menjadikannya penyebab utama morbiditas dan mortalitas. Di 

Indonesia, tren peningkatan kasus DM juga sangat 

mengkhawatirkan, diperparah dengan risiko komplikasi fatal. 

Studi terbaru menunjukkan bahwa kadar gula darah yang 

tidak terkontrol pada DM Tipe 2 memiliki hubungan erat 

dengan kejadian hipertensi [2], yang meningkatkan risiko 

gagal ginjal terminal (End-Stage Renal Disease) [3]. 

Mengingat fatalnya risiko tersebut, pengembangan sistem 

deteksi dini yang cepat dan akurat sangatlah mendesak. 

Dalam konteks diagnosis, teknologi Machine Learning (ML) 

telah banyak diterapkan untuk memprediksi risiko DM 

berdasarkan data klinis [4]. Meskipun algoritma konvensional 

seperti Random Forest (RF) [5] sering digunakan sebagai 
baseline [6], metode ini kerap menghadapi kendala 

skalabilitas dan efisiensi ketika berhadapan dengan data 

rekam medis berskala besar  [7]. Selain Random Forest (RF), 

metode statistik klasik seperti Logistic Regression (LR) juga 

tetap relevan dijadikan standar dasar (baseline) karena 
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kesederhanaan dan interpretabilitasnya yang tinggi dalam 

analisis risiko medis [8] [9]. 

Tantangan kritis lainnya adalah masalah 

ketidakseimbangan kelas (class imbalance), di mana jumlah 

data pasien sehat jauh lebih banyak daripada pasien diabetes. 

Kondisi ini menyebabkan model klasifikasi, termasuk RF, 

cenderung bias ke kelas mayoritas dan memiliki sensitivitas 

(Recall) yang rendah dalam mendeteksi kasus positif yang 
sebenarnya [10][11].  

Untuk mengatasi bias ini, teknik resampling seperti 

Synthetic Minority Over-sampling Technique (SMOTE) 

diterapkan guna menyeimbangkan distribusi data latih dan 

telah terbukti signifikan meningkatkan kinerja model pada 

metrik Recall dan F1-Score [12], [13], serta efektif 

meningkatkan sensitivitas deteksi pada dataset diabetes yang 

tidak seimbang [14], [15]. 

Untuk menjawab tantangan akurasi dan efisiensi pada data 

tidak seimbang, penelitian ini mengusulkan penggunaan 

algoritma Gradient Boosting modern, yaitu LightGBM (Light 
Gradient Boosting Machine) [16] dan CatBoost (Categorical 

Boosting) [17]. Kedua algoritma ini menawarkan efisiensi 

komputasi yang lebih tinggi dan performa superior 

dibandingkan model tradisional [18]. Penelitian ini juga 

menerapkan strategi validasi silang K-Fold Cross-Validation 

untuk memastikan evaluasi performa model yang lebih 

objektif dan robust terhadap variasi data [19], [20].  Dengan 

mengkomparasi performa LightGBM-SMOTE dan CatBoost-

SMOTE terhadap Logistic Regression dan Random Forest 

(baseline) yang juga diolah dengan SMOTE, penelitian ini 

bertujuan mengidentifikasi model prediksi terbaik yang 

paling akurat dan robust, khususnya pada metrik Recall, 
untuk direkomendasikan sebagai sistem pendukung 

keputusan klinis. 

II. METODE  

Penelitian ini dilakukan secara sistematis untuk 

membandingkan performa model klasifikasi dalam 

memprediksi risiko diabetes. Tahapan penelitian ini meliputi 

akuisisi data, prapemrosesan, penanganan ketidakseimbangan 

data, penerapan algoritma, hingga evaluasi akhir. Sistematika 

pelaksanaan penelitian ini dapat dilihat pada diagram alir 

yang disajikan dalam Gambar 1. 

 

 

Gambar 1. Alur penelitian. 

A. Data Acquisition 

Penelitian ini memanfaatkan Diabetes Prediction Dataset 
yang diperoleh dari repositori publik Kaggle (tersedia di: 

https://www.kaggle.com/datasets/iammustafatz/diabetes-

prediction-dataset/data). Dataset ini mencakup 100.000 

rekam medis pasien yang terdiri dari delapan fitur independen 

(demografis dan klinis) serta satu variabel target biner. 

Rincian karakteristik setiap atribut beserta tipe datanya 

disajikan secara ringkas pada Tabel I. Berdasarkan analisis 

distribusi data, ditemukan tantangan berupa 

ketidakseimbangan kelas (class imbalance) yang ekstrem, di 

mana prevalensi kasus positif diabetes hanya berkisar 8,5% 

dari total populasi. Kondisi ini dikhawatirkan dapat memicu 

bias prediksi pada kelas mayoritas jika tidak ditangani dengan 
strategi resampling yang tepat pada tahap pra-pemrosesan [5], 

[6]. 
TABEL I  

KARAKTERISTIK DATASET 

Atribut Keterangan 

Sumber Data Kaggle – Diabetes Prediction Dataset 

Jumlah Data 100,000. 

Variabel Independen 8 

Variabel Target Diabetes (Biner) 

Distribusi Kelas 8,5% Diabetes; 91,5% Non-Diabetes 

Fitur Utama HbA1c, Kadar Glukosa Darah, BMI 

B. Data Preprocessing  & Experimental Setup 

Tahap pra-pemrosesan diawali dengan pembersihan data 

(data cleaning) untuk menjamin integritas statistik input 

model. Berdasarkan pemeriksaan kualitas data, tidak 

ditemukan missing values, namun prosedur eliminasi duplikat 

diterapkan untuk menghapus baris identik guna mencegah 

redundansi informasi. Analisis pencilan (outlier) pada fitur 

vital seperti BMI dan Blood Glucose tetap dipertahankan 
karena merepresentasikan kondisi fisiologis riil pasien 

diabetes (kasus ekstrem). 

Setelah data dipastikan bersih, fitur kategorikal (Gender, 

Smoking History) dikonversi menggunakan One-Hot 

Encoding dengan parameter drop_first=True untuk 

menghindari multikolinearitas. 

Sebelum dilakukan penskalaan fitur, dataset terlebih 

dahulu dibagi menjadi dua partisi independen: 80% sebagai 

Data Latih (Training Set) dan 20% sebagai Data Uji (Testing 

Set) menggunakan teknik Stratified Sampling. Langkah ini 

krusial untuk memastikan rasio kelas tetap konsisten dan 

mencegah kebocoran data (data leakage) dari data uji ke 
dalam proses pelatihan. 

Selanjutnya, normalisasi fitur numerik menggunakan 

Min-Max Scaler dilakukan. Penting untuk dicatat bahwa 

scaler hanya dilatih (fit) pada Data Latih, lalu parameternya 

digunakan untuk mentransformasi Data Uji. Persamaan 

normalisasi adalah: 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛

 

 

https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/data
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/data
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Selain pembagian data statis, penelitian ini juga 

menerapkan Stratified K-Fold Cross-Validation (𝑘 = 20) 

selama proses pelatihan untuk memvalidasi konsistensi 

performa model dan mengurangi bias variansi. 
TABEL II  

RINGKASAN PRA-PEMROSESAN DATA 

Jenis Fitur Metode 

Numerik (Usia, BMI, 
HbA1c, Glukosa) 

Min–Max Scaling 

Kategorikal (Jenis Kelamin, 
Riwayat Merokok) 

One-Hot Encoding 

Biner (Hipertensi, Penyakit 

Jantung) 

Tanpa Transformasi 

Missing Values Tidak Ada 

C. Exploratory Data Analysis (EDA) 

Analisis Eksplorasi Data (EDA) dilakukan untuk 
memetakan distribusi kelas dan mengidentifikasi fitur yang 

paling berpengaruh terhadap diagnosis. Visualisasi pada 

Gambar 3 mengungkap adanya ketimpangan kelas (class 

imbalance) yang ekstrem, di mana pasien positif diabetes 

hanya mencakup 8,5% dari total populasi, sedangkan 91,5% 

sisanya adalah pasien non-diabetes. Disparitas rasio ini 

mengonfirmasi urgensi penerapan teknik resampling 
(SMOTE) pada data latih guna mencegah bias prediksi model 

terhadap kelas mayoritas [12], [13]. 

 

Gambar 2. Distribusi Kelas Target pada Dataset Diabetes 

Selanjutnya, analisis hubungan antar fitur dievaluasi 

menggunakan Heatmap Correlation Matrix (Gambar 4). 

Hasil menunjukkan bahwa fitur blood_glucose_level dan 
HbA1c_level memiliki korelasi positif terkuat terhadap 

variabel target dengan koefisien masing-masing sebesar 0.42 

dan 0.40. Nilai ini mengindikasikan bahwa indikator glukosa 

darah merupakan prediktor yang jauh lebih dominan 

dibandingkan fitur demografis (seperti gender atau smoking 

history). Temuan ini sejalan dengan literatur medis yang 

menempatkan kadar gula darah sebagai parameter diagnostik 

utama DM Tipe 2 [2]. 

 

Gambar 3. Matriks Korelasi Antar Variabel Klinis 

D. Handling Imbalance with SMOTE 

Visualisasi EDA (Gambar 3) mengungkap ketimpangan 
kelas ekstrem pada dataset (8,5% vs 91,5%). Guna memitigasi 

bias prediksi terhadap kelas mayoritas, teknik Synthetic 

Minority Over-sampling Technique (SMOTE) 

diterapkan.Sesuai kaidah metodologi yang ketat, SMOTE 

diterapkan secara eksklusif hanya pada Data Latih (Training 

Set) setelah proses pembagian data (splitting). Data Uji 

dibiarkan tetap pada distribusi aslinya untuk menjamin 

evaluasi model yang realistis. Dalam implementasinya, 

algoritma SMOTE dikonfigurasi menggunakan parameter 

𝑘𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑑𝑠 = 5 dan 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑎𝑡𝑒 = 42. 

 

Gambar 4. Distribusi Kelas Dataset Sebelum SMOTE 

Secara kuantitatif, proses ini meningkatkan jumlah sampel 

kelas minoritas (Diabetes) pada data latih secara signifikan 

hingga setara dengan kelas mayoritas, yaitu mencapai 73.200 

sampel per kelas. Akibatnya, total volume data latih 

meningkat menjadi 146.400 sampel dengan distribusi yang 
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seimbang sempurna (50:50). Strategi ini krusial untuk 

mencegah model "terbiasa" hanya memprediksi kelas 

mayoritas dan terbukti meningkatkan sensitivitas (Recall) 

dalam mendeteksi pasien positif diabetes [10], [21]. 

 

Gambar 5. Distribusi Kelas Dataset  Sesudah SMOTE 

E. Classification Algorithms 

Setelah tahap resampling SMOTE, dataset dipartisi 
menjadi data latih (training) dan data uji (testing) dengan 

rasio 80:20. Penelitian ini mengimplementasikan tiga 

algoritma berbasis ensemble learning yang dipilih 

berdasarkan keunggulannya dalam menangani data medis 

terstruktur yang kompleks. 

1)   Rundom Forest: Random Forest adalah algoritma 

ensemble yang membangun sekumpulan pohon keputusan 

(decision trees) secara paralel menggunakan teknik Bootstrap 

Aggregating (Bagging). Setiap pohon dilatih pada subset data 

dan fitur yang dipilih secara acak guna menciptakan 

keragaman (diversity) model. Prediksi akhir ditentukan 

melalui mekanisme majority voting untuk klasifikasi. 
Pendekatan ini terbukti efektif dalam mereduksi varians 

model tunggal dan meningkatkan resistensi terhadap noise, 

sehingga meminimalisir risiko overfitting [4], [22]. 

2)   Logistic Regression: Logistic Regression adalah 

metode statistik linear yang digunakan sebagai model 

baseline untuk klasifikasi biner[8]. Algoritma ini 

memodelkan probabilitas terjadinya suatu peristiwa (kelas 

positif diabetes) dengan memetakan output persamaan linear 

ke dalam rentang probabilitas [0, 1] menggunakan fungsi 

transformasi Sigmoid. Keunggulan utama metode ini terletak 

pada efisiensi komputasi dan interpretabilitasnya yang tinggi 
dalam menjelaskan hubungan antar variabel. Pendekatan ini 

telah terbukti efektif dalam memprediksi luaran klinis pada 

studi diabetes sebelumnya, [5]. Secara matematis, prediksi 

probabilitas diformulasikan menggunakan notasi ringkas 

berikut: 

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒−(𝛽0+ ∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1 )

 

Dengan: 

 P(y = 1|x) : Probabilitas pasien terdiagnosis positif 
diabetes berdasarkan input data. 

 β0 : Intercept (konstanta bias) model. 

 βi : Koefisien regresi (bobot) untuk fitur ke-𝑖 yang 

menunjukkan signifikansi pengaruhnya. 

 xi : Nilai variabel prediktor (fitur) ke-$i$ (seperti 

Age, BMI, Glucose). 

 𝑛 : Jumlah total fitur input yang digunakan. 

3)   Light Gradient Boosting Machine (LightGBM): 

LightGBM adalah kerangka kerja gradient boosting yang 
mengoptimalkan efisiensi komputasi melalui strategi 

pertumbuhan pohon berbasis daun (leaf-wise growth). 

Berbeda dengan algoritma konvensional yang tumbuh secara 

level-wise, strategi leaf-wise memilih daun dengan penurunan 

kerugian (loss) terbesar untuk diekspansi, yang mempercepat 

konvergensi. Fungsi objektif LightGBM untuk 

meminimalkan kesalahan prediksi didefinisikan sebagai 

berikut: 

𝑂𝑏𝑗𝑡 =  ∑𝐿(𝑦𝑖 ,
̂  {𝑦}𝑖) +  ∑Ω(𝑓𝑘) 

Dengan:  

 L(yᵢ, ŷᵢ) : Fungsi kerugian (loss function) yang 

mengukur selisih antara target asli dan prediksi. 

 Ω(fₖ) : Suku regularisasi untuk mengontrol 

kompleksitas struktur pohon guna mencegah 

overfitting. 

4)   CatBoost: CatBoost merupakan algoritma gradient 

boosting mutakhir yang dirancang untuk menangani 

pergeseran prediksi melalui skema Ordered Boosting. 

Algoritma ini membangun pohon simetris (oblivious trees) 

yang menjamin eksekusi inferensi sangat cepat dan stabil. 

Secara matematis, pembaruan prediksi pada setiap iterasi 

untuk meminimalkan residual diformulasikan sebagai: 

𝐹𝑡(𝑥) =  𝐹(𝑡−1)(𝑥) +  𝛼 ⋅ ℎ𝑡(𝑥) 

Dengan: 

 Fₜ(x) : Nilai prediksi model pada iterasi ke-t. 

 𝐹ₜ−1(𝑥): Prediksi dari iterasi sebelumnya. 
 α : Learning rate (laju pembelajaran). 

 hₜ(x) : Fungsi dasar (pohon baru) yang 

meminimalkan residual dari langkah sebelumnya. 

F. Performance Evaluation 

Evaluasi model dilakukan menggunakan Confusion 

Matrix yang memetakan prediksi ke dalam empat kuadran: 

True Positive (TP), True Negative (TN), False Positive (FP), 

dan False Negative (FN). Karena dataset memiliki 

ketidakseimbangan kelas dan kesalahan diagnosis diabetes 

berisiko fatal, metrik Akurasi semata tidak cukup 

representatif. 

Oleh karena itu, penelitian ini memprioritaskan metrik 

Recall (Sensitivitas) untuk meminimalkan False Negative 

(pasien positif yang salah didiagnosis sehat), serta F1-Score 
untuk mengukur keseimbangan harmonis antara presisi dan 

sensitivitas. Definisi matematis metrik evaluasi dinyatakan 

sebagai berikut: 
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1) Accuracy Mengukur rasio prediksi benar secara 

keseluruhan. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

2) Precision Mengukur ketepatan prediksi positif (penting 

untuk menghindari diagnosis berlebih/cemas palsu). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

3) Recall (Sensitivity) Mengukur kemampuan model 

mendeteksi seluruh pasien positif (metrik terpenting 

dalam skrining penyakit). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

4) F1-Score Rata-rata harmonis antara Precision dan 

Recall, memberikan gambaran performa yang objektif 

pada data tidak seimbang. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 \𝑡𝑖𝑚𝑒𝑠
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 \𝑡𝑖𝑚𝑒𝑠 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Hasil perhitungan dari seluruh metrik di atas selanjutnya 

akan dikomparasi secara komprehensif untuk menentukan 

algoritma yang memiliki performa diagnostik paling optimal 

dalam memprediksi risiko diabetes. 

G. K-Fold Cross-Validation 

Penelitian ini menerapkan skema 5-Fold Cross-Validation 

(k = 5) untuk memitigasi risiko overfitting dan menjamin 

evaluasi yang lebih objektif dibandingkan metode pembagian 

statis (hold-out). Mekanisme ini mempartisi dataset menjadi 

lima bagian (folds), di mana setiap bagian digunakan secara 

bergantian sebagai data validasi sementara empat bagian 

lainnya berfungsi sebagai data latih. Pendekatan ini 

memastikan model mempelajari seluruh distribusi data 

sehingga bias varians dapat diminimalkan [23]. Performa 

akhir model dihitung berdasarkan rata-rata aritmatika dari 

setiap iterasi:  

𝐶𝑉𝑆𝑐𝑜𝑟𝑒 =
1

𝑘
∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑘

𝑖=1

 

Di mana 𝑆𝑐𝑜𝑟𝑒𝑖 adalah metrik evaluasi pada iterasi ke-𝑖. 
Metode ini merupakan standar validasi yang robust dalam 

studi komparasi algoritma pada data medis [24], [19]. 

 

III. RESULT AND DISCUSSION  

Pengujian model dilakukan menggunakan dataset yang 

telah melalui proses penyeimbangan data (data balancing) 

menggunakan teknik SMOTE. Data dibagi dengan rasio 
80:20, di mana model dilatih pada 80% data latih dan 

dievaluasi pada 20% data uji. Berikut adalah hasil evaluasi 

komparatif antara algoritma CatBoost, LightGBM, dan 

Random Forest. 

A. Model Performance Comparison 

Evaluasi awal dilakukan dengan membandingkan metrik 

standar klasifikasi yang meliputi Akurasi, Presisi, Recall, dan 
F1-Score. Ringkasan performa ketiga algoritma disajikan 

pada Tabel II. 

TABEL III 

PERBANDINGAN PERFORMA ALGORITMA 

Algoritma Akurasi Presisi Recall F1 Score 

LightGBM  97,16 96,70 68,88 80,45 

CatBoost 97,12 95,18 69,71 80,48 

Random Forest 97,04 94,82 68.94% 79,84 

Random Forest 95,84 84,50 62,53 71,87 

 

  Berdasarkan Tabel II, algoritma berbasis gradient boosting 

(LightGBM dan CatBoost) menunjukkan dominasi performa 

yang signifikan dibandingkan Random Forest dan Logistic 

Regression. LightGBM mencatatkan akurasi pengujian 

tertinggi sebesar 97,16%, disusul sangat ketat oleh CatBoost 

dengan 97,12%, dan Random Forest sebesar 97,04%. 
Sementara itu, Logistic Regression tertinggal dengan akurasi 

95,84%, yang mengindikasikan keterbatasan model linear 

dalam menangkap pola kompleks pada data medis ini. 

Selisih performa akurasi yang sangat marjinal (<0,1%) antara 

LightGBM dan CatBoost menunjukkan persaingan ketat. 

Meskipun LightGBM unggul dalam metrik akurasi global dan 

presisi (96,70%), analisis lebih mendalam pada metrik 

sensitivitas (Recall) dan F1-Score menyingkap keunggulan 

CatBoost. 

 Model CatBoost berhasil mencatatkan nilai Recall tertinggi 

sebesar 69,71% dan F1-Score tertinggi sebesar 80,48%, 

mengungguli LightGBM (Recall 68,88%) dan Random Forest 
(Recall 68,94%). Dalam konteks diagnosis medis, 

keunggulan Recall pada CatBoost ini sangat krusial karena 

merepresentasikan kemampuan model yang lebih baik dalam 

mendeteksi seluruh kasus positif (meminimalkan False 

Negative), meskipun harus sedikit mengorbankan presisi. 

Oleh karena itu, keseimbangan performa yang ditunjukkan 

oleh tingginya F1-Score menjadikan CatBoost kandidat 

model yang paling robust. 

 
Gambar 6. Grafik Perbandingan Akurasi Antar Model 

Namun, temuan menarik dan krusial terlihat pada metrik 

Recall. Meskipun LightGBM mencatatkan akurasi global 

tertinggi, CatBoost justru menunjukkan keunggulan dalam 

sensitivitas deteksi. Berdasarkan data Confusion Matrix, 
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CatBoost terbukti lebih andal dalam menangkap kasus positif 

(Diabetes) dibandingkan LightGBM dan Random Forest. Hal 

ini mengindikasikan bahwa meskipun Random Forest dan 

LightGBM memiliki presisi yang kompetitif, CatBoost 

memiliki karakteristik yang paling sensitif dalam 

meminimalkan False Negative, sebuah atribut yang sangat 

vital dalam diagnosis medis. 

B. Confusion Matrix Analysis 

Untuk menganalisis lebih dalam mengenai trade-off antara 

Presisi dan Recall, dilakukan evaluasi menggunakan 

Confusion Matrix yang memetakan distribusi kesalahan 

prediksi (False Positive dan False Negative). Visualisasi 

untuk ketiga model ditampilkan pada Gambar 6. 

 

 
Gambar 7. Komparasi Confusion Matrix 

 

Analisis Confusion Matrix mengungkap temuan krusial 

yang menjadi dasar pemilihan model: 
1) LightGBM (Akurasi Tertinggi): Meskipun memiliki 

akurasi total tertinggi, model ini mencatatkan jumlah True 

Positive (pasien diabetes terdeteksi benar) sebesar 1.171 

orang. 

2) CatBoost (Sensitivitas Terbaik): Meskipun akurasinya 

sedikit di bawah LightGBM, CatBoost berhasil 

mengidentifikasi 1.185 kasus positif secara tepat. Artinya, 

CatBoost mampu menyelamatkan 14 pasien lebih banyak 

dari risiko kesalahan diagnosis (False Negative) 

dibandingkan LightGBM. 

3) Logistic Regression & Random Forest: Kedua model ini 
menghasilkan tingkat kesalahan klasifikasi yang lebih 

tinggi dibandingkan metode boosting, sehingga kurang 

ideal untuk diterapkan pada sistem diagnosis kritis. 

 

Secara konseptual, keunggulan LightGBM dalam akurasi 

disebabkan oleh strategi pertumbuhan pohon leaf-wise yang 

agresif meminimalkan loss function. Namun, pendekatan ini 

terkadang kurang stabil pada data minoritas dibandingkan 

strategi symmetric trees yang digunakan CatBoost. Dalam 

konteks medis, meminimalkan False Negative (pasien sakit 

yang tidak terdeteksi) jauh lebih prioritas daripada mengejar 

akurasi rata-rata. Oleh karena itu, CatBoost ditetapkan 

sebagai model terbaik dalam penelitian ini karena memiliki 

keseimbangan optimal antara akurasi tinggi dan sensitivitas 

(Recall) yang superior. 

C. ROC-AUC Performance Analysis 

Validasi stabilitas model dilakukan dengan menganalisis 

kurva Receiver Operating Characteristic (ROC) dan nilai 

Area Under Curve (AUC). Sebagaimana terlihat pada 

Gambar (Kurva ROC), LightGBM dan CatBoost mencatatkan 

nilai AUC yang hampir identik, masing-masing sebesar 

0.9789 dan 0.9782. 

 
Gambar 8. Kurva ROC dan Nilai AUC 

 

Nilai AUC yang mendekati angka 1.0 ini membuktikan 

bahwa kedua model memiliki kemampuan diskriminasi yang 

"sangat baik" (excellent classification) dalam membedakan 

kelas diabetes dan non-diabetes pada berbagai ambang batas 
(threshold). Meskipun LightGBM unggul tipis dalam 

probabilitas peringkat, stabilitas deteksi kelas positif pada 

CatBoost tetap menjadikannya pilihan yang lebih aman untuk 

implementasi klinis. 

D. Discussion: LightGBM vs CatBoost 

Perbedaan performa antara LightGBM dan CatBoost dapat 

dijelaskan melalui arsitektur dasar dan mekanisme 

penanganan data pada kedua algoritma. LightGBM 
menggunakan teknik Gradient-based One-Side Sampling 

(GOSS) yang memprioritaskan sampel data dengan gradien 

(error) besar untuk mempercepat pelatihan. Pendekatan ini 

memungkinkan LightGBM belajar sangat cepat dan agresif 

pada pola dominan, yang menjelaskan mengapa model ini 

mencapai skor akurasi tertinggi (97,16%) dalam eksperimen 

ini. Namun, keunggulan CatBoost dalam metrik sensitivitas 

(Recall) dan stabilitas model didasari oleh dua inovasi 

konseptual utama yang mengatasi kelemahan algoritma 

boosting tradisional: 

1) Ordered Boosting & Penanganan Overfitting: Berbeda 

dengan LightGBM yang rentan terhadap target leakage 
pada dataset kecil hingga menengah, CatBoost 
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menerapkan konsep Ordered Boosting. Mekanisme ini 

mengatasi masalah prediction shift dengan melakukan 

permutasi acak pada urutan data saat menghitung residu. 

Hal ini mencegah model "menghafal" target data latih 

(overfitting), sehingga model memiliki kemampuan 

generalisasi yang lebih baik saat menghadapi data uji 

yang belum pernah dilihat (seperti pasien baru). 

2) Symmetric Trees & Fitur Kategorikal: CatBoost 

menggunakan struktur pohon simetris (Oblivious 
Trees), di mana pemisahan (split) yang sama diterapkan 

di seluruh level pohon. Struktur ini memberikan 

regularisasi yang lebih kuat dan mengurangi varians 

model, menjadikannya lebih stabil dibandingkan pohon 

asimetris LightGBM (leaf-wise growth). Selain itu, 

kemampuan CatBoost dalam menangani fitur 

kategorikal secara native (tanpa perlu One-Hot 

Encoding yang masif) meminimalkan hilangnya 

informasi penting antar variabel. 

E. Model Interpretation with SHAP 

Pendekatan Explainable AI (XAI) menggunakan kerangka 

kerja SHAP (SHapley Additive exPlanations) diterapkan 

pada model terpilih, CatBoost, untuk mengatasi sifat Black 

Box dan membedah mekanisme pengambilan keputusan 

klinis. Berdasarkan SHAP Summary Plot pada Gambar 8, 

fitur HbA1c_level dan blood_glucose_level teridentifikasi 

sebagai determinan paling dominan dengan tingkat 

kepentingan global tertinggi dibandingkan fitur lainnya. 

 
Gambar 9. Interpretasi Fitur Menggunakan SHAP pada CatBoost 

 

Analisis mendalam memperlihatkan polarisasi kontribusi 

yang tegas pada kedua fitur vital tersebut terhadap prediksi 

kelas positif (Diabetes) dan negatif (Non-Diabetes): 

1) Kontribusi terhadap Kelas Positif (Risiko Diabetes): 

Visualisasi menunjukkan bahwa titik-titik berwarna 

merah (merepresentasikan nilai fitur tinggi) pada 

HbA1c_level dan blood_glucose_level terkonsentrasi 
kuat di sisi positif (kanan sumbu x). Hal ini 

mengonfirmasi bahwa peningkatan kadar gula darah dan 

HbA1c secara signifikan mendorong log-odds prediksi ke 

arah diagnosis diabetes. Ekor distribusi merah yang 

memanjang jauh ke kanan pada fitur HbA1c bahkan 

menegaskan bahwa nilai ekstrem pada parameter ini 

menjadi indikator prediktif yang nyaris mutlak bagi model 

dalam mendeteksi kasus positif. 

2) Kontribusi terhadap Kelas Negatif (Sehat): Sebaliknya, 

nilai fitur yang rendah (ditandai dengan titik biru) 

berkumpul secara padat di sisi negatif (kiri). Fenomena ini 

mengindikasikan bahwa kadar gula darah yang berada 
dalam rentang normal berperan aktif dalam menurunkan 

skor risiko, sehingga mengarahkan prediksi model menuju 

kelas sehat (Non-Diabetes). 

Selain indikator klinis utama, fitur demografis seperti Usia 

(Age) dan BMI juga menunjukkan tren linear yang konsisten: 

semakin tinggi nilainya (gradasi warna merah), semakin besar 

kontribusi positifnya terhadap risiko diabetes. Konsistensi 

logika ini memvalidasi model secara klinis, membuktikan 

bahwa algoritma CatBoost telah berhasil mempelajari 

patofisiologi diabetes yang valid—seperti pengaruh 

hiperglikemia kronis, penuaan, dan obesitas—sehingga aman 
dan layak diandalkan sebagai instrumen pendukung 

keputusan medis. 

F. Implikasi Klinis dan Penerapan Prakti 

Analisis feature importance melalui SHAP menyoroti 
dominasi HbA1c_level dan blood_glucose_level sebagai 

prediktor utama, yang menunjukkan koherensi kuat dengan 

pedoman klinis endokrinologi sekaligus memvalidasi 

kemampuan model dalam menangkap patofisiologi diabetes 

secara akurat. Dengan karakteristik sensitivitas (Recall) yang 

unggul dalam meminimalkan False Negative, model 

CatBoost ini memiliki implikasi praktis yang signifikan 

sebagai instrumen skrining awal (early screening tool) yang 

efisien. Penerapan algoritma ini memungkinkan fasilitas 

kesehatan melakukan stratifikasi risiko secara otomatis pada 

populasi besar, di mana pasien yang teridentifikasi berisiko 
tinggi dapat diprioritaskan untuk pemeriksaan laboratorium 

lanjutan. Pendekatan ini tidak hanya meningkatkan akurasi 

deteksi dini, tetapi juga menawarkan efisiensi alokasi sumber 

daya medis dengan memfokuskan intervensi klinis pada 

individu yang paling membutuhkan, didukung oleh 

transparansi keputusan yang disediakan oleh visualisasi 

SHAP untuk meningkatkan kepercayaan tenaga medis. 

 

IV. KESIMPULAN 

Penelitian ini telah berhasil mengevaluasi efektivitas empat 

algoritma ensemble learning— LightGBM, CatBoost, 
Random Forest, dan Logistic Regression—dalam 

memprediksi risiko diabetes menggunakan dataset yang 

diseimbangkan dengan teknik SMOTE. Berdasarkan hasil 

pengujian komprehensif, terdapat persaingan ketat antara dua 

algoritma berbasis gradient boosting. LightGBM 

mencatatkan Akurasi tertinggi sebesar 97,16%, sedikit 

mengungguli CatBoost yang meraih akurasi 97,12%. 
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Meskipun demikian, CatBoost ditetapkan sebagai model 

terbaik dalam penelitian ini karena keunggulannya pada 

metrik sensitivitas (Recall) yang mencapai 69,71% dan F1-

Score sebesar 80,48%. Berbeda dengan temuan sebelumnya 

di mana Random Forest mendominasi sensitivitas, hasil 

eksperimen ini menunjukkan bahwa CatBoost lebih andal 

dalam meminimalkan False Negative, sebuah atribut krusial 

dalam diagnosis medis untuk memastikan pasien positif tidak 
terlewatkan. Sementara itu, Logistic Regression 

menunjukkan performa terendah, menegaskan perlunya 

model non-linear untuk data medis yang kompleks. 

Penerapan kerangka kerja Explainable AI (XAI) melalui 

SHAP berhasil mengungkap transparansi model "Black Box", 

dengan mengidentifikasi Level HbA1c dan Level Glukosa 

Darah sebagai fitur paling dominan. Temuan ini memvalidasi 

kesesuaian logika model dengan standar medis klinis. Secara 

keseluruhan, integrasi CatBoost dengan teknik SMOTE dan 

interpretasi SHAP direkomendasikan sebagai solusi sistem 

pendukung keputusan klinis yang akurat, sensitif, dan dapat 
dijelaskan (explainable) untuk skrining awal diabetes. 
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