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 This study investigates damage patterns in truck body components by applying the 

Apriori association rule mining algorithm within the CRISP-DM framework. The 

analysis is based on 281 historical repair records from CV Lestari’s fleet throughout 

2024. The dataset encompasses 14 attributes, including vehicle types, route 

categories, body materials, and load conditions. To ensure the robustness of the 

generated rules, parameter tuning was conducted using a grid search approach, 

resulting in minimum support and confidence thresholds of 15% and 60%, 

respectively. A total of 50 association rules were derived, with several rules 
demonstrating high confidence values and lift values above 1.1, indicating 

meaningful and non-random correlations. Notably, structural frame damage is 

strongly associated with mountainous routes and heavy loads, while door and hinge 

damage tends to occur in aluminum box-bodied trucks operating under medium 

loads. These patterns were aligned with practical insights from field technicians and 

further contextualized through technical recommendations, such as reinforcing high-

stress points and adjusting inspection schedules for high-risk configurations. The 

findings support the formulation of predictive maintenance strategies, enabling 

companies to transition from reactive repairs to proactive, data-driven decision-

making. By integrating rule-based insights into maintenance planning, the study 

contributes to reducing unexpected failures, optimizing inspection frequency, and 

enhancing overall fleet reliability. 
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I. INTRODUCTION 

Indonesia’s economic growth in recent decades has 

consistently been supported by several key sectors, one of 

which is the transportation and logistics sector. This sector not 

only functions as a connector between regions but also serves 

as an important indicator in assessing the efficiency and 

resilience of the national distribution system. Based on 

official data from Statistics Indonesia (Badan Pusat Statistik) 
for the year 2025, the Transportation and Warehousing sector 

recorded a contribution of 6.09 percent to the national Gross 

Domestic Product in the first quarter, which then increased to 

6.21 percent in the second quarter and returned to 6.10 percent 

in the third quarter. Among all sub sectors, land transportation 

contributed the largest share, reaching 2.92 percent in the first 

quarter, 2.96 percent in the second quarter, and 2.93 percent 

in the third quarter. This illustrates the dominance of trucks in 

supporting Indonesia’s logistics system [1]. The significant 
growth in the logistics sector has been driven by various 

factors including an increase in export and import volumes as 

well as the rapid rise of electronic commerce and regional 

distribution activities [2]. Along with the growing 

contribution of the transportation sector to GDP, the number 

of motor vehicles, especially trucks that play a role in national 

logistics distribution, has also shown an upward trend. 

According to data from BPS, the development of the number 

of trucks in Indonesia during the period from 2020 to 2024 

can be seen in the following table [3].  

This growth indicates an increase in the intensity of land 

freight vehicle usage, particularly trucks, in supporting 
national goods distribution activities. Freight transportation in 

Indonesia is generally dominated by the use of trucks as the 
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primary mode of transport due to their high flexibility in 

reaching various routes, especially medium to short-distance 

routes that connect production centers, ports, and markets. 

 

 
Figure 1. Growth in the Number of Motor Vehicles (Trucks), 2020 to 2024 

 

Trucks and semi-trailers play a dominant role in 

Indonesia’s freight transport system, both in terms of cargo 

volume and distribution reach [4]. This high reliance on land 

transportation directly demands long-term reliability of 

logistics vehicles, not only in terms of engine performance but 

also in the construction of the vehicle body and its structural 

strength. Therefore, the role of the vehicle body 

manufacturing industry is crucial in enhancing the efficiency, 

safety, and resilience of the national logistics distribution 

system. 
In this context, various body manufacturing companies at 

both national and regional levels play a strategic role in the 

provision and maintenance of reliable commercial vehicle 

bodies. One such company is CV Lestari, a body 

manufacturer located in Mojotengah Subdistrict, Gresik 

Regency, East Java. The company operates in the field of 

production and assembly of commercial vehicle bodies, with 

a primary focus on manufacturing truck bodies for logistics 

distribution, agricultural industry, and construction material 

transportation. Through a made-to-order approach, CV 

Lestari designs and manufactures various types of bodies such 
as open beds, water tanks, dump trucks, and specialized cargo 

vehicles tailored to the needs of local and regional customers. 

In addition to manufacturing new truck bodies, CV Lestari 

also provides repair and maintenance services for commercial 

vehicles, particularly for the body and structural parts of the 

vehicle. As the demand for repair services continues to 

increase, the company has begun to encounter numerous cases 

of recurring damage with varying characteristics and causes. 

Most trucks brought into the workshop experience serious 

structural issues primarily caused by poor road conditions, 

such as uneven surfaces, large potholes, and road 

deformations. These irregularities in road surfaces expose 
trucks to repeated dynamic loads, especially when traveling 

at high speeds or with frequent usage [5]. Such loads generate 

vertical impact forces that are transmitted to the main 

structural components of the vehicle, including the frame, 

chassis, and inter-component joints, eventually leading to the 

formation of microcracks and permanent deformations that 

worsen over time [6]. Structural damage such as cracks in the 

frame, chassis deformations, or worn joints disrupt the 

vehicle’s load distribution and increase the risk of mechanical 

failure during road operation, posing a danger to drivers and 

other road users. Therefore, early detection of minor cracks is 

essential, as micro-damage can escalate into major failures if 

left unaddressed [7]. Moreover, this condition accelerates 

material fatigue, increases the likelihood of sudden 
breakdowns, and significantly shortens the vehicle’s service 

life [8]. 

Every truck undergoing repairs at CV Lestari is recorded 

through a Repair Order Form, an administrative document 

that contains detailed information about the vehicle unit, body 

type, damage level, materials used, and repair actions taken. 

The data in the SPP is strategically valuable, as it reflects 

patterns and tendencies of damage across various vehicle 

types and operating conditions. However, to date, this data has 

only been used administratively and has not yet been analyzed 

to identify relationships between the underlying causes of 
damage. Therefore, it is necessary to transform the data into a 

structured digital format in order to enable its use as a 

foundation for data analysis [9]. 

To optimize the utilization of such data, a data driven 

analytical approach is needed one that can extract hidden 

patterns from the repair dataset. One such approach is data 

mining, a process that leverages statistics, mathematics, 

artificial intelligence, and machine learning to extract and 

identify useful information and knowledge from large 

datasets [10]. Within data mining, various methods are 

available to meet analytical needs; one of the most widely 

used is association rule mining, which is designed to uncover 
correlations or significant patterns among items within 

numerous transactions [11]. A commonly used algorithm in 

this method is the Apriori algorithm, known for its simplicity, 

ease of implementation, and effectiveness in determining 

frequent itemsets [12]. Using the Apriori algorithm, it is 

possible to generate association rules that represent 

relationships between items, such as: “if item A and B appear, 

then item C is also likely to appear,” based on support and 

confidence values [13]. This method is particularly well-

suited for analyzing large-scale transaction data, such as the 

SPP (Repair Order Form) data of CV Lestari, to identify the 
most frequent patterns of damage and uncover the 

relationships among their causes [14]. The application of 

association rule methods based on the Apriori algorithm has 

been widely adopted in various previous studies.  

For example, in study [12] the Apriori algorithm was used 

to analyze the relationships among factors contributing to 

traffic accidents in Thailand. The results revealed that a 

combination of variables such as male gender, speeding, 

motorcycle use, straight road conditions, dry surfaces, and 

clear weather significantly increased the risk of fatal 

accidents. Another study [15] applied the Apriori algorithm to 

analyze product association patterns in retail sales data 
collected through a Point of Sale (PoS) system. The objective 
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of the study was to identify product relationships that could 

be utilized to improve sales through relevant product 

recommendations for customers. The findings indicated that 

the association pattern with the highest confidence value of 

0.61 and a minimum support of 0.003 occurred in March, 

which coincided with the highest monthly sales, amounting to 

IDR 295,509,934. These findings suggest that the application 

of the Apriori algorithm in PoS systems can positively impact 
retail business revenue.  

In addition, study [16] confirmed the effectiveness of the 

Apriori algorithm in identifying consumer purchasing 

patterns by analyzing 4,371 transactions using the CRISP-

DM approach, resulting in nine significant association rules 

that were utilized to optimize product arrangement and 

promotional strategies. A similar approach was applied in the 

automotive sector [17] to determine spare part 

recommendation packages based on customer purchasing 

patterns, where oil filters and air filters achieved confidence 

values of 68% and 63%, respectively, contributing to 
improved inventory management accuracy. Furthermore, the 

application of the Apriori algorithm to truck crash 

characteristics revealed associations among vehicle attributes, 

road conditions, and accident severity, demonstrating the 

capability of association rule mining to identify complex 

damage patterns in heavy vehicles [18]. In line with this, 

another study emphasized predictive maintenance for 

underground trucks and loaders in the mining industry, 

showing that historical maintenance data analysis supports 

improved asset availability and more proactive maintenance 

decision-making [19]. 

Understanding damage patterns is a crucial foundation for 
improving repair quality and operational management at CV 

Lestari. By applying association rule analysis based on the 

Apriori algorithm, the company can identify the most 

frequently occurring types of damage, discover relationships 

among causal factors, and detect recurring patterns that were 

previously unnoticed. This information allows a shift in the 

maintenance approach from reactive to more proactive and 

well planned, including in scheduling inspections, preventing 

small cracks from developing into major damage, and 

managing raw material inventory more efficiently. 

This approach improves not only the structural reliability 
of vehicle bodies but also supports operational efficiency by 

reducing unexpected repair costs and optimizing the service 

process. Building on this, the study contributes a novel 

application of the Apriori algorithm in the domain of 

commercial truck body maintenance. Unlike prior works that 

typically focus on retail transaction data or POS systems, this 

research analyzes real-world repair order data collected from 

CV Lestari, a body manufacturing and repair company. It 

incorporates previously underexplored operational variables 

such as route type (mountainous, coastal, urban), load 

category, and body material composition. These context-

specific variables enhance the practical relevance of 
association rule mining in supporting predictive maintenance 

strategies.  

II. METHODOLOGY  

 
This study employs the CRISP-DM (Cross-Industry 

Standard Process for Data Mining) methodology as a 

framework, which has been widely applied in various 

business and research contexts due to its flexibility, 

adaptability across different domains, and well-structured 

standardized process with clearly defined phases [20]. This 

methodology consists of six phases as introduced in the 

process model developed by Wirth and Hipp [21]and the 

official guidelines by Chapman et al. [22]. The research 

phases applied in this study are illustrated in Figure 2.  

 

 
 

Figure 2. CRISP-DM Diagram 

 

A. Business Understanding 

This phase aims to develop a comprehensive understanding 

of the research objectives, including the analytical needs and 

the expected outcomes of the data mining process [20]. At this 

stage, the core problem is identified, the type of analysis to be 

used is determined, and the business objectives are translated 

into specific and measurable data mining tasks. In addition, 

this phase involves assessing available resources, constraints, 

and the scope of the data to ensure that the work remains 
relevant to practical needs and that the project aligns with the 

organization's strategies and requirements. 

B. Data Understanding 

This phase involves the process of data collection, 

exploration, structural review, and data quality assessment to 

understand the initial characteristics of the dataset. The main 

activities in this stage include examining data completeness, 

identifying value distributions, recognizing early patterns, 

and detecting potential issues such as missing values, 
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duplicates, or other irregularities. The initial data exploration 

conducted during the Data Understanding phase helps 

identify anomalies and missing values, and these findings will 

guide the subsequent data preprocessing steps [23]. 

C. Data Preparation 

In this phase, the data obtained during the Data 
Understanding stage is further processed to ensure it is ready 

for use in the modeling phase. This process includes data 

cleaning to remove incomplete or inconsistent values, 

followed by data transformation to adjust its structure 

according to the requirements of the methods to be used in the 

modeling phase [16]. 

D. Modeling 

In this phase, the modeling process is conducted by 

applying the Apriori algorithm as a data mining technique to 
generate frequent itemsets based on a defined minimum 

support value. The minimum support serves as a threshold to 

determine which item combinations are considered to occur 

frequently enough in the dataset. Each itemset is then 

calculated for its support value using the formula presented 

below.  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) =
Number of transactions containing 𝐴

Total number of transactions
× 100 

 

In contrast, the support for a pair of items is obtained using 

the equation presented below. 

 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴, 𝐵) =
Number of transactions containing 𝐴 and 𝐵

Total number of transactions
× 100 

 

     Itemsets that meet the minimum support threshold are 

retained as frequent itemsets, while those that do not meet the 

threshold are eliminated. This process continues iteratively 

until no further item combinations satisfy the support criteria. 

E. Evaluation 

The Evaluation phase aims to assess the quality of the 

association rules generated during the Modeling phase. In this 

stage, each rule is analyzed using three key metrics: support, 

confidence, and lift, to ensure that the rule not only appears 

frequently in the transaction data but also reflects a significant 

and meaningful relationship relevant to business decision-

making. These metrics are commonly used in association rule 

mining as they provide a comprehensive view of the 

frequency, strength, and interestingness of relationships 

among items within a transaction dataset [15][24]. 

 
Among these, confidence measures the degree of certainty 

in the relationship between the antecedent and the consequent 

within a rule. A high confidence value indicates that when the 

antecedent occurs, the consequent is also likely to occur, 

making the rule strong and relevant for decision-making 

purposes. The calculation of confidence is shown in the 

equation below. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑃(𝐵|𝐴) =
Number of transactions containing 𝐴 and 𝐵

Number of transactions containing 𝐴
× 100 

 

Lift is used to evaluate whether the relationship between 

two items is truly significant or merely coincidental. A lift 

value greater than 1 indicates that the occurrence of the 

antecedent increases the likelihood of the consequent 

occurring, meaning that the two items are meaningfully 

associated. The formula for calculating lift is presented in the 
equation below.  

 

𝐿𝑖𝑓𝑡(𝐴 ⇒ 𝐵) =
Support(𝐴 ∪ 𝐵)

Support(𝐴) × Support(𝐵)
 

 

F. Deployment 

In the Deployment phase, the results obtained from the data 

mining process are translated into outputs that can be utilized 

by stakeholders. This phase not only focuses on presenting the 

results in a technical format but also emphasizes how the 

findings can be applied in real operational contexts. The 

insights generated are typically presented in the form of 

reports, visualizations, pattern summaries, or 

recommendations that support decision-making processes. 

The goal of this stage is to ensure that the discovered patterns 

or rules provide added value and practical relevance. 
Before full-scale implementation, it is important to validate 

the results through discussions or reviews with relevant 

stakeholders to ensure that the recommendations align with 

operational needs and conditions. In some cases, limited trials 

such as pilot testing or controlled experiments may be 

conducted to evaluate the effectiveness of the deployment 

before proceeding to full implementation.  

 

III. RESULT AND DISCUSSION 

 

In this study, the data were obtained from CV Lestari in the 

form of SPP (Repair Order Form) documents. The data were 
then converted into Microsoft Excel format to enable 

computational processing. Subsequently, the dataset was 

imported into the Jupyter Notebook environment and 

processed using the Python 3 programming language. The 

Apriori algorithm was applied to extract association patterns 

from the dataset. The processing results were then exported 

into CSV format for further analysis and interpretation in 

accordance with the stages of the CRISP-DM framework. 

A. Business Understanding 

At this stage, the study focuses on understanding the 

business needs and challenges faced by CV Lestari as a 

coachbuilding company engaged in the assembly, repair, and 

maintenance of truck bodies. The company has experienced 

an increase in the number of vehicles requiring repair; 

however, it does not yet have a system capable of identifying 

frequently occurring damage patterns. As a result, damage 
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analysis is currently conducted manually, which is time-

consuming and may lead to inaccuracies in decision-making. 

This study aims to assist the company in gaining insights 

into the relationships among different types of damage 

through the application of the Apriori algorithm. By 

identifying combinations of damage that frequently occur 

together, the company can leverage the analysis results to 

improve repair process efficiency, estimate material 
requirements more accurately, design more appropriate 

service packages, and minimize the risk of recurring damage. 

Furthermore, the findings of this analysis can serve as a 

foundation for developing data-driven maintenance strategies 

and informing managerial decision making regarding vehicle 

repair prioritization and resource planning. 

B. Data Understanding 

The data used in this study were obtained from internal 

documents in the form of Repair Order Forms (SPP) 
belonging to CV Lestari, a coachbuilding company that 

recorded all truck body repair activities throughout 2024. 

These documents contain 281 service transaction records, 

representing actual damage conditions encountered in various 

truck units received by the workshop. The information 

documented includes vehicle specifications (such as body 

type and material), operational conditions (including route 

type and load category), and the types of body damage 

identified. Given the potential for incomplete or inconsistent 

records, additional data verification was conducted through 

direct interviews with technicians and workshop personnel 
who were directly involved in the repair processes. This step 

was taken to ensure the completeness and validity of the 

information, particularly for attributes not explicitly recorded 

in the forms. 

 

As a result of the data collection and verification process, 

a final dataset consisting of 14 attributes was compiled, 

encompassing both technical and operational aspects of the 

vehicles. To provide a more comprehensive understanding of 

the dataset structure used in this study, the column names and 

attribute descriptions are presented in Table 1 below. 

TABLE I 

DATASET 

No Column Name Column Description 

1 Date The date when the truck unit 

entered the workshop for 
coachbuilding repair or inspection. 

2 Vehicle The brand or model of the truck 
undergoing repair services. 

3 Body Type The type of truck body used (e.g., 
steel flatbed, aluminum box, drop-
side body). 

4 Material The primary material used for the 
truck body (e.g., steel, aluminum, 
checker plate, or a combination). 

5 Load Category The typical load classification of 
the vehicle (light, medium, or 
heavy). 

6 Operational 
Route 

The characteristics of the truck’s 
operational route (coastal, urban, 
or mountainous). 

7 Corrosion / 
Material 
Damage 

Damage conditions caused by 
corrosion, rust, oxidation, or 
material degradation of the truck 
body, including surface peeling, 
material thinning, perforation, and 
deterioration due to environmental 
exposure. 

8 Floor Structure 
Damage 

Physical damage to the truck body 
floor, including cracks, 
perforations, deformation, surface 
wear, loosened panels, or 
weakened floor joints caused by 
load stress or prolonged use. 

9 Structural 
Frame / Support 

Damage 

Damage to the main coachbuilding 
frame or supporting structures, 

including cracks, fractures, 
bending, misalignment, or 
structural weakening. 

10 Welding / Joint 
Damage 

Damage to welded areas or joints 
between truck body panels, 
including cracked welds, joint 
separation, weakened connections, 

or weld failures. 

11 Door / Hinge 
Damage 

Problems affecting truck body 
doors and hinges, including 
jamming, corrosion, 
misalignment, loosened or broken 
hinges, and improper door closure. 

12 Paint / Finishing 

Damage 

Damage to the exterior appearance 

of the truck body, including paint 
peeling, scratches, fading, or 
surface deterioration. 

13 Electrical / 
Lighting 
Damage 

Damage affecting the truck body 
electrical system, including lamps, 
wiring, connectors, or related 
electrical components. 

14 Interior / Lining 
Damage 

Damage affecting the interior body 
components, including inner 
panels, linings, or internal 
coverings. 
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To provide a clearer overview of the attribute distributions 

within the dataset, the following pie charts illustrate the 

proportions body types, load categories, and operational 

routes recorded in the truck repair data.  

 

 
Figure 3. Distribution of Body Type 

 

This chart shows that the most common operational route 

is the coastal route, representing approximately 41.0% of all 

truck usage. This is closely followed by the mountainous 

route at 37.7%, while the urban route is the least common with 

21.3%. This distribution suggests that a significant number of 
trucks operate in geographically challenging environments, 

particularly in mountainous and coastal areas, which may 

contribute to the observed damage patterns.  

 

 
Figure 4. Distribution of Load Categories 

 

The load category distribution indicates that heavy loads 

dominate the dataset, accounting for 53.0% of all entries. 

Medium loads follow with 45.5%, while light loads are rarely 
recorded only 1.5%. The prevalence of heavy and medium 

loads highlights the high operational stress placed on truck 

components, which is a critical factor in damage analysis. 

 

 
Figure 5. Distribution of Operational Routes 

 

In terms of body type, aluminum box trucks are the most 

common, making up over 50% of the data. Other notable 

categories include steel container box 14.2% and wood-steel 

flatbed 11.6%. The dominance of aluminum based bodies 

may reflect fleet preferences for lighter materials, although 

these may also present unique vulnerabilities under certain 
operational conditions, such as medium-load door damage.  

 

 

C. Data Preparation 

The collected data are still in raw form and therefore 

require several selection and preprocessing steps to produce 

the required dataset. The processes carried out at this stage 

include:  
 

1)   Data Selection: At this stage, relevant attributes were 

selected for the data mining process. The date column was 

excluded because it does not contribute to the discovery of 

damage association patterns, as the research focuses on 

relationships among body type, load category, operational 

route, and types of damage. Therefore, this column was 

removed from the dataset. Meanwhile, all damage-related 

columns were retained, as they represent the primary features 

analyzed in this study. 

2)   Data Cleaning: In this process, data cleaning was 

performed to address incomplete and inconsistent records. 

Based on the data inspection results, six rows contained 

missing values in the Load Category column and seven rows 

contained missing values in the Operational Route column. 

These missing values resulted from limitations in the 

documentation of the SPP (Repair Order Form). Follow-up 

verification was conducted through direct interviews with 

workshop personnel responsible for handling the respective 
vehicles; however, in several cases, the information could not 

be confirmed due to memory limitations regarding the truck 
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conditions at that time. Records that could not be verified 

were therefore treated as missing values and subsequently 

removed from the dataset to prevent any adverse impact on 

the quality of the analysis. 

3)   Data Transformation: During the data 

transformation stage, all categorical attributes were converted 

into binary format to match the transaction item structure 

required by the Apriori algorithm. This process was 
performed using the one-hot encoding technique, in which 

each category of attributes such as Vehicle, Body Type, 

Material, Load Category, and Operational Route was 

transformed into a binary column with a value of 1 if the 

category appeared in a transaction and 0 otherwise. In 

addition, damage attributes that were originally labeled as Yes 

and No were also converted into binary representations. The 

transformation process resulted in a binary tabular dataset 

consisting of 46 binary attributes. All attributes were 

represented as integer values to ensure compatibility with 

frequent itemset generation and association rule mining. 
Representative examples of the transformed attributes, along 

with their data types, are presented in Table 2. 

TABLE II 

REPRESENTATIVE ATTRIBUTES RESULTING FROM ONE-HOT ENCODING 

Attribute Category Column Name 
Data 

Type 

Vehicle Vehicle_Fuso int64 

Body Type Body_Type_Dropside int64 

Load Category Load_Category_Heavy int64 

Operational Route Route_Mountainous int64 

Damage 
Corrosion_or_Material_ 
Damage_Yes 

int64 

D. Modeling 

At this stage, the modeling process began with determining 

the minimum support and minimum confidence values as the 

main parameters of the Apriori algorithm. These parameters 

were not selected arbitrarily; instead, a grid search approach 

was employed. This approach systematically evaluates 

multiple combinations of commonly used support and 

confidence values in association rule mining to identify 

threshold values that generate the most relevant and 

meaningful association rules. In the grid search process, 
support values ranging from 0.10 to 0.30 and confidence 

values ranging from 0.40 to 0.80 were examined. Each 

parameter combination was evaluated in a structured manner 

to ensure that the selected values were based on objective 

evaluation rather than subjective estimation [16]. The final 

parameters used in the modeling stage were chosen based on 

their ability to produce the most informative itemset 

relationship patterns within the dataset. 

Based on the grid search results, the optimal parameters 

were identified as a minimum support of 15% and a minimum 

confidence of 60%, which resulted in a total of 50 association 
rules. A minimum support threshold of 15% was selected to 

ensure that only frequently occurring patterns in the data were 

considered during the analysis. This threshold effectively 

filters out infrequent item combinations, thereby producing 

rules that are more representative of actual conditions in the 

field. Meanwhile, the minimum confidence value of 60% was 

established to ensure a sufficient level of reliability in the 

relationships between antecedents and consequents within the 

generated rules. This threshold indicates that the probability 

of the consequent occurring given the antecedent is strong 

enough to support operational decision-making, such as 
identifying dominant damage patterns or formulating more 

accurate repair recommendations. The combination of these 

parameters ensures that the resulting association rules are 

both significant and meaningful, retaining only frequently 

occurring damage patterns with strong relationships for 

further analysis.  

Subsequently, the Apriori algorithm was applied to identify 

association patterns within the coachbuilding damage data 

using the optimal parameters obtained from the grid search. 

The algorithm generated frequent itemsets and association 

rules that represent dominant damage patterns across all 
vehicle units. In this stage, only itemsets with a value of “Yes” 

were retained to ensure that the resulting frequent itemsets 

accurately reflect the presence of damage conditions. This 

process enables the identification of the most frequently 

occurring types of damage, which are prioritized for further 

analysis. Table 3 presents the frequent 1-itemsets with the 

highest support values, representing the most dominant 

damage types observed in the dataset. 

TABLE III 

1 ITEMSETS 

No. Damage Type Support 
1 Structural Frame / Support Damage 0.839552 

2 Door / Hinge Damage 0.481343 

3 Floor Structure Damage 0.365672 

4 Paint / Finishing Damage 0.332090 

5 Welding / Joint Damage 0.305970 

6 Corrosion / Material Damage 0.235075 

7 Electrical / Lighting Damage 0.197761 

 

Based on the results of the frequent 1-itemset analysis 

presented in Table 3, several damage categories exhibit 

relatively high occurrence rates in the service transaction data. 

Structural Frame/Support Damage emerges as the most 

dominant type of damage, with a support value of 83.9%, 
indicating that the majority of truck units experience damage 

to the main frame or supporting structure. Furthermore, 

Door/Hinge Damage and Floor Structure Damage also show 

substantial occurrence frequencies, with support values of 

48.1% and 36.6% respectively. 

Meanwhile, other damage types such as Paint/Finishing, 

Welding/Joint, Corrosion/Material, and Electrical/Lighting 

Components demonstrate lower support values, indicating 

that these types of damage occur less frequently compared to 

structural damage. These findings suggest that issues related 

to the vehicle frame and main structural components 
constitute the dominant problems and should therefore be 

prioritized in maintenance and repair activities at CV Lestari. 
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After obtaining an overview of the most frequently 

occurring damage types through the frequent 1-itemset 

analysis, the analysis was extended to identify frequent 2-

itemsets. At this stage, the Apriori algorithm identifies 

combinations of two items that co-occur within service 

transactions with a minimum support threshold of 0.15 (15%). 

Each combination consists of one vehicle-related factor, such 

as body type, material, load category, or operational route, 

and one damage type with a Yes value. 
The frequent 2-itemset analysis provides an initial insight 

into the relationships between vehicle characteristics and the 

types of damage that occur. Through these co-occurrence 

patterns, associations between operational conditions and 

specific body damage types can be identified prior to the 

formation of association rules. Table 4 presents the list of 

frequent 2-itemsets with the highest support values, 

representing the most dominant damage patterns observed in 

the analyzed vehicle units.  

TABLE IV 

2 ITEMSET 

No Support Factor Associated Damage 

1 0.507 
Aluminum Box 
Body Type 

Structural Frame/Support 
Damage 

2 0.447 
Aluminum Box 
Body Type 

Door/Hinge Damage 

3 0.444 
Steel + 
Aluminum 

Material 

Door/Hinge Damage 

4 0.395 
Aluminum Box 
Body Type 

Structural Frame/Support 
Damage 

5 0.391 
Medium Load 
Category 

Door/Hinge Damage 

6 0.391 Steel Material 
Structural Frame/Support 
Damage 

7 0.376 
Door/Hinge 
Damage 

Structural Frame/Support 
Damage 

8 0.376 
Mountainous 
Route 

Structural Frame/Support 
Damage 

9 0.358 Coastal Route 
Structural Frame/Support 
Damage 

10 0.350 
Mitsubishi 
Vehicle Type 

Structural Frame/Support 
Damage 

 

Based on the results of the frequent 2-itemset analysis, the 

most frequently co-occurring item combinations were 

identified from the vehicle body damage data throughout 

2024. The most dominant pattern indicates a strong 

association between Structural Frame/Support Damage and 
various vehicle-related factors. This damage type exhibits the 

highest co-occurrence rate with vehicle factors, with a support 

value of 50.7%, making it the most frequent 2-itemset pattern 

observed in the analyzed units at CV Lestari. Conversely, 

damage patterns with lower support values represent less 

frequently occurring combinations, indicating that these 

factors or damage types are comparatively rarer in the 

observed dataset.  

In addition, Door/Hinge Damage, Paint/Finishing Damage, 

and Welding/Joint Damage are also frequently found to co-

occur with several vehicle characteristics, including body 

type, load category, and body material. For instance, the 

Aluminum Box body type is commonly associated with 

Door/Hinge Damage, while medium and heavy load 

categories tend to co-occur with structural and finishing-

related damage, with co-occurrence rates exceeding 35%. 

These patterns suggest that the physical characteristics of 
vehicles play a significant role in influencing the types of 

damage that occur. 

Overall, the frequent 2-itemset results indicate that 

structural damage, particularly damage to the frame and 

supporting components, represents the most recurrent type of 

damage. This pattern is closely related to high operational 

workloads and intensive vehicle usage, especially for units 

operating on specific routes or carrying heavy loads. These 

findings provide valuable insights for the company in 

identifying the primary factors contributing to vehicle damage 

and can serve as a basis for implementing preventive 
maintenance strategies, periodic inspections, and more 

appropriate body material selection. 

E. Evaluation 

During the evaluation stage, the quality of the generated 

association rules was assessed using three main metrics: 

support, confidence, and lift. The support and confidence 

thresholds used in this phase were 15 percent and 60 percent, 

respectively, and were determined using a grid search 

strategy, as detailed in the Modeling section. These metrics 
were employed to evaluate the strength of the relationships 

between causal factors (antecedents) and damage types 

(consequents). To assess the overall quality of the generated 

association rules, an analysis of the confidence value 

distribution was conducted for all rules that passed the 

filtering process.  

 

 
Figure 6. Distribution of Confidence Values in Association Rules 
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Based on Figure 6, most association rules exhibit 

confidence values above 0.65, with several rules approaching 

1.00. This distribution indicates that the majority of the 

generated association rules have a high level of reliability, 

suggesting that the relationships between vehicle-related 

factors and damage types are consistent and trustworthy. In 

addition, the absence of rules with low confidence values 

indicates that the selected confidence threshold has 
effectively filtered out less meaningful associations. 

After evaluating the overall quality of the association rules 

through the confidence distribution, the analysis was further 

extended to examine individual association rules in more 

detail based on their support, confidence, and lift values.  

TABLE V 

ASSOCIATION RULES 

Antecedent Consequent Support Confidence Lift 

Mountainous 
Route 

Structural 
Frame/Supp
ort Damage 

0.377 1.000 1.191 

Mountainous 

Route, Heavy 
Load 

Structural 

Frame/Supp
ort Damage 

0.243 1.000 1.191 

Aluminum 
Box Body 
Type, 
Mountainous 
Route 

Structural 
Frame/Supp
ort Damage 

0.172 1.000 1.191 

Mountainous 
Route, Steel + 
Aluminum 
Material 

Structural 
Frame/Supp
ort Damage 

0.168 1.000 1.191 

Heavy Load 
Structural 
Frame/Supp
ort Damage 

0.507 0.958 1.141 

Hino Vehicle 
Type 

Structural 
Frame/Supp
ort Damage 

0.205 0.948 1.130 

Hino Vehicle 
Type, Heavy 
Load 

Structural 
Frame/Supp
ort Damage 

0.179 0.941 1.121 

Steel 

Material, 
Heavy Load 

Structural 

Frame/Supp
ort Damage 

0.295 0.940 1.120 

Coastal 
Route, Heavy 
Load 

Structural 
Frame/Supp
ort Damage 

0.243 0.929 1.106 

Aluminum 
Box Body 

Type, 
Medium Load 

Door/Hinge 

Damage 
0.381 0.911 1.892 

 

Based on the generated association rules, Mountainous 

Route emerges as the most dominant risk factor strongly 

associated with Structural Frame/Support Damage. This is 

evidenced by the top four rules, all of which exhibit a 
confidence value of 1.000, indicating that all trucks operating 

on mountainous routes experienced structural frame damage. 

However, it is important to note that perfect confidence 

values may be influenced by a relatively small sample size in 

certain categories. For instance, the number of trucks 

operating on mountainous routes is limited, which may inflate 

confidence scores. Thus, such results should be interpreted 

with caution and further validated using broader datasets. 

Additionally, the lift metric provides further insight, with 

consistent values around 1.191, reinforcing that the 

associations are not due to chance. Coupled with support 

values between 0.16 and 0.37, this confirms that the patterns 
not only appear frequently but also represent meaningful 

relationships. These high-lift rules are particularly valuable 

for informing preventive maintenance strategies. In practical 

terms, high lift values indicate that certain damage types are 

significantly more likely to occur under specific operational 

conditions. Therefore, rules with high lift can be used to 

establish maintenance inspection priorities, such as focusing 

preventive checks on vehicles frequently operating on 

mountainous routes or carrying heavy loads. This approach 

allows companies to allocate maintenance resources more 

efficiently and reduce the likelihood of unexpected failures.  
In addition to route-related factors, the Heavy Load 

Category also shows a strong association with structural 

damage. Rules with Heavy Load as the antecedent exhibit a 

confidence value of 0.9577, meaning that more than 95% of 

heavily loaded trucks experienced structural frame damage. 

When heavy load conditions are combined with specific 

vehicle types, such as Hino, the confidence value remains 

high (0.94), reinforcing the notion that excessive loading is 

closely associated with accelerated deterioration of structural 

components. This pattern is further supported by lift values 

greater than 1.1, indicating an increased likelihood of damage 

compared to normal operating conditions. 
Conversely, Door/Hinge Damage exhibits a different 

pattern. The combination of Aluminum Box Body Type and 

Medium Load Category produces an association rule with a 

confidence value of 0.9107 and a lift value of 1.892, which is 

among the highest lift values observed across all rules. This 

finding suggests that lighter aluminum body materials tend to 

be more susceptible to door and hinge damage when operating 

under medium load conditions. With a support value of 0.38, 

this pattern also occurs relatively frequently, making it 

operationally relevant. In addition to the numerical analysis, 

a visual representation is provided in Figure 7 to enhance 
understanding of how operational factor combinations relate 

to specific damage outcomes.  
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Figure 7. Visualization of Top Association Rules Based on Lift 

 

Figure 7 presents a visual representation of the 

relationships between combinations of operational factors and 

the most frequently occurring types of truck body damage. In 

this visualization, each node represents an antecedent or 

consequent, and the directed edges illustrate association rules, 

with the strength of each relationship indicated by its 

corresponding lift value. 

Visually, structural frame damage emerges as the central 

node, receiving connections from various combinations of 

factors such as route types, load categories, and vehicle 

characteristics. In contrast, door/hinge damage is linked to 
only one specific combination, yet still exhibits a notably 

strong association. This visual layout not only highlights the 

dominant patterns but also underscores the complexity of 

factor interactions influencing damage outcomes. The graph 

reinforces the importance of designing context aware 

maintenance strategies grounded in historical data insights. 

This finding aligns with previous research by Hong et al. [18], 

who applied association rule algorithms to analyze accident 

patterns in heavy duty vehicles. Their study demonstrated that 

specific combinations of road types and vehicle 

configurations significantly influence accident severity, 
thereby supporting the relevance of rule based approaches in 

systematically identifying operational damage patterns.  

Overall, the evaluation results based on support, 

confidence, and lift indicate that truck damage patterns do not 

occur randomly, but are strongly influenced by combinations 

of operational factors such as travel routes, load categories, 

body materials, and vehicle types. These findings can serve as 

a basis for formulating practical recommendations, including 

route optimization, load control policies, and targeted 

component inspections, tailored to the specific risk profiles 

identified in this study. 

F. Deployment 

The deployment stage focuses on leveraging the 

discovered association rule patterns as a basis for improving 

business processes, particularly in the management of truck 

body maintenance at CV Lestari. The results of this study 

indicate that several operational factors, such as mountainous 

routes, heavy load categories, and specific combinations of 

routes and body materials, are consistently associated with an 

increased risk of structural frame damage. These findings 

provide a strong foundation for the implementation of data-

driven preventive maintenance strategies. Interviews with 

workshop personnel further confirm that the identified 

patterns align with technicians’ practical experience in the 

field, thereby reinforcing the practical relevance of the 

analytical results. Consequently, the findings of this study can 
support operational decision-making and the formulation of 

more targeted maintenance policies. 

In practical terms, the identified patterns can be utilized to 

prioritize preventive maintenance activities by assigning 

trucks that frequently operate on high-risk routes or carry 

heavy loads to early inspection schedules, thereby reducing 

the likelihood of severe structural damage. Furthermore, the 

relationships observed between body type or material and 

specific damage types enable the workshop to provide more 

accurate technical recommendations to customers, 

particularly in selecting body materials that are better suited 
to certain operational conditions. In addition, the 

digitalization of vehicle damage records and operational data 

into a structured database can facilitate systematic 

documentation, further analysis, and the development of risk 

monitoring dashboards for fleet management. To 

operationalize the discovered association rules into structured 

maintenance strategies, a direct mapping can be established 

between high-confidence rules and specific technical 

interventions. For example, the rule linking mountainous 

routes to structural frame damage (confidence = 1.000, lift = 

1.191) supports the implementation of regular underframe 

inspections and structural reinforcements for trucks that 
frequently operate in such environments. Trucks routinely 

traversing mountainous areas such as Lembang or Pacet may 

be scheduled for bimonthly visual inspections and underframe 

thickness testing. Upon detection of material fatigue or 

corrosion, the workshop can apply reinforcement plates at 

critical stress points and conduct re-welding procedures to 

preserve structural integrity. 

Similarly, the rule showing that aluminum box bodies 

combined with medium load conditions are associated with 

door and hinge damage (confidence = 0.91, lift = 1.89) can be 

translated into hinge alignment inspections and the 
reinforcement of door components on vehicles with this 

configuration. Other rules can also inform more specialized 

preventive actions. For instance, the strong association 

between coastal routes and heavy loads with structural 

damage (confidence = 0.929) may justify scheduled anti-

corrosion coating applications and fatigue testing at key 

structural joints. Trucks with steel bodies carrying heavy 

loads which present a confidence level above 0.94 for 

structural damage should be prioritized for re-welding or the 

installation of gusset plates, especially in older units. 

In the long term, these patterns can serve as the foundation 

for developing a predictive maintenance Standard Operating 
Procedure (SOP) tailored to CV Lestari’s fleet. Each 
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operational factor combination (route, load, and body type) 

can be assigned a custom inspection checklist based on its 

associated risk profile. This structured, data-driven approach 

can enhance fleet reliability, extend vehicle lifespan, and 

reduce both downtime and emergency repair costs. 

Such an approach is in line with the findings of Patil et al. 

[19] who demonstrated that applying predictive maintenance 

analytics to heavy-duty mining vehicles significantly 
improves asset availability and reduces unscheduled 

breakdowns, highlighting the practical benefits of 

transitioning from reactive to proactive maintenance 

frameworks. The importance of implementing such rule-

based preventive maintenance frameworks is further 

supported by studies showing that risk-based inspection 

models, when informed by pattern discovery techniques, can 

greatly enhance maintenance prioritization and operational 

safety [25]. 

Although the analytical results reveal strong damage 

patterns, as indicated by high support, confidence, and lift 
values, the findings of this study remain recommendatory in 

nature. Time constraints limited the scope of the research, 

preventing the inclusion of experimental validation methods 

such as A/B testing or direct field evaluations. Therefore, full-

scale operational implementation is recommended to be 

conducted gradually, through pilot testing and data-driven 

evaluation, to ensure that the proposed strategies effectively 

reduce damage incidence and maintenance costs before being 

widely adopted.  

 

IV. CONCLUSION 

This study applied the Apriori association rule mining 
algorithm within the CRISP-DM framework to analyze 

historical truck body repair data at CV Lestari. The primary 

objective was to identify dominant damage patterns and to 

examine the relationships between vehicle operational factors 

and types of truck body damage. Through data transformation 

into a transactional format and systematic evaluation of 

association rules using support, confidence, and lift, the study 

successfully identified meaningful and operationally relevant 

patterns. The analysis revealed that structural frame and 

support damage is the most dominant type of damage 

observed in the service records. The highest-quality 
association rules indicate that mountainous routes are strongly 

associated with the occurrence of structural damage, as 

reflected by the highest confidence values. In addition to 

route-related factors, the heavy load category also shows a 

consistent association with an increased risk of structural 

damage, suggesting that operational load plays a critical role 

in accelerating the deterioration of structural components. 

Conversely, the results demonstrate that damage patterns 

are not uniform across all components. Door and hinge 

damage, for instance, exhibits a stronger association with 

specific combinations of body type and medium load 

category, rather than with route conditions. This finding 
highlights that different types of damage are influenced by 

distinct operational and physical factors, indicating that a one-

size-fits-all maintenance approach may not be effective. 

Overall, the findings confirm that truck body damage 

patterns do not occur randomly but are shaped by the 

interaction of operational factors and vehicle characteristics. 

These insights provide a valuable basis for implementing 

data-driven preventive maintenance strategies, such as 

prioritizing inspections for high-risk vehicles and offering 
more targeted technical recommendations. However, as this 

study remains recommendatory in nature and does not include 

experimental validation, future research is encouraged to 

conduct pilot studies or field evaluations to assess the real-

world effectiveness of the proposed strategies. 

However, it is important to acknowledge that this study is 

based on a single case study involving CV Lestari and limited 

to the year 2024. As such, the generalizability of the findings 

remains limited. The association rules and insights presented 

here are context-specific and may not fully apply to other 

organizations, regions, or timeframes. Therefore, further 
studies involving more diverse datasets across multiple 

companies and longer periods are recommended to strengthen 

external validity and support broader implementation.  
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