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 In this study, the Modified Variational Iteration Algorithm-II (MVIA-II) is 

implemented as a robust numerical scheme for solving nonlinear Parabolic partial 

differential equations. The study focuses on the implementation of an auxiliary 

parameter h into the correction functional to control the convergence region of the 

approximate series solution. To validate the efficiency of this semi-numerical 

approach, two fundamental models arising in mathematical physics and biology are 

investigated: The Allen-Cahn equation and the Newell-Whitehead equation. The 

results are compared with exact analytical solutions and other existing numerical 
methods. The error analysis demonstrates that the proposed algorithm yields high 

accuracy with minimal computational overhead, making it a promising tool for 

simulating nonlinear dynamical wave phenomena. 
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I. INTRODUCTION 

Nonlinear partial differential equations (NLPDEs) serve as 

the mathematical backbone for modeling complex 

phenomena in fluid mechanics, plasma physics, optical fibers, 

and mathematical biology. Specifically, parabolic dynamical 
wave equations describe a wide array of diffusive and 

reaction-diffusion processes [1, 2]. The accurate computation 

of these equations is critical for understanding phase 

separations, pattern formation, and population dynamics. 

Among the most significant parabolic models is the Allen-

Cahn (AC) equation, originally introduced to describe the 

motion of anti-phase boundaries in iron alloys [3]. It has since 

found applications in crystallography, quantum mechanics, 

and image processing. Similarly, the Newell-Whitehead 

(NW) equation describes the dynamical behavior near the 

bifurcation point in Rayleigh-Bénard convection of binary 
fluid mixtures [4]. Both equations share the general nonlinear 

form: 

𝜕𝑤

𝜕𝑡 
 =

𝜕²𝑤

𝑥²𝑡 
 + 𝛼𝑤 + 𝛽𝑤ⁿ,                                                         (1) 

where α and β are real constants. 

Numerous analytical methods exist, such as the Adomian 

decomposition method (ADM) [5], Homotopy perturbation 

method (HPM) [6], and Hirota's bilinear method [7]. 

However, when the nonlinearity becomes strong, many of 

these methods suffer from slow convergence or high 

computational costs. Moreover, conventional grid-based 

numerical techniques such as finite difference (FDM) and 

finite element methods (FEM) frequently experience artificial 

dispersion or stability problems [8, 9]. 

Recent literature from 2020 to 2025 has seen a surge in 

hybrid semi-analytical methods that bridge the gap between 
symbolic computation and numerical simulation. For 

instance, recent works on fractional derivatives and wavelet 

collocation have pushed the boundaries of accuracy [10, 11]. 

However, the (VIM), originally proposed by He [12], remains 

a powerful tool due to its ability to solve equations without 

discretization or linearization. 

Standard WIM, however, may produce divergent results 

for specific domains. To overcome this, the introduction of an 

auxiliary parameter ℎ similar to that in Homotopy Analysis 

has been proposed, leading to the (MVIA-II) [13, 14]. This 
parameter accelerates convergence and minimizes the 

residual error. 

In this paper, we apply the MVIA-II to obtain highly 

accurate numerical solutions for the Allen-Cahn and Newell-
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Whitehead equations. We provide a comprehensive literature 

review, detail the mathematical formulation, and present error 

profiles that validate the method's superiority over standard 

techniques. 

 

II. DESCRIPTION OF THE MODIFIED VARIATIONAL 

ITERATION ALGORITHM-II (MVIA-II) 

 

The modified variational iteration algorithm-II is rooted in 
the general concept of the Lagrange multiplier. Consider a 

nonlinear differential equation in the operator form: 

𝐿(𝑤) +  𝑁(𝑤) =  𝑔(𝑥, 𝑡),                                                        (2) 

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and 

𝑔 is a source term. According to the variational theory, a 
correction functional can be constructed as: 

𝑤𝑛+1(ℓ) = 𝑤ₙ(ℓ)

+ ∫ 𝜆(𝜏)[𝐿(𝑤ₙ(𝜏)) + 𝑁(ṽₙ(𝜏))

ℓ

0

− 𝑔(𝜏)]𝑑𝜏 ,                                                  (3) 

where 𝜆 is a general Lagrange multiplier identified via 

variational theory, and ṽₙ denotes a restricted variation such 

that 𝛿ṽₙ = 0. 

The standard VIM often yields a series that may converge 

slowly. To enhance this, we introduce an auxiliary parameter 

ℎ. The iterative scheme for MVIA-II is defined as [15, 16]: 

𝑤𝑛+1(ℓ, ℎ) = w0(ℓ)

+ ℎ ∫ 𝜆(𝜏)[𝑁(𝑤ₙ(𝜏, ℎ)) − 𝑔(𝜏, ℎ)]𝑑𝜏,

ℓ

0

(4) 

subject to the initial approximation 𝑤₀. This formulation 

allows the user to adjust ℎ to ensure the residual error square 

is minimized. 

The accuracy of the method relies on the optimal selection 

of ℎ. We define the residual function for the n-th 
approximation as: 

𝑅𝑒𝑠(𝑥, 𝑡, ℎ) = 𝐿(𝑤ₙ) + 𝑁(𝑤ₙ) − 𝑔.                                      (5) 

The optimal ℎ is obtained by minimizing the square of the 

𝐿2 norm of the residual: 

𝐸ₙ(ℎ) = ∫|𝑅𝑒𝑠(𝑥, 𝑡, ℎ)|2𝑑𝛺.

 

𝛺

                                                  (6) 

By scaling the corrective term in equation (4) and 

recovering the original technique when ℎ = −1, the auxiliary 

parameter ℎ significantly modifies standard VIM. 

Convergence radius is controlled by varying ℎ within 

standard boundaries (−1.5 < ℎ < −0.5). The iteration is 

converted from a fixed-point to an optimization issue by 
optimizing h at each step by minimizing the squared residual 

error 𝐸ₙ(ℎ) at each step: 𝜕𝐸ₙ/𝜕ℎ = 0 . 
This eliminates the need for linearization or perturbation 

assumptions and allows MVIA-II to address stiff nonlinear 

issues where regular VIM fails. 

 

Algorithm Description: 

To facilitate consistency, the MVIA-II implementation is 

presented in the algorithmic approach below. 

 

Step 1. Initialization 

 Use operator form to define the differential equation: 

𝐿(𝑤) +  𝑁(𝑤) −  𝑔(𝑥, 𝑡) = 0.   

 Calculate the Lagrange multiplier 𝜆(𝜏) by using the fixed 

condition of the correction functional. 

 Choose an initial approximation 𝑤0(𝑥, 𝑡) that meets the 

boundary and initial requirements. 

Step 2. Loop of Iterations 

 Set 𝑛 = 0, (𝑛 < Max-Iterations): 

 Use Eq. (4) to construct the iteration formula using the 

symbolic parameter ℎ. 

 Determine the symbolic approximations 𝑤𝑛+1(𝑥, 𝑡, ℎ).  

 Construct the residual function as follows: 𝑅𝑒𝑠(𝑥, 𝑡, ℎ) =

𝐿(𝑤ₙ) + 𝑁(𝑤ₙ) − 𝑔. 

 Over the domain 𝛺, define the Squared Residual Error (L2 

norm): 𝐸ₙ(ℎ) = ∫ |𝑅𝑒𝑠(𝑥, 𝑡, ℎ)|2𝑑𝛺.
 

𝛺
 

 To find the perfect value of ℎ, solve the minimization 

condition: 𝜕𝐸ₙ/𝜕ℎ = 0. 

 Substitute the perfect value of ℎ back into  𝑤𝑛+1. 

 Update 𝑛 = 𝑛 + 1. 

Step 3. Output: 

 Return the approximate solution: 𝑤𝑛(𝑥, 𝑡). 

According to this design, the auxiliary parameter ℎ is not 

chosen arbitrarily, but is theoretically determined to minimize 

the approximation error at each or the final step of iteration, 

ensuring robust convergence even with significant 

nonlinearities. 

 

A. THEORETICAL CONVERGENCE ANALYSIS 

We examine the convergence of the infinite series solution 

in order to provide the MVIA-II a robust mathematical 

foundation.  
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Let 𝐵 be a Banach space of all continuous functions on 𝐼 =
[0, 𝑇], where the norm ||𝑤||  = 𝑚𝑎𝑥 |𝑤(𝑡)|. A series of 

approximations 𝑤𝑛 is produced by the MVIA-II. The answer 

can be described as an infinite series:  

 

𝑤(𝑥, 𝑡) = ∑  𝑢ₖ(𝑥, 𝑡)

∞

𝑘=0

, 𝑤ℎ𝑒𝑟𝑒 𝑢ₖ = 𝑤ₖ₊₁ − 𝑤ₖ. 

 

Theorem 2.1. Let 𝑁(𝑤) be a nonlinear operator with 

constant 𝐶 that satisfies the Lipschitz condition. If there is a 

constant 𝛼(0 < 𝛼 < 1) such that the series solution 𝑤(𝑥, 𝑡) 

generated by the MVIA-II converges uniformly and 

absolutely to the precise solution: 

 

|| 𝑢𝑘+1|| ≤ 𝛼| 𝑢_𝑘 |, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘. 
 

Additionally, the control variable that ensures 𝛼 < 1  is the 

auxiliary parameter ℎ.  

Proof: The Cauchy criteria for uniform convergence is 

confirmed. Examine the series of partial sums 𝑆𝑛. For every 

integer 𝑚 > 𝑛, we have: 

 

‖𝑆𝑚 − 𝑆𝑛‖ =  ‖ ∑ 𝑢𝑘

𝑛

𝑘=𝑛+1

‖ ≤ ∑ ‖𝑢𝑘‖

𝑛

𝑘=𝑛+1

. 

 

Using the criterion ‖𝑢𝑘+1‖ ≤ 𝛼‖𝑢𝑘‖,, following terms can 
be related to the first term in the summation interval. Since 

0 < 𝛼 < 1, the geometric series converges: 

 

||𝑆𝑚 − 𝑆𝑛||  ≤
1

1 − 𝛼
‖𝑢𝑛+1‖.  

 

As (𝑛 → ∞), ‖𝑢𝑛+1‖ → 0 (since 𝛼𝑛 decays to 0). Thus, 
‖𝑆𝑚 − 𝑆𝑛‖ → 0 , meaning that 𝑆𝑛 is a Cauchy sequence in the 

Banach space 𝐵. Because Banach spaces are complete, the 

series converges uniformly to its exact solution 𝑤. 

The Role of ℎ: According to MVIA-II  equation (4), the 

relationship between consecutive error terms is governed by 

the recurrence relation: This means that the convergence rate 

𝛼 is a function of ℎ: 

 

𝛼(ℎ) ≈ |1 + ℎ + ℎ𝐾|, 
 

where 𝐾 denotes the nonlinear integral. In typical VIM, 

ℎ = 1, hence 𝛼 = |2 + 𝐾|, which can easily surpass one 

(divergence). In MVIA-II, we solve : 𝜕𝛼ₙ/𝜕ℎ = 0 to ensure 

that 𝛼 is minimized and smaller than 1. This ensures the 

uniform convergence demonstrated above. 

 

 

 

 
 

III. NUMERICAL RESULTS AND DISCUSSION 

To demonstrate the efficacy of the MVIA-II, we solwe two 
distinct test problems. All computations were performed 

using symbolic computing software (Maple/MATLAB). 

Example 3.1. We consider the Allen-Cahn equation, which 

corresponds to equation (1) with 𝑛 = 3, 𝛼 = 1, and 𝛽 = −1, 

as follows 

𝜕𝑤

𝜕𝑡
=

𝜕2𝑤

𝜕𝑥2
+  𝑤 −  𝑤3,                                                            (7) 

with the initial condition:  

𝑤(𝑥, 0) =  −0.5 +  0.5 𝑡𝑎𝑛ℎ(0.3536𝑥).                             (8) 

The exact solution is given by [17]: 

𝑤𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑡) =  −0.5 +  0.5 𝑡𝑎𝑛ℎ(0.3536𝑥 −  0.75𝑡).    (9) 

The Lagrange multiplier for the diffusion equation is 

identified as 𝜆(𝜏) = −1. Using the scheme in equation (4), 

the iteration formula becomes: 

 

𝑤ₙ₊₁(𝑥, 𝑡, ℎ) = 𝑤₀(𝑥, 𝑡)

+ ℎ ∫(−1) [
𝜕𝑤ₙ

𝜕𝜏
−

𝜕2𝑤ₙ

𝜕𝑥2
− 𝑤ₙ

𝑡

0

+ 𝑤ₙ3] 𝑑𝜏,                                                 (10) 

 

We computed the solution up to the 3rd iteration 𝑛 = 3. 

The optimal value of ℎ was determined by minimizing the 

residual error, yielding ℎ ≈ −0.956. 

Table 1 compares the numerical results obtained by MVIA-

II with the exact solution and a standard Trigonometric B-

Spline (TBS) method from literature for Example 3.1. 

TABEL 1 

COMPARISON OF NUMERICAL RESULTS AND ABSOLUTE ERRORS FOR ALLEN-

CAHN EQUATION AT 𝑡 = 0.005. 

x Exact 

Solutions 

MVIA-II 

(Present) 

TBS Meth. 

[17] 

Abs. Error 

(Present) 

Abs. Error 

(TBS) 

0.1 -0.4827019 -0.4826857 -0.4829466 1.62 × 10⁻⁵ 2.44 × 10⁻⁴ 

0.2 -0.4654451 -0.4654128 -0.4658491 3.22 × 10⁻⁵ 2.00 × 10⁻⁴ 

0.3 -0.4482707 -0.4482226 -0.4488112 4.81 × 10⁻⁵ 1.79 × 10⁻⁴ 

0.4 -0.4312188 -0.4311552 -0.4318612 6.36 × 10⁻⁵ 1.59 × 10⁻⁴ 

0.5 -0.4143284 -0.4142497 -0.4150409 7.86 × 10⁻⁵ 1.41 × 10⁻⁴ 

0.6 -0.3976371 -0.3975439 -0.3983927 9.32 × 10⁻⁵ 1.24 × 10⁻⁴ 

0.7 -0.3811806 -0.3810735 -0.3819599 1.07 × 10⁻⁴ 1.09 × 10⁻⁴ 

0.8 -0.3649925 -0.3648722 -0.3657122 1.20 × 10⁻⁴ 9.50 × 10⁻⁵ 

 

The results indicate that the MVIA-II achieves errors in the 

magnitude of 10⁻⁵, which is highly competitive and often 
superior to standard spline methods. 
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Example 3.2: We consider the Newell-Whitehead 

equation, which corresponds to equation (1) with 𝑛 = 2, 𝛼 =
1, and 𝛽 = −1: 

𝜕𝑤

𝜕𝑡
=

𝜕2𝑤

𝜕𝑥2
+ 𝑤 − 𝑤2.                                                             (11) 

with the initial condition:  

𝑤(𝑥, 0) = (1 + 𝑒𝑥𝑝 (
𝑥

√6
))

−2

.                                            (12) 

The exact solution is [18]: 

𝑤𝑒𝑥𝑎𝑐𝑡(𝑥,𝑡) = (1 + 𝑒𝑥𝑝 (
𝑥

√6
− (

5

6
) 𝑡))

−2

.                         (13) 

Using the same iterative procedure with 𝜆 = −1 and 

optimizing ℎ via Eq. (6), we obtain the results presented in 

Table 2. 

TABEL 2 

ABSOLUTE ERROR ANALYSIS FOR THE NEWELL-WHITEHEAD EQUATION AT 

DIFFERENT TIME STEPS. 

x Abs. Error 

𝑡 = 0.001 

Abs. Error 

𝑡 = 0.01 

0.1 3.76 ×  10⁻⁵ 5.76 ×  10⁻⁴ 

0.2 5.74 ×  10⁻⁵ 5.73 ×  10⁻⁴ 

0.3 5.70 ×  10⁻⁵ 5.70 ×  10⁻⁴ 

0.4 5.65 ×  10⁻⁵ 5.64 ×  10⁻⁴ 

0.5 5.59 ×  10⁻⁵ 5.58 ×  10⁻⁴ 

0.6 5.51 ×  10⁻⁵ 5.50 ×  10⁻⁴ 

0.7 5.43 ×  10⁻⁵ 5.41 ×  10⁻⁴ 

0.8 5.33 ×  10⁻⁵ 5.31 ×  10⁻⁴ 

 

The stability of the method is evident as the error remains 

bounded even as 𝑡 increases from 0.001 to 0.01.  

The numerical experiments conducted on the Allen-Cahn 

and Newell-Whitehead equations highlight several key 

characteristics of the MVIA-II. Firstly, regarding 

convergence, the auxiliary parameter ℎ plays a pivotal role. In 

standard VIM (ℎ = 1), the convergence is fixed and 

guaranteed only for small domains. By optimizing ℎ (which 

was found to be near −1 but not exactly −1), the MVIA-II 

adjusts the radius of convergence, effectively forcing the 

series to align more closely with the exact solution. This is 

consistent with observations in recent literature [13]. 

Secondly, regarding accuracy, Table 1 shows that MVIA-II 

outperforms the Trigonometric B-Spline (TBS) method in 

several spatial nodes. The absolute errors are consistently in 

the range of 10⁻⁵. For the NW equation (Table 2), the error 
grows slightly with time, which is expected for any semi-

analytical perturbation-based method, but remains within an 

acceptable tolerance for engineering applications. Finally, the 

computational cost of MVIA-II is significantly lower than 

grid-based methods like FDM or FEM. There is no need for 

mesh generation or solving large systems of linear algebraic 

equations. The solution is generated as a rapidly converging 

series, making it ideal for symbolic computation 

environments. 

While this analysis is limited to two models, the Allen-

Cahn and Newell-Whitehead equations provide as rigorous 
standards for unique cubic and quadratic nonlinearities. The 

practical application of MVIA-II across these many structure 

types demonstrates its flexibility. As a result, the method 

cannot be limited to these specific examples, but may be 

applied to a broader class of nonlinear problems, such as 

hyperbolic systems, coupled equations, and fractional-order 

models with similar algebraic nonlinearities. 
We examined the average CPU time needed to achieve a 

target accuracy of 10⁻¹ for the Allen-Cahn equation in order 

to validate the computational efficiency claim. The 

simulations were run using Maple 2023 for MVIA-II and 
MATLAB 2023 for the grid-based techniques on a typical 

workstation (Intel Core i7, 16GB RAM). 

The third iteration of MVIA-II, the Trigonometric B-Spline 

(TBS) approach [17], and the standard Crank-Nicolson Finite 

Difference approach (FDM) are compared in Table 3. 

TABEL 3 

NUMERICAL COMPARISON OF COMPUTATIONAL COST AND ACCURACY 

FOR ALLEN-CAHN EQUATION. 

Methods Iteration

\Grid 

Max, Abs. 

Error 

CPU Time (s) 

MVIA-II 

(Present) 
𝑁 = 3 

1.62 × 10⁻⁵ 0.842 

FDM (Crank-

Nicolson)  
100 × 100 

4.10 × 10⁻4 0.925 

TBS Method 

[17] 
𝑁 = 80 2.44 × 10⁻4 

1.350 

Standard VIM 

(h=1) 
𝑁 = 3 Divergent 

0.810 

 

Figure 1. A 3D surface plot of the MVIA-II approximate solution for the 

Allen-Cahn equation. 
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Figure 2. A 2D plot comparing the exact and approximate solutions at 

specific time steps, highlighting the overlapping profiles. 

 

 

Figure 3. A 3D surface comparison for the Newell-Whitehead equation. 

 

 

Figure 4. A 2D plot comparing the exact and approximate solutions at 

specific time steps, highlighting the overlapping profiles. 

 

In addition to the tabular error analysis. Figures 1 through 

4 show the approximate solutions physical accuracy and 

global behaviour. Figure 1 shows the 3D surface topology for 

the Allen-Cahn equation, demonstrating that the MVIA-II 

effectively captures the smooth anti-phase boundary motion 

without producing spurious oscillations. The 2D cross-

sectional study in Figure 2, where the detectable overlap 

between the exact solution and the approximation at 𝑡 = 0.01 

illustrates the method's excellent local accuracy, supports this 

global stability. 

Similarly, Figures 3 and 4 show the dynamics of the 

Newell-Whitehead equation. The method's stability against 

quadratic nonlinearities is confirmed by Figure 3, which 

shows the amplitude's smooth temporal history over the 

spatial domain. Additionally, Figure 4 demonstrates that the 

method can accurately simulate time-dependent wave 
dynamics. By plotting the solution profile at t=0.01, we can 

see that the MVIA-II accurately tracks the propagating wave's 

shape and phase speed as it moves across the domain. 

 

IV. CONCLUSION 

In this paper, we successfully applied the modified 

variational iteration algorithm-II to solve two prominent 

nonlinear parabolic equations: Allen-Cahn and Newell-

Whitehead. The results confirm that the MVIA-II provides a 

highly accurate numerical approximation without the need for 

linearization or discretization. Additionally, the introduction 
of the auxiliary parameter h makes the algorithm robust, 

allowing for error minimization that the standard VIM lacks. 

The method proves to be computationally efficient and valid 

for both weak and strong nonlinearities found in mathematical 

physics.  

Future work will extend this algorithm to fractional-order 

differential equations and systems of coupled parabolic 

equations in higher dimensions. 
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