Journal of Applied Informatics and Computing (JAIC)
Vol.10, No.1, February 2026, pp. 232~244

e-ISSN: 2548-6861

232

Optimizing Email Spam Detection through Handling Class Imbalance
with Class Weights and Hyperparameter Using GridSearchCV

Muhammad Ridho Nursyam **, Muhammad Koprawi 2*, Dony Ariyus **

* Teknik Komputer, Universitas Amikom Yogyakarta

muhammadridho@students.amikom.ac.id *, koprawi@amikom.ac.id 2, dony.a@amikom.ac.id 3

Article Info

ABSTRACT

Article history:

Received 2025-12-18
Revised 2025-12-28
Accepted 2026-01-08

Keywords:

Spam Detection,
Machine Learning,
Class Imbalance,
GridSearchCV,
Email Spam.

Email spam is a major problem in digital communication that can disrupt
productivity, burden network resources, and pose a security threat. This research
focuses on optimizing spam email detection using a machine learning approach by
addressing class imbalance through class weighting and hyperparameter tuning using
GridSearchCV. To improve model accuracy and sensitivity, a combination of
diverse datasets is applied to provide a wider scope of training data. The models used
in this study include Support Vector Machine (SVM), Random Forest, Multinomial
Naive Bayes (MNB), and XGBoost. Evaluation is carried out based on metrics such
as accuracy, precision, recall, and F1-score, before and after hyperparameter tuning.
The experimental results show that SVM produces the highest accuracy after tuning,
reaching 97.10%, compared to 96.73% before hyperparameter tuning. In addition,
Random Forest, MNB, and XGBoost also show significant improvements, with each
model achieving better performance after tuning. Overall, this study shows that
dataset merging and class weight adjustment can significantly improve the model's
ability to detect spam, as well as provide a basis for implementing the model in a

more effective email spam detection system.

This is an open access article under the CC-BY-SA license.

I. INTRODUCTION

Email spam is a significant challenge in modern digital
communications due to the ever-growing volume of unwanted
messages that can disrupt productivity, consume network
resources, and pose security threats such as phishing or
malware distribution [1] . Early rule-based detection models
tend to be less effective in dealing with the increasingly
complex variety and evolution of spamming tactics [2] .
Machine learning approaches have become the primary
solution in spam classification due to their ability to learn
directly from historical data and automatically predict spam
or non-spam categories, but model performance is still
heavily influenced by issues such as class imbalance and the
selection of appropriate features in email text data.

This study compares the performance of several machine
learning algorithms in email spam detection with an approach
that includes combining diverse datasets and handling class
imbalance using Class Weight in each model. The analysis
includes Support Vector Machine (SVM), Random Forest,

Multinomial Naive Bayes (MNB), and XGBoost models, and
evaluates the impact of hyperparameter tuning through
GridSearchCV on spam detection performance. The expected
benefits of this study include improving the sensitivity and
accuracy of spam detection systems, and recommending
appropriate models for practical implementation.

Numerous prior investigations have analyzed a variety of
approaches in machine learning for spam email identification
centering on identifying and adopting the optimum method
for text representation. A case in point is the study where TF-
IDF method is used and is found to perform better than other
methods such as Bag of Words (BOW) in spam detection
accuracy [3]. In all the studies machine learning techniques
like Support Vector Machine (SVM) and Naive Bayes (NB)
and Logistic Regression (LR) have been implemented.
Although most of these studies demonstrate encouraging
progress, a recurring problem is how to refine feature
selection and text representation in order to respond to such
challenges as class imbalance, and dimensionality reduction
which have bearing on the accuracy of the model. In research

http://jurnal.polibatam.ac.id/index.php/JAIC

mailto:muhammadridho@students.amikom.ac.id
mailto:koprawi@amikom.ac.id
mailto:dony.a@amikom.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC

e-1SSN: 2548-6861 233

[3], with the aim of identifying malware that is concealed in
spam emails, a number of machine learning methods were
employed using two models of text representation Bag of
Words (BOW) and Term Frequency-Inverse Document
Frequency (TF-IDF). The models used are Support Vector
Machine (SVM), Naive Bayes (NB), and Logistic Regression
(LR). The results of the experiments demonstrated that TF-
IDF combined with Logistic Regression had the highest
degree of accuracy, at 76.4% with an F1 score of 0.763.
Additional pairings using TF-IDF and SVM also yield good
results, achieving an accuracy of 75.7%. In addition, the
Naive Bayes model with TF-IDF has the fastest execution
time, although the accuracy is also the lowest at 74.3%.
Overall, these results suggest the use of TF-1DF surpassed the
use of BOW, underscoring the significance of appropriate text
representation methods on the accuracy of spam email
malware detection.

Integrating BERT (Bidirectional Encoder Representations
from Transformers) with different machine learning
classifiers to identify and classify emails as spam or ham
emails [4]. Emails processed in BERT to extract features for
text representation and different classification techniques like
Logistic Regression, SVM (Support Vector Machine), KNN
(K-Nearest Neighbors), and Random Forest are applied. Their
experimental study showed that Logistic Regression was the
best in accuracy, precision, and F1 score in both datasets. In
dataset 2, however this model’s accuracy decreased
marginally to 95.95% with precision at 96% and an F1 score
of 95.92%. Logistic Regression outperformed others in spam
classification as seen from SVM and KNN that performed
lower than Logistic Regression on the same metrics. This
shows that the combination of machine learning with BERT
can be immensely helpful in spam detection.

In detecting spam emails, Support Vector Machine (SVM)
employs n-gram and word2vec based feature extraction
techniques [5]. When compared to other algorithm options,
SVM vyields the best results accuracy, precision, and F1 score
values wise (based on multiple metrics). In the case of uni-
gram and bi-gram combinations with SVM, the accuracy level
reached was the highest (at 97.6%), and the precision was also
the highest (at 98.8%), as was the F1 score (94.9%). This
points to the capacity of SVM technique to provide
outstanding spam emails signal detection, as SVM technique
can deal with highly feature dimensions. Also, because SVM
can generalize data well, SVM also demonstrates detection
error reductions like false positives and false negatives.

To classify emails as spam using different features from the
pre-processed data sets [6]. Classifying spam and ham emails
resulted in a 96.90% accuracy score from the SVM algorithm.
In addition SVM has spam Recall of 95.00% and spam
Precision of 93.12% which indicates a good level of accuracy
wherein spam emails are identified. In contrast to more
accurate algorithms such as Naive Bayes, the SVM algorithm
is still impressive given its performance on big complex data
sets. The strength of SVM is in its ability to class data points

with the maximum separation margin making it powerful on
large, complex data sets.

According to previous studies, email accounts can be
assigned values, and using ML algorithms such as Naive
Bayes (NB), Support Vector Machine (SVM), Logistic
Regression (LR), and Random Forest (RF), it is possible to
classify email accounts as spam or non-spam [7]. The results
showed that Naeive Bayes is highly suitable for classifying
spam and non-spam email addresses, especially raising its
overall sample classification to 88.17%, while the F1 score
was 0.808. The next better was SVM with a sample
classification of 80.70% and an F1 score of 0.762. Logistic
Regression (LR) attached an F1 score of 0.787 and an overall
sample classification of 83.49%. The accuracy for Random
Forest was also very good at 85.40% and the F1 score at a
good 0.817. NB not only showed a good overall classification.
The execution of the other models was just as good, with
Random Forest being the backbone of the Logistic Regression
and SVM. All the models analyzed the new spam email data
set, with NB being the focus of the tuning of the parameters
for higher accuracy, F1 score results. The models also showed
a good performance with parametric F1 optimization in 10-
fold cross-validation spam detection. The four models had
shown above good accuracy, demonstrating the ability to
predict with spam email addresses flagged as high risk.

In the machine learning domain, Random Forest (RF) is
one of the widely utilized algorithms, and the choice of this
algorithm is also supported by its valuable and unique
attributes [8]. The Spambase dataset comprises a total of 4601
emails accompanied by 58 features and was employed to
evaluate the effectiveness of the machine learning algorithm.
To enhance the algorithm’s ability to identify spam emails
more proficiently, the dataset’s class imbalance was
addressed by employing a random oversampling approach to
balance the spam and ham distribution. The results of the
experiment exhibited impressive outcomes where the models
achieved 97% and spam and ham identification garnered
similar performance measures of high precision, recall, and
F1 scores. The aforementioned spam detection performance
was quantitatively evaluated through the implementation of a
confusion matrix and the ROC curve, resulting in an AUC
measurement of 0.97. The model comparison also yielded
promising results, with the proposed approach achieving a 6%
increase span in performance relative to the previous models,
attributed to its superiority.

This study aims to enhance the effectiveness of spam
detection software by integrating multiple datasets for
training. The developed model can learn rarer spam detection
patterns with the amalgamated datasets and better capture a
broader range of varied patterns. Overfitting would also be
less of a risk with the multiple datasets. We represent model
training data textually with TF-IDF to translate the spam texts
into the numerical features required. The models we are
working with are already demonstrated- SVM, MNB, RF, and
XGBoost. To alleviate the data class imbalance we employ
the Class Imbalance with Class Weight methodology to steer

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

234

e-ISSN: 2548-6861

the model's attention to the minority (spam) class for
enhanced misclassification of that class. We hope the model
will improve spam detection and classification to minimize
misclassification which isa common issue of models working
with restricted datasets.

Il. METHOD

Figure 1 illustrates the method flow used in the research on
Building a Machine Learning Model for Spam Email
Classification. The process begins with data collection and
dataset merging to create a more diverse dataset. After that,
several pre-processing stages are carried out, including
tokenization, stop word removal, data cleaning, and
stemming. Next, text vectorization is performed using TF-
IDF and class imbalance handling with class weights. The
data is then divided into training and testing data. The model
is trained using various classification algorithms, and
hyperparameter search is performed with GridSearchCV to
find the best combination. Finally, model evaluation is
performed to measure the performance of the built model, and
the process ends with the finish stage.

Pra-Processing
Start Tokenizing » Stopword
Data Collection Data Cleaning Steaming
Dataset Merging » Dataset Preparation TF-IDF
¥
Classification of Data Imbalance with |)
Algorithm Class Weight [* Data Spi
GridSearchCV » Evaluation Model » Finish

Figure 1. Flow Diagram

A. Dataset Preparation

During the Data Preparation phase, five different datasets
were integrated, which allowed for greater dataset variability.
The goal of the integration was to enhance the dataset variety,
which is an important aspect of developing a model capable
of accurately classifying spam emails. Following the
integration, the dataset comprised 19,105 data records, and
contained two labels spam and non-spam. The distribution of
the datasets prior to and following integration is shown in
Table 1. Prior to the integration, a considerable class
imbalance was observed in the smaller dataset, with spam
class records being significantly fewer than non-spam class
records. Following integration, the class proportions were

more evenly distributed, though imbalances were still present
in the distribution of the merged datasets. This is a critical
aspect for model performance as it is influenced by
imbalances in distribution and potential data duplication.

By having a diverse dataset, the built Machine Learning
model is expected to be more effective in distinguishing spam
emails from non-spam emails, as well as improving the
accuracy and generalization ability of the model on new,
previously unseen data using GridSearchCV. This process is
crucial in the data preparation stage, as the quality and
diversity of the dataset significantly affect the final
performance of the built classification model.

TABLE |
DISTRIBUTION OF DATASETS

Dataset Amount
spam.csv [9] 5169
Dataset_sms_spam_v1.csv 628
[10]
email_spam_indo.csv link 2620
Spam_ham_dataset.csv link 4993
Emails.csv link 5695

B. Pre-Processing

1) Data Cleaning

Data Cleaning involves several processes to prepare the
data for use in model training. Handling missing values or
empty columns is done by identifying and removing rows
with incomplete data [11] . This is important to ensure that the
model only receives valid data and avoids imbalance or
confusion during the training process. Furthermore, a text
conversion process is also carried out on all data to avoid
discrepancies between similar words but with different upper
and lower case letters, such as the words "Spam" and "spam".
This step aims to allow the model to recognize these words as
the same entity without considering the differences in their
writing format.

2) Tokenization

In the Tokenization stage, the email text is broken down
into smaller units called tokens. Tokenization aims to simplify
text processing by breaking the text into simpler words or
phrases, so that the model can more easily analyze and
understand the information contained therein [12] . This
tokenization process is carried out using NLTK (Natural
Language Toolkit) which utilizes the word_tokenize function
to break the text into words. Each word generated from
tokenization will be treated as a separate token, which will
then be processed further. In addition, to ensure consistency,
all words generated from tokenization are converted to
lowercase to avoid differences in recognition between the
same word, such as "Spam" and "spam". This tokenization
process is an important step in data preparation, because by
breaking the text into smaller tokens, the model can more
easily identify relevant patterns and features needed for spam
email classification.

JAIC Vol. 10, No. 1, February 2026: 232 — 244

https://www.kaggle.com/datasets/gevabriel/indonesian-email-spam
https://www.kaggle.com/code/abdelrahmanali212/mailspamdetection
https://www.kaggle.com/code/aadhivinay/build-spam-filter-identify-spam-e-mails

JAIC

e-1SSN: 2548-6861 235

3) Stopword

In the Stopwords Removal stage, words that are considered
not to have significant meaning or contribution to spam
classification, known as stop words [13]. Stop words are
words that often appear in the text, such as conjunctions,
prepositions, and connecting words, which do not provide
important information for analysis, for example words like
"and", "or", "from", and "to". This stop word removal aims to
minimize noise in the data, so that the model can focus more
on relevant words, such as more specific and in-depth words
that can help in the spam classification process. In this study,
the stop word list used includes stop words from Indonesian
and English, which are obtained from the NLTK library for
English and a stop word list adapted for Indonesian. After the
stop word removal process, the resulting data will be cleaner
and only focus on important words.

4) Steaming

In the Stemming stage, the process is carried out to change
the words that have been previously processed to their basic
form [14]. Stemming aims to reduce word variations by
removing unimportant affixes (prefixes or suffixes), so that
words with similar meanings can be treated as the same entity.
For example, words like "berlari" and "lari" will be returned
to their basic form "lari". This process is carried out using
Sastrawi for Indonesian and PorterStemmer for English, both
of which are effective in reducing words to their basic form.
This stemming is important to ensure that the model is not
trapped by unnecessary word variations and can focus on
understanding the main meaning of the text. After the
stemming process, these simplified words will become
cleaner and more relevant input for the vectorization stage.

5) TF-IDF

In the TF-IDF (Term Frequency-Inverse Document
Frequency) stage in this study, it is used to convert the
processed text into a numerical representation that can be
understood by the machine learning model [15]. After the text
cleaning stage which includes tokenization, stop word
removal, and stemming, the next step is to convert the text
into a vector using TF-IDF. This technique calculates the
weight of each word based on its frequency in the document
(Term Frequency) and how important the word is in the entire
dataset (Inverse Document Frequency). By using TF-IDF,
words that appear frequently in one document but rarely
appear in other documents will have a higher weight, while
words that appear frequently in many documents will get a
low weight. This process allows the model to focus more on
relevant words in spam classification, such as "offer", "free",
or "gift".

C. Data Split

In the Data Splitting stage of this study, the dataset is
divided into two main parts, namely training data and testing
data [16]. This division process aims to ensure that the model
can be trained using one part of the data, while the other part

is used to test its performance after training. In this study, the
division was carried out with a proportion of 80% for training
data and 20% for testing data, which is a standard approach in
machine learning to ensure that the model gets enough data to
learn, while also being able to be evaluated with data that has
not been seen before. Data division is done using the
train_test_split function from the sklearn.model_selection
library, which randomly splits the dataset while maintaining
a balanced distribution of labels across both sets.

D. Class Imbalance with Class Weight

Handling class imbalance that often occurs in spam
classification datasets using class imbalance with class weight
[17]. Class imbalance occurs when the number of samples in
one class, such as spam emails, is much less than in other
classes, such as non-spam emails. To overcome this problem,
class weight is used which aims to give greater weight to the
minority class (spam) so that the model becomes more
sensitive to the data [18]. In this case, class weights are
calculated using the class_weight method from the
sklearn.utils library, using the balanced parameter to balance
the classes based on the data distribution. The results of the
class weight calculation are then applied to the model during
the training process through the class_weight parameter. By
giving greater weight to the spam class, the model is expected
to pay more attention to classification errors in spam emails,
thereby increasing the accuracy in detecting spam even
though the amount of data for that class is less.

E. Classification Algorithm

1) Support Vector Machine

Support Vector Machine (SVM) is a machine learning
algorithm used for classification with a very effective
approach in handling binary classification problems, such as
spam email classification [19]. In this study, SVM is used to
distinguish spam and non-spam emails by utilizing features
extracted through TF-IDF vectorization. The basic principle
of SVM s to find a hyperplane that optimally separates data
from two classes, with the largest margin between the two
classes [20]. In this case, the spam and non-spam classes are
separated in such a way that the SVM can classify new emails
based on the position of the data on the right side of the
hyperplane. SVM is also very effective in handling high-
dimensional datasets, such as text data that has gone through
a vectorization process, making it suitable for use in this
study. In addition, choosing the right kernel, such as linear or
RBF (Radial Basis Function), is key to improving the model's
accuracy in detecting relevant patterns in spam emails. Once
the model is trained, the SVM can be used to predict whether
an unclassified email belongs to the ham or spam email
category. In two samples x and x ', the radial basis function is
expressed in equation (1), where ||x — x||%is a free parameter
that indicates the squared Euclidean distance.

[lx—%1|2
K0 =e” 27)

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

236

e-ISSN: 2548-6861

2) Random Forest

Random Forest is an ensemble algorithm consisting of a
collection of decision trees used for classification and
regression [21]. In this study, Random Forest is used to
classify spam emails by utilizing features generated through
TF-IDF vectorization. This model works by randomly
constructing multiple decision trees, where each tree is
constructed using a random subset of the training data and a
random subset of the existing features. Each decision tree
makes its own prediction, and the prediction results from all
trees are then combined through majority voting to produce
the final decision. The advantage of Random Forest lies in its
ability to handle high-dimensional data, such as text data, as
well as its ability to reduce overfitting that often occurs in a
single decision tree. In the context of spam email
classification, Random Forest is able to handle class
imbalance well and has stable performance even in the
presence of noise or imperfect data [22]. In classification
tasks, the final prediction yfor a data point xis determined
through majority voting among the trees. If T;(x)is the
prediction from the th tree ifor data point x, then the final
prediction can be formulated using equation (2).

57\ = mOde{Tl (x):TZ (x), ---:TNTree (x)} (2)

3) Multinominal Naive Bayes

Multinomial Naive Bayes (MNB) is a probabilistic
algorithm used for text classification by assuming that the
features (words) in the text are independent, although in
reality there may be dependencies between features [23] . In
the context of spam email classification, MNB utilizes
conditional probability to model the relationship between
words in an email and its label (spam or not spam). This
model assumes that the distribution of words in the spam and
non-spam classes follows a multinomial distribution, meaning
each word has a probability of occurring in each class. During
training, MNB calculates the probability of each word based
on its distribution in each class, then uses Bayes' Theorem to
calculate the likelihood that an email belongs to the spam or
not spam class. In the Multinomial Naive Bayes model, it is
assumed that each feature x;is the result of a multinomial
distribution, meaning that the features are counts of words or
elements in a category. The probability P(x;|y)for a word
x;to be assigned a class ycan be calculated using the
multinomial distribution formula (3).

Nyy, +a

P(x;ly) = —Zk(ny,k T a)

®)

4) XGBoost

XGBoost (Extreme Gradient Boosting) is a very popular
and effective machine learning algorithm for classification
tasks, including spam email classification. XGBoost is an
implementation of the gradient boosting algorithm, which
works by building models iteratively, where each new model

tries to correct the errors made by the previous model [24] .
The advantage of XGBoost lies in its ability to handle large
and complex data, as well as its ability to optimize predictions
by reducing bias and variance through regularization
techniques. XGBoost works by building a series of decision
trees that correct each other's errors, resulting in a more robust
and accurate model. In spam email classification, XGBoost is
able to handle class imbalance well and provides excellent
results in terms of accuracy, precision, and recall. The training
process begins with the optimization of the first tree, and as
the model iterates through the trees tusing equation (4).

t
9= D)= 9470+ fix) @
k=1

Although GridSearchCV allows you to find the most
optimal combinations of hyperparameters to improve the
performance of models, the computational costs are high.
This is especially true for XGBoost, as its hyperparameter
tuning takes the most amount of time due to the high amount
of time it takes to do iterative boosting as well as the tree
training. In order to improve the boosting hyperparameter
tuning time, parallel computing was used, which efficiently
allocated the workload to the different CPU cores. Even
though the amount of computational time was high, the
amount of performance gained for the tuned models justified
the time.

F. GridSearchCV

GridSearchCV is a hyperparameter search method used to
find the best combination of parameters in a machine learning
model [25] . With GridSearchCV, various values of the
model's hyperparameters are systematically tested to find the
configuration that provides the best performance based on a
predetermined evaluation metric, such as accuracy. In this
process, the user defines a grid containing the hyperparameter
values to be tested, such as the kernel in SVM, the number of
estimators in Random Forest, or the alpha value in Naive
Bayes Multinomial (MNB). GridSearchCV then trains the
model with various combinations of hyperparameters in the
grid, and measures its performance on the test data using
cross-validation to avoid overfitting. This process allows the
selection of the model with the most optimal parameters,
thereby improving the accuracy and generalization of the
model in classifying spam emails.

G. Evaluation Model

The process of assessing model performance in performing
classification or prediction tasks, usually uses metrics created
from the confusion matrix [26] . Some common metrics
applied to evaluate models are accuracy, which measures the
proportion of correct predictions; precision, which measures
how many positive predictions are actually positive; recall,
which measures the model's skill in finding all positive cases;
and F1-score, which is the harmonic mean score between

JAIC Vol. 10, No. 1, February 2026: 232 — 244

JAIC

e-1SSN: 2548-6861 237

accuracy and recall. The model's skill in classifying positive
and negative classes at various thresholds is also often
evaluated with AUC-ROC (Area Under the Receiver
Operating Characteristic Curve).

To assess evaluation models, we turned to 5-fold cross
validation in order to maximize protection against overfitting.
Thus, for each fold, 80% of the data was devoted to training
and 20% was allocated for testing. The final performance
metric was based on averaging the results of the 5 folds.
However, in instances where cross validation was omitted, we
defaulted to a classic train-test split methodology, where
again, 80% of the data was employed for training and 20% for
testing.

e Accuracy

Accuracy is an evaluation metric that measures the
proportion of correct predictions from the total number of
predictions made by the model. Accuracy is calculated using
formula (5).

TP+TN

Accuracy = o TN+ FP 4 FN ©)
Where:
TP (True Positive) the number of correct positive
predictions.
TN (True Negative) the number of correct negative
predictions.
FP (False Positive) is the number of incorrect negative
predictions.

FN (False Negative) the number of incorrect positive
predictions.

e Precision

Evaluation metric to calculate the level of accuracy of the
model in classifying positive data, namely how many positive
predictions are actually positive. Precision is calculated using

formula (6).

TP
ISL = — 6
Precision TP TP (6)

e Recall

An evaluation metric that measures how well the model
detects all positive cases in the dataset. Recall is calculated
using formula (7).

TP
- - 7
Recall TP+ FN (7

e F1-Score

An evaluation metric combining precision and recall to
provide a more balanced picture of model performance,
especially when there is an imbalance between the two. The
F1-Score is calculated as the harmonic mean of precision and
recall, with formula (8).

Fl—s Cox Precision X Recall ®)
core = Precision + Recall

e AUC-ROC

The relationship between True Positive Rate (TPR) and
False Positive Rate (FPR) is plotted using the ROC curve at
various classification thresholds. In formula (9) to calculate
TPR.

TP
= — 9
TPR TP+ FN ©
In formula (10) to calculate FPR.
FP
= — 10
FPR FP+FN (10)

After the ROC curve is drawn, to show how well the model
distinguishes between positive and negative classes, the AUC
is calculated by calculating the area under the ROC curve.
AUC ranges from 0 to 1. AUC = 1 indicates a perfect model
in classification. AUC = 0.5 indicates a model that is no better
than random guessing.

I11. RESULTS AND DISCUSSION

A. Class Distribution Dataset

Distribusi Kelas: Spam vs Ham
14123

14000

12000

10000

8000

6000

Jumlah Sampel

4982
4000

2000

Ham Spam
Label

Figure 2. Dataset Class Distribution

Figure 2 shows the class distribution of the final dataset
resulting from combining four different datasets. This dataset
includes spam and ham emails in both Indonesian and
English, with a total of 19,105 samples. This distribution
shows that the ham class (non-spam emails) is much more
dominant, with 14,123 samples, while the spam class only has
4,982 samples. This imbalance between the number of spam
and ham data reflects a common challenge in spam detection,
where the spam class is smaller than the ham class. To address
this imbalance, Class Imbalance with Class Weight will be
used to give a greater weight to the spam class, making the
model more sensitive to misclassifications in minority
classes.

B. Preprocessing

In the data cleaning stage, data is cleaned to ensure that
only valid data is used in model training. This process

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

238

e-ISSN: 2548-6861

involves handling missing values by removing rows with
incomplete data, as well as converting text to lowercase to
avoid mismatches between similar words, such as "Spam" and
"spam." Next, in tokenization, email text is broken down into
smaller word tokens, making it easier for the model to
understand each text element. After that, a stopword removal
stage is performed to remove common words such as "and,"
"or," and "the" that do not provide much information in spam
classification. Finally, a stemming process is used to change
words with varying forms, such as "mencari” to "cari," to
ensure that the model only learns root words relevant to spam
classification. All of these stages produce cleaner, more
structured text, ready for use in the vectorization stage.

After the preprocessing stage, the cleaned and processed
text is converted into a numerical representation using TF-
IDF, which calculates word weights based on their frequency
in the document and their importance in the entire dataset. The
TF-IDF results help the model recognize more relevant words
for spam classification, such as "offer" or "gift." The dataset
is then divided into training and testing data with a proportion
of 80% for training and 20% for testing, using the data split
method. To address the problem of class imbalance, which is
an imbalance in the amount of data between the spam and ham
classes, class weighting is applied to give more weight to the
minority class (spam), making the model more sensitive to
errors in the fewer spam classes. This process ensures that the
model is trained with more balanced data, which improves the
model's generalization ability and accuracy in classifying
spam emails.

C. Clean Dataset

TABLEII
DATASET BEFORE PREPROCESSING

No. E-mail Label

1 : fw : having iris visit london anita, it seems that 0
i am going to london next week. please see
forwarded emails . can you please assist me with
my travel arrangements . thanks, iris - - - - -
original message - - - - - from : Kaminski , Vince

2 : immediate reply needed dear sir, i am dr james 1
alabi, the chairman of contract award and review
committee set up by the federal government of
nigeria under the new civilian dispensation to
award new contracts and review...

3 Ambil tindakan segera atau lewatkan. 003 - 1
300299717499832716 Perhatian! Pelanggan
Nilai # 772 - 00 D 87 "Klaim sistem gratis Anda"
atau hubungi 1 - 800 - 823 - 2466 Selamat! Anda
telah dipilih untuk menerima sistem ...

A comparison between Table Il and Table Il reveals
significant changes in the format and structure of the text. In
Table 11, the email text still contains irrelevant elements such
as punctuation, sender information, delivery time, and long,
complex sentences, making it difficult to process further.

Furthermore, some words in English and Indonesian are still
connected without a clear separation.

TABLE Il
DATASET AFTER PREPROCESSING

No | E-mail Label

1 fw iris visit london anita seem go london next 0
week please see forward email please assist travel
arrangements thank iris origin message Kaminski
Vince ...

2 immediate reply need dear sir dr jame alabi 1
chairman contract award review committee set
feder govern nigeria new civilian dispens award
new contract review ...

3 ambil tindakan segera lewatkan perhatian 1
pelanggan nilai klaim sistem gratis hubungi
selamat telah dipilih menerima sistem ...

After a preprocessing stage that included tokenization, stop
word removal, lowercase conversion, and stemming, Table I
shows a much cleaner and more structured text, with only
relevant words retained. For example, words like "fw,"
"please," and "thanks" were removed, while important words
like "iris,” "london,” and "travel” were retained. This
demonstrates that the preprocessing process successfully
streamlined the text by removing unnecessary information
and focusing on more relevant words for spam classification,
which is crucial for improving the model's accuracy in
analyzing spam emails.

D. Performance Before Tuning of Machine Learning
Algorithm

Before hyperparameter tuning with GridSearchCV, the
performance of the four classification models, SVM, Random
Forest, MNB, and XGBoost, was visualized with confusion
matrices shown in Figure 3. This confusion matrix shows the
models’ ability in predicting spam emails (1) and non-spam
emails (0). In SVM, the model predicted 2821 instances of the
negative (non-spam) class and 875 instances of the positive
(spam) class, and hoth classes had prediction errors that were
within the noise. The Random Forest model predicted 2839
instances of the negative (hon-spam) class and 856 instances
of the positive (spam) class, so the model also had high
accuracy across both classes. MNB and XGBoost models
predicted with the same distribution albeit a little less with
MNB predicting 2766 instances of the negative class and 856
instances of the positive class, and XGBoost predicting 2796
instances of the negative class and 767 instances of the
positive class. The models all predicted well, but the
confusion matrix illustrates that the models’ ability to predict
values in the positive (spam) class and thus predict values
with accuracy in the positive class, needs to be further
optimized in the next tuning phase.

JAIC Vol. 10, No. 1, February 2026: 232 — 244

JAIC

e-1SSN: 2548-6861

239

Actual

Confusion Matrix - SVM

2000
- 1500
- 1000

- 500
o 1
predicted
Confusion Matrix - Multinomial NB

119 856

Actual

Actual

Confusion Matrix - Random Forest
2500
- 2000
- 1500
- 1000

388 587
- 500

0 1
Predicted

Confusion Matrix - XGBoost
2500
50
2000
- 1500

- 1000

- 500

Predicted
Predicted

Figure 3. Confusion Matrix Model Before Tuning GridSearchCV

The classification models before hyperparameter tuning
were SVM, Random Forest, MNB, and XGBoost, and their
performance metrics were evaluated using Receiver
Operating Characteristic (ROC) curves (as shown in Figure
4). ROC curves show the relation between TPR and FPR.
SVM and MNB models were the most successful as they
obtained AUC (Area Under Curve) of 0.99, which means they
had an outstanding performance in distinguishing the spam
and non-spam classes for the text messages. On the other
hand, Random Forest and XGBoost models also successfully
distinguished between spam and non-spam messages as well;
however their performance was slightly lower (0.98)
compared to SVM and MNB. Finally, all four models
distinguished spam messages effectively as evidenced by the
ROC curves because they were very close to the upper left
corner of the figure which represents accurate classification
of spam.

Receiver Operating Characteristic SVM

Receiver Operating Characteristic - Random Forest

7

Receiver Opera

— Roc cure Wic - 039) — BOC curve (AUC = 0.38

as o
Faise Posive Rate

Figure 4. ROC Model Before Tuning GridSearchCV

The K-Fold Cross-Validation curves displayed in Figure 5
depict the outcomes of cross-validation for four classification
models (SVM, Random Forest, MNB, XGBoost) in the pre-
hyperparameter tuning via GridSearchCV stage. Accuracy for

each K-Fold Cross-Validation model over the five folds of the
process is presented in each of the five plots. The highest
value for the SVM model was in the 3rd fold, with highest
accuracy of almost 0.974, while the lowest value of accuracy
was in the 2nd fold with close to 0.966. Fold accuracy over
the folds of Random Forest model was moderately evenly
spaced. The highest value of accuracy was the 3rd fold with
(0.897) while the lowest value was in the 4th fold with 0.892.
For MNB model, the accuracy fluctuated more with the
highest in the 4th fold (0.952) and the lowest in the 2nd fold
(close to 0.944). XGBoost was stable with fold 3 being the
highest 0.937 and fold 2 being the lowest around 0.933. The
models before additional tuning provides information on the
extent of their generalization to the data in each fold.

K-Fold Cross-Validation - Random Forest

K-Fold Cross-Validation - SVM

0,974

3 0970

0966

4 5

3
Fold Number Fold Number

K-Fold Cross-Validation - Multinomial N8 K-Fold Cross-Validation - XGBoost

—~ CrossValidation Accuracy

1 2

1 2

3
Fold Number Fold Number

Figure 5. K-Fold Model Before Tuning GridSearchCV

100 Model Performance Before Tuning GridSearchCV
s

9333 9333
50 8074

8560 8560

80 78.67

7482 7482

Score Values

60

SVM

Random Forest

EEm Precision
Recall

Multinominal Naive Bayes
Model

BN FlScore WEM accuracy

XGBoost

Figure 6. Performance Model Before Tuning GridSearchCV

Among the four classifiers, Support Vector Machine,
MNB, Random Forest, and XGBoost, models performance
based on Precision, Recall, F1 Score, and Accuracy, before
hyperparameter tuning with the help of GridSearchCV, are
illustrated in figure 6. Support Vector Machine outperformed
the rest in terms of Precision (97.22) and Accuracy (94.79),
albeit with a Recall of 69.74. Although SVM was correct in
predicting quite a number of correct email, he was not so

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

240

e-ISSN: 2548-6861

sensitive on the spam classes. Random Forest, on the other
hand, also had a Precision of 93.33, albeit dominated by a
Recall of 60.21. This indicated that while predicting also had
quite the accuracy, he was not quite as SVM in spam
detecting. MNB was the opposite in that he had quite the
number of Recall (sensitivity) with 87.79, albeit Precision
was lower with 74.82. Thus, he was in a sense more fashion
of detecting spam, albeit had more falsies in hand when
predicting (' was a higher false positive prediction). XGBoost
on the other hand with the same number of 85.60 had a good
and balanced score in F1 score where the Precision value also
85.60, Recall of 78.67 thus balancing quite the number of
metrics.

E. Performance After Tuning of Machine Learning
Algorithm

The SVM, Random Forest, MNB, and XGBoost models
and their confusion matrices are displayed in Figure 7 and are
the results for the classifiers after the adaptation of
hyperparameters and the application of the GridSearchCV
technique. The performance of the models improved
substantially in these results as compared to the results before
tuning. In the SVM model, the amount of erroneous
predictions that were made in the spam class prediction fell,
with 888 correct predicted spam (positive) class predictions
and just 87 incorrect predictions. The positives in the Random
Forest model were 894 positive class predictions, and 81 were
negatives, and thus there was significant improvement in this
model as well. In this case MNB and XGBoost were similar
and MNB classified 869 spam emails, while XGBoost 891
spam emails was spam accurate and improved the overall
before performance standards. The confusion matrices
indicate that tuning results prediction accuracy overall.

Confusion Matrix GRIDSEARCHCV - SVM Confusion Matrix GRIDSEARCHCV - Random Forest

2807 E
2000 - 2000

o 1] 1
Predicted Predicted

Confusion Matrix GRIDSEARCHCV- MULTINOMINAL NB Confusion Matrix GRIDSEARCHCY - XGBoost

2500 2500
o 76 o 3
- 2000 - 2000

1500 El - 1500

Actu;

- 1000 - 1000

- 500 - 500

Fredicted Predicted

Figure 7. Confusion Matrix Model After Tuning GridSearchCV

Besides basic metrics like accuracy, precision, recall, or
Fl-score which are useful to understand a model's
performance, we have also used other metrics more affected
by class imbalance, such as ROC-AUC and the precision-
recall curve, to evaluate model performance. These metrics,

in particular, are important for the email spam detection
problem where the spam class (minority class) is usually less
represented. As noted in Figure 8 (precision-recall curves),
the models performed much better post hyperparameter
tuning, especially in the email spam and non spam
classification problem. All tuned models ROC-AUC values
increased, including SVM, Random Forest, MNB, and
XGBoost, which indicates the models had a better ability to
classify the positive (spam) and negative (not spam) classes
thereafter. The tuned models precision-recall curves also
demonstrated greater sensitivity to the spam class as the post
tuning models had better precision and recall for the detection
of spam.

Figure 8 presents the Receiver Operating Characteristic
(ROC) curves for the four classification models SVM,
Random Forest, MNB, and XGBoost post hyperparameter
tuning using the GridSearchCV method. These ROC curves
depict the relationship between True Positive Rate (TPR) and
False Positive Rate (FPR) for the models. All models
achieved quite an AUC (Area Under Curve) score of 1, thus
SVM and MNB were the most effective AUC 0.99 and
capable of detecting spam with the Random Forest and
XGBoost models performing AUC 0.98 and 0.99, and thus
able to successfully differentiate spam from non spam. These
ROC curves, therefore, attest to the fact that hyperparameter
tuning led to an improvement in model performance and that
all models were able to achieve spam detection with high
levels of accuracy.

Receiver Oparating Characteristic GRIDSEARCHCY - SVM Receiver Operating Characteristic GRIDSEARCHCY - Random Forest

GRIDSEARCHCY - XGBoost

a1 [
Fatse Pestive Rate

Figure 8. ROC Model After Tuning GridSearchCV

Figure 9 displays the results of K-Fold Cross-Validation
for four classification models, SVM, Random Forest, MNB,
and XGBoost, following hyperparameter tuning through
GridSearchCV. The SVM model demonstrates the greatest
improvement in cross-validation accuracy post tuning.
Overall, the results suggest improvement in model accuracy
following hyperparameter tuning. SVM recorded the highest
accuracy in the 3rd fold (around 0.976) and the lowest in the
2nd fold (around 0.967), indicating stable but slightly

JAIC Vol. 10, No. 1, February 2026: 232 — 244

JAIC

e-1SSN: 2548-6861 241

changing performance. Random Forest also demonstrates
continuous improvement of accuracy as it demonstrates
consistency with the highest 3rd fold (around 0.972) and 5th
fold (around 0.968) and falling slightly to 4th at around 0.965.
The MNB model also displays improvement of accuracy as
seen in the 4th fold of around 0.958, as XGBoost
demonstrated accuracy in the 3rd fold of around 0.965, but
with slightly less performance improvement. Based on the
results it can be determined to be slightly more stable
following hyperparameter tuning as the accuracy to classify
each fold demonstrates more improvement.

K-Fold Cross-Validation GRIDSEARCHCV - Random Forest Model

K-Fold Cross-Validation GRIDSEARCHCV - SVM

3 H 5
Fald Number

K-Fold Cross-Validation GRIDSEARCHCV - XGBoost

— CrossValidation Accuracy

1 2 3 4 H

K-Fold Cross-Validation GRIDSEARCHCV - MULTINOMINAL N8
0958

0956

3 H M 1 z
Fold Numbar

Figure 9. K-Fold Model After Tuning GridSearchCV

Fold Mumber

In Figure 10, the performances of hyperparameter tuned
SVM, Random Forest, MNB, and XGBoost classification
models are compared.

100 Model Performance After Tuning GridSearchCv

9371 9371

Score Values

SvM Random Forest

Multinominal Naive Bayes
Madel

XGBoost

EEm Precision EEm F1 Score N accuracy
Recall

Figure 10. Performance Model After Tuning GridSearchCV

All the models performed well. However, SVM showed
the best performance overall with the highest Precision of
97.37 and highest accuracy of 94.12, which denoted that
the model was able to detect the positive classes with high
accuracy and was able to generalize robustly as well.
Random Forest and MNB models performed similarly with
Random Forest achieving Precision of 91.69 and accuracy
of 94.12 as compared to MNB which had Precision of
91.24 with an accuracy of 93.71. XGBoost also performed

well with Precision of 93.54 and accuracy of 93.54, which
made the model balanced in recognizing spam and non
spam classes. The stacking models displayed very high F1
Scores which showed that hyperparameter tuning was
effective in improving the model accuracy and spam
detection efficiency due to the improved balance in the
models.

F. Comparison of Accuracy Before and After Tuning on the
Model

Table IV compares the results of the four different
classification models without GridSearchCV hyperparameter
tuning. According to this table, SVM achieved the highest
accuracy, 96.73%, of the four models. It also achieved high
Precision (97.22%), proving that SVM can accurately capture
spam emails. However, SVM also achieved lower Recall
(89.74%), so this model is also likely to miss some spam
emails. For Random Forest, the Precision (98.82%) is higher
than SVM, but Recall is lower (60.21%), indicating that this
model is also not sensitive to spam. Out of the other two,
MNB performed better than XGBoost, having also achieved
recall that is pretty decent (89.59%), while XGBoost achieved
Precision (93.88%) and Recall (78.67%) that is also pretty
decent, but lower than the other two. However, the accuracy
of the latter two is a little lower than SVM.

TABLE IV
COMPARISON OF CLASSIFICATION MODEL PERFORMANCE BEFORE
GRIDSEARCHCV HYPERPARAMETER

Performance| SVM Random MNB XGBoost
Forest
Accuracy 96.73 89.66 94.79 93.25
TP 875 587 896 367
FN 100 388 119 208
TN 2821 2839 2796 2796
FP 25 7 80 50
Precision 97.22 98.82 91.45 93.88
Recall 89.74 60.21 87.79 78.67
F1 Score 93.33 74.82 89.59 85.60
After conducting hyperparameter tuning via
GridSearchCV, all models encountered performance

enhancements and were documented in Table V. Detecting
spam became less problematic for the SVM model, as minor
improvements to sensitivity were evidenced with increases in
both Recall and accuracy to rates of 91.08% and 97.1%,
respectively. Improvements in spam detection directed at the
Random Forest model were also documented as notable,
where both Recall and accuracy rates were elevated to 91.69%
and 96.86%, respectively. Other improvements were
documented in the MNB model as evidenced in the Recall
increase to 89.13% as well as an F1 Score of 90.52% and
XGBoost model as evidenced in the Recall increase to
91.38% as well as an enhanced F1 Score of 93.54%.
Ultimately, all models performance were elevated with
respect to improvements in accuracy and hyperparameter

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

242

e-ISSN: 2548-6861

tuning via GridSearchCV which allowed for improved
sensitivity and classification towards spam detection.
TABLE V

COMPARISON OF CLASSIFICATION MODEL PERFORMANCE AFTER
GRIDSEARCHCV HYPERPARAMETER

Performance] SVM R;Qgg? MNB | XGBoost
Accuracy 97.10 96.86 95.24 96.78
TP 888 894 869 891
FN 87 81 106 84
TN 2822 2807 2770 2807
FP 24 39 76 39
Precision 97.37 95.82 91.24 95.81
Recall 91.08 91.69 89.13 91.38
F1_Score 94.12 93.71 90.52 93.54

After hyperparameter tuning with GridSearchCV, out of all
tested models, SVM performed the best. Even though SVM
had an impressive accuracy of 96.73% prior to tuning, it
improved to 97.10% after tuning, with Recall also increasing
to 91.08% from 89.74%. This shows SVM became more
accurate in predicting spam emails after tuning. Moreover,
SVM also had after tuning very high Precision of 97.37%,
showing this model not only made accurate classifications but
also very effective ones in spam detection. Having an F1
Score of 94.12%, SVM had one of the best Precision to Recall
ratios, thereby making it the most ideal model in terms of
overall sustenance after tuning for spam detection in emails.

In this research case, the experimental results indicate that
the various models (MNB, XG Boost, Random Forest, and
SVM) show different degrees of accuracy improvements
when hyperparameter tuning is done. A paired t-test
determined the statistical significance of the gaps left by the
hyperparameter tuning processes for each of the models. The
results from the paired t-test indicate that the lack of accuracy
changes post hyper-parameter tuning for the SVM model was
statistically insignificant (p = 0.240). This shows that tuning
largely did not trigger noticeable improvements for this
model. On the contrary, accuracy improvements for Random
Forest (p = 1.05e-07), MNB (p = 0.0037), and XG Boost (p =
3.60e-06) after tuning were statistically significant, and as
such, it was confirmed that hyperparameter tuning improved
the model performance.

Although this study has primarily focused on the
optimization of spam detection using different machine
learning algorithms, the developed model has numerous
potential applications including commercial use. The model
has the potential to be used in email spam filtering systems
used by mail servers. If the model is integrated into mail
servers, email messages can be analyzed on the fly with spam
message detection prior to user messages arriving at the user
inboxes. Moreover, the model can be implemented to real-
time spam detection applications such as web-based spam
filters or email clients to offer real-time message monitoring
and spam message detection. The model's potential to resist

class imbalance and learn to detect new spam patterns is
particularly beneficial for dynamic environments. In practice,
this would enhance email security and improve the
communication experience of users.

G. Perbandingan Metode dan Hasil Terbaik Studi Ini
dengan Penelitian Lain

Table VI examines the accuracy of spam detection models
employing different techniques and algorithms from different
studies.

TABLE VI
COMPARISON OF ACCURACY IN SPAM DETECTION MODELS WITH
DIFFERENT METHODS AND ALGORITHMS

Study | Method Used Algorithm Used | Accuracy
Name (%)
[27] SMOTE XGBoost 96.20
[28] SMOTE, ROS Naive Bayes | 95.63;95.74
[29] BERT Logistic 95.95
Regression
[30] SMOTE Ensemble Extra 92.10
Tree
[8] Random Random Forest 97
Oversampling
This Class Weight SVM 97.10
Study

As per the findings, application of SMOTE (Synthetic
Minority Oversampling Technique) with XGBoost achieved
an accuracy of 96.20%, whereas the combination of SMOTE
and Random Oversampling (ROS) with Naive Bayes attained
an accuracy of 95.63% to 95.74%. The accuracy achieved by
the BERT technique + Logistic Regression was 95.95%. In
contrast, the application of SMOTE with Ensemble Extra
Tree was only able to achieve an accuracy of 92.10%.
Random Oversampling with Random Forest recorded an
accuracy of 97%, which is the highest from that study. Using
Class Weight technique for the SVM algorithm, this study
achieved an accuracy of 97.10%, which is a slight
improvement from the prior model. This shows that although
different methods and algorithms can yield similar outcomes,
the SVM with Class Weight model implemented in this study
achieves a superior outcome, marginally outperforming rival
systems in the accuracy of spam detection.

1V. CONCLUSION

This paper illustrates the benefits of using blended datasets
from multiple sources to enhance predictive accuracy of spam
email classification models. The model improves its
generalization to unseen data and adapts to varying patterns
and noise through blended datasets. With more heterogenous
datasets, the model improves its spam email classification
accuracy through expansion of the model feature set.
Moreover, the technique called Class Imbalance with Class
Weight, wherein class weights are adjusted to mitigate the
class imbalance problem commonly seen in spam datasets,

JAIC Vol. 10, No. 1, February 2026: 232 — 244

JAIC

e-1SSN: 2548-6861

243

was effective. By increasing the spam email class weight, the
model becomes more sensitive to false negatives, which
benefits the spam detection capabilities of the model.

According to the accuracy reached after the best
combination of the hyperparameters was obtained through the
use of the GridSearchCV, the best performing SVM model
reached an accuracy of 97.10% and a Recall of 91.08% which
implies this model was able to detect spam with a greater
degree of proficiency. Random Forest also improved in Recall
with a value of 91.69% and an accuracy of 96.86%. MNB and
XGBoost also showed stable performance with MNB
achieving a high value of 90.52% in the F1 Score while
XGBoost obtained Recall with a value of 91.38%. These
results show that the classification models can achieve greater
accuracy and sensitivity in spam email detection when a
combination of different datasets and the correct class
balancing methods are used. Furthermore, despite the
promising results obtained from dataset merging and class
weight adjustment, there are several important limitations in
this study. First, while the datasets used in this research offer
a broad range of spam messages, they may not fully represent
the diversity and evolution of real-world spam tactics. As
spam evolves rapidly, the model's generalization ability could
decrease when exposed to new types of spam that were not
included in the training data. Additionally, this study focused
solely on traditional machine learning models, while deep
learning models like LSTM (Long Short-Term Memory) and
RNNSs (Recurrent Neural Networks) could potentially yield
better performance on more complex data, such as sequences
of words in spam emails.

REFERENCES

[1] S. M. M. Rahman, A. H. Sarower, and T. Bhuiyan, “Detection and
Classification of Spam Email: A Machine Learning-Based
Experimental Analysis,” in Proceedings of Trends in Electronics and
Health Informatics, vol. 1034, M. Mahmud, M. S. Kaiser, A.
Bandyopadhyay, K. Ray, and S. Al Mamun, Eds., in Lecture Notes in
Networks and Systems, vol. 1034. , Singapore: Springer Nature
Singapore, 2025, pp. 241-260. doi: 10.1007/978-981-97-3937-0_17.

[2] G. Nasreen, M. Murad Khan, M. Younus, B. Zafar, and M. Kashif
Hanif, “Email spam detection by deep learning models using novel
feature selection technique and BERT,” Egyptian Informatics Journal,
vol. 26, p. 100473, June 2024, doi: 10.1016/j.eij.2024.100473.

[3] L.A. Redondo-Gutierrez, F. Jafiez-Martino, E. Fidalgo, E. Alegre, V.
Gonzélez-Castro, and R. Alaiz-Rodriguez, “Detecting malware using
text documents extracted from spam email through machine learning,”
in Proceedings of the 22nd ACM Symposium on Document
Engineering, San Jose California: ACM, Sept. 2022, pp. 1-4. doi:
10.1145/3558100.3563854.

[4] Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam Detection Using
Bidirectional Transformers and Machine Learning Classifier
Algorithms,” JCCE, vol. 2, no. 1, pp. 5-9, Apr. 2022, doi:
10.47852/bonviewJCCE2202192.

[5] S. Md. M. Hossain and I. H. Sarker, “Content-based Spam Email
Detection Using N-gram Machine Learning Approach,” Sept. 14,
2021, MATHEMATICS & COMPUTER SCIENCE. doi:
10.20944/preprints202109.0236.v1.

[6] M. V.Madhavan, S. Pande, P. Umekar, T. Mahore, and D. Kalyankar,
“Comparative Analysis of Detection of Email Spam With the Aid of
Machine Learning Approaches,” IOP Conf. Ser.: Mater. Sci. Eng., vol.

[71

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

1022, no. 1, p. 012113, Jan. 10.1088/1757-
899X/1022/1/012113.

F. Jafilez-Martino, R. Alaiz-Rodriguez, V. Gonzalez-Castro, and E.
Fidalgo, “Trustworthiness of spam email addresses using machine
learning,” in Proceedings of the 21st ACM Symposium on Document
Engineering, Limerick Ireland: ACM, Aug. 2021, pp. 1-4. doi:
10.1145/3469096.3475060.

M. A. Bouke, A. Abdullah, M. T. Abdullah, S. A. Zaid, H. El Atigh,
and S. H. ALshatebi, “A Lightweight Machine Learning-Based Email
Spam Detection Model Using Word Frequency Pattern,” J. Info. Tech.
Comp.,, wvol. 4, no. 1, pp. 15-28, June 2023, doi:
10.48185/jitc.v4i1.653.

T. A. Almeida, J. M. Gémez, and A. Yamakami, “Contributions to the
study of SMS Spam Filtering: New Collection and Results”.

U. Nuha and C.-H. Lin, Conditional Semi-Supervised Data
Augmentation for Spam Message Detection with Low Resource Data.
2024. doi: 10.48550/arXiv.2407.04990.

A. C. Acock, “Working With Missing Values,” J of Marriage and
Family, vol. 67, no. 4, pp. 1012-1028, Nov. 2005, doi: 10.1111/j.1741-
3737.2005.00191.x.

Z. B. Siddique, M. A. Khan, I. U. Din, A. Almogren, |. Mohiuddin,
and S. Nazir, “Machine Learning-Based Detection of Spam Emails,”
Scientific Programming, vol. 2021, pp. 1-11, Dec. 2021, doi:
10.1155/2021/6508784.

S. Sarica and J. Luo, “Stopwords in technical language processing,”
PLoS ONE, vol. 16, no. 8, p. €0254937, Aug. 2021, doi:
10.1371/journal.pone.0254937.

A. K. Shrivas, A. K. Dewangan, and S. M. Ghosh, “Robust Text
Classifier for Classification of Spam E-Mail Documents with Feature
Selection Technique,” ISI, vol. 26, no. 5, pp. 437-444, Oct. 2021, doi:
10.18280/isi.260502.

J. Ramos, “Using TF-IDF to Determine Word Relevance in Document
Queries”.

V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis,
vol. 15, no. 4, pp. 531-538, Aug. 2022, doi: 10.1002/sam.11583.

M. Adnan, M. O. Imam, M. F. Javed, and I. Murtza, “Improving spam
email classification accuracy using ensemble techniques: a stacking
approach,” Int. J. Inf. Secur., vol. 23, no. 1, pp. 505-517, Feb. 2024,
doi: 10.1007/510207-023-00756-1.

K. R. M. Fernando and C. P. Tsokos, “Dynamically Weighted
Balanced Loss: Class Imbalanced Learning and Confidence
Calibration of Deep Neural Networks,” IEEE Trans. Neural Netw.
Learning Syst., vol. 33, no. 7, pp. 2940-2951, July 2022, doi:
10.1109/TNNLS.2020.3047335.

S. Pudasaini, A. Shakya, S. P. Pandey, P. Paudel, S. Ghimire, and P.
Ale, “SMS Spam Detection using Relevance Vector Machine,”
Procedia Computer Science, vol. 230, pp. 337-346, 2023, doi:
10.1016/j.procs.2023.12.089.

B. Wang and V. Pavlu, “December 8, 2014 based on notes by Andrew
Ng.”.

M. Nivedha and S. Raja, “Detection of email spam using Natural
Language Processing based Random Forest approach,” International
Journal of Computer Science and Mobile Computing, vol. 11, no. 2,
pp. 7-22, 2022.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32,2001.

M. Abbas, K. A. Memon, A. A. Jamali, S. Memon, and A. Ahmed,
“Multinomial Naive Bayes Classification Model for Sentiment
Analysis”.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco
California USA: ACM, Aug. 2016, pp. 785-794. doi:
10.1145/2939672.2939785.

C. Dewi, F. A. Indriawan, and H. J. Christanto, “Spam classification
problems using support vector machine and grid search,” Int. J. Appl.
Sci. Eng, wvol. 20, no. 4, pp. 1-10, 2023, doi:
10.6703/1JASE.202312_20(4).006.

D. Chicco, N. To6tsch, and G. Jurman, “The Matthews correlation
coefficient (MCC) is more reliable than balanced accuracy,

2021, doi:

Optimizing Email Spam Detection through Handling Class Imbalance with Class Weights and Hyperparameter Using
GridSearchCV (Muhammad Ridho Nursyam, Muhammad Koprawi, Dony Ariyus)

244

e-ISSN: 2548-6861

[27]

[28]

[29]

[30]

bookmaker informedness, and markedness in two-class confusion
matrix evaluation,” BioData Mining, vol. 14, no. 1, p. 13, Feb. 2021,
doi: 10.1186/5s13040-021-00244-z.

T. A. Assegie, “Evaluation of Supervised Learning Models for
Automatic Spam Email Detection,” July 27, 2023, In Review. doi:
10.21203/rs.3.rs-3191190/v1.

Rivaldo Jeffmarvin, Hafizh Dzaky, Yusup Ardiyanto, Apriliyanto Dwi
Saputra, Deri Irawan, and Jason Bernard Ardianto, “Analisis
Perbandingan: SMOTE dan Undersampling pada Klasifikasi Spam
Naive Bayes: Studi Eksperimen perbandingan pada Dataset Email
Berbahasa Indonesia,” JIITE, vol. 2, no. 2, pp. 377-383, Aug. 2025,
doi: 10.63547/jiite.v2i2.92.

Y. Guo, Z. Mustafaoglu, and D. Koundal, “Spam Detection Using
Bidirectional Transformers and Machine Learning Classifier
Algorithms,” JCCE, vol. 2, no. 1, pp. 5-9, Apr. 2022, doi:
10.47852/bonviewJCCE2202192.

Prachi Bhatnagar and Dr. S. D. Degadwala, “Efficient Email Spam
Classification with N-gram Features and Ensemble Learning,” Int. J.
Sci. Res. Comput. Sci. Eng. Inf. Technol, vol. 10, no. 2, pp. 278-284,
Mar. 2024, doi: 10.32628/CSEIT2410220.

JAIC Vol. 10, No. 1, February 2026: 232 — 244

