
Journal of Applied Informatics and Computing (JAIC) 

Vol.10, No.1, February 2026, pp. 232~244 

e-ISSN: 2548-6861    232 

  

  

http://jurnal.polibatam.ac.id/index.php/JAIC  

Optimizing Email Spam Detection through Handling Class Imbalance 

with Class Weights and Hyperparameter Using GridSearchCV 
 

 

Muhammad Ridho Nursyam 1 *, Muhammad Koprawi 2 *, Dony Ariyus 3 * 
* Teknik Komputer, Universitas Amikom Yogyakarta 

muhammadridho@students.amikom.ac.id 1 , koprawi@amikom.ac.id 2 , dony.a@amikom.ac.id 3 

 

 

Article Info  ABSTRACT 

Article history: 

Received 2025-12-18 

Revised 2025-12-28 

Accepted 2026-01-08 

 Email spam is a major problem in digital communication that can disrupt 

productivity, burden network resources, and pose a security threat. This research 

focuses on optimizing spam email detection using a machine learning approach by 

addressing class imbalance through class weighting and hyperparameter tuning using 

GridSearchCV. To improve model accuracy and sensitivity, a combination of 

diverse datasets is applied to provide a wider scope of training data. The models used 

in this study include Support Vector Machine (SVM), Random Forest, Multinomial 

Naive Bayes (MNB), and XGBoost. Evaluation is carried out based on metrics such 
as accuracy, precision, recall, and F1-score, before and after hyperparameter tuning. 

The experimental results show that SVM produces the highest accuracy after tuning, 

reaching 97.10%, compared to 96.73% before hyperparameter tuning. In addition, 

Random Forest, MNB, and XGBoost also show significant improvements, with each 

model achieving better performance after tuning. Overall, this study shows that 

dataset merging and class weight adjustment can significantly improve the model's 

ability to detect spam, as well as provide a basis for implementing the model in a 

more effective email spam detection system. 
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I. INTRODUCTION 

Email spam is a significant challenge in modern digital 

communications due to the ever-growing volume of unwanted 

messages that can disrupt productivity, consume network 

resources, and pose security threats such as phishing or 

malware distribution [1] . Early rule-based detection models 

tend to be less effective in dealing with the increasingly 

complex variety and evolution of spamming tactics [2] . 

Machine learning approaches have become the primary 

solution in spam classification due to their ability to learn 

directly from historical data and automatically predict spam 

or non-spam categories, but model performance is still 
heavily influenced by issues such as class imbalance and the 

selection of appropriate features in email text data. 

This study compares the performance of several machine 

learning algorithms in email spam detection with an approach 

that includes combining diverse datasets and handling class 

imbalance using Class Weight in each model. The analysis 

includes Support Vector Machine (SVM), Random Forest, 

Multinomial Naive Bayes (MNB), and XGBoost models, and 

evaluates the impact of hyperparameter tuning through 

GridSearchCV on spam detection performance. The expected 

benefits of this study include improving the sensitivity and 

accuracy of spam detection systems, and recommending 

appropriate models for practical implementation. 
Numerous prior investigations have analyzed a variety of 

approaches in machine learning for spam email identification 

centering on identifying and adopting the optimum method 

for text representation. A case in point is the study where TF-

IDF method is used and is found to perform better than other 

methods such as Bag of Words (BOW) in spam detection 

accuracy [3]. In all the studies machine learning techniques 

like Support Vector Machine (SVM) and Naive Bayes (NB) 

and Logistic Regression (LR) have been implemented. 

Although most of these studies demonstrate encouraging 

progress, a recurring problem is how to refine feature 

selection and text representation in order to respond to such 
challenges as class imbalance, and dimensionality reduction 

which have bearing on the accuracy of the model. In research 
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[3], with the aim of identifying malware that is concealed in 

spam emails, a number of machine learning methods were 

employed using two models of text representation Bag of 

Words (BOW) and Term Frequency-Inverse Document 

Frequency (TF-IDF). The models used are Support Vector 

Machine (SVM), Naive Bayes (NB), and Logistic Regression 

(LR). The results of the experiments demonstrated that TF-

IDF combined with Logistic Regression had the highest 
degree of accuracy, at 76.4% with an F1 score of 0.763. 

Additional pairings using TF-IDF and SVM also yield good 

results, achieving an accuracy of 75.7%. In addition, the 

Naive Bayes model with TF-IDF has the fastest execution 

time, although the accuracy is also the lowest at 74.3%. 

Overall, these results suggest the use of TF-IDF surpassed the 

use of BOW, underscoring the significance of appropriate text 

representation methods on the accuracy of spam email 

malware detection. 

Integrating BERT (Bidirectional Encoder Representations 

from Transformers) with different machine learning 
classifiers to identify and classify emails as spam or ham 

emails [4]. Emails processed in BERT to extract features for 

text representation and different classification techniques like 

Logistic Regression, SVM (Support Vector Machine), KNN 

(K-Nearest Neighbors), and Random Forest are applied. Their 

experimental study showed that Logistic Regression was the 

best in accuracy, precision, and F1 score in both datasets. In 

dataset 2, however this model’s accuracy decreased 

marginally to 95.95% with precision at 96% and an F1 score 

of 95.92%. Logistic Regression outperformed others in spam 

classification as seen from SVM and KNN that performed 

lower than Logistic Regression on the same metrics. This 
shows that the combination of machine learning with BERT 

can be immensely helpful in spam detection. 

In detecting spam emails, Support Vector Machine (SVM) 

employs n-gram and word2vec based feature extraction 

techniques [5]. When compared to other algorithm options, 

SVM yields the best results accuracy, precision, and F1 score 

values wise (based on multiple metrics). In the case of uni-

gram and bi-gram combinations with SVM, the accuracy level 

reached was the highest (at 97.6%), and the precision was also 

the highest (at 98.8%), as was the F1 score (94.9%). This 

points to the capacity of SVM technique to provide 
outstanding spam emails signal detection, as SVM technique 

can deal with highly feature dimensions. Also, because SVM 

can generalize data well, SVM also demonstrates detection 

error reductions like false positives and false negatives. 

To classify emails as spam using different features from the 

pre-processed data sets [6]. Classifying spam and ham emails 

resulted in a 96.90% accuracy score from the SVM algorithm. 

In addition SVM has spam Recall of 95.00% and spam 

Precision of 93.12% which indicates a good level of accuracy 

wherein spam emails are identified. In contrast to more 

accurate algorithms such as Naïve Bayes, the SVM algorithm 

is still impressive given its performance on big complex data 
sets. The strength of SVM is in its ability to class data points 

with the maximum separation margin making it powerful on 

large, complex data sets. 

According to previous studies, email accounts can be 

assigned values, and using ML algorithms such as Naïve 

Bayes (NB), Support Vector Machine (SVM), Logistic 

Regression (LR), and Random Forest (RF), it is possible to 

classify email accounts as spam or non-spam [7]. The results 

showed that Naeive Bayes is highly suitable for classifying 
spam and non-spam email addresses, especially raising its 

overall sample classification to 88.17%, while the F1 score 

was 0.808. The next better was SVM with a sample 

classification of 80.70% and an F1 score of 0.762. Logistic 

Regression (LR) attached an F1 score of 0.787 and an overall 

sample classification of 83.49%. The accuracy for Random 

Forest was also very good at 85.40% and the F1 score at a 

good 0.817. NB not only showed a good overall classification. 

The execution of the other models was just as good, with 

Random Forest being the backbone of the Logistic Regression 

and SVM. All the models analyzed the new spam email data 
set, with NB being the focus of the tuning of the parameters 

for higher accuracy, F1 score results. The models also showed 

a good performance with parametric F1 optimization in 10-

fold cross-validation spam detection. The four models had 

shown above good accuracy, demonstrating the ability to 

predict with spam email addresses flagged as high risk. 

In the machine learning domain, Random Forest (RF) is 

one of the widely utilized algorithms, and the choice of this 

algorithm is also supported by its valuable and unique 

attributes [8]. The Spambase dataset comprises a total of 4601 

emails accompanied by 58 features and was employed to 

evaluate the effectiveness of the machine learning algorithm. 
To enhance the algorithm’s ability to identify spam emails 

more proficiently, the dataset’s class imbalance was 

addressed by employing a random oversampling approach to 

balance the spam and ham distribution. The results of the 

experiment exhibited impressive outcomes where the models 

achieved 97% and spam and ham identification garnered 

similar performance measures of high precision, recall, and 

F1 scores. The aforementioned spam detection performance 

was quantitatively evaluated through the implementation of a 

confusion matrix and the ROC curve, resulting in an AUC 

measurement of 0.97. The model comparison also yielded 
promising results, with the proposed approach achieving a 6% 

increase span in performance relative to the previous models, 

attributed to its superiority. 

This study aims to enhance the effectiveness of spam 

detection software by integrating multiple datasets for 

training. The developed model can learn rarer spam detection 

patterns with the amalgamated datasets and better capture a 

broader range of varied patterns. Overfitting would also be 

less of a risk with the multiple datasets. We represent model 

training data textually with TF-IDF to translate the spam texts 

into the numerical features required. The models we are 

working with are already demonstrated- SVM, MNB, RF, and 
XGBoost. To alleviate the data class imbalance we employ 

the Class Imbalance with Class Weight methodology to steer 
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the model's attention to the minority (spam) class for 

enhanced misclassification of that class. We hope the model 

will improve spam detection and classification to minimize 

misclassification which is a common issue of models working 

with restricted datasets. 

 

II. METHOD 

Figure 1 illustrates the method flow used in the research on 

Building a Machine Learning Model for Spam Email 
Classification. The process begins with data collection and 

dataset merging to create a more diverse dataset. After that, 

several pre-processing stages are carried out, including 

tokenization, stop word removal, data cleaning, and 

stemming. Next, text vectorization is performed using TF-

IDF and class imbalance handling with class weights. The 

data is then divided into training and testing data. The model 

is trained using various classification algorithms, and 

hyperparameter search is performed with GridSearchCV to 

find the best combination. Finally, model evaluation is 

performed to measure the performance of the built model, and 
the process ends with the finish stage. 

 
 

Figure 1. Flow Diagram 

A. Dataset Preparation 

During the Data Preparation phase, five different datasets 

were integrated, which allowed for greater dataset variability. 
The goal of the integration was to enhance the dataset variety, 

which is an important aspect of developing a model capable 

of accurately classifying spam emails. Following the 

integration, the dataset comprised 19,105 data records, and 

contained two labels spam and non-spam. The distribution of 

the datasets prior to and following integration is shown in 

Table I. Prior to the integration, a considerable class 

imbalance was observed in the smaller dataset, with spam 

class records being significantly fewer than non-spam class 

records. Following integration, the class proportions were 

more evenly distributed, though imbalances were still present 

in the distribution of the merged datasets. This is a critical 

aspect for model performance as it is influenced by 

imbalances in distribution and potential data duplication. 

By having a diverse dataset, the built Machine Learning 

model is expected to be more effective in distinguishing spam 

emails from non-spam emails, as well as improving the 

accuracy and generalization ability of the model on new, 

previously unseen data using GridSearchCV. This process is 
crucial in the data preparation stage, as the quality and 

diversity of the dataset significantly affect the final 

performance of the built classification model. 

TABLE I  

DISTRIBUTION OF DATASETS 

Dataset Amount 

spam.csv [9] 5169 

Dataset_sms_spam_v1.csv 
[10] 

628 

email_spam_indo.csv link 2620 

Spam_ham_dataset.csv link  4993 

Emails.csv link 5695 

B. Pre-Processing 

1) Data Cleaning 

Data Cleaning involves several processes to prepare the 

data for use in model training. Handling missing values or 

empty columns is done by identifying and removing rows 

with incomplete data [11] . This is important to ensure that the 

model only receives valid data and avoids imbalance or 

confusion during the training process. Furthermore, a text 

conversion process is also carried out on all data to avoid 

discrepancies between similar words but with different upper 

and lower case letters, such as the words "Spam" and "spam". 

This step aims to allow the model to recognize these words as 
the same entity without considering the differences in their 

writing format. 

2) Tokenization 

In the Tokenization stage, the email text is broken down 

into smaller units called tokens. Tokenization aims to simplify 

text processing by breaking the text into simpler words or 

phrases, so that the model can more easily analyze and 

understand the information contained therein [12] . This 

tokenization process is carried out using NLTK (Natural 

Language Toolkit) which utilizes the word_tokenize function 
to break the text into words. Each word generated from 

tokenization will be treated as a separate token, which will 

then be processed further. In addition, to ensure consistency, 

all words generated from tokenization are converted to 

lowercase to avoid differences in recognition between the 

same word, such as "Spam" and "spam". This tokenization 

process is an important step in data preparation, because by 

breaking the text into smaller tokens, the model can more 

easily identify relevant patterns and features needed for spam 

email classification. 

https://www.kaggle.com/datasets/gevabriel/indonesian-email-spam
https://www.kaggle.com/code/abdelrahmanali212/mailspamdetection
https://www.kaggle.com/code/aadhivinay/build-spam-filter-identify-spam-e-mails
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3) Stopword 

In the Stopwords Removal stage, words that are considered 

not to have significant meaning or contribution to spam 

classification, known as stop words [13]. Stop words are 
words that often appear in the text, such as conjunctions, 

prepositions, and connecting words, which do not provide 

important information for analysis, for example words like 

"and", "or", "from", and "to". This stop word removal aims to 

minimize noise in the data, so that the model can focus more 

on relevant words, such as more specific and in-depth words 

that can help in the spam classification process. In this study, 

the stop word list used includes stop words from Indonesian 

and English, which are obtained from the NLTK library for 

English and a stop word list adapted for Indonesian. After the 

stop word removal process, the resulting data will be cleaner 

and only focus on important words. 

4) Steaming 

In the Stemming stage, the process is carried out to change 

the words that have been previously processed to their basic 

form [14]. Stemming aims to reduce word variations by 

removing unimportant affixes (prefixes or suffixes), so that 

words with similar meanings can be treated as the same entity. 

For example, words like "berlari" and "lari" will be returned 

to their basic form "lari". This process is carried out using 

Sastrawi for Indonesian and PorterStemmer for English, both 

of which are effective in reducing words to their basic form. 

This stemming is important to ensure that the model is not 
trapped by unnecessary word variations and can focus on 

understanding the main meaning of the text. After the 

stemming process, these simplified words will become 

cleaner and more relevant input for the vectorization stage. 

5) TF-IDF 

In the TF-IDF (Term Frequency-Inverse Document 

Frequency) stage in this study, it is used to convert the 

processed text into a numerical representation that can be 

understood by the machine learning model [15]. After the text 

cleaning stage which includes tokenization, stop word 
removal, and stemming, the next step is to convert the text 

into a vector using TF-IDF. This technique calculates the 

weight of each word based on its frequency in the document 

(Term Frequency) and how important the word is in the entire 

dataset (Inverse Document Frequency). By using TF-IDF, 

words that appear frequently in one document but rarely 

appear in other documents will have a higher weight, while 

words that appear frequently in many documents will get a 

low weight. This process allows the model to focus more on 

relevant words in spam classification, such as "offer", "free", 

or "gift". 

C. Data Split 

In the Data Splitting stage of this study, the dataset is 

divided into two main parts, namely training data and testing 

data [16]. This division process aims to ensure that the model 

can be trained using one part of the data, while the other part 

is used to test its performance after training. In this study, the 

division was carried out with a proportion of 80% for training 

data and 20% for testing data, which is a standard approach in 

machine learning to ensure that the model gets enough data to 

learn, while also being able to be evaluated with data that has 

not been seen before. Data division is done using the 

train_test_split function from the sklearn.model_selection 

library, which randomly splits the dataset while maintaining 
a balanced distribution of labels across both sets. 

D. Class Imbalance with Class Weight 

Handling class imbalance that often occurs in spam 

classification datasets using class imbalance with class weight 

[17]. Class imbalance occurs when the number of samples in 

one class, such as spam emails, is much less than in other 

classes, such as non-spam emails. To overcome this problem, 

class weight is used which aims to give greater weight to the 

minority class (spam) so that the model becomes more 
sensitive to the data [18]. In this case, class weights are 

calculated using the class_weight method from the 

sklearn.utils library, using the balanced parameter to balance 

the classes based on the data distribution. The results of the 

class weight calculation are then applied to the model during 

the training process through the class_weight parameter. By 

giving greater weight to the spam class, the model is expected 

to pay more attention to classification errors in spam emails, 

thereby increasing the accuracy in detecting spam even 

though the amount of data for that class is less. 

E. Classification Algorithm 

1) Support Vector Machine 

Support Vector Machine (SVM) is a machine learning 
algorithm used for classification with a very effective 

approach in handling binary classification problems, such as 

spam email classification [19]. In this study, SVM is used to 

distinguish spam and non-spam emails by utilizing features 

extracted through TF-IDF vectorization. The basic principle 

of SVM is to find a hyperplane that optimally separates data 

from two classes, with the largest margin between the two 

classes [20]. In this case, the spam and non-spam classes are 

separated in such a way that the SVM can classify new emails 

based on the position of the data on the right side of the 

hyperplane. SVM is also very effective in handling high-

dimensional datasets, such as text data that has gone through 
a vectorization process, making it suitable for use in this 

study. In addition, choosing the right kernel, such as linear or 

RBF (Radial Basis Function), is key to improving the model's 

accuracy in detecting relevant patterns in spam emails. Once 

the model is trained, the SVM can be used to predict whether 

an unclassified email belongs to the ham or spam email 

category. In two samples 𝑥 and 𝑥 ′, the radial basis function is 

expressed in equation (1), where ||𝑥 − 𝑥́||2is a free parameter 
that indicates the squared Euclidean distance. 

𝐾(𝑥, 𝑥́) = 𝑒
−

||𝑥−𝑥́||2

2𝜎2  (1) 



236        e-ISSN: 2548-6861 

JAIC Vol. 10, No. 1, February 2026: 232 – 244 

2) Random Forest 

Random Forest is an ensemble algorithm consisting of a 

collection of decision trees used for classification and 

regression [21]. In this study, Random Forest is used to 

classify spam emails by utilizing features generated through 
TF-IDF vectorization. This model works by randomly 

constructing multiple decision trees, where each tree is 

constructed using a random subset of the training data and a 

random subset of the existing features. Each decision tree 

makes its own prediction, and the prediction results from all 

trees are then combined through majority voting to produce 

the final decision. The advantage of Random Forest lies in its 

ability to handle high-dimensional data, such as text data, as 

well as its ability to reduce overfitting that often occurs in a 

single decision tree. In the context of spam email 

classification, Random Forest is able to handle class 

imbalance well and has stable performance even in the 
presence of noise or imperfect data [22]. In classification 

tasks, the final prediction 𝑦̂for a data point 𝑥is determined 

through majority voting among the trees. If 𝑇𝑖(𝑥)is the 

prediction from the th tree 𝑖for data point 𝑥, then the final 

prediction can be formulated using equation (2). 

 

𝑦̂ = 𝑚𝑜𝑑𝑒{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑁𝑇𝑟𝑒𝑒(𝑥)} (2) 

3) Multinominal Naive Bayes 

Multinomial Naive Bayes (MNB) is a probabilistic 

algorithm used for text classification by assuming that the 

features (words) in the text are independent, although in 

reality there may be dependencies between features [23] . In 

the context of spam email classification, MNB utilizes 

conditional probability to model the relationship between 

words in an email and its label (spam or not spam). This 

model assumes that the distribution of words in the spam and 

non-spam classes follows a multinomial distribution, meaning 

each word has a probability of occurring in each class. During 

training, MNB calculates the probability of each word based 

on its distribution in each class, then uses Bayes' Theorem to 
calculate the likelihood that an email belongs to the spam or 

not spam class. In the Multinomial Naive Bayes model, it is 

assumed that each feature 𝑥𝑖is the result of a multinomial 

distribution, meaning that the features are counts of words or 

elements in a category. The probability 𝑃(𝑥𝑖|𝑦)for a word 

𝑥𝑖to be assigned a class 𝑦can be calculated using the 

multinomial distribution formula (3). 

 

𝑃(𝑥𝑖|𝑦) =
𝑛𝑦,𝑥𝑖

+ 𝑎

∑ (𝑛𝑦,𝑘 + 𝑎)𝑘

 (3) 

4) XGBoost 

XGBoost (Extreme Gradient Boosting) is a very popular 

and effective machine learning algorithm for classification 

tasks, including spam email classification. XGBoost is an 
implementation of the gradient boosting algorithm, which 

works by building models iteratively, where each new model 

tries to correct the errors made by the previous model [24] . 

The advantage of XGBoost lies in its ability to handle large 

and complex data, as well as its ability to optimize predictions 

by reducing bias and variance through regularization 

techniques. XGBoost works by building a series of decision 

trees that correct each other's errors, resulting in a more robust 

and accurate model. In spam email classification, XGBoost is 

able to handle class imbalance well and provides excellent 

results in terms of accuracy, precision, and recall. The training 
process begins with the optimization of the first tree, and as 

the model iterates through the trees 𝑡using equation (4). 

 

𝑦𝑖̂ =  ∑ 𝑓𝑘  (𝑥𝑖) =  𝑦̂𝑖
(𝑡−1)

+  𝑓𝑡 (𝑥𝑖)

𝑡

𝑘=1

 (4) 

 
Although GridSearchCV allows you to find the most 

optimal combinations of hyperparameters to improve the 

performance of models, the computational costs are high. 

This is especially true for XGBoost, as its hyperparameter 

tuning takes the most amount of time due to the high amount 

of time it takes to do iterative boosting as well as the tree 

training. In order to improve the boosting hyperparameter 

tuning time, parallel computing was used, which efficiently 

allocated the workload to the different CPU cores. Even 

though the amount of computational time was high, the 

amount of performance gained for the tuned models justified 

the time. 

F. GridSearchCV 

GridSearchCV is a hyperparameter search method used to 

find the best combination of parameters in a machine learning 

model [25] . With GridSearchCV, various values of the 

model's hyperparameters are systematically tested to find the 

configuration that provides the best performance based on a 

predetermined evaluation metric, such as accuracy. In this 

process, the user defines a grid containing the hyperparameter 
values to be tested, such as the kernel in SVM, the number of 

estimators in Random Forest, or the alpha value in Naive 

Bayes Multinomial (MNB). GridSearchCV then trains the 

model with various combinations of hyperparameters in the 

grid, and measures its performance on the test data using 

cross-validation to avoid overfitting. This process allows the 

selection of the model with the most optimal parameters, 

thereby improving the accuracy and generalization of the 

model in classifying spam emails. 

G. Evaluation Model 

The process of assessing model performance in performing 

classification or prediction tasks, usually uses metrics created 

from the confusion matrix [26] . Some common metrics 

applied to evaluate models are accuracy, which measures the 

proportion of correct predictions; precision, which measures 

how many positive predictions are actually positive; recall, 

which measures the model's skill in finding all positive cases; 

and F1-score, which is the harmonic mean score between 
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accuracy and recall. The model's skill in classifying positive 

and negative classes at various thresholds is also often 

evaluated with AUC-ROC (Area Under the Receiver 

Operating Characteristic Curve). 

To assess evaluation models, we turned to 5-fold cross 

validation in order to maximize protection against overfitting. 

Thus, for each fold, 80% of the data was devoted to training 

and 20% was allocated for testing. The final performance 
metric was based on averaging the results of the 5 folds. 

However, in instances where cross validation was omitted, we 

defaulted to a classic train-test split methodology, where 

again, 80% of the data was employed for training and 20% for 

testing. 

 Accuracy 

 Accuracy is an evaluation metric that measures the 

proportion of correct predictions from the total number of 

predictions made by the model. Accuracy is calculated using 

formula (5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

Where: 

TP (True Positive) the number of correct positive 

predictions. 

TN (True Negative) the number of correct negative 

predictions. 
FP (False Positive) is the number of incorrect negative 

predictions. 

FN (False Negative) the number of incorrect positive 

predictions. 

 

 Precision 

Evaluation metric to calculate the level of accuracy of the 

model in classifying positive data, namely how many positive 

predictions are actually positive. Precision is calculated using 

formula (6). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

 Recall 

An evaluation metric that measures how well the model 

detects all positive cases in the dataset. Recall is calculated 

using formula (7). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 F1-Score 

An evaluation metric combining precision and recall to 

provide a more balanced picture of model performance, 

especially when there is an imbalance between the two. The 

F1-Score is calculated as the harmonic mean of precision and 

recall, with formula (8). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

 

 

 AUC-ROC 

The relationship between True Positive Rate (TPR) and 

False Positive Rate (FPR) is plotted using the ROC curve at 

various classification thresholds. In formula (9) to calculate 

TPR. 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

In formula (10) to calculate FPR. 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 (10) 

 
After the ROC curve is drawn, to show how well the model 

distinguishes between positive and negative classes, the AUC 

is calculated by calculating the area under the ROC curve. 

AUC ranges from 0 to 1. AUC = 1 indicates a perfect model 

in classification. AUC = 0.5 indicates a model that is no better 

than random guessing. 

 

III. RESULTS AND DISCUSSION 

A. Class Distribution Dataset 

 
Figure 2. Dataset Class Distribution 

 

Figure 2 shows the class distribution of the final dataset 

resulting from combining four different datasets. This dataset 
includes spam and ham emails in both Indonesian and 

English, with a total of 19,105 samples. This distribution 

shows that the ham class (non-spam emails) is much more 

dominant, with 14,123 samples, while the spam class only has 

4,982 samples. This imbalance between the number of spam 

and ham data reflects a common challenge in spam detection, 

where the spam class is smaller than the ham class. To address 

this imbalance, Class Imbalance with Class Weight will be 

used to give a greater weight to the spam class, making the 

model more sensitive to misclassifications in minority 

classes. 

B. Preprocessing 

In the data cleaning stage, data is cleaned to ensure that 

only valid data is used in model training. This process 
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involves handling missing values by removing rows with 

incomplete data, as well as converting text to lowercase to 

avoid mismatches between similar words, such as "Spam" and 

"spam." Next, in tokenization, email text is broken down into 

smaller word tokens, making it easier for the model to 

understand each text element. After that, a stopword removal 

stage is performed to remove common words such as "and," 

"or," and "the" that do not provide much information in spam 

classification. Finally, a stemming process is used to change 
words with varying forms, such as "mencari" to "cari," to 

ensure that the model only learns root words relevant to spam 

classification. All of these stages produce cleaner, more 

structured text, ready for use in the vectorization stage. 

After the preprocessing stage, the cleaned and processed 

text is converted into a numerical representation using TF-

IDF, which calculates word weights based on their frequency 

in the document and their importance in the entire dataset. The 

TF-IDF results help the model recognize more relevant words 

for spam classification, such as "offer" or "gift." The dataset 

is then divided into training and testing data with a proportion 
of 80% for training and 20% for testing, using the data split 

method. To address the problem of class imbalance, which is 

an imbalance in the amount of data between the spam and ham 

classes, class weighting is applied to give more weight to the 

minority class (spam), making the model more sensitive to 

errors in the fewer spam classes. This process ensures that the 

model is trained with more balanced data, which improves the 

model's generalization ability and accuracy in classifying 

spam emails. 

C. Clean Dataset 

TABLE II  

DATASET BEFORE PREPROCESSING 

No. E-mail Label 

1 : fw : having iris visit london anita, it seems that 
i am going to london next week. please see 
forwarded emails . can you please assist me with 
my travel arrangements . thanks, iris - - - - - 
original message - - - - - from : Kaminski , Vince 
… 

0 

2 : immediate reply needed dear sir, i am dr james 
alabi, the chairman of contract award and review 
committee set up by the federal government of 
nigeria under the new civilian dispensation to 
award new contracts and review…  

1 

3 Ambil tindakan segera atau lewatkan. 003 - 
300299717499832716 Perhatian! Pelanggan 

Nilai # 772 - 00 D 87 "Klaim sistem gratis Anda" 
atau hubungi 1 - 800 - 823 - 2466 Selamat! Anda 
telah dipilih untuk menerima sistem … 

1 

 

A comparison between Table II and Table III reveals 

significant changes in the format and structure of the text. In 

Table II, the email text still contains irrelevant elements such 

as punctuation, sender information, delivery time, and long, 

complex sentences, making it difficult to process further. 

Furthermore, some words in English and Indonesian are still 

connected without a clear separation. 

TABLE III  

DATASET AFTER PREPROCESSING 

No E-mail Label 

1 fw iris visit london anita seem go london next 
week please see forward email please assist travel 
arrangements thank iris origin message Kaminski 
Vince … 

0 

2 immediate reply need dear sir dr jame alabi 
chairman contract award review committee set 
feder govern nigeria new civilian dispens award 
new contract review … 

1 

3 ambil tindakan segera lewatkan perhatian 
pelanggan nilai klaim sistem gratis hubungi 
selamat telah dipilih menerima sistem … 

1 

 

After a preprocessing stage that included tokenization, stop 
word removal, lowercase conversion, and stemming, Table III 

shows a much cleaner and more structured text, with only 

relevant words retained. For example, words like "fw," 

"please," and "thanks" were removed, while important words 

like "iris," "london," and "travel" were retained. This 

demonstrates that the preprocessing process successfully 

streamlined the text by removing unnecessary information 

and focusing on more relevant words for spam classification, 

which is crucial for improving the model's accuracy in 

analyzing spam emails. 

D. Performance Before Tuning of Machine Learning 
Algorithm 

Before hyperparameter tuning with GridSearchCV, the 

performance of the four classification models, SVM, Random 

Forest, MNB, and XGBoost, was visualized with confusion 

matrices shown in Figure 3. This confusion matrix shows the 

models’ ability in predicting spam emails (1) and non-spam 

emails (0). In SVM, the model predicted 2821 instances of the 

negative (non-spam) class and 875 instances of the positive 

(spam) class, and both classes had prediction errors that were 
within the noise. The Random Forest model predicted 2839 

instances of the negative (non-spam) class and 856 instances 

of the positive (spam) class, so the model also had high 

accuracy across both classes. MNB and XGBoost models 

predicted with the same distribution albeit a little less with 

MNB predicting 2766 instances of the negative class and 856 

instances of the positive class, and XGBoost predicting 2796 

instances of the negative class and 767 instances of the 

positive class. The models all predicted well, but the 

confusion matrix illustrates that the models’ ability to predict 

values in the positive (spam) class and thus predict values 
with accuracy in the positive class, needs to be further 

optimized in the next tuning phase. 
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Figure 3. Confusion Matrix Model Before Tuning GridSearchCV 

 

The classification models before hyperparameter tuning 

were SVM, Random Forest, MNB, and XGBoost, and their 

performance metrics were evaluated using Receiver 

Operating Characteristic (ROC) curves (as shown in Figure 

4). ROC curves show the relation between TPR and FPR. 

SVM and MNB models were the most successful as they 

obtained AUC (Area Under Curve) of 0.99, which means they 
had an outstanding performance in distinguishing the spam 

and non-spam classes for the text messages. On the other 

hand, Random Forest and XGBoost models also successfully 

distinguished between spam and non-spam messages as well; 

however their performance was slightly lower (0.98) 

compared to SVM and MNB. Finally, all four models 

distinguished spam messages effectively as evidenced by the 

ROC curves because they were very close to the upper left 

corner of the figure which represents accurate classification 

of spam. 

  

  
Figure 4. ROC Model Before Tuning GridSearchCV 

 

The K-Fold Cross-Validation curves displayed in Figure 5 

depict the outcomes of cross-validation for four classification 

models (SVM, Random Forest, MNB, XGBoost) in the pre-

hyperparameter tuning via GridSearchCV stage. Accuracy for 

each K-Fold Cross-Validation model over the five folds of the 

process is presented in each of the five plots. The highest 

value for the SVM model was in the 3rd fold, with highest 

accuracy of almost 0.974, while the lowest value of accuracy 

was in the 2nd fold with close to 0.966. Fold accuracy over 

the folds of Random Forest model was moderately evenly 

spaced. The highest value of accuracy was the 3rd fold with 

(0.897) while the lowest value was in the 4th fold with 0.892. 
For MNB model, the accuracy fluctuated more with the 

highest in the 4th fold (0.952) and the lowest in the 2nd fold 

(close to 0.944). XGBoost was stable with fold 3 being the 

highest 0.937 and fold 2 being the lowest around 0.933. The 

models before additional tuning provides information on the 

extent of their generalization to the data in each fold. 

 

  

  
 

Figure 5. K-Fold Model Before Tuning GridSearchCV 

 
Figure 6. Performance Model Before Tuning GridSearchCV 

 

Among the four classifiers, Support Vector Machine, 

MNB, Random Forest, and XGBoost, models performance 

based on Precision, Recall, F1 Score, and Accuracy, before 

hyperparameter tuning with the help of GridSearchCV, are 

illustrated in figure 6. Support Vector Machine outperformed 

the rest in terms of Precision (97.22) and Accuracy (94.79), 

albeit with a Recall of 69.74. Although SVM was correct in 
predicting quite a number of correct email, he was not so 
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sensitive on the spam classes. Random Forest, on the other 

hand, also had a Precision of 93.33, albeit dominated by a 

Recall of 60.21. This indicated that while predicting also had 

quite the accuracy, he was not quite as SVM in spam 

detecting. MNB was the opposite in that he had quite the 

number of Recall (sensitivity) with 87.79, albeit Precision 

was lower with 74.82. Thus, he was in a sense more fashion 

of detecting spam, albeit had more falsies in hand when 

predicting ( was a higher false positive prediction). XGBoost 
on the other hand with the same number of 85.60 had a good 

and balanced score in F1 score where the Precision value also 

85.60, Recall of 78.67 thus balancing quite the number of 

metrics. 

E. Performance After Tuning of Machine Learning 
Algorithm 

The SVM, Random Forest, MNB, and XGBoost models 

and their confusion matrices are displayed in Figure 7 and are 

the results for the classifiers after the adaptation of 
hyperparameters and the application of the GridSearchCV 

technique. The performance of the models improved 

substantially in these results as compared to the results before 

tuning. In the SVM model, the amount of erroneous 

predictions that were made in the spam class prediction fell, 

with 888 correct predicted spam (positive) class predictions 

and just 87 incorrect predictions. The positives in the Random 

Forest model were 894 positive class predictions, and 81 were 

negatives, and thus there was significant improvement in this 

model as well. In this case MNB and XGBoost were similar 

and MNB classified 869 spam emails, while XGBoost 891 
spam emails was spam accurate and improved the overall 

before performance standards. The confusion matrices 

indicate that tuning results prediction accuracy overall. 

 

  

  
Figure 7. Confusion Matrix Model After Tuning GridSearchCV 

 

Besides basic metrics like accuracy, precision, recall, or 

F1-score which are useful to understand a model's 

performance, we have also used other metrics more affected 

by class imbalance, such as ROC-AUC and the precision-
recall curve, to evaluate model performance. These metrics, 

in particular, are important for the email spam detection 

problem where the spam class (minority class) is usually less 

represented. As noted in Figure 8 (precision-recall curves), 

the models performed much better post hyperparameter 

tuning, especially in the email spam and non spam 

classification problem. All tuned models ROC-AUC values 

increased, including SVM, Random Forest, MNB, and 

XGBoost, which indicates the models had a better ability to 

classify the positive (spam) and negative (not spam) classes 
thereafter. The tuned models precision-recall curves also 

demonstrated greater sensitivity to the spam class as the post 

tuning models had better precision and recall for the detection 

of spam. 

Figure 8 presents the Receiver Operating Characteristic 

(ROC) curves for the four classification models SVM, 

Random Forest, MNB, and XGBoost post hyperparameter 

tuning using the GridSearchCV method. These ROC curves 

depict the relationship between True Positive Rate (TPR) and 

False Positive Rate (FPR) for the models. All models 

achieved quite an AUC (Area Under Curve) score of 1, thus 
SVM and MNB were the most effective AUC 0.99 and 

capable of detecting spam with the Random Forest and 

XGBoost models performing AUC 0.98 and 0.99, and thus 

able to successfully differentiate spam from non spam. These 

ROC curves, therefore, attest to the fact that hyperparameter 

tuning led to an improvement in model performance and that 

all models were able to achieve spam detection with high 

levels of accuracy. 

 

  

  
Figure 8. ROC Model After Tuning GridSearchCV 

 

Figure 9 displays the results of K-Fold Cross-Validation 

for four classification models, SVM, Random Forest, MNB, 

and XGBoost, following hyperparameter tuning through 

GridSearchCV. The SVM model demonstrates the greatest 

improvement in cross-validation accuracy post tuning. 

Overall, the results suggest improvement in model accuracy 

following hyperparameter tuning. SVM recorded the highest 

accuracy in the 3rd fold (around 0.976) and the lowest in the 
2nd fold (around 0.967), indicating stable but slightly 
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changing performance. Random Forest also demonstrates 

continuous improvement of accuracy as it demonstrates 

consistency with the highest 3rd fold (around 0.972) and 5th 

fold (around 0.968) and falling slightly to 4th at around 0.965. 

The MNB model also displays improvement of accuracy as 

seen in the 4th fold of around 0.958, as XGBoost 

demonstrated accuracy in the 3rd fold of around 0.965, but 

with slightly less performance improvement. Based on the 
results it can be determined to be slightly more stable 

following hyperparameter tuning as the accuracy to classify 

each fold demonstrates more improvement. 

 

  

  
Figure 9. K-Fold Model After Tuning GridSearchCV 

 

In Figure 10, the performances of hyperparameter tuned 
SVM, Random Forest, MNB, and XGBoost classification 

models are compared.  

 
Figure 10. Performance Model After Tuning GridSearchCV 

 

All the models performed well. However, SVM showed 

the best performance overall with the highest Precision of 

97.37 and highest accuracy of 94.12, which denoted that 

the model was able to detect the positive classes with high 

accuracy and was able to generalize robustly as well. 

Random Forest and MNB models performed similarly with 
Random Forest achieving Precision of 91.69 and accuracy 

of 94.12 as compared to MNB which had Precision of 

91.24 with an accuracy of 93.71. XGBoost also performed 

well with Precision of 93.54 and accuracy of 93.54, which 

made the model balanced in recognizing spam and non 

spam classes. The stacking models displayed very high F1 

Scores which showed that hyperparameter tuning was 

effective in improving the model accuracy and spam 

detection efficiency due to the improved balance in the 

models. 

F. Comparison of Accuracy Before and After Tuning on the 
Model 

Table IV compares the results of the four different 

classification models without GridSearchCV hyperparameter 

tuning. According to this table, SVM achieved the highest 

accuracy, 96.73%, of the four models. It also achieved high 

Precision (97.22%), proving that SVM can accurately capture 

spam emails. However, SVM also achieved lower Recall 

(89.74%), so this model is also likely to miss some spam 

emails. For Random Forest, the Precision (98.82%) is higher 
than SVM, but Recall is lower (60.21%), indicating that this 

model is also not sensitive to spam. Out of the other two, 

MNB performed better than XGBoost, having also achieved 

recall that is pretty decent (89.59%), while XGBoost achieved 

Precision (93.88%) and Recall (78.67%) that is also pretty 

decent, but lower than the other two. However, the accuracy 

of the latter two is a little lower than SVM. 

TABLE IV  

COMPARISON OF CLASSIFICATION MODEL PERFORMANCE BEFORE 

GRIDSEARCHCV HYPERPARAMETER 

Performance SVM 
Random 

Forest 
MNB XGBoost 

Accuracy 96.73 89.66 94.79 93.25 

TP 875 587 896 367 

FN 100 388 119 208 

TN 2821 2839 2796 2796 

FP 25 7 80 50 

Precision 97.22 98.82 91.45 93.88 

Recall 89.74 60.21 87.79 78.67 

F1_Score 93.33 74.82 89.59 85.60 

 

After conducting hyperparameter tuning via 

GridSearchCV, all models encountered performance 

enhancements and were documented in Table V. Detecting 

spam became less problematic for the SVM model, as minor 
improvements to sensitivity were evidenced with increases in 

both Recall and accuracy to rates of 91.08% and 97.1%, 

respectively. Improvements in spam detection directed at the 

Random Forest model were also documented as notable, 

where both Recall and accuracy rates were elevated to 91.69% 

and 96.86%, respectively. Other improvements were 

documented in the MNB model as evidenced in the Recall 

increase to 89.13% as well as an F1 Score of 90.52% and 

XGBoost model as evidenced in the Recall increase to 

91.38% as well as an enhanced F1 Score of 93.54%. 

Ultimately, all models performance were elevated with 
respect to improvements in accuracy and hyperparameter 
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tuning via GridSearchCV which allowed for improved 

sensitivity and classification towards spam detection. 

TABLE V  

COMPARISON OF CLASSIFICATION MODEL PERFORMANCE AFTER 

GRIDSEARCHCV HYPERPARAMETER 

Performance SVM 
Random 

Forest 
MNB XGBoost 

Accuracy 97.10 96.86 95.24 96.78 

TP 888 894 869 891 

FN 87 81 106 84 

TN 2822 2807 2770 2807 

FP 24 39 76 39 

Precision 97.37 95.82 91.24 95.81 

Recall 91.08 91.69 89.13 91.38 

F1_Score 94.12 93.71 90.52 93.54 

 

After hyperparameter tuning with GridSearchCV, out of all 

tested models, SVM performed the best. Even though SVM 

had an impressive accuracy of 96.73% prior to tuning, it 

improved to 97.10% after tuning, with Recall also increasing 

to 91.08% from 89.74%. This shows SVM became more 

accurate in predicting spam emails after tuning. Moreover, 

SVM also had after tuning very high Precision of 97.37%, 
showing this model not only made accurate classifications but 

also very effective ones in spam detection. Having an F1 

Score of 94.12%, SVM had one of the best Precision to Recall 

ratios, thereby making it the most ideal model in terms of 

overall sustenance after tuning for spam detection in emails. 

In this research case, the experimental results indicate that 

the various models (MNB, XG Boost, Random Forest, and 

SVM) show different degrees of accuracy improvements 

when hyperparameter tuning is done. A paired t-test 

determined the statistical significance of the gaps left by the 

hyperparameter tuning processes for each of the models. The 
results from the paired t-test indicate that the lack of accuracy 

changes post hyper-parameter tuning for the SVM model was 

statistically insignificant (p = 0.240). This shows that tuning 

largely did not trigger noticeable improvements for this 

model. On the contrary, accuracy improvements for Random 

Forest (p = 1.05e-07), MNB (p = 0.0037), and XG Boost (p = 

3.60e-06) after tuning were statistically significant, and as 

such, it was confirmed that hyperparameter tuning improved 

the model performance. 

Although this study has primarily focused on the 

optimization of spam detection using different machine 

learning algorithms, the developed model has numerous 
potential applications including commercial use. The model 

has the potential to be used in email spam filtering systems 

used by mail servers. If the model is integrated into mail 

servers, email messages can be analyzed on the fly with spam 

message detection prior to user messages arriving at the user 

inboxes. Moreover, the model can be implemented to real-

time spam detection applications such as web-based spam 

filters or email clients to offer real-time message monitoring 

and spam message detection. The model's potential to resist 

class imbalance and learn to detect new spam patterns is 

particularly beneficial for dynamic environments. In practice, 

this would enhance email security and improve the 

communication experience of users. 

G. Perbandingan Metode dan Hasil Terbaik Studi Ini 
dengan Penelitian Lain 

Table VI examines the accuracy of spam detection models 

employing different techniques and algorithms from different 

studies.  

TABLE VI  

COMPARISON OF ACCURACY IN SPAM DETECTION MODELS WITH 

DIFFERENT METHODS AND ALGORITHMS 

Study 

Name 

Method Used Algorithm Used Accuracy 

(%) 

[27] SMOTE XGBoost 96.20 

[28] SMOTE, ROS Naïve Bayes 95.63 ; 95.74 

[29] BERT Logistic 
Regression 

95.95 

[30] SMOTE Ensemble Extra 
Tree 

92.10 

[8] Random 
Oversampling 

Random Forest 97 

This 

Study 

Class Weight SVM 97.10 

 

As per the findings, application of SMOTE (Synthetic 

Minority Oversampling Technique) with XGBoost achieved 
an accuracy of 96.20%, whereas the combination of SMOTE 

and Random Oversampling (ROS) with Naive Bayes attained 

an accuracy of 95.63% to 95.74%. The accuracy achieved by 

the BERT technique + Logistic Regression was 95.95%. In 

contrast, the application of SMOTE with Ensemble Extra 

Tree was only able to achieve an accuracy of 92.10%. 

Random Oversampling with Random Forest recorded an 

accuracy of 97%, which is the highest from that study. Using 

Class Weight technique for the SVM algorithm, this study 

achieved an accuracy of 97.10%, which is a slight 

improvement from the prior model. This shows that although 

different methods and algorithms can yield similar outcomes, 
the SVM with Class Weight model implemented in this study 

achieves a superior outcome, marginally outperforming rival 

systems in the accuracy of spam detection. 

 

IV. CONCLUSION 

This paper illustrates the benefits of using blended datasets 

from multiple sources to enhance predictive accuracy of spam 

email classification models. The model improves its 

generalization to unseen data and adapts to varying patterns 

and noise through blended datasets. With more heterogenous 

datasets, the model improves its spam email classification 
accuracy through expansion of the model feature set. 

Moreover, the technique called Class Imbalance with Class 

Weight, wherein class weights are adjusted to mitigate the 

class imbalance problem commonly seen in spam datasets, 
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was effective. By increasing the spam email class weight, the 

model becomes more sensitive to false negatives, which 

benefits the spam detection capabilities of the model. 

According to the accuracy reached after the best 

combination of the hyperparameters was obtained through the 

use of the GridSearchCV, the best performing SVM model 

reached an accuracy of 97.10% and a Recall of 91.08% which 

implies this model was able to detect spam with a greater 
degree of proficiency. Random Forest also improved in Recall 

with a value of 91.69% and an accuracy of 96.86%. MNB and 

XGBoost also showed stable performance with MNB 

achieving a high value of 90.52% in the F1 Score while 

XGBoost obtained Recall with a value of 91.38%. These 

results show that the classification models can achieve greater 

accuracy and sensitivity in spam email detection when a 

combination of different datasets and the correct class 

balancing methods are used. Furthermore, despite the 

promising results obtained from dataset merging and class 

weight adjustment, there are several important limitations in 
this study. First, while the datasets used in this research offer 

a broad range of spam messages, they may not fully represent 

the diversity and evolution of real-world spam tactics. As 

spam evolves rapidly, the model's generalization ability could 

decrease when exposed to new types of spam that were not 

included in the training data. Additionally, this study focused 

solely on traditional machine learning models, while deep 

learning models like LSTM (Long Short-Term Memory) and 

RNNs (Recurrent Neural Networks) could potentially yield 

better performance on more complex data, such as sequences 

of words in spam emails. 
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