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Diabetes Mellitus presents a global health challenge necessitating accurate early
detection to prevent fatal complications. However, clinical data often exhibit
imbalanced class distributions, hindering standard prediction models from
effectively detecting positive patients. This study aims to compare the performance
of two modern Gradient Boosting algorithms, LightGBM and CatBoost, in
predicting diabetes risk. Random Forest and Logistic Regression algorithms were
included as baseline models to benchmark effectiveness. To address data imbalance,
the Synthetic Minority Over-sampling Technique (SMOTE) was applied during the
training data preprocessing stage. The dataset was sourced from the Kaggle public
repository (Diabetes Prediction Dataset), comprising 100,000 patient medical
records with clinical attributes such as age, body mass index (BMI), and HbAlc
levels. Performance evaluation utilized Accuracy, Precision, Recall, F1-Score, and
Area Under the Curve (AUC) metrics. Experimental results demonstrated a tight
competition, where LightGBM achieved the highest Accuracy of 97.16%. However,
CatBoost demonstrated superior sensitivity (Recall) of 69.71% and the highest F1-
Score of 80.48%. This makes CatBoost the most reliable model in minimizing False
Negatives compared to LightGBM and Random Forest, whereas Logistic Regression
showed the lowest performance. Furthermore, interpretability analysis using SHAP
(SHapley Additive exPlanations) revealed that HbAlc and blood glucose levels were
the most dominant features in detection, validating the model's alignment with
clinical diagnosis. This study concludes that the CatBoost algorithm combined with
SMOTE offers a more sensitive, transparent, and efficient diabetes prediction for
medical screening.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN

Diabetes Melitus (DM) merupakan penyakit metabolik
kronis yang menjadi tantangan kesehatan global utama
dengan prevalensi yang terus meningkat signifikan.
Berdasarkan data dari IDF Diabetes Atlas dan studi global
oleh Ong et al. (2023) [1], beban penyakit DM diproyeksikan
akan terus meningkat signifikan hingga tahun 2050,
menjadikannya penyebab utama morbiditas dan mortalitas. Di
Indonesia, tren peningkatan kasus DM juga sangat
mengkhawatirkan, diperparah dengan risiko komplikasi fatal.
Studi terbaru menunjukkan bahwa kadar gula darah yang
tidak terkontrol pada DM Tipe 2 memiliki hubungan erat

dengan kejadian hipertensi [2], yang meningkatkan risiko
gagal ginjal terminal (End-Stage Renal Disease) [3].
Mengingat fatalnya risiko tersebut, pengembangan sistem
deteksi dini yang cepat dan akurat sangatlah mendesak.

Dalam konteks diagnosis, teknologi Machine Learning (ML)
telah banyak diterapkan untuk memprediksi risiko DM
berdasarkan data klinis [4]. Meskipun algoritma konvensional
seperti Random Forest (RF) [5] sering digunakan sebagai
baseline [6], metode ini kerap menghadapi kendala
skalabilitas dan efisiensi ketika berhadapan dengan data
rekam medis berskala besar [7]. Selain Random Forest (RF),
metode statistik klasik seperti Logistic Regression (LR) juga
tetap relevan dijadikan standar dasar (baseline) karena
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kesederhanaan dan interpretabilitasnya yang tinggi dalam
analisis risiko medis [8] [9].

Tantangan kritis lainnya adalah masalah
ketidakseimbangan kelas (class imbalance), di mana jumlah
data pasien sehat jauh lebih banyak daripada pasien diabetes.
Kondisi ini menyebabkan model klasifikasi, termasuk RF,
cenderung bias ke kelas mayoritas dan memiliki sensitivitas
(Recall) yang rendah dalam mendeteksi kasus positif yang
sebenarnya [10][11].

Untuk mengatasi bias ini, teknik resampling seperti
Synthetic Minority Over-sampling Technique (SMOTE)
diterapkan guna menyeimbangkan distribusi data latih dan
telah terbukti signifikan meningkatkan kinerja model pada
metrik Recall dan F1-Score [12], [13], serta efektif
meningkatkan sensitivitas deteksi pada dataset diabetes yang
tidak seimbang [14], [15].

Untuk menjawab tantangan akurasi dan efisiensi pada data
tidak seimbang, penelitian ini mengusulkan penggunaan
algoritma Gradient Boosting modern, yaitu LightGBM (Light
Gradient Boosting Machine) [16] dan CatBoost (Categorical
Boosting) [17]. Kedua algoritma ini menawarkan efisiensi
komputasi yang lebih tinggi dan performa superior
dibandingkan model tradisional [18]. Penelitian ini juga
menerapkan strategi validasi silang K-Fold Cross-Validation
untuk memastikan evaluasi performa model yang lebih
objektif dan robust terhadap variasi data [19], [20]. Dengan
mengkomparasi performa LightGBM-SMOTE dan CatBoost-
SMOTE terhadap Logistic Regression dan Random Forest
(baseline) yang juga diolah dengan SMOTE, penelitian ini
bertujuan mengidentifikasi model prediksi terbaik yang
paling akurat dan robust, khususnya pada metrik Recall,

untuk direkomendasikan sebagai sistem  pendukung
keputusan klinis.

Il. METODE
Penelitian ini dilakukan secara sistematis untuk
membandingkan performa model klasifikasi dalam

memprediksi risiko diabetes. Tahapan penelitian ini meliputi
akuisisi data, prapemrosesan, penanganan ketidakseimbangan
data, penerapan algoritma, hingga evaluasi akhir. Sistematika
pelaksanaan penelitian ini dapat dilihat pada diagram alir
yang disajikan dalam Gambar 1.
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Gambar 1. Alur penelitian.

A. Data Acquisition

Penelitian ini memanfaatkan Diabetes Prediction Dataset
yang diperoleh dari repositori publik Kaggle (tersedia di:
https://www.kaggle.com/datasets/iammustafatz/diabetes-
prediction-dataset/data). Dataset ini mencakup 100.000
rekam medis pasien yang terdiri dari delapan fitur independen
(demografis dan klinis) serta satu variabel target biner.
Rincian karakteristik setiap atribut beserta tipe datanya
disajikan secara ringkas pada Tabel I. Berdasarkan analisis
distribusi data, ditemukan tantangan berupa
ketidakseimbangan kelas (class imbalance) yang ekstrem, di
mana prevalensi kasus positif diabetes hanya berkisar 8,5%
dari total populasi. Kondisi ini dikhawatirkan dapat memicu
bias prediksi pada kelas mayoritas jika tidak ditangani dengan
strategi resampling yang tepat pada tahap pra-pemrosesan [5],

[6].

TABEL |
KARAKTERISTIK DATASET
Atribut Keterangan
Sumber Data Kaggle — Diabetes Prediction Dataset
Jumlah Data 100,000.
Variabel Independen 8

Variabel Target
Distribusi Kelas
Fitur Utama

Diabetes (Biner)
8,5% Diabetes; 91,5% Non-Diabetes
HbAlc, Kadar Glukosa Darah, BMI

B. Data Preprocessing & Experimental Setup

Tahap pra-pemrosesan diawali dengan pembersihan data
(data cleaning) untuk menjamin integritas statistik input
model. Berdasarkan pemeriksaan kualitas data, tidak
ditemukan missing values, namun prosedur eliminasi duplikat
diterapkan untuk menghapus baris identik guna mencegah
redundansi informasi. Analisis pencilan (outlier) pada fitur
vital seperti BMI dan Blood Glucose tetap dipertahankan
karena merepresentasikan kondisi fisiologis riil pasien
diabetes (kasus ekstrem).

Setelah data dipastikan bersih, fitur kategorikal (Gender,
Smoking History) dikonversi menggunakan One-Hot
Encoding dengan parameter drop_first=True untuk
menghindari multikolinearitas.

Sebelum dilakukan penskalaan fitur, dataset terlebih
dahulu dibagi menjadi dua partisi independen: 80% sebagai
Data Latih (Training Set) dan 20% sebagai Data Uji (Testing
Set) menggunakan teknik Stratified Sampling. Langkah ini
krusial untuk memastikan rasio kelas tetap konsisten dan
mencegah kebocoran data (data leakage) dari data uji ke
dalam proses pelatihan.

Selanjutnya, normalisasi fitur numerik menggunakan
Min-Max Scaler dilakukan. Penting untuk dicatat bahwa
scaler hanya dilatih (fit) pada Data Latih, lalu parameternya
digunakan untuk mentransformasi Data Uji. Persamaan
normalisasi adalah:

X — X,;
Xscatea = X—mm

max ~ Xmin
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Selain pembagian data statis, penelitian ini juga
menerapkan Stratified K-Fold Cross-Validation (k = 20)
selama proses pelatihan untuk memvalidasi konsistensi
performa model dan mengurangi bias variansi.

TABEL Il
RINGKASAN PRA-PEMROSESAN DATA

Jenis Fitur Metode
Numerik (Usia, BMI, Min-Max Scaling

HbAlc, Glukosa)
Kategorikal (Jenis Kelamin,

Riwayat Merokok)

One-Hot Encoding

Biner (Hipertensi, Penyakit Tanpa Transformasi
Jantung)
Missing Values Tidak Ada

C. Exploratory Data Analysis (EDA)

Analisis Eksplorasi Data (EDA) dilakukan untuk
memetakan distribusi kelas dan mengidentifikasi fitur yang
paling berpengaruh terhadap diagnosis. Visualisasi pada
Gambar 3 mengungkap adanya ketimpangan kelas (class
imbalance) yang ekstrem, di mana pasien positif diabetes
hanya mencakup 8,5% dari total populasi, sedangkan 91,5%
sisanya adalah pasien non-diabetes. Disparitas rasio ini
mengonfirmasi urgensi  penerapan teknik resampling
(SMOTE) pada data latih guna mencegah bias prediksi model
terhadap kelas mayoritas [12], [13].
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Gambar 2. Distribusi Kelas Target pada Dataset Diabetes

Selanjutnya, analisis hubungan antar fitur dievaluasi
menggunakan Heatmap Correlation Matrix (Gambar 4).
Hasil menunjukkan bahwa fitur blood_glucose level dan
HbAlc_level memiliki korelasi positif terkuat terhadap
variabel target dengan koefisien masing-masing sebesar 0.42
dan 0.40. Nilai ini mengindikasikan bahwa indikator glukosa
darah merupakan prediktor yang jauh lebih dominan
dibandingkan fitur demografis (seperti gender atau smoking
history). Temuan ini sejalan dengan literatur medis yang
menempatkan kadar gula darah sebagai parameter diagnostik
utama DM Tipe 2 [2].
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Gambar 3. Matriks Korelasi Antar Variabel Klinis
D. Handling Imbalance with SMOTE

Visualisasi EDA (Gambar 3) mengungkap ketimpangan
kelas ekstrem pada dataset (8,5% vs 91,5%). Guna memitigasi
bias prediksi terhadap kelas mayoritas, teknik Synthetic

Minority Over-sampling Technique (SMOTE)
diterapkan.Sesuai kaidah metodologi yang ketat, SMOTE
diterapkan secara eksklusif hanya pada Data Latih (Training
Set) setelah proses pembagian data (splitting). Data Uji
dibiarkan tetap pada distribusi aslinya untuk menjamin
evaluasi model yang realistis. Dalam implementasinya,
algoritma SMOTE dikonfigurasi menggunakan parameter

kneignboras = 5 dan randomgqe, = 42.
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Gambar 4. Distribusi Kelas Dataset Sebelum SMOTE

Secara kuantitatif, proses ini meningkatkan jumlah sampel
kelas minoritas (Diabetes) pada data latih secara signifikan
hingga setara dengan kelas mayoritas, yaitu mencapai 73.200
sampel per kelas. Akibatnya, total volume data latih
meningkat menjadi 146.400 sampel dengan distribusi yang
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seimbang sempurna (50:50). Strategi ini krusial untuk
mencegah model “terbiasa” hanya memprediksi kelas
mayoritas dan terbukti meningkatkan sensitivitas (Recall)
dalam mendeteksi pasien positif diabetes [10], [21].
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Gambar 5. Distribusi Kelas Dataset Sesudah SMOTE

E. Classification Algorithms

Setelah tahap resampling SMOTE, dataset dipartisi
menjadi data latih (training) dan data uji (testing) dengan
rasio 80:20. Penelitian ini mengimplementasikan tiga
algoritma berbasis ensemble learning yang dipilih
berdasarkan keunggulannya dalam menangani data medis
terstruktur yang kompleks.

1) Rundom Forest: Random Forest adalah algoritma
ensemble yang membangun sekumpulan pohon keputusan
(decision trees) secara paralel menggunakan teknik Bootstrap
Aggregating (Bagging). Setiap pohon dilatih pada subset data
dan fitur yang dipilih secara acak guna menciptakan
keragaman (diversity) model. Prediksi akhir ditentukan
melalui mekanisme majority wvoting untuk Klasifikasi.
Pendekatan ini terbukti efektif dalam mereduksi varians
model tunggal dan meningkatkan resistensi terhadap noise,
sehingga meminimalisir risiko overfitting [4], [22].

2) Logistic Regression: Logistic Regression adalah
metode statistik linear yang digunakan sebagai model
baseline untuk klasifikasi  biner[8]. Algoritma ini
memodelkan probabilitas terjadinya suatu peristiwa (kelas
positif diabetes) dengan memetakan output persamaan linear
ke dalam rentang probabilitas [0, 1] menggunakan fungsi
transformasi Sigmoid. Keunggulan utama metode ini terletak
pada efisiensi komputasi dan interpretabilitasnya yang tinggi
dalam menjelaskan hubungan antar variabel. Pendekatan ini
telah terbukti efektif dalam memprediksi luaran klinis pada
studi diabetes sebelumnya, [5]. Secara matematis, prediksi
probabilitas diformulasikan menggunakan notasi ringkas
berikut:

1
1+ e‘(ﬁo"' X%, Bixi)

Ply=1|x) =

Dengan:

e P(y = 1]x) : Probabilitas pasien terdiagnosis positif
diabetes berdasarkan input data.
e [3, : Intercept (konstanta bias) model.
e [3; : Koefisien regresi (bobot) untuk fitur ke-i yang
menunjukkan signifikansi pengaruhnya.
e x; : Nilai variabel prediktor (fitur) ke-$i$ (seperti
Age, BMI, Glucose).
e n:Jumlah total fitur input yang digunakan.
3) Light Gradient Boosting Machine (LightGBM):
LightGBM adalah kerangka kerja gradient boosting yang
mengoptimalkan  efisiensi komputasi melalui strategi
pertumbuhan pohon berbasis daun (leaf-wise growth).
Berbeda dengan algoritma konvensional yang tumbuh secara
level-wise, strategi leaf-wise memilih daun dengan penurunan
kerugian (loss) terbesar untuk diekspansi, yang mempercepat
konvergensi.  Fungsi  objektif  LightGBM  untuk
meminimalkan kesalahan prediksi didefinisikan sebagai
berikut:
obj* = ¥L(y, k) + Z(fi)
Dengan:
e L, y) - Fungsi kerugian (loss function) yang
mengukur selisih antara target asli dan prediksi.

o Q) Suku regularisasi untuk mengontrol
kompleksitas struktur pohon guna mencegah
overfitting.

4) CatBoost: CatBoost merupakan algoritma gradient
boosting mutakhir yang dirancang untuk menangani
pergeseran prediksi melalui skema Ordered Boosting.
Algoritma ini membangun pohon simetris (oblivious trees)
yang menjamin eksekusi inferensi sangat cepat dan stabil.
Secara matematis, pembaruan prediksi pada setiap iterasi
untuk meminimalkan residual diformulasikan sebagai:

Fry = Fe—ne + @ he
Dengan:

e  Fyx) : Nilai prediksi model pada iterasi ke-t.

e F.1(x): Prediksi dari iterasi sebelumnya.

e ¢ Learning rate (laju pembelajaran).

o IyXx) Fungsi dasar (pohon baru) vyang
meminimalkan residual dari langkah sebelumnya.

F. Performance Evaluation

Evaluasi model dilakukan menggunakan Confusion
Matrix yang memetakan prediksi ke dalam empat kuadran:
True Positive (TP), True Negative (TN), False Positive (FP),
dan False Negative (FN). Karena dataset memiliki
ketidakseimbangan kelas dan kesalahan diagnosis diabetes
berisiko fatal, metrik Akurasi semata tidak cukup
representatif.

Oleh karena itu, penelitian ini memprioritaskan metrik
Recall (Sensitivitas) untuk meminimalkan False Negative
(pasien positif yang salah didiagnosis sehat), serta F1-Score
untuk mengukur keseimbangan harmonis antara presisi dan
sensitivitas. Definisi matematis metrik evaluasi dinyatakan
sebagai berikut:

Comparison of LightGBM and CatBoost Algorithms for Diabetes Prediction Based on Clinical Data

(Muhammad Sidik Latuconsina, Majid Rahardi)



1062

e-ISSN: 2548-6861

1) Accuracy Mengukur benar

keseluruhan.

rasio prediksi secara

TP + TN

TP + TN + FP + FN
2) Precision Mengukur ketepatan prediksi positif (penting

untuk menghindari diagnosis berlebih/cemas palsu).
TP

Accuracy =

P .. e
recision TP + FP

3) Recall (Sensitivity) Mengukur kemampuan model
mendeteksi seluruh pasien positif (metrik terpenting
dalam skrining penyakit).

Recall = —F
ecat =Tp ¥ FN

4) F1-Score Rata-rata harmonis antara Precision dan
Recall, memberikan gambaran performa yang objektif
pada data tidak seimbang.

Precision \times Recall

F1-S = 2\ti
core \times Precision + Recall

Hasil perhitungan dari seluruh metrik di atas selanjutnya
akan dikomparasi secara komprehensif untuk menentukan
algoritma yang memiliki performa diagnostik paling optimal
dalam memprediksi risiko diabetes.

G. K-Fold Cross-Validation

Penelitian ini menerapkan skema 5-Fold Cross-Validation
(k = 5) untuk memitigasi risiko overfitting dan menjamin
evaluasi yang lebih objektif dibandingkan metode pembagian
statis (hold-out). Mekanisme ini mempartisi dataset menjadi
lima bagian (folds), di mana setiap bagian digunakan secara
bergantian sebagai data validasi sementara empat bagian
lainnya berfungsi sebagai data latih. Pendekatan ini
memastikan model mempelajari seluruh distribusi data
sehingga bias varians dapat diminimalkan [23]. Performa
akhir model dihitung berdasarkan rata-rata aritmatika dari
setiap iterasi:

k
1
CVscore = % Z Score;
i=1

Di mana Score; adalah metrik evaluasi pada iterasi ke-i.
Metode ini merupakan standar validasi yang robust dalam
studi komparasi algoritma pada data medis [24], [19].

I1l. RESULT AND DISCUSSION

Pengujian model dilakukan menggunakan dataset yang
telah melalui proses penyeimbangan data (data balancing)
menggunakan teknik SMOTE. Data dibagi dengan rasio
80:20, di mana model dilatih pada 80% data latih dan
dievaluasi pada 20% data uji. Berikut adalah hasil evaluasi
komparatif antara algoritma CatBoost, LightGBM, dan
Random Forest.

A. Model Performance Comparison

Evaluasi awal dilakukan dengan membandingkan metrik
standar klasifikasi yang meliputi Akurasi, Presisi, Recall, dan
F1-Score. Ringkasan performa ketiga algoritma disajikan
pada Tabel II.

TABEL IlI
PERBANDINGAN PERFORMA ALGORITMA
Algoritma Akurasi | Presisi | Recall F1 Score
LightGBM 97,16 96,70 | 68,88 80,45
CatBoost 97,12 95,18 | 69,71 80,48
Random Forest 97,04 94,82 68.94% | 79,84
Random Forest 95,84 84,50 62,53 71,87

Berdasarkan Tabel I1, algoritma berbasis gradient boosting
(LightGBM dan CatBoost) menunjukkan dominasi performa
yang signifikan dibandingkan Random Forest dan Logistic
Regression. LightGBM mencatatkan akurasi pengujian
tertinggi sebesar 97,16%, disusul sangat ketat oleh CatBoost
dengan 97,12%, dan Random Forest sebesar 97,04%.
Sementara itu, Logistic Regression tertinggal dengan akurasi
95,84%, yang mengindikasikan keterbatasan model linear
dalam menangkap pola kompleks pada data medis ini.
Selisih performa akurasi yang sangat marjinal (<0,1%) antara
LightGBM dan CatBoost menunjukkan persaingan ketat.
Meskipun LightGBM unggul dalam metrik akurasi global dan
presisi (96,70%), analisis lebih mendalam pada metrik
sensitivitas (Recall) dan F1-Score menyingkap keunggulan
CatBoost.

Model CatBoost berhasil mencatatkan nilai Recall tertinggi
sebesar 69,71% dan F1-Score tertinggi sebesar 80,48%,
mengungguli LightGBM (Recall 68,88%) dan Random Forest
(Recall 68,94%). Dalam konteks diagnosis medis,
keunggulan Recall pada CatBoost ini sangat krusial karena
merepresentasikan kemampuan model yang lebih baik dalam
mendeteksi seluruh kasus positif (meminimalkan False
Negative), meskipun harus sedikit mengorbankan presisi.
Oleh karena itu, keseimbangan performa yang ditunjukkan
oleh tingginya F1-Score menjadikan CatBoost kandidat
model yang paling robust.

10 Perbandingan Akurasi Model

UYTIZ U.9704

09716 0.9584
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9
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o
=
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Gambar 6. Grafik Perbandingan Akurasi Antar Model
Namun, temuan menarik dan krusial terlihat pada metrik
Recall. Meskipun LightGBM mencatatkan akurasi global
tertinggi, CatBoost justru menunjukkan keunggulan dalam
sensitivitas deteksi. Berdasarkan data Confusion Matrix,

Logistic Regression
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CatBoost terbukti lebih andal dalam menangkap kasus positif
(Diabetes) dibandingkan LightGBM dan Random Forest. Hal
ini mengindikasikan bahwa meskipun Random Forest dan
LightGBM memiliki presisi yang kompetitif, CatBoost
memiliki  karakteristik yang paling sensitif dalam
meminimalkan False Negative, sebuah atribut yang sangat
vital dalam diagnosis medis.

B. Confusion Matrix Analysis

Untuk menganalisis lebih dalam mengenai trade-off antara
Presisi dan Recall, dilakukan evaluasi menggunakan
Confusion Matrix yang memetakan distribusi kesalahan
prediksi (False Positive dan False Negative). Visualisasi
untuk ketiga model ditampilkan pada Gambar 6.

Confusion Matrix Heatmap (CatBoost) Confusion Matrix Heatmap (LightGBM)

Actust pos
Actual Positive

Pregicted Positve
redicted Labes

Predicted Positive
................
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2. 67 1063 urn
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Gambar 7. Komparasi Confusion Matrix
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Analisis Confusion Matrix mengungkap temuan krusial
yang menjadi dasar pemilihan model:

1) LightGBM (Akurasi Tertinggi): Meskipun memiliki
akurasi total tertinggi, model ini mencatatkan jumlah True
Positive (pasien diabetes terdeteksi benar) sebesar 1.171
orang.

2) CatBoost (Sensitivitas Terbaik): Meskipun akurasinya
sedikit di bawah LightGBM, CatBoost berhasil
mengidentifikasi 1.185 kasus positif secara tepat. Artinya,
CatBoost mampu menyelamatkan 14 pasien lebih banyak
dari risiko kesalahan diagnosis (False Negative)
dibandingkan LightGBM.

3) Logistic Regression & Random Forest: Kedua model ini
menghasilkan tingkat kesalahan klasifikasi yang lebih
tinggi dibandingkan metode boosting, sehingga kurang
ideal untuk diterapkan pada sistem diagnosis kritis.

Secara konseptual, keunggulan LightGBM dalam akurasi
disebabkan oleh strategi pertumbuhan pohon leaf-wise yang
agresif meminimalkan loss function. Namun, pendekatan ini
terkadang kurang stabil pada data minoritas dibandingkan
strategi symmetric trees yang digunakan CatBoost. Dalam
konteks medis, meminimalkan False Negative (pasien sakit
yang tidak terdeteksi) jauh lebih prioritas daripada mengejar

akurasi rata-rata. Oleh karena itu, CatBoost ditetapkan
sebagai model terbaik dalam penelitian ini karena memiliki
keseimbangan optimal antara akurasi tinggi dan sensitivitas
(Recall) yang superior.

C. ROC-AUC Performance Analysis

Validasi stabilitas model dilakukan dengan menganalisis
kurva Receiver Operating Characteristic (ROC) dan nilai
Area Under Curve (AUC). Sebagaimana terlihat pada
Gambar (Kurva ROC), LightGBM dan CatBoost mencatatkan
nilai AUC yang hampir identik, masing-masing sebesar
0.9789 dan 0.9782.

ROC Curves Comparison

True Positive Rate

et —— CatBoost (AUC = 0.9782)
- LightGBM (AUC = 0,9789)
—— Random Farest (AUC = 0.9616)
—— Logistic Regression (AUC = 0.9628)
.

! . .
0.0 02 04 06 o8 10
False Positive Rate

Gambar 8. Kurva ROC dan Nilai AUC

Nilai AUC yang mendekati angka 1.0 ini membuktikan
bahwa kedua model memiliki kemampuan diskriminasi yang
"sangat baik" (excellent classification) dalam membedakan
kelas diabetes dan non-diabetes pada berbagai ambang batas
(threshold). Meskipun LightGBM unggul tipis dalam
probabilitas peringkat, stabilitas deteksi kelas positif pada
CatBoost tetap menjadikannya pilihan yang lebih aman untuk
implementasi klinis.

D. Discussion: LightGBM vs CatBoost

Perbedaan performa antara LightGBM dan CatBoost dapat
dijelaskan melalui arsitektur dasar dan mekanisme
penanganan data pada kedua algoritma. LightGBM
menggunakan teknik Gradient-based One-Side Sampling
(GOSS) yang memprioritaskan sampel data dengan gradien
(error) besar untuk mempercepat pelatihan. Pendekatan ini
memungkinkan LightGBM belajar sangat cepat dan agresif
pada pola dominan, yang menjelaskan mengapa model ini
mencapai skor akurasi tertinggi (97,16%) dalam eksperimen
ini. Namun, keunggulan CatBoost dalam metrik sensitivitas
(Recall) dan stabilitas model didasari oleh dua inovasi
konseptual utama yang mengatasi kelemahan algoritma
boosting tradisional:

1) Ordered Boosting & Penanganan Overfitting: Berbeda
dengan LightGBM yang rentan terhadap target leakage
pada dataset kecil hingga menengah, CatBoost
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menerapkan konsep Ordered Boosting. Mekanisme ini
mengatasi masalah prediction shift dengan melakukan
permutasi acak pada urutan data saat menghitung residu.
Hal ini mencegah model "menghafal™ target data latih
(overfitting), sehingga model memiliki kemampuan
generalisasi yang lebih baik saat menghadapi data uji
yang belum pernah dilihat (seperti pasien baru).

2) Symmetric Trees & Fitur Kategorikal: CatBoost
menggunakan struktur pohon simetris (Oblivious
Trees), di mana pemisahan (split) yang sama diterapkan
di seluruh level pohon. Struktur ini memberikan
regularisasi yang lebih kuat dan mengurangi varians
model, menjadikannya lebih stabil dibandingkan pohon
asimetris LightGBM (leaf-wise growth). Selain itu,
kemampuan CatBoost dalam menangani fitur
kategorikal secara native (tanpa perlu One-Hot
Encoding yang masif) meminimalkan hilangnya
informasi penting antar variabel.

E. Model Interpretation with SHAP

Pendekatan Explainable Al (XAl) menggunakan kerangka
kerja SHAP (SHapley Additive exPlanations) diterapkan
pada model terpilih, CatBoost, untuk mengatasi sifat Black
Box dan membedah mekanisme pengambilan keputusan
klinis. Berdasarkan SHAP Summary Plot pada Gambar 8,
fitur HbAlc level dan blood_glucose level teridentifikasi
sebagai determinan paling dominan dengan tingkat
kepentingan global tertinggi dibandingkan fitur lainnya.

SHAP Summary Plot (Feature Importance)

High
HbAlc level g *-
blood_glucose_level T * * S——
age —*
bmi —+—
hypertension '—-
gender_Male ’ %
smoking_history_never + g
heart_disease |— E
smoking_history_former <'—
smoking_history_not current -'—
smoking_history_current {—
smoking_history_ever ~i—
gender_Other l
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-5 o] 5 10

SHAP value (impact on model output)

Gambar 9. Interpretasi Fitur Menggunakan SHAP pada CatBoost

Analisis mendalam memperlihatkan polarisasi kontribusi
yang tegas pada kedua fitur vital tersebut terhadap prediksi
kelas positif (Diabetes) dan negatif (Non-Diabetes):

1) Kontribusi terhadap Kelas Positif (Risiko Diabetes):
Visualisasi menunjukkan bahwa titik-titik berwarna
merah (merepresentasikan nilai fitur tinggi) pada
HbAlc_level dan blood_glucose_level terkonsentrasi
kuat di sisi positif (kanan sumbu Xx). Hal ini
mengonfirmasi bahwa peningkatan kadar gula darah dan
HbA1c secara signifikan mendorong log-odds prediksi ke

arah diagnosis diabetes. Ekor distribusi merah yang

memanjang jauh ke kanan pada fitur HbAlc bahkan

menegaskan bahwa nilai ekstrem pada parameter ini
menjadi indikator prediktif yang nyaris mutlak bagi model
dalam mendeteksi kasus positif.

2) Kontribusi terhadap Kelas Negatif (Sehat): Sebaliknya,
nilai fitur yang rendah (ditandai dengan titik biru)
berkumpul secara padat di sisi negatif (kiri). Fenomena ini
mengindikasikan bahwa kadar gula darah yang berada
dalam rentang normal berperan aktif dalam menurunkan
skor risiko, sehingga mengarahkan prediksi model menuju
kelas sehat (Non-Diabetes).

Selain indikator klinis utama, fitur demografis seperti Usia
(Age) dan BMI juga menunjukkan tren linear yang konsisten:
semakin tinggi nilainya (gradasi warna merah), semakin besar
kontribusi positifnya terhadap risiko diabetes. Konsistensi
logika ini memvalidasi model secara klinis, membuktikan
bahwa algoritma CatBoost telah berhasil mempelajari
patofisiologi  diabetes yang valid—seperti pengaruh
hiperglikemia kronis, penuaan, dan obesitas—sehingga aman
dan layak diandalkan sebagai instrumen pendukung
keputusan medis.

F. Implikasi Klinis dan Penerapan Prakti

Analisis feature importance melalui SHAP menyoroti
dominasi HbAlc level dan blood_glucose level sebagai
prediktor utama, yang menunjukkan koherensi kuat dengan
pedoman klinis endokrinologi sekaligus memvalidasi
kemampuan model dalam menangkap patofisiologi diabetes
secara akurat. Dengan karakteristik sensitivitas (Recall) yang
unggul dalam meminimalkan False Negative, model
CatBoost ini memiliki implikasi praktis yang signifikan
sebagai instrumen skrining awal (early screening tool) yang
efisien. Penerapan algoritma ini memungkinkan fasilitas
kesehatan melakukan stratifikasi risiko secara otomatis pada
populasi besar, di mana pasien yang teridentifikasi berisiko
tinggi dapat diprioritaskan untuk pemeriksaan laboratorium
lanjutan. Pendekatan ini tidak hanya meningkatkan akurasi
deteksi dini, tetapi juga menawarkan efisiensi alokasi sumber
daya medis dengan memfokuskan intervensi Klinis pada
individu yang paling membutuhkan, didukung oleh
transparansi  keputusan yang disediakan oleh visualisasi
SHAP untuk meningkatkan kepercayaan tenaga medis.

1V. KESIMPULAN

Penelitian ini telah berhasil mengevaluasi efektivitas empat
algoritma ensemble learning— LightGBM, CatBoost,
Random Forest, dan Logistic Regression—dalam
memprediksi risiko diabetes menggunakan dataset yang
diseimbangkan dengan teknik SMOTE. Berdasarkan hasil
pengujian komprehensif, terdapat persaingan ketat antara dua
algoritma  berbasis  gradient  boosting.  LightGBM
mencatatkan Akurasi tertinggi sebesar 97,16%, sedikit
mengungguli CatBoost yang meraih akurasi 97,12%.
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Meskipun demikian, CatBoost ditetapkan sebagai model
terbaik dalam penelitian ini karena keunggulannya pada
metrik sensitivitas (Recall) yang mencapai 69,71% dan F1-
Score sebesar 80,48%. Berbeda dengan temuan sebelumnya
di mana Random Forest mendominasi sensitivitas, hasil
eksperimen ini menunjukkan bahwa CatBoost lebih andal
dalam meminimalkan False Negative, sebuah atribut krusial
dalam diagnosis medis untuk memastikan pasien positif tidak
terlewatkan.  Sementara  itu,  Logistic  Regression
menunjukkan performa terendah, menegaskan perlunya
model non-linear untuk data medis yang kompleks.

Penerapan kerangka kerja Explainable Al (XAIl) melalui
SHAP berhasil mengungkap transparansi model "Black Box",
dengan mengidentifikasi Level HbAlc dan Level Glukosa
Darah sebagai fitur paling dominan. Temuan ini memvalidasi
kesesuaian logika model dengan standar medis klinis. Secara
keseluruhan, integrasi CatBoost dengan teknik SMOTE dan
interpretasi SHAP direkomendasikan sebagai solusi sistem
pendukung keputusan Klinis yang akurat, sensitif, dan dapat
dijelaskan (explainable) untuk skrining awal diabetes.
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