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This study investigates damage patterns in truck body components by applying the
Apriori association rule mining algorithm within the CRISP-DM framework. The
analysis is based on 281 historical repair records from CV Lestari’s fleet throughout
2024. The dataset encompasses 14 attributes, including vehicle types, route
categories, body materials, and load conditions. To ensure the robustness of the
generated rules, parameter tuning was conducted using a grid search approach,
resulting in minimum support and confidence thresholds of 15% and 60%,
respectively. A total of 50 association rules were derived, with several rules
demonstrating high confidence values and lift values above 1.1, indicating
meaningful and non-random correlations. Notably, structural frame damage is
strongly associated with mountainous routes and heavy loads, while door and hinge
damage tends to occur in aluminum box-bodied trucks operating under medium
loads. These patterns were aligned with practical insights from field technicians and
further contextualized through technical recommendations, such as reinforcing high-
stress points and adjusting inspection schedules for high-risk configurations. The
findings support the formulation of predictive maintenance strategies, enabling
companies to transition from reactive repairs to proactive, data-driven decision-
making. By integrating rule-based insights into maintenance planning, the study
contributes to reducing unexpected failures, optimizing inspection frequency, and

enhancing overall fleet reliability.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Indonesia’s economic growth in recent decades has
consistently been supported by several key sectors, one of
which is the transportation and logistics sector. This sector not
only functions as a connector between regions but also serves
as an important indicator in assessing the efficiency and
resilience of the national distribution system. Based on
official data from Statistics Indonesia (Badan Pusat Statistik)
for the year 2025, the Transportation and Warehousing sector
recorded a contribution of 6.09 percent to the national Gross
Domestic Product in the first quarter, which then increased to
6.21 percent in the second quarter and returned to 6.10 percent
in the third quarter. Among all sub sectors, land transportation
contributed the largest share, reaching 2.92 percent in the first
quarter, 2.96 percent in the second quarter, and 2.93 percent

in the third quarter. This illustrates the dominance of trucks in
supporting Indonesia’s logistics system [1]. The significant
growth in the logistics sector has been driven by various
factors including an increase in export and import volumes as
well as the rapid rise of electronic commerce and regional
distribution activities [2]. Along with the growing
contribution of the transportation sector to GDP, the number
of motor vehicles, especially trucks that play a role in national
logistics distribution, has also shown an upward trend.
According to data from BPS, the development of the number
of trucks in Indonesia during the period from 2020 to 2024
can be seen in the following table [3].

This growth indicates an increase in the intensity of land
freight vehicle usage, particularly trucks, in supporting
national goods distribution activities. Freight transportation in
Indonesia is generally dominated by the use of trucks as the
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primary mode of transport due to their high flexibility in
reaching various routes, especially medium to short-distance
routes that connect production centers, ports, and markets.
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Figure 1. Growth in the Number of Motor Vehicles (Trucks), 2020 to 2024

Trucks and semi-trailers play a dominant role in
Indonesia’s freight transport system, both in terms of cargo
volume and distribution reach [4]. This high reliance on land
transportation directly demands long-term reliability of
logistics vehicles, not only in terms of engine performance but
also in the construction of the vehicle body and its structural
strength. Therefore, the role of the vehicle body
manufacturing industry is crucial in enhancing the efficiency,
safety, and resilience of the national logistics distribution
system.

In this context, various body manufacturing companies at
both national and regional levels play a strategic role in the
provision and maintenance of reliable commercial vehicle
bodies. One such company is CV Lestari, a body
manufacturer located in Mojotengah Subdistrict, Gresik
Regency, East Java. The company operates in the field of
production and assembly of commercial vehicle bodies, with
a primary focus on manufacturing truck bodies for logistics
distribution, agricultural industry, and construction material
transportation. Through a made-to-order approach, CV
Lestari designs and manufactures various types of bodies such
as open beds, water tanks, dump trucks, and specialized cargo
vehicles tailored to the needs of local and regional customers.
In addition to manufacturing new truck bodies, CV Lestari
also provides repair and maintenance services for commercial
vehicles, particularly for the body and structural parts of the
vehicle. As the demand for repair services continues to
increase, the company has begun to encounter numerous cases
of recurring damage with varying characteristics and causes.
Most trucks brought into the workshop experience serious
structural issues primarily caused by poor road conditions,
such as uneven surfaces, large potholes, and road
deformations. These irregularities in road surfaces expose
trucks to repeated dynamic loads, especially when traveling
at high speeds or with frequent usage [5]. Such loads generate
vertical impact forces that are transmitted to the main
structural components of the vehicle, including the frame,
chassis, and inter-component joints, eventually leading to the

formation of microcracks and permanent deformations that
worsen over time [6]. Structural damage such as cracks in the
frame, chassis deformations, or worn joints disrupt the
vehicle’s load distribution and increase the risk of mechanical
failure during road operation, posing a danger to drivers and
other road users. Therefore, early detection of minor cracks is
essential, as micro-damage can escalate into major failures if
left unaddressed [7]. Moreover, this condition accelerates
material fatigue, increases the likelihood of sudden
breakdowns, and significantly shortens the vehicle’s service
life [8].

Every truck undergoing repairs at CV Lestari is recorded
through a Repair Order Form, an administrative document
that contains detailed information about the vehicle unit, body
type, damage level, materials used, and repair actions taken.
The data in the SPP is strategically valuable, as it reflects
patterns and tendencies of damage across various vehicle
types and operating conditions. However, to date, this data has
only been used administratively and has not yet been analyzed
to identify relationships between the underlying causes of
damage. Therefore, it is necessary to transform the data into a
structured digital format in order to enable its use as a
foundation for data analysis [9].

To optimize the utilization of such data, a data driven
analytical approach is needed one that can extract hidden
patterns from the repair dataset. One such approach is data
mining, a process that leverages statistics, mathematics,
artificial intelligence, and machine learning to extract and
identify useful information and knowledge from large
datasets [10]. Within data mining, various methods are
available to meet analytical needs; one of the most widely
used is association rule mining, which is designed to uncover
correlations or significant patterns among items within
numerous transactions [11]. A commonly used algorithm in
this method is the Apriori algorithm, known for its simplicity,
ease of implementation, and effectiveness in determining
frequent itemsets [12]. Using the Apriori algorithm, it is
possible to generate association rules that represent
relationships between items, such as: “if item A and B appear,
then item C is also likely to appear,” based on support and
confidence values [13]. This method is particularly well-
suited for analyzing large-scale transaction data, such as the
SPP (Repair Order Form) data of CV Lestari, to identify the
most frequent patterns of damage and uncover the
relationships among their causes [14]. The application of
association rule methods based on the Apriori algorithm has
been widely adopted in various previous studies.

For example, in study [12] the Apriori algorithm was used
to analyze the relationships among factors contributing to
traffic accidents in Thailand. The results revealed that a
combination of variables such as male gender, speeding,
motorcycle use, straight road conditions, dry surfaces, and
clear weather significantly increased the risk of fatal
accidents. Another study [15] applied the Apriori algorithm to
analyze product association patterns in retail sales data
collected through a Point of Sale (PoS) system. The objective
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of the study was to identify product relationships that could
be utilized to improve sales through relevant product
recommendations for customers. The findings indicated that
the association pattern with the highest confidence value of
0.61 and a minimum support of 0.003 occurred in March,
which coincided with the highest monthly sales, amounting to
IDR 295,509,934. These findings suggest that the application
of the Apriori algorithm in PoS systems can positively impact
retail business revenue.

In addition, study [16] confirmed the effectiveness of the
Apriori algorithm in identifying consumer purchasing
patterns by analyzing 4,371 transactions using the CRISP-
DM approach, resulting in nine significant association rules
that were utilized to optimize product arrangement and
promotional strategies. A similar approach was applied in the
automotive sector [17] to determine spare part
recommendation packages based on customer purchasing
patterns, where oil filters and air filters achieved confidence
values of 68% and 63%, respectively, contributing to
improved inventory management accuracy. Furthermore, the
application of the Apriori algorithm to truck crash
characteristics revealed associations among vehicle attributes,
road conditions, and accident severity, demonstrating the
capability of association rule mining to identify complex
damage patterns in heavy vehicles [18]. In line with this,
another study emphasized predictive maintenance for
underground trucks and loaders in the mining industry,
showing that historical maintenance data analysis supports
improved asset availability and more proactive maintenance
decision-making [19].

Understanding damage patterns is a crucial foundation for
improving repair quality and operational management at CV
Lestari. By applying association rule analysis based on the
Apriori algorithm, the company can identify the most
frequently occurring types of damage, discover relationships
among causal factors, and detect recurring patterns that were
previously unnoticed. This information allows a shift in the
maintenance approach from reactive to more proactive and
well planned, including in scheduling inspections, preventing
small cracks from developing into major damage, and
managing raw material inventory more efficiently.

This approach improves not only the structural reliability
of vehicle bodies but also supports operational efficiency by
reducing unexpected repair costs and optimizing the service
process. Building on this, the study contributes a novel
application of the Apriori algorithm in the domain of
commercial truck body maintenance. Unlike prior works that
typically focus on retail transaction data or POS systems, this
research analyzes real-world repair order data collected from
CV Lestari, a body manufacturing and repair company. It
incorporates previously underexplored operational variables
such as route type (mountainous, coastal, urban), load
category, and body material composition. These context-
specific variables enhance the practical relevance of
association rule mining in supporting predictive maintenance
strategies.

Il. METHODOLOGY

This study employs the CRISP-DM (Cross-Industry
Standard Process for Data Mining) methodology as a
framework, which has been widely applied in various
business and research contexts due to its flexibility,
adaptability across different domains, and well-structured
standardized process with clearly defined phases [20]. This
methodology consists of six phases as introduced in the
process model developed by Wirth and Hipp [21]and the
official guidelines by Chapman et al. [22]. The research
phases applied in this study are illustrated in Figure 2.
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Figure 2. CRISP-DM Diagram

A. Business Understanding

This phase aims to develop a comprehensive understanding
of the research objectives, including the analytical needs and
the expected outcomes of the data mining process [20]. At this
stage, the core problem is identified, the type of analysis to be
used is determined, and the business objectives are translated
into specific and measurable data mining tasks. In addition,
this phase involves assessing available resources, constraints,
and the scope of the data to ensure that the work remains
relevant to practical needs and that the project aligns with the
organization's strategies and requirements.

B. Data Understanding

This phase involves the process of data collection,
exploration, structural review, and data quality assessment to
understand the initial characteristics of the dataset. The main
activities in this stage include examining data completeness,
identifying value distributions, recognizing early patterns,
and detecting potential issues such as missing values,

Association Rule Mining for Truck Body Damage Pattern Analysis Using Apriori and CRISP-DM

(Livanty Efatania Dendy, Rinabi Tanamal)



420

e-ISSN: 2548-6861

duplicates, or other irregularities. The initial data exploration
conducted during the Data Understanding phase helps
identify anomalies and missing values, and these findings will
guide the subsequent data preprocessing steps [23].

C. Data Preparation

In this phase, the data obtained during the Data
Understanding stage is further processed to ensure it is ready
for use in the modeling phase. This process includes data
cleaning to remove incomplete or inconsistent values,
followed by data transformation to adjust its structure
according to the requirements of the methods to be used in the
modeling phase [16].

D. Modeling

In this phase, the modeling process is conducted by
applying the Apriori algorithm as a data mining technique to
generate frequent itemsets based on a defined minimum
support value. The minimum support serves as a threshold to
determine which item combinations are considered to occur
frequently enough in the dataset. Each itemset is then
calculated for its support value using the formula presented

below.

s (A) Number of transactions containing A 100
= X
uppor Total number of transactions

In contrast, the support for a pair of items is obtained using
the equation presented below.

s t(4,B) = Number of transactions containing 4 and B % 100
UPPOTELA, 50 = Total number of transactions

Itemsets that meet the minimum support threshold are
retained as frequent itemsets, while those that do not meet the
threshold are eliminated. This process continues iteratively
until no further item combinations satisfy the support criteria.

E. Evaluation

The Evaluation phase aims to assess the quality of the
association rules generated during the Modeling phase. In this
stage, each rule is analyzed using three key metrics: support,
confidence, and lift, to ensure that the rule not only appears
frequently in the transaction data but also reflects a significant
and meaningful relationship relevant to business decision-
making. These metrics are commonly used in association rule
mining as they provide a comprehensive view of the
frequency, strength, and interestingness of relationships
among items within a transaction dataset [15][24].

Among these, confidence measures the degree of certainty
in the relationship between the antecedent and the consequent
within a rule. A high confidence value indicates that when the
antecedent occurs, the consequent is also likely to occur,
making the rule strong and relevant for decision-making
purposes. The calculation of confidence is shown in the
equation below.

Confid P(BlA) Number of transactions containing A and B 100
= X
onfidence Number of transactions containing A

Lift is used to evaluate whether the relationship between
two items is truly significant or merely coincidental. A lift
value greater than 1 indicates that the occurrence of the
antecedent increases the likelihood of the consequent
occurring, meaning that the two items are meaningfully
associated. The formula for calculating lift is presented in the
equation below.

Support(A U B)
Support(A4) x Support(B)

Lift(A= B) =

F. Deployment

In the Deployment phase, the results obtained from the data
mining process are translated into outputs that can be utilized
by stakeholders. This phase not only focuses on presenting the
results in a technical format but also emphasizes how the
findings can be applied in real operational contexts. The
insights generated are typically presented in the form of
reports, visualizations, pattern summaries, or
recommendations that support decision-making processes.
The goal of this stage is to ensure that the discovered patterns
or rules provide added value and practical relevance.

Before full-scale implementation, it is important to validate
the results through discussions or reviews with relevant
stakeholders to ensure that the recommendations align with
operational needs and conditions. In some cases, limited trials
such as pilot testing or controlled experiments may be
conducted to evaluate the effectiveness of the deployment
before proceeding to full implementation.

I11. RESULT AND DISCUSSION

In this study, the data were obtained from CV Lestari in the
form of SPP (Repair Order Form) documents. The data were
then converted into Microsoft Excel format to enable
computational processing. Subsequently, the dataset was
imported into the Jupyter Notebook environment and
processed using the Python 3 programming language. The
Apriori algorithm was applied to extract association patterns
from the dataset. The processing results were then exported
into CSV format for further analysis and interpretation in
accordance with the stages of the CRISP-DM framework.

A. Business Understanding

At this stage, the study focuses on understanding the
business needs and challenges faced by CV Lestari as a
coachbuilding company engaged in the assembly, repair, and
maintenance of truck bodies. The company has experienced
an increase in the number of wvehicles requiring repair;
however, it does not yet have a system capable of identifying
frequently occurring damage patterns. As a result, damage
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analysis is currently conducted manually, which is time-
consuming and may lead to inaccuracies in decision-making.

This study aims to assist the company in gaining insights
into the relationships among different types of damage
through the application of the Apriori algorithm. By
identifying combinations of damage that frequently occur
together, the company can leverage the analysis results to
improve repair process efficiency, estimate material
requirements more accurately, design more appropriate
service packages, and minimize the risk of recurring damage.
Furthermore, the findings of this analysis can serve as a
foundation for developing data-driven maintenance strategies
and informing managerial decision making regarding vehicle
repair prioritization and resource planning.

B. Data Understanding

The data used in this study were obtained from internal
documents in the form of Repair Order Forms (SPP)
belonging to CV Lestari, a coachbuilding company that
recorded all truck body repair activities throughout 2024.
These documents contain 281 service transaction records,
representing actual damage conditions encountered in various
truck units received by the workshop. The information
documented includes vehicle specifications (such as body
type and material), operational conditions (including route
type and load category), and the types of body damage
identified. Given the potential for incomplete or inconsistent
records, additional data verification was conducted through
direct interviews with technicians and workshop personnel
who were directly involved in the repair processes. This step
was taken to ensure the completeness and validity of the
information, particularly for attributes not explicitly recorded
in the forms.

As a result of the data collection and verification process,
a final dataset consisting of 14 attributes was compiled,
encompassing both technical and operational aspects of the
vehicles. To provide a more comprehensive understanding of
the dataset structure used in this study, the column names and
attribute descriptions are presented in Table 1 below.

TABLE |
DATASET

No | Column Name Column Description

1 Date The date when the truck unit
entered the workshop  for
coachbuilding repair or inspection.

2 Vehicle The brand or model of the truck

undergoing repair services.

3 Body Type The type of truck body used (e.g.,
steel flatbed, aluminum box, drop-

side body).

4 Material The primary material used for the
truck body (e.g., steel, aluminum,
checker plate, or a combination).

5 Load Category The typical load classification of
the wvehicle (light, medium, or
heavy).

6 Operational The characteristics of the truck’s

Route operational route (coastal, urban,
or mountainous).

7 Corrosion / Damage conditions caused by
Material corrosion, rust, oxidation, or
Damage material degradation of the truck

body, including surface peeling,
material thinning, perforation, and
deterioration due to environmental
exposure.

8 Floor Structure | Physical damage to the truck body
Damage floor, including cracks,

perforations, deformation, surface
wear, loosened panels, or
weakened floor joints caused by
load stress or prolonged use.

9 Structural Damage to the main coachbuilding
Frame / Support | frame or supporting structures,
Damage including  cracks,  fractures,

bending, misalignment, or
structural weakening.

10 Welding / Joint | Damage to welded areas or joints
Damage between truck body panels,

including cracked welds, joint
separation, weakened connections,
or weld failures.

11 Door / Hinge Problems affecting truck body
Damage doors and hinges, including

jamming, corrosion,
misalignment, loosened or broken
hinges, and improper door closure.

12 Paint / Finishing | Damage to the exterior appearance
Damage of the truck body, including paint

peeling, scratches, fading, or
surface deterioration.

13 Electrical / Damage affecting the truck body
Lighting electrical system, including lamps,
Damage wiring, connectors, or related

electrical components.

14 Interior / Lining | Damage affecting the interior body

Damage

components, including inner
panels, linings, or internal
coverings.

Association Rule Mining for Truck Body Damage Pattern Analysis Using Apriori and CRISP-DM
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To provide a clearer overview of the attribute distributions
within the dataset, the following pie charts illustrate the
proportions body types, load categories, and operational
routes recorded in the truck repair data.

Distribution of Body Types

ater Tank Square Dump Truck
Dropside Bod:
Steel Flatbed v o

Boat Dump Truck
Fiber
‘Viar Bed

Wood-Steel Flatbed

Steel Container Box

Aluminum Box

Figure 3. Distribution of Body Type

This chart shows that the most common operational route
is the coastal route, representing approximately 41.0% of all
truck usage. This is closely followed by the mountainous
route at 37.7%, while the urban route is the least common with
21.3%. This distribution suggests that a significant number of
trucks operate in geographically challenging environments,
particularly in mountainous and coastal areas, which may
contribute to the observed damage patterns.

Distribution of Load Categories

Medium Load

Light Load

Heavy Load

Figure 4. Distribution of Load Categories

The load category distribution indicates that heavy loads
dominate the dataset, accounting for 53.0% of all entries.
Medium loads follow with 45.5%, while light loads are rarely
recorded only 1.5%. The prevalence of heavy and medium
loads highlights the high operational stress placed on truck
components, which is a critical factor in damage analysis.

Distribution of Operational Routes

Urban Route

Mountainous Route

Coastal Route

Figure 5. Distribution of Operational Routes

In terms of body type, aluminum box trucks are the most
common, making up over 50% of the data. Other notable
categories include steel container box 14.2% and wood-steel
flatbed 11.6%. The dominance of aluminum based bodies
may reflect fleet preferences for lighter materials, although
these may also present unique vulnerabilities under certain
operational conditions, such as medium-load door damage.

C. Data Preparation

The collected data are still in raw form and therefore
require several selection and preprocessing steps to produce
the required dataset. The processes carried out at this stage
include:

1) Data Selection: Atthis stage, relevant attributes were
selected for the data mining process. The date column was
excluded because it does not contribute to the discovery of
damage association patterns, as the research focuses on
relationships among body type, load category, operational
route, and types of damage. Therefore, this column was
removed from the dataset. Meanwhile, all damage-related
columns were retained, as they represent the primary features
analyzed in this study.

2) Data Cleaning: In this process, data cleaning was
performed to address incomplete and inconsistent records.
Based on the data inspection results, six rows contained
missing values in the Load Category column and seven rows
contained missing values in the Operational Route column.
These missing values resulted from limitations in the
documentation of the SPP (Repair Order Form). Follow-up
verification was conducted through direct interviews with
workshop personnel responsible for handling the respective
vehicles; however, in several cases, the information could not
be confirmed due to memory limitations regarding the truck
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conditions at that time. Records that could not be verified
were therefore treated as missing values and subsequently
removed from the dataset to prevent any adverse impact on
the quality of the analysis.

3) Data  Transformation:  During the data
transformation stage, all categorical attributes were converted
into binary format to match the transaction item structure
required by the Apriori algorithm. This process was
performed using the one-hot encoding technique, in which
each category of attributes such as Vehicle, Body Type,
Material, Load Category, and Operational Route was
transformed into a binary column with a value of 1 if the
category appeared in a transaction and 0 otherwise. In
addition, damage attributes that were originally labeled as Yes
and No were also converted into binary representations. The
transformation process resulted in a binary tabular dataset
consisting of 46 binary attributes. All attributes were
represented as integer values to ensure compatibility with
frequent itemset generation and association rule mining.
Representative examples of the transformed attributes, along
with their data types, are presented in Table 2.

TABLE Il
REPRESENTATIVE ATTRIBUTES RESULTING FROM ONE-HOT ENCODING

filters out infrequent item combinations, thereby producing
rules that are more representative of actual conditions in the
field. Meanwhile, the minimum confidence value of 60% was
established to ensure a sufficient level of reliability in the
relationships between antecedents and consequents within the
generated rules. This threshold indicates that the probability
of the consequent occurring given the antecedent is strong
enough to support operational decision-making, such as
identifying dominant damage patterns or formulating more
accurate repair recommendations. The combination of these
parameters ensures that the resulting association rules are
both significant and meaningful, retaining only frequently
occurring damage patterns with strong relationships for
further analysis.

Subsequently, the Apriori algorithm was applied to identify
association patterns within the coachbuilding damage data
using the optimal parameters obtained from the grid search.
The algorithm generated frequent itemsets and association
rules that represent dominant damage patterns across all
vehicle units. In this stage, only itemsets with a value of “Yes”
were retained to ensure that the resulting frequent itemsets
accurately reflect the presence of damage conditions. This
process enables the identification of the most frequently
occurring types of damage, which are prioritized for further

) Data analysis. Table 3 presents the frequent 1-itemsets with the
Attribute Category Column Name Type highest support values, representing the most dominant
Vehicle Vehicle_Fuso int64 damage types observed in the dataset.

Body Type Body Type Dropside int64 TABLE Il
Load Category Load_Category Heavy int64 1 ITEMSETS
Operational Route Route_Mountainous int64
Corrosion_or_Material . No. Damage Type Support
Damage Damage_\_(es_ ~ | Int64 1 Structural FrameQ/] Sup)pl)grt Damage 0.839552
. 2 Door / Hinge Damage 0.481343
D. Modeling 3 Floor Structure Damage 0.365672
At this stage, the modeling process began with determining 4 Paint / Finishing Damage 0.332090
the minimum support and minimum confidence values as the 5 Welding / Joint Damage 0.305970
main parameters of the Apriori algorithm. These parameters 6 Corrosion / Material Damage 0.235075
were not selected arbitrarily; instead, a grid search approach L7 Electrical / Lighting Damage 0.197761

was employed. This approach systematically evaluates
multiple combinations of commonly used support and
confidence values in association rule mining to identify
threshold values that generate the most relevant and
meaningful association rules. In the grid search process,
support values ranging from 0.10 to 0.30 and confidence
values ranging from 0.40 to 0.80 were examined. Each
parameter combination was evaluated in a structured manner
to ensure that the selected values were based on objective
evaluation rather than subjective estimation [16]. The final
parameters used in the modeling stage were chosen based on
their ability to produce the most informative itemset
relationship patterns within the dataset.

Based on the grid search results, the optimal parameters
were identified as a minimum support of 15% and a minimum
confidence of 60%, which resulted in a total of 50 association
rules. A minimum support threshold of 15% was selected to
ensure that only frequently occurring patterns in the data were
considered during the analysis. This threshold effectively

Based on the results of the frequent 1-itemset analysis
presented in Table 3, several damage categories exhibit
relatively high occurrence rates in the service transaction data.
Structural Frame/Support Damage emerges as the most
dominant type of damage, with a support value of 83.9%,
indicating that the majority of truck units experience damage
to the main frame or supporting structure. Furthermore,
Door/Hinge Damage and Floor Structure Damage also show
substantial occurrence frequencies, with support values of
48.1% and 36.6% respectively.

Meanwhile, other damage types such as Paint/Finishing,
Welding/Joint, Corrosion/Material, and Electrical/Lighting
Components demonstrate lower support values, indicating
that these types of damage occur less frequently compared to
structural damage. These findings suggest that issues related
to the vehicle frame and main structural components
constitute the dominant problems and should therefore be
prioritized in maintenance and repair activities at CV Lestari.

Association Rule Mining for Truck Body Damage Pattern Analysis Using Apriori and CRISP-DM
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After obtaining an overview of the most frequently
occurring damage types through the frequent 1-itemset
analysis, the analysis was extended to identify frequent 2-
itemsets. At this stage, the Apriori algorithm identifies
combinations of two items that co-occur within service
transactions with a minimum support threshold of 0.15 (15%).
Each combination consists of one vehicle-related factor, such
as body type, material, load category, or operational route,
and one damage type with a Yes value.

The frequent 2-itemset analysis provides an initial insight
into the relationships between vehicle characteristics and the
types of damage that occur. Through these co-occurrence
patterns, associations between operational conditions and
specific body damage types can be identified prior to the
formation of association rules. Table 4 presents the list of
frequent 2-itemsets with the highest support values,
representing the most dominant damage patterns observed in
the analyzed vehicle units.

TABLE IV
2 ITEMSET
No | Support Factor Associated Damage
Aluminum Box Structural Frame/Support
1 | 0.507
Body Type Damage
Aluminum Box -
2 0.447 Body Type Door/Hinge Damage
Steel +
3 0.444 Aluminum Door/Hinge Damage
Material
Aluminum Box Structural Frame/Support
4 |0.39%
Body Type Damage
Medium Load .
5 0.391 Category Door/Hinge Damage
. Structural Frame/Support
6 0.391 Steel Material Damage
Door/Hinge Structural Frame/Support
7 0.376
Damage Damage
Mountainous Structural Frame/Support
8 0.376 Route Damage
Structural Frame/Support
9 0.358 Coastal Route Damage
Mitsubishi Structural Frame/Support
10| 0.350 Vehicle Type Damage

Based on the results of the frequent 2-itemset analysis, the
most frequently co-occurring item combinations were
identified from the vehicle body damage data throughout
2024. The most dominant pattern indicates a strong
association between Structural Frame/Support Damage and
various vehicle-related factors. This damage type exhibits the
highest co-occurrence rate with vehicle factors, with a support
value of 50.7%, making it the most frequent 2-itemset pattern
observed in the analyzed units at CV Lestari. Conversely,
damage patterns with lower support values represent less
frequently occurring combinations, indicating that these
factors or damage types are comparatively rarer in the
observed dataset.

In addition, Door/Hinge Damage, Paint/Finishing Damage,
and Welding/Joint Damage are also frequently found to co-
occur with several vehicle characteristics, including body
type, load category, and body material. For instance, the
Aluminum Box body type is commonly associated with
Door/Hinge Damage, while medium and heavy load
categories tend to co-occur with structural and finishing-
related damage, with co-occurrence rates exceeding 35%.
These patterns suggest that the physical characteristics of
vehicles play a significant role in influencing the types of
damage that occur.

Overall, the frequent 2-itemset results indicate that
structural damage, particularly damage to the frame and
supporting components, represents the most recurrent type of
damage. This pattern is closely related to high operational
workloads and intensive vehicle usage, especially for units
operating on specific routes or carrying heavy loads. These
findings provide valuable insights for the company in
identifying the primary factors contributing to vehicle damage
and can serve as a basis for implementing preventive
maintenance strategies, periodic inspections, and more
appropriate body material selection.

E. Evaluation

During the evaluation stage, the quality of the generated
association rules was assessed using three main metrics:
support, confidence, and lift. The support and confidence
thresholds used in this phase were 15 percent and 60 percent,
respectively, and were determined using a grid search
strategy, as detailed in the Modeling section. These metrics
were employed to evaluate the strength of the relationships
between causal factors (antecedents) and damage types
(consequents). To assess the overall quality of the generated
association rules, an analysis of the confidence value
distribution was conducted for all rules that passed the
filtering process.

Distribution of Confidence Values in Association Rules

Number of Rules

0.65 0.70 0.75

0.80 0.85 0.90 0.95 1.00
Confidence Value

Figure 6. Distribution of Confidence Values in Association Rules
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Based on Figure 6, most association rules exhibit
confidence values above 0.65, with several rules approaching
1.00. This distribution indicates that the majority of the
generated association rules have a high level of reliability,
suggesting that the relationships between vehicle-related
factors and damage types are consistent and trustworthy. In
addition, the absence of rules with low confidence values
indicates that the selected confidence threshold has
effectively filtered out less meaningful associations.

After evaluating the overall quality of the association rules
through the confidence distribution, the analysis was further
extended to examine individual association rules in more
detail based on their support, confidence, and lift values.

TABLE V
ASSOCIATION RULES
Antecedent Consequent | Support | Confidence | Lift
Mountainous Structural
Route Frame/Supp | 0.377 1.000 1.191
ort Damage
Mountainous | Structural
Route, Heavy | Frame/Supp | 0.243 1.000 1.191
Load ort Damage
Aluminum
Box Body Structural
Type, Frame/Supp | 0.172 1.000 1.191
Mountainous | ort Damage
Route
Mountainous
Structural
Route, Steel + | Frame/Supp | 0.168 | 1.000 1.101
Material ort Damage
Structural
Heavy Load Frame/Supp | 0.507 0.958 1.141
ort Damage
- - Structural
?'”Oveh'c'e Frame/Supp | 0.205 | 0.948 1.130
ype
ort Damage
Hino Vehicle | Structural
Type, Heavy Frame/Supp | 0.179 0.941 1.121
Load ort Damage
Steel Structural
Material, Frame/Supp | 0.295 0.940 1.120
Heavy Load ort Damage
Coastal Structural
Route, Heavy | Frame/Supp | 0.243 0.929 1.106
Load ort Damage
Aluminum
Box Body Door/Hinge 0.381 0.911 1.892
Type, Damage
Medium Load

Based on the generated association rules, Mountainous
Route emerges as the most dominant risk factor strongly
associated with Structural Frame/Support Damage. This is
evidenced by the top four rules, all of which exhibit a
confidence value of 1.000, indicating that all trucks operating
on mountainous routes experienced structural frame damage.

However, it is important to note that perfect confidence
values may be influenced by a relatively small sample size in

certain categories. For instance, the number of trucks
operating on mountainous routes is limited, which may inflate
confidence scores. Thus, such results should be interpreted
with caution and further validated using broader datasets.

Additionally, the lift metric provides further insight, with
consistent values around 1.191, reinforcing that the
associations are not due to chance. Coupled with support
values between 0.16 and 0.37, this confirms that the patterns
not only appear frequently but also represent meaningful
relationships. These high-lift rules are particularly valuable
for informing preventive maintenance strategies. In practical
terms, high lift values indicate that certain damage types are
significantly more likely to occur under specific operational
conditions. Therefore, rules with high lift can be used to
establish maintenance inspection priorities, such as focusing
preventive checks on vehicles frequently operating on
mountainous routes or carrying heavy loads. This approach
allows companies to allocate maintenance resources more
efficiently and reduce the likelihood of unexpected failures.

In addition to route-related factors, the Heavy Load
Category also shows a strong association with structural
damage. Rules with Heavy Load as the antecedent exhibit a
confidence value of 0.9577, meaning that more than 95% of
heavily loaded trucks experienced structural frame damage.
When heavy load conditions are combined with specific
vehicle types, such as Hino, the confidence value remains
high (0.94), reinforcing the notion that excessive loading is
closely associated with accelerated deterioration of structural
components. This pattern is further supported by lift values
greater than 1.1, indicating an increased likelihood of damage
compared to normal operating conditions.

Conversely, Door/Hinge Damage exhibits a different
pattern. The combination of Aluminum Box Body Type and
Medium Load Category produces an association rule with a
confidence value of 0.9107 and a lift value of 1.892, which is
among the highest lift values observed across all rules. This
finding suggests that lighter aluminum body materials tend to
be more susceptible to door and hinge damage when operating
under medium load conditions. With a support value of 0.38,
this pattern also occurs relatively frequently, making it
operationally relevant. In addition to the numerical analysis,
a visual representation is provided in Figure 7 to enhance
understanding of how operational factor combinations relate
to specific damage outcomes.
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Metwork Graph of Top Association fAukes Based on Lift

Figure 7. Visualization of Top Association Rules Based on Lift

Figure 7 presents a visual representation of the
relationships between combinations of operational factors and
the most frequently occurring types of truck body damage. In
this visualization, each node represents an antecedent or
consequent, and the directed edges illustrate association rules,
with the strength of each relationship indicated by its
corresponding lift value.

Visually, structural frame damage emerges as the central
node, receiving connections from various combinations of
factors such as route types, load categories, and vehicle
characteristics. In contrast, door/hinge damage is linked to
only one specific combination, yet still exhibits a notably
strong association. This visual layout not only highlights the
dominant patterns but also underscores the complexity of
factor interactions influencing damage outcomes. The graph
reinforces the importance of designing context aware
maintenance strategies grounded in historical data insights.
This finding aligns with previous research by Hong et al. [18],
who applied association rule algorithms to analyze accident
patterns in heavy duty vehicles. Their study demonstrated that
specific combinations of road types and vehicle
configurations significantly influence accident severity,
thereby supporting the relevance of rule based approaches in
systematically identifying operational damage patterns.

Overall, the evaluation results based on support,
confidence, and lift indicate that truck damage patterns do not
occur randomly, but are strongly influenced by combinations
of operational factors such as travel routes, load categories,
body materials, and vehicle types. These findings can serve as
a basis for formulating practical recommendations, including
route optimization, load control policies, and targeted
component inspections, tailored to the specific risk profiles
identified in this study.

F. Deployment

The deployment stage focuses on leveraging the
discovered association rule patterns as a basis for improving
business processes, particularly in the management of truck
body maintenance at CV Lestari. The results of this study
indicate that several operational factors, such as mountainous

routes, heavy load categories, and specific combinations of
routes and body materials, are consistently associated with an
increased risk of structural frame damage. These findings
provide a strong foundation for the implementation of data-
driven preventive maintenance strategies. Interviews with
workshop personnel further confirm that the identified
patterns align with technicians’ practical experience in the
field, thereby reinforcing the practical relevance of the
analytical results. Consequently, the findings of this study can
support operational decision-making and the formulation of
more targeted maintenance policies.

In practical terms, the identified patterns can be utilized to
prioritize preventive maintenance activities by assigning
trucks that frequently operate on high-risk routes or carry
heavy loads to early inspection schedules, thereby reducing
the likelihood of severe structural damage. Furthermore, the
relationships observed between body type or material and
specific damage types enable the workshop to provide more
accurate  technical recommendations to  customers,
particularly in selecting body materials that are better suited
to certain operational conditions. In addition, the
digitalization of vehicle damage records and operational data
into a structured database can facilitate systematic
documentation, further analysis, and the development of risk
monitoring  dashboards for fleet management. To
operationalize the discovered association rules into structured
maintenance strategies, a direct mapping can be established
between high-confidence rules and specific technical
interventions. For example, the rule linking mountainous
routes to structural frame damage (confidence = 1.000, lift =
1.191) supports the implementation of regular underframe
inspections and structural reinforcements for trucks that
frequently operate in such environments. Trucks routinely
traversing mountainous areas such as Lembang or Pacet may
be scheduled for bimonthly visual inspections and underframe
thickness testing. Upon detection of material fatigue or
corrosion, the workshop can apply reinforcement plates at
critical stress points and conduct re-welding procedures to
preserve structural integrity.

Similarly, the rule showing that aluminum box bodies
combined with medium load conditions are associated with
door and hinge damage (confidence = 0.91, lift = 1.89) can be
translated into hinge alignment inspections and the
reinforcement of door components on vehicles with this
configuration. Other rules can also inform more specialized
preventive actions. For instance, the strong association
between coastal routes and heavy loads with structural
damage (confidence = 0.929) may justify scheduled anti-
corrosion coating applications and fatigue testing at key
structural joints. Trucks with steel bodies carrying heavy
loads which present a confidence level above 0.94 for
structural damage should be prioritized for re-welding or the
installation of gusset plates, especially in older units.

In the long term, these patterns can serve as the foundation
for developing a predictive maintenance Standard Operating
Procedure (SOP) tailored to CV Lestari’s fleet. Each
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operational factor combination (route, load, and body type)
can be assigned a custom inspection checklist based on its
associated risk profile. This structured, data-driven approach
can enhance fleet reliability, extend wvehicle lifespan, and
reduce both downtime and emergency repair costs.

Such an approach is in line with the findings of Patil et al.
[19] who demonstrated that applying predictive maintenance
analytics to heavy-duty mining vehicles significantly
improves asset availability and reduces unscheduled
breakdowns, highlighting the practical benefits of
transitioning from reactive to proactive maintenance
frameworks. The importance of implementing such rule-
based preventive maintenance frameworks is further
supported by studies showing that risk-based inspection
models, when informed by pattern discovery techniques, can
greatly enhance maintenance prioritization and operational
safety [25].

Although the analytical results reveal strong damage
patterns, as indicated by high support, confidence, and lift
values, the findings of this study remain recommendatory in
nature. Time constraints limited the scope of the research,
preventing the inclusion of experimental validation methods
such as A/B testing or direct field evaluations. Therefore, full-
scale operational implementation is recommended to be
conducted gradually, through pilot testing and data-driven
evaluation, to ensure that the proposed strategies effectively
reduce damage incidence and maintenance costs before being
widely adopted.

IV. CONCLUSION

This study applied the Apriori association rule mining
algorithm within the CRISP-DM framework to analyze
historical truck body repair data at CV Lestari. The primary
objective was to identify dominant damage patterns and to
examine the relationships between vehicle operational factors
and types of truck body damage. Through data transformation
into a transactional format and systematic evaluation of
association rules using support, confidence, and lift, the study
successfully identified meaningful and operationally relevant
patterns. The analysis revealed that structural frame and
support damage is the most dominant type of damage
observed in the service records. The highest-quality
association rules indicate that mountainous routes are strongly
associated with the occurrence of structural damage, as
reflected by the highest confidence values. In addition to
route-related factors, the heavy load category also shows a
consistent association with an increased risk of structural
damage, suggesting that operational load plays a critical role
in accelerating the deterioration of structural components.

Conversely, the results demonstrate that damage patterns
are not uniform across all components. Door and hinge
damage, for instance, exhibits a stronger association with
specific combinations of body type and medium load
category, rather than with route conditions. This finding
highlights that different types of damage are influenced by

distinct operational and physical factors, indicating that a one-
size-fits-all maintenance approach may not be effective.

Overall, the findings confirm that truck body damage
patterns do not occur randomly but are shaped by the
interaction of operational factors and vehicle characteristics.
These insights provide a valuable basis for implementing
data-driven preventive maintenance strategies, such as
prioritizing inspections for high-risk vehicles and offering
more targeted technical recommendations. However, as this
study remains recommendatory in nature and does not include
experimental validation, future research is encouraged to
conduct pilot studies or field evaluations to assess the real-
world effectiveness of the proposed strategies.

However, it is important to acknowledge that this study is
based on a single case study involving CV Lestari and limited
to the year 2024. As such, the generalizability of the findings
remains limited. The association rules and insights presented
here are context-specific and may not fully apply to other
organizations, regions, or timeframes. Therefore, further
studies involving more diverse datasets across multiple
companies and longer periods are recommended to strengthen
external validity and support broader implementation.
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