
Journal of Applied Informatics and Computing (JAIC)

Vol.10, No.1, February 2026, pp. 232~244

e-ISSN: 2548-6861 232

http://jurnal.polibatam.ac.id/index.php/JAIC

Optimizing Email Spam Detection through Handling Class Imbalance

with Class Weights and Hyperparameter Using GridSearchCV

Muhammad Ridho Nursyam 1 *, Muhammad Koprawi 2 *, Dony Ariyus 3 *
* Teknik Komputer, Universitas Amikom Yogyakarta

muhammadridho@students.amikom.ac.id 1 , koprawi@amikom.ac.id 2 , dony.a@amikom.ac.id 3

Article Info ABSTRACT

Article history:

Received 2025-12-18

Revised 2025-12-28

Accepted 2026-01-08

 Email spam is a major problem in digital communication that can disrupt

productivity, burden network resources, and pose a security threat. This research

focuses on optimizing spam email detection using a machine learning approach by

addressing class imbalance through class weighting and hyperparameter tuning using

GridSearchCV. To improve model accuracy and sensitivity, a combination of

diverse datasets is applied to provide a wider scope of training data. The models used

in this study include Support Vector Machine (SVM), Random Forest, Multinomial

Naive Bayes (MNB), and XGBoost. Evaluation is carried out based on metrics such
as accuracy, precision, recall, and F1-score, before and after hyperparameter tuning.

The experimental results show that SVM produces the highest accuracy after tuning,

reaching 97.10%, compared to 96.73% before hyperparameter tuning. In addition,

Random Forest, MNB, and XGBoost also show significant improvements, with each

model achieving better performance after tuning. Overall, this study shows that

dataset merging and class weight adjustment can significantly improve the model's

ability to detect spam, as well as provide a basis for implementing the model in a

more effective email spam detection system.

Keywords:

Spam Detection,

Machine Learning,

Class Imbalance,
GridSearchCV,

Email Spam.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Email spam is a significant challenge in modern digital

communications due to the ever-growing volume of unwanted

messages that can disrupt productivity, consume network

resources, and pose security threats such as phishing or

malware distribution [1] . Early rule-based detection models

tend to be less effective in dealing with the increasingly

complex variety and evolution of spamming tactics [2] .

Machine learning approaches have become the primary

solution in spam classification due to their ability to learn

directly from historical data and automatically predict spam

or non-spam categories, but model performance is still
heavily influenced by issues such as class imbalance and the

selection of appropriate features in email text data.

This study compares the performance of several machine

learning algorithms in email spam detection with an approach

that includes combining diverse datasets and handling class

imbalance using Class Weight in each model. The analysis

includes Support Vector Machine (SVM), Random Forest,

Multinomial Naive Bayes (MNB), and XGBoost models, and

evaluates the impact of hyperparameter tuning through

GridSearchCV on spam detection performance. The expected

benefits of this study include improving the sensitivity and

accuracy of spam detection systems, and recommending

appropriate models for practical implementation.
Numerous prior investigations have analyzed a variety of

approaches in machine learning for spam email identification

centering on identifying and adopting the optimum method

for text representation. A case in point is the study where TF-

IDF method is used and is found to perform better than other

methods such as Bag of Words (BOW) in spam detection

accuracy [3]. In all the studies machine learning techniques

like Support Vector Machine (SVM) and Naive Bayes (NB)

and Logistic Regression (LR) have been implemented.

Although most of these studies demonstrate encouraging

progress, a recurring problem is how to refine feature

selection and text representation in order to respond to such
challenges as class imbalance, and dimensionality reduction

which have bearing on the accuracy of the model. In research

mailto:muhammadridho@students.amikom.ac.id
mailto:koprawi@amikom.ac.id
mailto:dony.a@amikom.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861 233

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

[3], with the aim of identifying malware that is concealed in

spam emails, a number of machine learning methods were

employed using two models of text representation Bag of

Words (BOW) and Term Frequency-Inverse Document

Frequency (TF-IDF). The models used are Support Vector

Machine (SVM), Naive Bayes (NB), and Logistic Regression

(LR). The results of the experiments demonstrated that TF-

IDF combined with Logistic Regression had the highest
degree of accuracy, at 76.4% with an F1 score of 0.763.

Additional pairings using TF-IDF and SVM also yield good

results, achieving an accuracy of 75.7%. In addition, the

Naive Bayes model with TF-IDF has the fastest execution

time, although the accuracy is also the lowest at 74.3%.

Overall, these results suggest the use of TF-IDF surpassed the

use of BOW, underscoring the significance of appropriate text

representation methods on the accuracy of spam email

malware detection.

Integrating BERT (Bidirectional Encoder Representations

from Transformers) with different machine learning
classifiers to identify and classify emails as spam or ham

emails [4]. Emails processed in BERT to extract features for

text representation and different classification techniques like

Logistic Regression, SVM (Support Vector Machine), KNN

(K-Nearest Neighbors), and Random Forest are applied. Their

experimental study showed that Logistic Regression was the

best in accuracy, precision, and F1 score in both datasets. In

dataset 2, however this model’s accuracy decreased

marginally to 95.95% with precision at 96% and an F1 score

of 95.92%. Logistic Regression outperformed others in spam

classification as seen from SVM and KNN that performed

lower than Logistic Regression on the same metrics. This
shows that the combination of machine learning with BERT

can be immensely helpful in spam detection.

In detecting spam emails, Support Vector Machine (SVM)

employs n-gram and word2vec based feature extraction

techniques [5]. When compared to other algorithm options,

SVM yields the best results accuracy, precision, and F1 score

values wise (based on multiple metrics). In the case of uni-

gram and bi-gram combinations with SVM, the accuracy level

reached was the highest (at 97.6%), and the precision was also

the highest (at 98.8%), as was the F1 score (94.9%). This

points to the capacity of SVM technique to provide
outstanding spam emails signal detection, as SVM technique

can deal with highly feature dimensions. Also, because SVM

can generalize data well, SVM also demonstrates detection

error reductions like false positives and false negatives.

To classify emails as spam using different features from the

pre-processed data sets [6]. Classifying spam and ham emails

resulted in a 96.90% accuracy score from the SVM algorithm.

In addition SVM has spam Recall of 95.00% and spam

Precision of 93.12% which indicates a good level of accuracy

wherein spam emails are identified. In contrast to more

accurate algorithms such as Naïve Bayes, the SVM algorithm

is still impressive given its performance on big complex data
sets. The strength of SVM is in its ability to class data points

with the maximum separation margin making it powerful on

large, complex data sets.

According to previous studies, email accounts can be

assigned values, and using ML algorithms such as Naïve

Bayes (NB), Support Vector Machine (SVM), Logistic

Regression (LR), and Random Forest (RF), it is possible to

classify email accounts as spam or non-spam [7]. The results

showed that Naeive Bayes is highly suitable for classifying
spam and non-spam email addresses, especially raising its

overall sample classification to 88.17%, while the F1 score

was 0.808. The next better was SVM with a sample

classification of 80.70% and an F1 score of 0.762. Logistic

Regression (LR) attached an F1 score of 0.787 and an overall

sample classification of 83.49%. The accuracy for Random

Forest was also very good at 85.40% and the F1 score at a

good 0.817. NB not only showed a good overall classification.

The execution of the other models was just as good, with

Random Forest being the backbone of the Logistic Regression

and SVM. All the models analyzed the new spam email data
set, with NB being the focus of the tuning of the parameters

for higher accuracy, F1 score results. The models also showed

a good performance with parametric F1 optimization in 10-

fold cross-validation spam detection. The four models had

shown above good accuracy, demonstrating the ability to

predict with spam email addresses flagged as high risk.

In the machine learning domain, Random Forest (RF) is

one of the widely utilized algorithms, and the choice of this

algorithm is also supported by its valuable and unique

attributes [8]. The Spambase dataset comprises a total of 4601

emails accompanied by 58 features and was employed to

evaluate the effectiveness of the machine learning algorithm.
To enhance the algorithm’s ability to identify spam emails

more proficiently, the dataset’s class imbalance was

addressed by employing a random oversampling approach to

balance the spam and ham distribution. The results of the

experiment exhibited impressive outcomes where the models

achieved 97% and spam and ham identification garnered

similar performance measures of high precision, recall, and

F1 scores. The aforementioned spam detection performance

was quantitatively evaluated through the implementation of a

confusion matrix and the ROC curve, resulting in an AUC

measurement of 0.97. The model comparison also yielded
promising results, with the proposed approach achieving a 6%

increase span in performance relative to the previous models,

attributed to its superiority.

This study aims to enhance the effectiveness of spam

detection software by integrating multiple datasets for

training. The developed model can learn rarer spam detection

patterns with the amalgamated datasets and better capture a

broader range of varied patterns. Overfitting would also be

less of a risk with the multiple datasets. We represent model

training data textually with TF-IDF to translate the spam texts

into the numerical features required. The models we are

working with are already demonstrated- SVM, MNB, RF, and
XGBoost. To alleviate the data class imbalance we employ

the Class Imbalance with Class Weight methodology to steer

234 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

the model's attention to the minority (spam) class for

enhanced misclassification of that class. We hope the model

will improve spam detection and classification to minimize

misclassification which is a common issue of models working

with restricted datasets.

II. METHOD

Figure 1 illustrates the method flow used in the research on

Building a Machine Learning Model for Spam Email
Classification. The process begins with data collection and

dataset merging to create a more diverse dataset. After that,

several pre-processing stages are carried out, including

tokenization, stop word removal, data cleaning, and

stemming. Next, text vectorization is performed using TF-

IDF and class imbalance handling with class weights. The

data is then divided into training and testing data. The model

is trained using various classification algorithms, and

hyperparameter search is performed with GridSearchCV to

find the best combination. Finally, model evaluation is

performed to measure the performance of the built model, and
the process ends with the finish stage.

Figure 1. Flow Diagram

A. Dataset Preparation

During the Data Preparation phase, five different datasets

were integrated, which allowed for greater dataset variability.
The goal of the integration was to enhance the dataset variety,

which is an important aspect of developing a model capable

of accurately classifying spam emails. Following the

integration, the dataset comprised 19,105 data records, and

contained two labels spam and non-spam. The distribution of

the datasets prior to and following integration is shown in

Table I. Prior to the integration, a considerable class

imbalance was observed in the smaller dataset, with spam

class records being significantly fewer than non-spam class

records. Following integration, the class proportions were

more evenly distributed, though imbalances were still present

in the distribution of the merged datasets. This is a critical

aspect for model performance as it is influenced by

imbalances in distribution and potential data duplication.

By having a diverse dataset, the built Machine Learning

model is expected to be more effective in distinguishing spam

emails from non-spam emails, as well as improving the

accuracy and generalization ability of the model on new,

previously unseen data using GridSearchCV. This process is
crucial in the data preparation stage, as the quality and

diversity of the dataset significantly affect the final

performance of the built classification model.

TABLE I

DISTRIBUTION OF DATASETS

Dataset Amount

spam.csv [9] 5169

Dataset_sms_spam_v1.csv
[10]

628

email_spam_indo.csv link 2620

Spam_ham_dataset.csv link 4993

Emails.csv link 5695

B. Pre-Processing

1) Data Cleaning

Data Cleaning involves several processes to prepare the

data for use in model training. Handling missing values or

empty columns is done by identifying and removing rows

with incomplete data [11] . This is important to ensure that the

model only receives valid data and avoids imbalance or

confusion during the training process. Furthermore, a text

conversion process is also carried out on all data to avoid

discrepancies between similar words but with different upper

and lower case letters, such as the words "Spam" and "spam".

This step aims to allow the model to recognize these words as
the same entity without considering the differences in their

writing format.

2) Tokenization

In the Tokenization stage, the email text is broken down

into smaller units called tokens. Tokenization aims to simplify

text processing by breaking the text into simpler words or

phrases, so that the model can more easily analyze and

understand the information contained therein [12] . This

tokenization process is carried out using NLTK (Natural

Language Toolkit) which utilizes the word_tokenize function
to break the text into words. Each word generated from

tokenization will be treated as a separate token, which will

then be processed further. In addition, to ensure consistency,

all words generated from tokenization are converted to

lowercase to avoid differences in recognition between the

same word, such as "Spam" and "spam". This tokenization

process is an important step in data preparation, because by

breaking the text into smaller tokens, the model can more

easily identify relevant patterns and features needed for spam

email classification.

https://www.kaggle.com/datasets/gevabriel/indonesian-email-spam
https://www.kaggle.com/code/abdelrahmanali212/mailspamdetection
https://www.kaggle.com/code/aadhivinay/build-spam-filter-identify-spam-e-mails

JAIC e-ISSN: 2548-6861 235

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

3) Stopword

In the Stopwords Removal stage, words that are considered

not to have significant meaning or contribution to spam

classification, known as stop words [13]. Stop words are
words that often appear in the text, such as conjunctions,

prepositions, and connecting words, which do not provide

important information for analysis, for example words like

"and", "or", "from", and "to". This stop word removal aims to

minimize noise in the data, so that the model can focus more

on relevant words, such as more specific and in-depth words

that can help in the spam classification process. In this study,

the stop word list used includes stop words from Indonesian

and English, which are obtained from the NLTK library for

English and a stop word list adapted for Indonesian. After the

stop word removal process, the resulting data will be cleaner

and only focus on important words.

4) Steaming

In the Stemming stage, the process is carried out to change

the words that have been previously processed to their basic

form [14]. Stemming aims to reduce word variations by

removing unimportant affixes (prefixes or suffixes), so that

words with similar meanings can be treated as the same entity.

For example, words like "berlari" and "lari" will be returned

to their basic form "lari". This process is carried out using

Sastrawi for Indonesian and PorterStemmer for English, both

of which are effective in reducing words to their basic form.

This stemming is important to ensure that the model is not
trapped by unnecessary word variations and can focus on

understanding the main meaning of the text. After the

stemming process, these simplified words will become

cleaner and more relevant input for the vectorization stage.

5) TF-IDF

In the TF-IDF (Term Frequency-Inverse Document

Frequency) stage in this study, it is used to convert the

processed text into a numerical representation that can be

understood by the machine learning model [15]. After the text

cleaning stage which includes tokenization, stop word
removal, and stemming, the next step is to convert the text

into a vector using TF-IDF. This technique calculates the

weight of each word based on its frequency in the document

(Term Frequency) and how important the word is in the entire

dataset (Inverse Document Frequency). By using TF-IDF,

words that appear frequently in one document but rarely

appear in other documents will have a higher weight, while

words that appear frequently in many documents will get a

low weight. This process allows the model to focus more on

relevant words in spam classification, such as "offer", "free",

or "gift".

C. Data Split

In the Data Splitting stage of this study, the dataset is

divided into two main parts, namely training data and testing

data [16]. This division process aims to ensure that the model

can be trained using one part of the data, while the other part

is used to test its performance after training. In this study, the

division was carried out with a proportion of 80% for training

data and 20% for testing data, which is a standard approach in

machine learning to ensure that the model gets enough data to

learn, while also being able to be evaluated with data that has

not been seen before. Data division is done using the

train_test_split function from the sklearn.model_selection

library, which randomly splits the dataset while maintaining
a balanced distribution of labels across both sets.

D. Class Imbalance with Class Weight

Handling class imbalance that often occurs in spam

classification datasets using class imbalance with class weight

[17]. Class imbalance occurs when the number of samples in

one class, such as spam emails, is much less than in other

classes, such as non-spam emails. To overcome this problem,

class weight is used which aims to give greater weight to the

minority class (spam) so that the model becomes more
sensitive to the data [18]. In this case, class weights are

calculated using the class_weight method from the

sklearn.utils library, using the balanced parameter to balance

the classes based on the data distribution. The results of the

class weight calculation are then applied to the model during

the training process through the class_weight parameter. By

giving greater weight to the spam class, the model is expected

to pay more attention to classification errors in spam emails,

thereby increasing the accuracy in detecting spam even

though the amount of data for that class is less.

E. Classification Algorithm

1) Support Vector Machine

Support Vector Machine (SVM) is a machine learning
algorithm used for classification with a very effective

approach in handling binary classification problems, such as

spam email classification [19]. In this study, SVM is used to

distinguish spam and non-spam emails by utilizing features

extracted through TF-IDF vectorization. The basic principle

of SVM is to find a hyperplane that optimally separates data

from two classes, with the largest margin between the two

classes [20]. In this case, the spam and non-spam classes are

separated in such a way that the SVM can classify new emails

based on the position of the data on the right side of the

hyperplane. SVM is also very effective in handling high-

dimensional datasets, such as text data that has gone through
a vectorization process, making it suitable for use in this

study. In addition, choosing the right kernel, such as linear or

RBF (Radial Basis Function), is key to improving the model's

accuracy in detecting relevant patterns in spam emails. Once

the model is trained, the SVM can be used to predict whether

an unclassified email belongs to the ham or spam email

category. In two samples 𝑥 and 𝑥 ′, the radial basis function is

expressed in equation (1), where ||𝑥 − 𝑥́||2is a free parameter
that indicates the squared Euclidean distance.

𝐾(𝑥, 𝑥́) = 𝑒
−

||𝑥−𝑥́||2

2𝜎2 (1)

236 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

2) Random Forest

Random Forest is an ensemble algorithm consisting of a

collection of decision trees used for classification and

regression [21]. In this study, Random Forest is used to

classify spam emails by utilizing features generated through
TF-IDF vectorization. This model works by randomly

constructing multiple decision trees, where each tree is

constructed using a random subset of the training data and a

random subset of the existing features. Each decision tree

makes its own prediction, and the prediction results from all

trees are then combined through majority voting to produce

the final decision. The advantage of Random Forest lies in its

ability to handle high-dimensional data, such as text data, as

well as its ability to reduce overfitting that often occurs in a

single decision tree. In the context of spam email

classification, Random Forest is able to handle class

imbalance well and has stable performance even in the
presence of noise or imperfect data [22]. In classification

tasks, the final prediction 𝑦̂for a data point 𝑥is determined

through majority voting among the trees. If 𝑇𝑖(𝑥)is the

prediction from the th tree 𝑖for data point 𝑥, then the final

prediction can be formulated using equation (2).

𝑦̂ = 𝑚𝑜𝑑𝑒{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑁𝑇𝑟𝑒𝑒(𝑥)} (2)

3) Multinominal Naive Bayes

Multinomial Naive Bayes (MNB) is a probabilistic

algorithm used for text classification by assuming that the

features (words) in the text are independent, although in

reality there may be dependencies between features [23] . In

the context of spam email classification, MNB utilizes

conditional probability to model the relationship between

words in an email and its label (spam or not spam). This

model assumes that the distribution of words in the spam and

non-spam classes follows a multinomial distribution, meaning

each word has a probability of occurring in each class. During

training, MNB calculates the probability of each word based

on its distribution in each class, then uses Bayes' Theorem to
calculate the likelihood that an email belongs to the spam or

not spam class. In the Multinomial Naive Bayes model, it is

assumed that each feature 𝑥𝑖is the result of a multinomial

distribution, meaning that the features are counts of words or

elements in a category. The probability 𝑃(𝑥𝑖|𝑦)for a word

𝑥𝑖to be assigned a class 𝑦can be calculated using the

multinomial distribution formula (3).

𝑃(𝑥𝑖|𝑦) =
𝑛𝑦,𝑥𝑖

+ 𝑎

∑ (𝑛𝑦,𝑘 + 𝑎)𝑘

 (3)

4) XGBoost

XGBoost (Extreme Gradient Boosting) is a very popular

and effective machine learning algorithm for classification

tasks, including spam email classification. XGBoost is an
implementation of the gradient boosting algorithm, which

works by building models iteratively, where each new model

tries to correct the errors made by the previous model [24] .

The advantage of XGBoost lies in its ability to handle large

and complex data, as well as its ability to optimize predictions

by reducing bias and variance through regularization

techniques. XGBoost works by building a series of decision

trees that correct each other's errors, resulting in a more robust

and accurate model. In spam email classification, XGBoost is

able to handle class imbalance well and provides excellent

results in terms of accuracy, precision, and recall. The training
process begins with the optimization of the first tree, and as

the model iterates through the trees 𝑡using equation (4).

𝑦𝑖̂ = ∑ 𝑓𝑘 (𝑥𝑖) = 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡 (𝑥𝑖)

𝑡

𝑘=1

 (4)

Although GridSearchCV allows you to find the most

optimal combinations of hyperparameters to improve the

performance of models, the computational costs are high.

This is especially true for XGBoost, as its hyperparameter

tuning takes the most amount of time due to the high amount

of time it takes to do iterative boosting as well as the tree

training. In order to improve the boosting hyperparameter

tuning time, parallel computing was used, which efficiently

allocated the workload to the different CPU cores. Even

though the amount of computational time was high, the

amount of performance gained for the tuned models justified

the time.

F. GridSearchCV

GridSearchCV is a hyperparameter search method used to

find the best combination of parameters in a machine learning

model [25] . With GridSearchCV, various values of the

model's hyperparameters are systematically tested to find the

configuration that provides the best performance based on a

predetermined evaluation metric, such as accuracy. In this

process, the user defines a grid containing the hyperparameter
values to be tested, such as the kernel in SVM, the number of

estimators in Random Forest, or the alpha value in Naive

Bayes Multinomial (MNB). GridSearchCV then trains the

model with various combinations of hyperparameters in the

grid, and measures its performance on the test data using

cross-validation to avoid overfitting. This process allows the

selection of the model with the most optimal parameters,

thereby improving the accuracy and generalization of the

model in classifying spam emails.

G. Evaluation Model

The process of assessing model performance in performing

classification or prediction tasks, usually uses metrics created

from the confusion matrix [26] . Some common metrics

applied to evaluate models are accuracy, which measures the

proportion of correct predictions; precision, which measures

how many positive predictions are actually positive; recall,

which measures the model's skill in finding all positive cases;

and F1-score, which is the harmonic mean score between

JAIC e-ISSN: 2548-6861 237

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

accuracy and recall. The model's skill in classifying positive

and negative classes at various thresholds is also often

evaluated with AUC-ROC (Area Under the Receiver

Operating Characteristic Curve).

To assess evaluation models, we turned to 5-fold cross

validation in order to maximize protection against overfitting.

Thus, for each fold, 80% of the data was devoted to training

and 20% was allocated for testing. The final performance
metric was based on averaging the results of the 5 folds.

However, in instances where cross validation was omitted, we

defaulted to a classic train-test split methodology, where

again, 80% of the data was employed for training and 20% for

testing.

 Accuracy

 Accuracy is an evaluation metric that measures the

proportion of correct predictions from the total number of

predictions made by the model. Accuracy is calculated using

formula (5).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5)

Where:

TP (True Positive) the number of correct positive

predictions.

TN (True Negative) the number of correct negative

predictions.
FP (False Positive) is the number of incorrect negative

predictions.

FN (False Negative) the number of incorrect positive

predictions.

 Precision

Evaluation metric to calculate the level of accuracy of the

model in classifying positive data, namely how many positive

predictions are actually positive. Precision is calculated using

formula (6).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6)

 Recall

An evaluation metric that measures how well the model

detects all positive cases in the dataset. Recall is calculated

using formula (7).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7)

 F1-Score

An evaluation metric combining precision and recall to

provide a more balanced picture of model performance,

especially when there is an imbalance between the two. The

F1-Score is calculated as the harmonic mean of precision and

recall, with formula (8).

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8)

 AUC-ROC

The relationship between True Positive Rate (TPR) and

False Positive Rate (FPR) is plotted using the ROC curve at

various classification thresholds. In formula (9) to calculate

TPR.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9)

In formula (10) to calculate FPR.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 (10)

After the ROC curve is drawn, to show how well the model

distinguishes between positive and negative classes, the AUC

is calculated by calculating the area under the ROC curve.

AUC ranges from 0 to 1. AUC = 1 indicates a perfect model

in classification. AUC = 0.5 indicates a model that is no better

than random guessing.

III. RESULTS AND DISCUSSION

A. Class Distribution Dataset

Figure 2. Dataset Class Distribution

Figure 2 shows the class distribution of the final dataset

resulting from combining four different datasets. This dataset
includes spam and ham emails in both Indonesian and

English, with a total of 19,105 samples. This distribution

shows that the ham class (non-spam emails) is much more

dominant, with 14,123 samples, while the spam class only has

4,982 samples. This imbalance between the number of spam

and ham data reflects a common challenge in spam detection,

where the spam class is smaller than the ham class. To address

this imbalance, Class Imbalance with Class Weight will be

used to give a greater weight to the spam class, making the

model more sensitive to misclassifications in minority

classes.

B. Preprocessing

In the data cleaning stage, data is cleaned to ensure that

only valid data is used in model training. This process

238 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

involves handling missing values by removing rows with

incomplete data, as well as converting text to lowercase to

avoid mismatches between similar words, such as "Spam" and

"spam." Next, in tokenization, email text is broken down into

smaller word tokens, making it easier for the model to

understand each text element. After that, a stopword removal

stage is performed to remove common words such as "and,"

"or," and "the" that do not provide much information in spam

classification. Finally, a stemming process is used to change
words with varying forms, such as "mencari" to "cari," to

ensure that the model only learns root words relevant to spam

classification. All of these stages produce cleaner, more

structured text, ready for use in the vectorization stage.

After the preprocessing stage, the cleaned and processed

text is converted into a numerical representation using TF-

IDF, which calculates word weights based on their frequency

in the document and their importance in the entire dataset. The

TF-IDF results help the model recognize more relevant words

for spam classification, such as "offer" or "gift." The dataset

is then divided into training and testing data with a proportion
of 80% for training and 20% for testing, using the data split

method. To address the problem of class imbalance, which is

an imbalance in the amount of data between the spam and ham

classes, class weighting is applied to give more weight to the

minority class (spam), making the model more sensitive to

errors in the fewer spam classes. This process ensures that the

model is trained with more balanced data, which improves the

model's generalization ability and accuracy in classifying

spam emails.

C. Clean Dataset

TABLE II

DATASET BEFORE PREPROCESSING

No. E-mail Label

1 : fw : having iris visit london anita, it seems that
i am going to london next week. please see
forwarded emails . can you please assist me with
my travel arrangements . thanks, iris - - - - -
original message - - - - - from : Kaminski , Vince
…

0

2 : immediate reply needed dear sir, i am dr james
alabi, the chairman of contract award and review
committee set up by the federal government of
nigeria under the new civilian dispensation to
award new contracts and review…

1

3 Ambil tindakan segera atau lewatkan. 003 -
300299717499832716 Perhatian! Pelanggan

Nilai # 772 - 00 D 87 "Klaim sistem gratis Anda"
atau hubungi 1 - 800 - 823 - 2466 Selamat! Anda
telah dipilih untuk menerima sistem …

1

A comparison between Table II and Table III reveals

significant changes in the format and structure of the text. In

Table II, the email text still contains irrelevant elements such

as punctuation, sender information, delivery time, and long,

complex sentences, making it difficult to process further.

Furthermore, some words in English and Indonesian are still

connected without a clear separation.

TABLE III

DATASET AFTER PREPROCESSING

No E-mail Label

1 fw iris visit london anita seem go london next
week please see forward email please assist travel
arrangements thank iris origin message Kaminski
Vince …

0

2 immediate reply need dear sir dr jame alabi
chairman contract award review committee set
feder govern nigeria new civilian dispens award
new contract review …

1

3 ambil tindakan segera lewatkan perhatian
pelanggan nilai klaim sistem gratis hubungi
selamat telah dipilih menerima sistem …

1

After a preprocessing stage that included tokenization, stop
word removal, lowercase conversion, and stemming, Table III

shows a much cleaner and more structured text, with only

relevant words retained. For example, words like "fw,"

"please," and "thanks" were removed, while important words

like "iris," "london," and "travel" were retained. This

demonstrates that the preprocessing process successfully

streamlined the text by removing unnecessary information

and focusing on more relevant words for spam classification,

which is crucial for improving the model's accuracy in

analyzing spam emails.

D. Performance Before Tuning of Machine Learning
Algorithm

Before hyperparameter tuning with GridSearchCV, the

performance of the four classification models, SVM, Random

Forest, MNB, and XGBoost, was visualized with confusion

matrices shown in Figure 3. This confusion matrix shows the

models’ ability in predicting spam emails (1) and non-spam

emails (0). In SVM, the model predicted 2821 instances of the

negative (non-spam) class and 875 instances of the positive

(spam) class, and both classes had prediction errors that were
within the noise. The Random Forest model predicted 2839

instances of the negative (non-spam) class and 856 instances

of the positive (spam) class, so the model also had high

accuracy across both classes. MNB and XGBoost models

predicted with the same distribution albeit a little less with

MNB predicting 2766 instances of the negative class and 856

instances of the positive class, and XGBoost predicting 2796

instances of the negative class and 767 instances of the

positive class. The models all predicted well, but the

confusion matrix illustrates that the models’ ability to predict

values in the positive (spam) class and thus predict values
with accuracy in the positive class, needs to be further

optimized in the next tuning phase.

JAIC e-ISSN: 2548-6861 239

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

Figure 3. Confusion Matrix Model Before Tuning GridSearchCV

The classification models before hyperparameter tuning

were SVM, Random Forest, MNB, and XGBoost, and their

performance metrics were evaluated using Receiver

Operating Characteristic (ROC) curves (as shown in Figure

4). ROC curves show the relation between TPR and FPR.

SVM and MNB models were the most successful as they

obtained AUC (Area Under Curve) of 0.99, which means they
had an outstanding performance in distinguishing the spam

and non-spam classes for the text messages. On the other

hand, Random Forest and XGBoost models also successfully

distinguished between spam and non-spam messages as well;

however their performance was slightly lower (0.98)

compared to SVM and MNB. Finally, all four models

distinguished spam messages effectively as evidenced by the

ROC curves because they were very close to the upper left

corner of the figure which represents accurate classification

of spam.

Figure 4. ROC Model Before Tuning GridSearchCV

The K-Fold Cross-Validation curves displayed in Figure 5

depict the outcomes of cross-validation for four classification

models (SVM, Random Forest, MNB, XGBoost) in the pre-

hyperparameter tuning via GridSearchCV stage. Accuracy for

each K-Fold Cross-Validation model over the five folds of the

process is presented in each of the five plots. The highest

value for the SVM model was in the 3rd fold, with highest

accuracy of almost 0.974, while the lowest value of accuracy

was in the 2nd fold with close to 0.966. Fold accuracy over

the folds of Random Forest model was moderately evenly

spaced. The highest value of accuracy was the 3rd fold with

(0.897) while the lowest value was in the 4th fold with 0.892.
For MNB model, the accuracy fluctuated more with the

highest in the 4th fold (0.952) and the lowest in the 2nd fold

(close to 0.944). XGBoost was stable with fold 3 being the

highest 0.937 and fold 2 being the lowest around 0.933. The

models before additional tuning provides information on the

extent of their generalization to the data in each fold.

Figure 5. K-Fold Model Before Tuning GridSearchCV

Figure 6. Performance Model Before Tuning GridSearchCV

Among the four classifiers, Support Vector Machine,

MNB, Random Forest, and XGBoost, models performance

based on Precision, Recall, F1 Score, and Accuracy, before

hyperparameter tuning with the help of GridSearchCV, are

illustrated in figure 6. Support Vector Machine outperformed

the rest in terms of Precision (97.22) and Accuracy (94.79),

albeit with a Recall of 69.74. Although SVM was correct in
predicting quite a number of correct email, he was not so

240 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

sensitive on the spam classes. Random Forest, on the other

hand, also had a Precision of 93.33, albeit dominated by a

Recall of 60.21. This indicated that while predicting also had

quite the accuracy, he was not quite as SVM in spam

detecting. MNB was the opposite in that he had quite the

number of Recall (sensitivity) with 87.79, albeit Precision

was lower with 74.82. Thus, he was in a sense more fashion

of detecting spam, albeit had more falsies in hand when

predicting (was a higher false positive prediction). XGBoost
on the other hand with the same number of 85.60 had a good

and balanced score in F1 score where the Precision value also

85.60, Recall of 78.67 thus balancing quite the number of

metrics.

E. Performance After Tuning of Machine Learning
Algorithm

The SVM, Random Forest, MNB, and XGBoost models

and their confusion matrices are displayed in Figure 7 and are

the results for the classifiers after the adaptation of
hyperparameters and the application of the GridSearchCV

technique. The performance of the models improved

substantially in these results as compared to the results before

tuning. In the SVM model, the amount of erroneous

predictions that were made in the spam class prediction fell,

with 888 correct predicted spam (positive) class predictions

and just 87 incorrect predictions. The positives in the Random

Forest model were 894 positive class predictions, and 81 were

negatives, and thus there was significant improvement in this

model as well. In this case MNB and XGBoost were similar

and MNB classified 869 spam emails, while XGBoost 891
spam emails was spam accurate and improved the overall

before performance standards. The confusion matrices

indicate that tuning results prediction accuracy overall.

Figure 7. Confusion Matrix Model After Tuning GridSearchCV

Besides basic metrics like accuracy, precision, recall, or

F1-score which are useful to understand a model's

performance, we have also used other metrics more affected

by class imbalance, such as ROC-AUC and the precision-
recall curve, to evaluate model performance. These metrics,

in particular, are important for the email spam detection

problem where the spam class (minority class) is usually less

represented. As noted in Figure 8 (precision-recall curves),

the models performed much better post hyperparameter

tuning, especially in the email spam and non spam

classification problem. All tuned models ROC-AUC values

increased, including SVM, Random Forest, MNB, and

XGBoost, which indicates the models had a better ability to

classify the positive (spam) and negative (not spam) classes
thereafter. The tuned models precision-recall curves also

demonstrated greater sensitivity to the spam class as the post

tuning models had better precision and recall for the detection

of spam.

Figure 8 presents the Receiver Operating Characteristic

(ROC) curves for the four classification models SVM,

Random Forest, MNB, and XGBoost post hyperparameter

tuning using the GridSearchCV method. These ROC curves

depict the relationship between True Positive Rate (TPR) and

False Positive Rate (FPR) for the models. All models

achieved quite an AUC (Area Under Curve) score of 1, thus
SVM and MNB were the most effective AUC 0.99 and

capable of detecting spam with the Random Forest and

XGBoost models performing AUC 0.98 and 0.99, and thus

able to successfully differentiate spam from non spam. These

ROC curves, therefore, attest to the fact that hyperparameter

tuning led to an improvement in model performance and that

all models were able to achieve spam detection with high

levels of accuracy.

Figure 8. ROC Model After Tuning GridSearchCV

Figure 9 displays the results of K-Fold Cross-Validation

for four classification models, SVM, Random Forest, MNB,

and XGBoost, following hyperparameter tuning through

GridSearchCV. The SVM model demonstrates the greatest

improvement in cross-validation accuracy post tuning.

Overall, the results suggest improvement in model accuracy

following hyperparameter tuning. SVM recorded the highest

accuracy in the 3rd fold (around 0.976) and the lowest in the
2nd fold (around 0.967), indicating stable but slightly

JAIC e-ISSN: 2548-6861 241

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

changing performance. Random Forest also demonstrates

continuous improvement of accuracy as it demonstrates

consistency with the highest 3rd fold (around 0.972) and 5th

fold (around 0.968) and falling slightly to 4th at around 0.965.

The MNB model also displays improvement of accuracy as

seen in the 4th fold of around 0.958, as XGBoost

demonstrated accuracy in the 3rd fold of around 0.965, but

with slightly less performance improvement. Based on the
results it can be determined to be slightly more stable

following hyperparameter tuning as the accuracy to classify

each fold demonstrates more improvement.

Figure 9. K-Fold Model After Tuning GridSearchCV

In Figure 10, the performances of hyperparameter tuned
SVM, Random Forest, MNB, and XGBoost classification

models are compared.

Figure 10. Performance Model After Tuning GridSearchCV

All the models performed well. However, SVM showed

the best performance overall with the highest Precision of

97.37 and highest accuracy of 94.12, which denoted that

the model was able to detect the positive classes with high

accuracy and was able to generalize robustly as well.

Random Forest and MNB models performed similarly with
Random Forest achieving Precision of 91.69 and accuracy

of 94.12 as compared to MNB which had Precision of

91.24 with an accuracy of 93.71. XGBoost also performed

well with Precision of 93.54 and accuracy of 93.54, which

made the model balanced in recognizing spam and non

spam classes. The stacking models displayed very high F1

Scores which showed that hyperparameter tuning was

effective in improving the model accuracy and spam

detection efficiency due to the improved balance in the

models.

F. Comparison of Accuracy Before and After Tuning on the
Model

Table IV compares the results of the four different

classification models without GridSearchCV hyperparameter

tuning. According to this table, SVM achieved the highest

accuracy, 96.73%, of the four models. It also achieved high

Precision (97.22%), proving that SVM can accurately capture

spam emails. However, SVM also achieved lower Recall

(89.74%), so this model is also likely to miss some spam

emails. For Random Forest, the Precision (98.82%) is higher
than SVM, but Recall is lower (60.21%), indicating that this

model is also not sensitive to spam. Out of the other two,

MNB performed better than XGBoost, having also achieved

recall that is pretty decent (89.59%), while XGBoost achieved

Precision (93.88%) and Recall (78.67%) that is also pretty

decent, but lower than the other two. However, the accuracy

of the latter two is a little lower than SVM.

TABLE IV

COMPARISON OF CLASSIFICATION MODEL PERFORMANCE BEFORE

GRIDSEARCHCV HYPERPARAMETER

Performance SVM
Random

Forest
MNB XGBoost

Accuracy 96.73 89.66 94.79 93.25

TP 875 587 896 367

FN 100 388 119 208

TN 2821 2839 2796 2796

FP 25 7 80 50

Precision 97.22 98.82 91.45 93.88

Recall 89.74 60.21 87.79 78.67

F1_Score 93.33 74.82 89.59 85.60

After conducting hyperparameter tuning via

GridSearchCV, all models encountered performance

enhancements and were documented in Table V. Detecting

spam became less problematic for the SVM model, as minor
improvements to sensitivity were evidenced with increases in

both Recall and accuracy to rates of 91.08% and 97.1%,

respectively. Improvements in spam detection directed at the

Random Forest model were also documented as notable,

where both Recall and accuracy rates were elevated to 91.69%

and 96.86%, respectively. Other improvements were

documented in the MNB model as evidenced in the Recall

increase to 89.13% as well as an F1 Score of 90.52% and

XGBoost model as evidenced in the Recall increase to

91.38% as well as an enhanced F1 Score of 93.54%.

Ultimately, all models performance were elevated with
respect to improvements in accuracy and hyperparameter

242 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

tuning via GridSearchCV which allowed for improved

sensitivity and classification towards spam detection.

TABLE V

COMPARISON OF CLASSIFICATION MODEL PERFORMANCE AFTER

GRIDSEARCHCV HYPERPARAMETER

Performance SVM
Random

Forest
MNB XGBoost

Accuracy 97.10 96.86 95.24 96.78

TP 888 894 869 891

FN 87 81 106 84

TN 2822 2807 2770 2807

FP 24 39 76 39

Precision 97.37 95.82 91.24 95.81

Recall 91.08 91.69 89.13 91.38

F1_Score 94.12 93.71 90.52 93.54

After hyperparameter tuning with GridSearchCV, out of all

tested models, SVM performed the best. Even though SVM

had an impressive accuracy of 96.73% prior to tuning, it

improved to 97.10% after tuning, with Recall also increasing

to 91.08% from 89.74%. This shows SVM became more

accurate in predicting spam emails after tuning. Moreover,

SVM also had after tuning very high Precision of 97.37%,
showing this model not only made accurate classifications but

also very effective ones in spam detection. Having an F1

Score of 94.12%, SVM had one of the best Precision to Recall

ratios, thereby making it the most ideal model in terms of

overall sustenance after tuning for spam detection in emails.

In this research case, the experimental results indicate that

the various models (MNB, XG Boost, Random Forest, and

SVM) show different degrees of accuracy improvements

when hyperparameter tuning is done. A paired t-test

determined the statistical significance of the gaps left by the

hyperparameter tuning processes for each of the models. The
results from the paired t-test indicate that the lack of accuracy

changes post hyper-parameter tuning for the SVM model was

statistically insignificant (p = 0.240). This shows that tuning

largely did not trigger noticeable improvements for this

model. On the contrary, accuracy improvements for Random

Forest (p = 1.05e-07), MNB (p = 0.0037), and XG Boost (p =

3.60e-06) after tuning were statistically significant, and as

such, it was confirmed that hyperparameter tuning improved

the model performance.

Although this study has primarily focused on the

optimization of spam detection using different machine

learning algorithms, the developed model has numerous
potential applications including commercial use. The model

has the potential to be used in email spam filtering systems

used by mail servers. If the model is integrated into mail

servers, email messages can be analyzed on the fly with spam

message detection prior to user messages arriving at the user

inboxes. Moreover, the model can be implemented to real-

time spam detection applications such as web-based spam

filters or email clients to offer real-time message monitoring

and spam message detection. The model's potential to resist

class imbalance and learn to detect new spam patterns is

particularly beneficial for dynamic environments. In practice,

this would enhance email security and improve the

communication experience of users.

G. Perbandingan Metode dan Hasil Terbaik Studi Ini
dengan Penelitian Lain

Table VI examines the accuracy of spam detection models

employing different techniques and algorithms from different

studies.

TABLE VI

COMPARISON OF ACCURACY IN SPAM DETECTION MODELS WITH

DIFFERENT METHODS AND ALGORITHMS

Study

Name

Method Used Algorithm Used Accuracy

(%)

[27] SMOTE XGBoost 96.20

[28] SMOTE, ROS Naïve Bayes 95.63 ; 95.74

[29] BERT Logistic
Regression

95.95

[30] SMOTE Ensemble Extra
Tree

92.10

[8] Random
Oversampling

Random Forest 97

This

Study

Class Weight SVM 97.10

As per the findings, application of SMOTE (Synthetic

Minority Oversampling Technique) with XGBoost achieved
an accuracy of 96.20%, whereas the combination of SMOTE

and Random Oversampling (ROS) with Naive Bayes attained

an accuracy of 95.63% to 95.74%. The accuracy achieved by

the BERT technique + Logistic Regression was 95.95%. In

contrast, the application of SMOTE with Ensemble Extra

Tree was only able to achieve an accuracy of 92.10%.

Random Oversampling with Random Forest recorded an

accuracy of 97%, which is the highest from that study. Using

Class Weight technique for the SVM algorithm, this study

achieved an accuracy of 97.10%, which is a slight

improvement from the prior model. This shows that although

different methods and algorithms can yield similar outcomes,
the SVM with Class Weight model implemented in this study

achieves a superior outcome, marginally outperforming rival

systems in the accuracy of spam detection.

IV. CONCLUSION

This paper illustrates the benefits of using blended datasets

from multiple sources to enhance predictive accuracy of spam

email classification models. The model improves its

generalization to unseen data and adapts to varying patterns

and noise through blended datasets. With more heterogenous

datasets, the model improves its spam email classification
accuracy through expansion of the model feature set.

Moreover, the technique called Class Imbalance with Class

Weight, wherein class weights are adjusted to mitigate the

class imbalance problem commonly seen in spam datasets,

JAIC e-ISSN: 2548-6861 243

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

was effective. By increasing the spam email class weight, the

model becomes more sensitive to false negatives, which

benefits the spam detection capabilities of the model.

According to the accuracy reached after the best

combination of the hyperparameters was obtained through the

use of the GridSearchCV, the best performing SVM model

reached an accuracy of 97.10% and a Recall of 91.08% which

implies this model was able to detect spam with a greater
degree of proficiency. Random Forest also improved in Recall

with a value of 91.69% and an accuracy of 96.86%. MNB and

XGBoost also showed stable performance with MNB

achieving a high value of 90.52% in the F1 Score while

XGBoost obtained Recall with a value of 91.38%. These

results show that the classification models can achieve greater

accuracy and sensitivity in spam email detection when a

combination of different datasets and the correct class

balancing methods are used. Furthermore, despite the

promising results obtained from dataset merging and class

weight adjustment, there are several important limitations in
this study. First, while the datasets used in this research offer

a broad range of spam messages, they may not fully represent

the diversity and evolution of real-world spam tactics. As

spam evolves rapidly, the model's generalization ability could

decrease when exposed to new types of spam that were not

included in the training data. Additionally, this study focused

solely on traditional machine learning models, while deep

learning models like LSTM (Long Short-Term Memory) and

RNNs (Recurrent Neural Networks) could potentially yield

better performance on more complex data, such as sequences

of words in spam emails.

REFERENCES

[1] S. M. M. Rahman, A. H. Sarower, and T. Bhuiyan, “Detection and

Classification of Spam Email: A Machine Learning-Based

Experimental Analysis,” in Proceedings of Trends in Electronics and

Health Informatics, vol. 1034, M. Mahmud, M. S. Kaiser, A.

Bandyopadhyay, K. Ray, and S. Al Mamun, Eds., in Lecture Notes in

Networks and Systems, vol. 1034. , Singapore: Springer Nature

Singapore, 2025, pp. 241–260. doi: 10.1007/978-981-97-3937-0_17.

[2] G. Nasreen, M. Murad Khan, M. Younus, B. Zafar, and M. Kashif

Hanif, “Email spam detection by deep learning models using novel

feature selection technique and BERT,” Egyptian Informatics Journal,

vol. 26, p. 100473, June 2024, doi: 10.1016/j.eij.2024.100473.

[3] L. Á. Redondo-Gutierrez, F. Jáñez-Martino, E. Fidalgo, E. Alegre, V.

González-Castro, and R. Alaiz-Rodríguez, “Detecting malware using

text documents extracted from spam email through machine learning,”

in Proceedings of the 22nd ACM Symposium on Document

Engineering, San Jose California: ACM, Sept. 2022, pp. 1–4. doi:

10.1145/3558100.3563854.

[4] Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam Detection Using

Bidirectional Transformers and Machine Learning Classifier

Algorithms,” JCCE, vol. 2, no. 1, pp. 5–9, Apr. 2022, doi:

10.47852/bonviewJCCE2202192.

[5] S. Md. M. Hossain and I. H. Sarker, “Content-based Spam Email

Detection Using N-gram Machine Learning Approach,” Sept. 14,

2021, MATHEMATICS & COMPUTER SCIENCE. doi:

10.20944/preprints202109.0236.v1.

[6] M. V. Madhavan, S. Pande, P. Umekar, T. Mahore, and D. Kalyankar,

“Comparative Analysis of Detection of Email Spam With the Aid of

Machine Learning Approaches,” IOP Conf. Ser.: Mater. Sci. Eng., vol.

1022, no. 1, p. 012113, Jan. 2021, doi: 10.1088/1757-

899X/1022/1/012113.

[7] F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castro, and E.

Fidalgo, “Trustworthiness of spam email addresses using machine

learning,” in Proceedings of the 21st ACM Symposium on Document

Engineering, Limerick Ireland: ACM, Aug. 2021, pp. 1–4. doi:

10.1145/3469096.3475060.

[8] M. A. Bouke, A. Abdullah, M. T. Abdullah, S. A. Zaid, H. El Atigh,

and S. H. ALshatebi, “A Lightweight Machine Learning-Based Email

Spam Detection Model Using Word Frequency Pattern,” J. Info. Tech.

Comp., vol. 4, no. 1, pp. 15–28, June 2023, doi:

10.48185/jitc.v4i1.653.

[9] T. A. Almeida, J. M. Gómez, and A. Yamakami, “Contributions to the

study of SMS Spam Filtering: New Collection and Results”.

[10] U. Nuha and C.-H. Lin, Conditional Semi-Supervised Data

Augmentation for Spam Message Detection with Low Resource Data.

2024. doi: 10.48550/arXiv.2407.04990.

[11] A. C. Acock, “Working With Missing Values,” J of Marriage and

Family, vol. 67, no. 4, pp. 1012–1028, Nov. 2005, doi: 10.1111/j.1741-

3737.2005.00191.x.

[12] Z. B. Siddique, M. A. Khan, I. U. Din, A. Almogren, I. Mohiuddin,

and S. Nazir, “Machine Learning-Based Detection of Spam Emails,”

Scientific Programming, vol. 2021, pp. 1–11, Dec. 2021, doi:

10.1155/2021/6508784.

[13] S. Sarica and J. Luo, “Stopwords in technical language processing,”

PLoS ONE, vol. 16, no. 8, p. e0254937, Aug. 2021, doi:

10.1371/journal.pone.0254937.

[14] A. K. Shrivas, A. K. Dewangan, and S. M. Ghosh, “Robust Text

Classifier for Classification of Spam E-Mail Documents with Feature

Selection Technique,” ISI, vol. 26, no. 5, pp. 437–444, Oct. 2021, doi:

10.18280/isi.260502.

[15] J. Ramos, “Using TF-IDF to Determine Word Relevance in Document

Queries”.

[16] V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis,

vol. 15, no. 4, pp. 531–538, Aug. 2022, doi: 10.1002/sam.11583.

[17] M. Adnan, M. O. Imam, M. F. Javed, and I. Murtza, “Improving spam

email classification accuracy using ensemble techniques: a stacking

approach,” Int. J. Inf. Secur., vol. 23, no. 1, pp. 505–517, Feb. 2024,

doi: 10.1007/s10207-023-00756-1.

[18] K. R. M. Fernando and C. P. Tsokos, “Dynamically Weighted

Balanced Loss: Class Imbalanced Learning and Confidence

Calibration of Deep Neural Networks,” IEEE Trans. Neural Netw.

Learning Syst., vol. 33, no. 7, pp. 2940–2951, July 2022, doi:

10.1109/TNNLS.2020.3047335.

[19] S. Pudasaini, A. Shakya, S. P. Pandey, P. Paudel, S. Ghimire, and P.

Ale, “SMS Spam Detection using Relevance Vector Machine,”

Procedia Computer Science, vol. 230, pp. 337–346, 2023, doi:

10.1016/j.procs.2023.12.089.

[20] B. Wang and V. Pavlu, “December 8, 2014 based on notes by Andrew

Ng.”.

[21] M. Nivedha and S. Raja, “Detection of email spam using Natural

Language Processing based Random Forest approach,” International

Journal of Computer Science and Mobile Computing, vol. 11, no. 2,

pp. 7–22, 2022.

[22] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.

5–32, 2001.

[23] M. Abbas, K. A. Memon, A. A. Jamali, S. Memon, and A. Ahmed,

“Multinomial Naive Bayes Classification Model for Sentiment

Analysis”.

[24] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting

System,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco

California USA: ACM, Aug. 2016, pp. 785–794. doi:

10.1145/2939672.2939785.

[25] C. Dewi, F. A. Indriawan, and H. J. Christanto, “Spam classification

problems using support vector machine and grid search,” Int. J. Appl.

Sci. Eng., vol. 20, no. 4, pp. 1–10, 2023, doi:

10.6703/IJASE.202312_20(4).006.

[26] D. Chicco, N. Tötsch, and G. Jurman, “The Matthews correlation

coefficient (MCC) is more reliable than balanced accuracy,

244 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 232 – 244

bookmaker informedness, and markedness in two-class confusion

matrix evaluation,” BioData Mining, vol. 14, no. 1, p. 13, Feb. 2021,

doi: 10.1186/s13040-021-00244-z.

[27] T. A. Assegie, “Evaluation of Supervised Learning Models for

Automatic Spam Email Detection,” July 27, 2023, In Review. doi:

10.21203/rs.3.rs-3191190/v1.

[28] Rivaldo Jeffmarvin, Hafizh Dzaky, Yusup Ardiyanto, Apriliyanto Dwi

Saputra, Deri Irawan, and Jason Bernard Ardianto, “Analisis

Perbandingan: SMOTE dan Undersampling pada Klasifikasi Spam

Naïve Bayes: Studi Eksperimen perbandingan pada Dataset Email

Berbahasa Indonesia,” JIITE, vol. 2, no. 2, pp. 377–383, Aug. 2025,

doi: 10.63547/jiite.v2i2.92.

[29] Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam Detection Using

Bidirectional Transformers and Machine Learning Classifier

Algorithms,” JCCE, vol. 2, no. 1, pp. 5–9, Apr. 2022, doi:

10.47852/bonviewJCCE2202192.

[30] Prachi Bhatnagar and Dr. S. D. Degadwala, “Efficient Email Spam

Classification with N-gram Features and Ensemble Learning,” Int. J.

Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 2, pp. 278–284,

Mar. 2024, doi: 10.32628/CSEIT2410220.

