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In this study, the Modified Variational Iteration Algorithm-11 (MVIA-II) is
implemented as a robust numerical scheme for solving nonlinear Parabolic partial
differential equations. The study focuses on the implementation of an auxiliary
parameter h into the correction functional to control the convergence region of the
approximate series solution. To validate the efficiency of this semi-numerical
approach, two fundamental models arising in mathematical physics and biology are
investigated: The Allen-Cahn equation and the Newell-Whitehead equation. The
results are compared with exact analytical solutions and other existing numerical
methods. The error analysis demonstrates that the proposed algorithm yields high
accuracy with minimal computational overhead, making it a promising tool for
simulating nonlinear dynamical wave phenomena.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Nonlinear partial differential equations (NLPDES) serve as
the mathematical backbone for modeling complex
phenomena in fluid mechanics, plasma physics, optical fibers,
and mathematical biology. Specifically, parabolic dynamical
wave equations describe a wide array of diffusive and
reaction-diffusion processes [1, 2]. The accurate computation
of these equations is critical for understanding phase
separations, pattern formation, and population dynamics.

Among the most significant parabolic models is the Allen-
Cahn (AC) equation, originally introduced to describe the
motion of anti-phase boundaries in iron alloys [3]. It has since
found applications in crystallography, quantum mechanics,
and image processing. Similarly, the Newell-Whitehead
(NW) equation describes the dynamical behavior near the
bifurcation point in Rayleigh-Bénard convection of binary
fluid mixtures [4]. Both equations share the general nonlinear
form:
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where a and B are real constants.

Numerous analytical methods exist, such as the Adomian
decomposition method (ADM) [5], Homotopy perturbation
method (HPM) [6], and Hirota's bilinear method [7].
However, when the nonlinearity becomes strong, many of
these methods suffer from slow convergence or high
computational costs. Moreover, conventional grid-based
numerical techniques such as finite difference (FDM) and
finite element methods (FEM) frequently experience artificial
dispersion or stability problems [8, 9].

Recent literature from 2020 to 2025 has seen a surge in
hybrid semi-analytical methods that bridge the gap between
symbolic computation and numerical simulation. For
instance, recent works on fractional derivatives and wavelet
collocation have pushed the boundaries of accuracy [10, 11].
However, the (VIM), originally proposed by He [12], remains
a powerful tool due to its ability to solve equations without
discretization or linearization.

Standard WIM, however, may produce divergent results
for specific domains. To overcome this, the introduction of an
auxiliary parameter h similar to that in Homotopy Analysis
has been proposed, leading to the (MVIA-II) [13, 14]. This
parameter accelerates convergence and minimizes the
residual error.

In this paper, we apply the MVIA-II to obtain highly
accurate numerical solutions for the Allen-Cahn and Newell-
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Whitehead equations. We provide a comprehensive literature
review, detail the mathematical formulation, and present error
profiles that validate the method's superiority over standard
techniques.

1. DESCRIPTION OF THE MODIFIED VARIATIONAL
ITERATION ALGORITHM-11 (MVIA-I11)

The modified variational iteration algorithm-II is rooted in
the general concept of the Lagrange multiplier. Consider a
nonlinear differential equation in the operator form:

Lw)+ Nw) = g(x,0), ()

where L is a linear operator, N is a nonlinear operator, and
g is a source term. According to the variational theory, a
correction functional can be constructed as:

Wn+1({)) = wy(¥) ;
n f AD[L(Wa®) + N(#a()
0
— g@)dr, 3)

where Ais a general Lagrange multiplier identified via
variational theory, and ¥,, denotes a restricted variation such
that 6¥, = 0.

The standard VIM often yields a series that may converge
slowly. To enhance this, we introduce an auxiliary parameter
h. The iterative scheme for MVIA-II is defined as [15, 16]:

Wy 1 (£, h) = wo(£)
+h J A@[N(wa(z, b)) — g(z, h)]dr, (4)
0
subject to the initial approximation wy. This formulation
allows the user to adjust h to ensure the residual error square
is minimized.
The accuracy of the method relies on the optimal selection

of h. We define the residual function for the n-th
approximation as:

Res(x,t,h) = L(wy) + N(wp) — g. (5

The optimal A is obtained by minimizing the square of the
L, norm of the residual:

E.(h) = J-IRes(x, t,h)|*dQ. (6)
o

By scaling the corrective term in equation (4) and
recovering the original technique when h = —1, the auxiliary
parameter h significantly modifies standard VIM.
Convergence radius is controlled by varying h within
standard boundaries (—1.5 < h < —0.5). The iteration is
converted from a fixed-point to an optimization issue by
optimizing h at each step by minimizing the squared residual
error E,(h) at each step: 0E,/0h = 0.

This eliminates the need for linearization or perturbation
assumptions and allows MVIA-II to address stiff nonlinear
issues where regular VIM fails.

Algorithm Description:
To facilitate consistency, the MVIA-II implementation is
presented in the algorithmic approach below.

Step 1. Initialization

» Use operator form to define the differential equation:
Lw)+ N(w) — g(x,t) = 0.

> Calculate the Lagrange multiplier A(7) by using the fixed
condition of the correction functional.

> Choose an initial approximation w,(x, t) that meets the
boundary and initial requirements.

Step 2. Loop of Iterations

» Setn = 0, (n < Max-Iterations):

» Use Eqg. (4) to construct the iteration formula using the
symbolic parameter h.

> Determine the symbolic approximations w,,., (x, t, h).

> Construct the residual function as follows: Res(x,t,h) =
L(wn) + N(wy) — g.

» Over the domain £2, define the Squared Residual Error (L2
norm): En(h) = [, |Res(x, t, h)|*dA.

» To find the perfect value of h, solve the minimization
condition: dE,/dh = 0.

> Substitute the perfect value of h back into wy,,1.

> Updaten =n+ 1.

Step 3. Output:
> Return the approximate solution: w, (x, t).

According to this design, the auxiliary parameter h is not
chosen arbitrarily, but is theoretically determined to minimize
the approximation error at each or the final step of iteration,
ensuring robust convergence even with significant
nonlinearities.

A. THEORETICAL CONVERGENCE ANALYSIS

We examine the convergence of the infinite series solution
in order to provide the MVIA-II a robust mathematical
foundation.
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Let B be a Banach space of all continuous functionson I =
[0,T], where the norm ||w|| = max |[w(t)|. A series of
approximations w, is produced by the MVIA-II. The answer
can be described as an infinite series:

(o0}

w(x,t) = Z ur(x,t), where uy = Wyyq — Wy.
k=0

Theorem 2.1. Let N(w) be a nonlinear operator with
constant C that satisfies the Lipschitz condition. If there is a
constant a (0 < a < 1) such that the series solution w(x, t)
generated by the MVIA-II converges uniformly and
absolutely to the precise solution:

[| ugs1ll < @| u_k |, for all k.

Additionally, the control variable that ensures « < 1 isthe
auxiliary parameter h.

Proof: The Cauchy criteria for uniform convergence is
confirmed. Examine the series of partial sums S,,. For every
integer m > n, we have:

n n

< D Ml
k=n+1

”Sm _Sn” = uk

k=n+1

Using the criterion [luy, |l < allugll,, following terms can
be related to the first term in the summation interval. Since
0 < a < 1, the geometric series converges:

1
||Sm'_5ﬁ” S;i_:7;”un+1“

As (n - ), |lu,411l = 0 (since a™ decays to 0). Thus,
1S, — S, Il = 0, meaning that S,, is a Cauchy sequence in the
Banach space B. Because Banach spaces are complete, the
series converges uniformly to its exact solution w.

The Role of h: According to MVIA-II equation (4), the
relationship between consecutive error terms is governed by
the recurrence relation: This means that the convergence rate
a is a function of h:

a(h) = |1+ h+ hK]|,

where K denotes the nonlinear integral. In typical VIM,
h =1, hence @ =|2 + K|, which can easily surpass one
(divergence). In MVIA-II, we solve : da,/dh = 0to ensure
that @ is minimized and smaller than 1. This ensures the
uniform convergence demonstrated above.

111. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the efficacy of the MVIA-I11, we solwe two
distinct test problems. All computations were performed
using symbolic computing software (Maple/MATLAB).

Example 3.1. We consider the Allen-Cahn equation, which
corresponds to equation (1) withn =3, ¢ =1,and g = —1,
as follows

w 0%w
ot dx?

+w — w3, 7

with the initial condition:

w(x,0) = —0.5 + 0.5 tanh(0.3536x). (8)
The exact solution is given by [17]:

Wexact %, t) = —0.5 + 0.5 tanh(0.3536x — 0.75t). (9)
The Lagrange multiplier for the diffusion equation is

identified as A(t) = —1. Using the scheme in equation (4),

the iteration formula becomes:

Wn+1(x, t, h) = Wo(x, t)
t

+hf( H ow, 0%w,
ot oxz m
0

+ Wn3] dt, (10)

We computed the solution up to the 3rd iteration n = 3.
The optimal value of A was determined by minimizing the
residual error, yielding h = —0.956.

Table 1 compares the numerical results obtained by MVIA-
Il with the exact solution and a standard Trigonometric B-
Spline (TBS) method from literature for Example 3.1.

TABEL 1
COMPARISON OF NUMERICAL RESULTS AND ABSOLUTE ERRORS FOR ALLEN-
CAHN EQUATION AT t = 0.005.

X |Exact MVIA-II TBS Meth. |Abs. Error  |Abs. Error
Solutions  |(Present) [17] (Present) (TBS)
0.1 |-0.4827019 |-0.4826857 |-0.4829466 [1.62 x10° [2.44 x10*
0.2 |-0.4654451 |-0.4654128 |-0.4658491 [3.22 x10° [2.00 x 10
0.3 |-0.4482707 |-0.4482226 |-0.4488112 4.81 x 10° [1.79 x 10
0.4 |-0.4312188 |-0.4311552 |-0.4318612 [6.36 x 10° [1.59 x 10*
0.5 |-0.4143284 |-0.4142497 |-0.4150409 [7.86 x 10° [1.41 x 10
0.6 |-0.3976371 |-0.3975439 [-0.3983927 [9.32 x 105 |1.24 x 10™*
0.7 |-0.3811806 [-0.3810735 [-0.3819599 |1.07 x 10 |1.09 x 10~*
0.8 |-0.3649925 |-0.3648722 |-0.3657122 |1.20 x 10 19.50 x 10°°

The results indicate that the MVIA-11 achieves errors in the
magnitude of 10°, which is highly competitive and often
superior to standard spline methods.
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Example 3.2: We consider the Newell-Whitehead
equation, which corresponds to equation (1) withn =2, ¢ =
l,and g =—-1:

ow 0*w N 5 1
ot axz VTV an
with the initial condition:
-2
x
w(x,0)=(1+ex (—) . 12
(x,0) < p 7 ) (12)
The exact solution is [18]:
5 -2
Wexact(x,t) = (1 +exp (\/i— - <_) t)) . (13)
B 6 6

Using the same iterative procedure with A =—1 and
optimizing h via Eq. (6), we obtain the results presented in
Table 2.

TABEL 2

ABSOLUTE ERROR ANALYSIS FOR THE NEWELL-WHITEHEAD EQUATION AT
DIFFERENT TIME STEPS.

X Abs. Error IAbs. Error

t =0.001 t =0.01
0.1 | 3.76 x 107° 5.76 x 10™*
0.2 | 574 x 107° 5.73 x 10™*
0.3 | 5.70 x 10°° 5.70 x 10™*
0.4 | 5.65 x 107° 5.64 x 10™*
0.5 | 559 x 1075 5.58 x 10™*
0.6 | 551 x 1075 5.50 x 10™*
0.7 | 543 x 107° 5.41 x 10™*
0.8 | 5.33 x 107° 531 x 10™*

The stability of the method is evident as the error remains
bounded even as ¢t increases from 0.001 to 0.01.

The numerical experiments conducted on the Allen-Cahn
and Newell-Whitehead equations highlight several key
characteristics of the MVIA-IIl. Firstly, regarding
convergence, the auxiliary parameter h plays a pivotal role. In
standard VIM (h = 1), the convergence is fixed and
guaranteed only for small domains. By optimizing h (which
was found to be near —1 but not exactly —1), the MVIA-II
adjusts the radius of convergence, effectively forcing the
series to align more closely with the exact solution. This is
consistent with observations in recent literature [13].
Secondly, regarding accuracy, Table 1 shows that MVIA-II
outperforms the Trigonometric B-Spline (TBS) method in
several spatial nodes. The absolute errors are consistently in
the range of 107>, For the NW equation (Table 2), the error
grows slightly with time, which is expected for any semi-
analytical perturbation-based method, but remains within an

acceptable tolerance for engineering applications. Finally, the
computational cost of MVIA-II is significantly lower than
grid-based methods like FDM or FEM. There is no need for
mesh generation or solving large systems of linear algebraic
equations. The solution is generated as a rapidly converging
series, making it ideal for symbolic computation
environments.

While this analysis is limited to two models, the Allen-
Cahn and Newell-Whitehead equations provide as rigorous
standards for unique cubic and quadratic nonlinearities. The
practical application of MVIA-II across these many structure
types demonstrates its flexibility. As a result, the method
cannot be limited to these specific examples, but may be
applied to a broader class of nonlinear problems, such as
hyperbolic systems, coupled equations, and fractional-order
models with similar algebraic nonlinearities.

We examined the average CPU time needed to achieve a
target accuracy of 107! for the Allen-Cahn equation in order
to validate the computational efficiency claim. The
simulations were run using Maple 2023 for MVIA-II and
MATLAB 2023 for the grid-based techniques on a typical
workstation (Intel Core i7, 16GB RAM).

The third iteration of MVIA-I1, the Trigonometric B-Spline
(TBS) approach [17], and the standard Crank-Nicolson Finite
Difference approach (FDM) are compared in Table 3.

TABEL 3

NUMERICAL COMPARISON OF COMPUTATIONAL COST AND ACCURACY
FOR ALLEN-CAHN EQUATION.

Methods Iteration Max, Abs. CPU Time (s)
\Grid Error
MVIA-II N=3 1.62x10°° 0.842
(Present) B
_ -4
FDM (Crank 100 x 100 4.10 x 10 0.925
Nicolson)
TBS Method N =80 5 44 x 104 1.350
[17]
Stan?r?ici)VIM N =3 Divergent 0.810

-0.35

-0.4

-0.45

-0.5

w(x,t)

-0.55
-0.6

-0.65

Figure 1. A 3D surface plot of the MVIA-II approximate solution for the
Allen-Cahn equation.

JAIC Vol. 10, No. 1, February 2026: 69 — 74




JAIC

e-1SSN: 2548-6861

73

Allen-Cahn Comparison at t=0.01
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Figure 2. A 2D plot comparing the exact and approximate solutions at
specific time steps, highlighting the overlapping profiles.

Figure 3. A 3D surface comparison for the Newell-Whitehead equation.

o Newell-Whitehead Comparison at t=0.01
.26 v .
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Figure 4. A 2D plot comparing the exact and approximate solutions at
specific time steps, highlighting the overlapping profiles.

In addition to the tabular error analysis. Figures 1 through
4 show the approximate solutions physical accuracy and
global behaviour. Figure 1 shows the 3D surface topology for
the Allen-Cahn equation, demonstrating that the MVIA-II
effectively captures the smooth anti-phase boundary motion
without producing spurious oscillations. The 2D cross-
sectional study in Figure 2, where the detectable overlap
between the exact solution and the approximation at t = 0.01

illustrates the method's excellent local accuracy, supports this
global stability.

Similarly, Figures 3 and 4 show the dynamics of the
Newell-Whitehead equation. The method's stability against
quadratic nonlinearities is confirmed by Figure 3, which
shows the amplitude's smooth temporal history over the
spatial domain. Additionally, Figure 4 demonstrates that the
method can accurately simulate time-dependent wave
dynamics. By plotting the solution profile at t=0.01, we can
see that the MVIA-I1 accurately tracks the propagating wave's
shape and phase speed as it moves across the domain.

1VV. CONCLUSION

In this paper, we successfully applied the modified
variational iteration algorithm-Il to solve two prominent
nonlinear parabolic equations: Allen-Cahn and Newell-
Whitehead. The results confirm that the MVIA-II provides a
highly accurate numerical approximation without the need for
linearization or discretization. Additionally, the introduction
of the auxiliary parameter h makes the algorithm robust,
allowing for error minimization that the standard VIM lacks.
The method proves to be computationally efficient and valid
for both weak and strong nonlinearities found in mathematical

physics.

Future work will extend this algorithm to fractional-order
differential equations and systems of coupled parabolic
equations in higher dimensions.
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