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High-dimensional genomic datasets (p > n) pose persistent challenges for predictive
modeling and biomarker-oriented feature selection due to multicollinearity and
instability of selected feature sets under resampling. Although Elastic Net is widely
used to address correlated predictors via combined L1/L2 regularization, the
practical role of the L1/L2 mixing ratio (a) is often treated as a secondary tuning
choice driven primarily by predictive accuracy. This study investigates how varying
a shapes the trade-off among selection stability, solution sparsity, and predictive
performance along the Elastic Net regularization path. Experiments were conducted
using the publicly available METABRIC breast cancer cohort (n = 1,964) with
21,113 gene expression features and a binary overall survival status outcome.
Logistic regression with Elastic Net penalty was fitted across a grid of a values, with
the regularization strength (1) selected by cross-validation. Feature selection stability
was evaluated under repeated resampling using the Jaccard index, Dice coefficient,
and Adjusted Rand Index (ARI), while sparsity was summarized by the average
number of non-zero coefficients; predictive performance was assessed using AUC,
accuracy, and F1-score. Results show a monotonic decline in stability as a increases:
o = 0.2 yields the highest stability (Jaccard 0.324, Dice 0.487, ARI 0.434), whereas
LASSO (o = 1.0) produces the lowest stability (Jaccard 0.278, Dice 0.431, ARI
0.400). In contrast, predictive performance varies only marginally across o (AUC
0.696-0.704; accuracy 0.666-0.671; F1-score 0.738-0.742), while sparsity changes
substantially (average selected features 110-204). Coefficient path analyses further
illustrate abrupt shrinkage under LASSO versus smoother, group-preserving
shrinkage under Elastic Net, consistent with improved reproducibility under lower-
to-moderate o. Frequency-of-selection analysis highlights genes repeatedly selected
across resampling, supporting interpretability of stable configurations without
claiming causal biomarker validity. Overall, the findings demonstrate that a is a
substantive modeling choice that materially affects stability and sparsity even when
accuracy is similar, motivating stability-aware tuning for high-dimensional genomic
prediction and reproducible feature discovery.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

The rapid advancement of high-throughput technologies in
biomedical and genomic research has led to the routine
generation of high-dimensional datasets, in which the number
of measured variables far exceeds the number of observations.
Such data structures pose fundamental challenges for

statistical modeling and machine learning, as conventional
estimation methods often become unreliable due to
overfitting, noise accumulation, and spurious correlations.
These difficulties are widely associated with the curse of
dimensionality, which motivates the need for regularization
and feature selection strategies that impose parsimony and
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enable the recovery of meaningful low-dimensional signals
from complex data spaces [1]. These challenges are
particularly pronounced in biomedical applications, where
simulation studies have shown that sample size and
correlation structure strongly influence variable screening
performance, even for widely used regularization methods
[2].

In genomic applications, high dimensionality is frequently
accompanied by strong correlations among predictors. These
correlations arise from genuine biological mechanisms,
including gene co-regulation, shared molecular pathways, and
interaction networks. While biologically informative, such
correlation structures complicate variable selection by
amplifying instability, whereby small perturbations in
training data, sampling schemes, or parameter choices result
in markedly different subsets of selected features. Both
theoretical and empirical studies identify strong correlation as
a principal driver of inconsistency in high-dimensional
variable selection, emphasizing its detrimental impact on
model reliability and interpretability [3], [4]. Complementary
theoretical insights highlight how tuning parameters influence
convergence rates, bias, and variable selection consistency in
ultra-high dimensional settings [5].

Regularization-based approaches have become essential
tools for addressing these challenges. Among them, the Least
Absolute Shrinkage and Selection Operator (LASSO) has
been widely adopted due to its ability to induce sparsity and
perform variable selection simultaneously. However, LASSO
exhibits well-documented limitations in the presence of
multicollinearity. When predictors are correlated, LASSO
tends to select a single variable from a correlated group,
ignoring others that may be equally informative. This
behavior can lead to unstable selection outcomes and reduce
the reproducibility of results [3]. Despite these drawbacks,
LASSO continues to be extensively used in biomedical
research, including clinical and epidemiological studies,
underscoring the importance of critically evaluating its
behavior in high-dimensional settings [6].

Elastic Net regularization was introduced to address these
limitations by combining L1 and L2 penalties within a unified
framework. The inclusion of an L2 component allows Elastic
Net to better handle correlated predictors by promoting a
grouping effect, in which correlated variables tend to be
selected together. This property enhances model robustness
and stability relative to purely L1-based approaches.
Consequently, Elastic Net remains a relevant and widely
applied method in contemporary high-dimensional
applications. For example, in geological and geochemical
prospectivity mapping, Elastic Net demonstrated superior
prediction accuracy and robustness compared to LASSO,
particularly under correlated predictor structures [7]. Similar
findings have been reported in comparative studies across
datasets of varying complexity, where feature selection
stability was shown to degrade under data perturbations even
when classification accuracy remained relatively unchanged

[8].

Although predictive accuracy is often emphasized in model
evaluation, a growing body of literature argues that accuracy
alone is insufficient for assessing the quality of feature
selection methods. Feature selection stability, defined as the
consistency of selected feature sets under perturbations of the
data or modeling process, has emerged as a critical dimension
of model reliability. Empirical evidence shows that models
can maintain stable classification accuracy while exhibiting
substantial variability in selected features, revealing a
disconnect between predictive performance and selection
consistency [9]. In genomic research, where selected features
are frequently interpreted as candidate biomarkers, such
instability undermines reproducibility and scientific validity.

To quantify feature selection stability, various similarity-
based and agreement-based metrics have been proposed,
including the Jaccard index, Dice coefficient, and Adjusted
Rand Index (ARI). These measures assess the overlap or
agreement between feature subsets obtained from different
perturbations. However, empirical studies demonstrate that
stability metrics can behave differently depending on dataset
characteristics and feature selection methods. Investigations
across multiple gene expression datasets reveal high
variability in stability values, highlighting the complexity of
stability assessment [10]. Moreover, critical analyses indicate
that no single stability metric satisfies all desirable theoretical
properties, motivating ongoing methodological refinement
[11]. The ARI, originally developed for clustering validation,
has also been shown to be applicable for evaluating agreement
in supervised classification and feature selection contexts
[12].

Beyond metric development, methodological research has
focused on improving stability through algorithmic
innovations. Stability selection is a prominent framework that
enhances feature selection by repeated subsampling and
aggregation, while providing theoretical control over the
expected number of false positives. However, conventional
stability selection methods are often conservative, resulting in
the selection of only a small number of features. Recent
advances propose integrating stability paths rather than
maximizing over them, yielding substantially stronger bounds
on false positives and improving true positive recovery
without increasing computational cost. These methods have
been demonstrated on simulated data and real cancer datasets,
highlighting their practical relevance [13].

Stability-oriented approaches have also been extended to
other modeling frameworks. For instance, stability selection
has been applied to regularized structural equation modeling
to mitigate high false positive rates and inconsistent selection
results associated with LASSO-based regularization.
Simulation studies and empirical applications indicate that
stability selection can substantially reduce false positives and
improve the correctness of selected model components [14].
Although these studies focus on different model classes, they
underscore a common theme: stability is a fundamental
concern across regularized modeling approaches.
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Adaptive regularization methods provide another avenue
for improving stability and performance. Adaptive LASSO
and adaptive Elastic Net introduce data-driven weights into
the penalty term, allowing the degree of regularization to vary
across predictors. Studies on high-dimensional sparse data
with multicollinearity show that the choice of adaptive
weights and their power order strongly influences predictive
accuracy and selection behavior. Simulation and real-data
analyses demonstrate that certain adaptive Elastic Net
configurations outperform standard regularization methods in
correlated settings [15]. Complementary findings in adaptive
LASSO-based sparse logistic regression further emphasize
the importance of tuning choices, including the selection of
initial estimators, in determining model performance under
multicollinearity [16].

Ensemble feature selection methods have also gained
attention as a means of improving stability by aggregating
results across multiple selectors or perturbations. Empirical
studies on high-dimensional microarray datasets indicate that
ensemble approaches, particularly voting-based methods,
yield higher stability and competitive or improved accuracy
compared to traditional feature selection algorithms [17].
Additional evidence from high-dimensional genetic datasets
confirms that ensemble-based feature selection consistently
outperforms single-method approaches in terms of stability,
particularly when evaluated using similarity-based metrics
such as the Jaccard index [18]. In biomedical contexts such as
Alzheimer’s disease biomarker discovery, ensemble feature
selection combined with data-driven thresholding has been
shown to produce more stable and reproducible feature sets
without sacrificing predictive performance [19]. These results
suggest that stability improvements can often be achieved
without compromising accuracy.

The stability of feature selection is also influenced by data
characteristics and pipeline design. Simulation studies
examining filter-based feature selection methods reveal that
stability is negatively affected by factors such as
measurement error, limited sample size, and class imbalance.
Moreover, different stability metrics respond differently to
these data properties, with some measures exhibiting greater
variability than others [20]. These findings highlight the
importance of evaluating stability within the context of the
entire modeling pipeline rather than attributing it solely to the
selection algorithm.

The growing emphasis on stability aligns with broader
concerns about reproducibility and replicability in
computational research. Surveys on reproducible research
identify complex computational workflows and overreliance
on performance metrics as contributing factors to
reproducibility challenges across scientific disciplines [21]. In

this context, stability analysis provides an essential
complement to accuracy-based evaluation, particularly in
high-dimensional biomedical applications where
reproducibility is critical.

Despite extensive methodological development, an
important research gap remains. Although Elastic Net is a
well-established regularization method, the specific impact of
the L1/L2 mixing ratio on the trade-off between solution
sparsity and feature selection stability has not been
systematically examined, particularly along the regularization
path. Many applied studies prioritize predictive performance,
potentially overlooking how tuning the mixing parameter
influences stability and reproducibility. Given evidence that
correlation structure and tuning choices strongly affect
selection behavior [3], [4], [5], a systematic investigation of
the L1/L2 ratio is both timely and necessary.

Accordingly, this study aims to evaluate the impact of the
L1/L2 ratio on selection stability and solution sparsity along
the Elastic Net regularization path in high-dimensional
genomic data. By jointly assessing predictive performance,
stability metrics, and sparsity, this work aligns with recent
stability-aware methodological perspectives and contributes
to the development of genomic models that are not only
predictive but also reproducible, interpretable, and reliable for
downstream biomarker discovery.

Il. METHOD

A. Data

The data used in this study were obtained from the
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC), a publicly available genomic
dataset that provides gene expression profiles and curated
clinical information for breast cancer research. The dataset
comprises 1,964 breast cancer patients and includes mMRNA
expression data measured using Illumina microarray
platforms, along with associated clinical annotations.

The dataset is distributed under the Open Database
License (ODbL) version 1.0, which permits use, sharing, and
modification of the data with appropriate attribution. All
patient records are fully anonymized; therefore, no additional
ethical approval was required. All analyses were conducted
using Python 3.12, with the NumPy, pandas, scikit-learn, and
matplotlib libraries. Fixed random seeds were used
throughout the analysis to ensure reproducibility. Table |
summarizes the structure of the variables used in this study.
The predictor space consists exclusively of high-dimensional
gene expression features, while the clinical survival status
serves as the response variable.
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TABLE |
DATA STRUCTURE AND VARIABLES OF THE METABRIC DATASET

Data Domain Feature Category

Indicator

Continuous expression values for 21,113

mMRNA Expression Profiles genes  measured using  lllumina
microarray platforms
Groups of genes exhibiting strong

Gene Expression Data (G1) Correlated Gene Sets

correlations due to co-regulation

High-Dimensional Feature Space

Predictor space characterized by p > n

Clinical Outcome (01) Overall Survival Status

Binary outcome (Deceased, Living)

B. Elastic Net Model

Elastic Net regularization was employed within a logistic
regression  framework to  simultaneously  perform
classification and feature selection. The regression
coefficients B € RP were estimated by minimizing the
following penalized negative log-likelihood function [3],
[22]:

£ =~ Iylog() + (1~ y)log(t — )] +2(allgl, + 1) (1)
=

where
1

P=1y exp(—X;8) ’
A > 0 is the regularization parameter, and
a € [0,1]controls the L1/L2 mixing ratio.

The L1 penalty promotes sparsity, while the L2 penalty
stabilizes coefficient estimation under multicollinearity,
making Elastic Net particularly suitable for correlated high-
dimensional genomic data [4], [22].

C. Regularization Path and L1/L2 Ratio

To investigate the impact of the L1/L2 ratio, the Elastic
Net mixing parameter was varied over a predefined grid
a€{0.1,0.2,...,1.0}. For each value of «, the optimal
regularization strength A was selected using cross-validation
based on the minimum mean cross-validated 10SS (A,),
following standard practice in high-dimensional regularized
regression [5]. This procedure yields a regularization path
along which changes in coefficient sparsity, feature selection
stability, and predictive performance can be systematically
analyzed. By analyzing the entire regularization path, this
framework enables systematic examination of how varying
the balance between L1 and L2 penalties influences solution
sparsity, feature selection stability, and predictive
performance

D. Feature Selection Stability

For each resampling iteration r, the selected feature set was
defined as:

50 ={j:p7 = 0}

Feature selection stability was evaluated using three

complementary metrics commonly used in genomic
studies[10], [20]
1) Jaccard Index
|5(r) n 5(5)|

J(s®,5) = 5T0SO| 2)

2) Dice Coefficient
2[s™ ns®
D(S(r),s(s)) = | | (3)

S| + 5G|
3) Adjusted Rand Index (ARI)

The ARI measures agreement between two feature
selection partitions while correcting for chance agreement
[12]. For each value of «a, stability scores were obtained by
averaging pairwise comparisons across all resampling runs.

E. Solution Sparsity
Solution sparsity for a given a was defined as the
number of non-zero coefficients:

R
1
Sparsity(a) = EZ|S(”| 4
r=1

where R denotes the total number of resampling iterations.
Averaging across resampling runs ensures that sparsity
reflects the typical model complexity rather than a single
realization [6].

F. Predictive Performance Evaluation

Predictive performance was assessed on the held-out test
sets using standard classification metrics:

e Area Under the ROC Curve (AUC),

e Accuracy,

e Fl-score.

Performance metrics were averaged across resampling runs
to obtain robust estimates [15].

G. Trade-off Analysis
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For each value of «, the following quantities were jointly
evaluated:

1. Predictive performance,

2. Feature selection stability,

3. Solution sparsity.
This multi-criteria analysis enables identification of L1/L2
ratios that balance accuracy, stability, and interpretability,
consistent with recent stability-aware methodological
frameworks [13]

H. Analysis Procedure
The overall analysis procedure consists of the following

steps:

Data Preprocessing &
Standardization

I

Elastic Net Model Fitting
(Grid of «)

!

Cross-validated Selection
of A

l

Repeated Resampling
(Stability & Rabustness
Assessment)

I11. RESULTS AND DISCUSSION

This section presents and interprets the empirical findings
regarding the effect of varying the L1/L2 mixing ratio («) in
Elastic Net regularization on feature selection stability,
predictive performance, and biological interpretability. The
analysis was conducted on the METABRIC dataset,
consisting of high-dimensional gene expression profiles from
1,964 breast cancer patients. Four representative values of «
were examined—0.2, 0.5, 0.8, and 1.0—corresponding to
increasing dominance of the L1 penalty, with a =1.0
representing the LASSO model.

A. Feature Selection Stability

Feature selection stability was evaluated using three
complementary similarity metrics: Jaccard Index, Dice
Coefficient, and Adjusted Rand Index (ARI). Table II
summarizes the average stability scores obtained across
repeated 5-fold cross-validation for each value of a.

TABLE Il
FEATURE SELECTION STABILITY ACROSS @ VALUES
Model alpha (a) Jaccard Dice ARI
Elastic Net a=02 0.324 0.487 0.434
Elastic Net a=0.5 0.291 0.447 0.411
Elastic Net a=0.8 0.285  0.440 0.408
LASSO a=1.0 0.278 0431 0.400

/

Stability Computation
(Jaccard, Dice, ARI)

\;

l

Sparsity Evaluation

P

Predictive Performance
Assessment

R

Joint Trade-off Analysis
and Interpretation

I

Figure 1. Research Flowchart

Figure 1 presents the overall research workflow for
evaluating the impact of the L1/L2 ratio along the Elastic Net
regularization path. The analysis starts with data
preprocessing and standardization, followed by Elastic Net
model fitting across a grid of mixing parameters (a) and
cross-validated selection of the regularization parameter (1).
The procedure is embedded within repeated resampling to
assess robustness and feature selection stability. Stability
metrics, solution sparsity, and predictive performance are
then evaluated in parallel and integrated through a joint trade-
off analysis to support interpretation of reliable and
interpretable models.

A clear monotonic decline in stability is observed as a
increases. Models with stronger L2 components (a = 0.2)
consistently yield higher agreement across resampling
iterations, while LASSO (a = 1.0) exhibits the lowest
stability. This pattern empirically confirms the grouping
effect of Elastic Net, whereby correlated genes tend to be
selected together, reducing sensitivity to small perturbations
in the training data. Importantly, these results demonstrate
that sparser solutions do not necessarily imply more reliable
feature selection. Although LASSO enforces aggressive
sparsity, it does so at the cost of reproducibility, a critical
limitation in genomic biomarker discovery where consistency
across studies is essential.

Although the stability metrics show a consistent
decreasing trend as a increases, the absolute values provide
additional insight into the inherent difficulty of stable
biomarker selection in high-dimensional gene expression
settings. For example, the Jaccard scores (approximately
0.28-0.32) indicate only moderate overlap between selected
gene sets across resampling iterations, even in the most stable
configuration. This suggests that while Elastic Net improves
reproducibility relative to LASSO, the feature selection
problem remains intrinsically sensitive to perturbations due to
the p > n structure and correlated predictor blocks.
Importantly, the consistent ordering across Jaccard, Dice, and
ARI indicates that the stability conclusion is not metric-
dependent, strengthening the robustness of the inference. At
the same time, the differences in scale across metrics highlight
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that stability should be interpreted comparatively (across «)
rather than as an absolute “good/bad” threshold.

B. Predictive Performance and Sparsity Trade-off

A notable finding is that predictive performance (AUC,
accuracy, Fl1-score) varies only slightly across a, whereas
stability and sparsity change more substantially. This pattern
is consistent with the fact that, in high-dimensional settings
with correlated predictors, multiple alternative feature subsets
can vyield similar classification performance because
correlated genes may encode overlapping predictive signal.
Consequently, accuracy-driven selection may identify models
that are “predictively equivalent” but biologically
inconsistent in terms of selected biomarkers. This reinforces
the argument that stability should be included as a
complementary criterion whenever interpretability and
reproducible feature identification are desired. Predictive
performance was evaluated using repeated train—test splits,
and average metrics are reported in Table 11l alongside the
average number of selected features.

TABLE III
PREDICTIVE PERFORMANCE AND SPARSITY ACROSS @ VALUES
Model a '\A/IB%? Accuracy F1-score 4 Fﬁggﬁres
Elastic Net 0.2 0.704 0.670 0.741 204
ElasticNet 0.5 0.699 0.671 0.742 139
Elastic Net 0.8 0.697 0.666 0.738 110
LASSO 1.0 0.696 0.668 0.739 119

The results reveal a non-trivial trade-off between model
complexity and predictive behavior. The model with a =
0.2 achieves the highest AUC, suggesting superior global
class separation across all thresholds. This is consistent with
its broader feature inclusion, which may capture complex
multigenic patterns relevant to survival outcomes.

In contrast, the model with « = 0.5 yields the highest F1-
score while using substantially fewer features. This indicates
a more balanced trade-off between precision and recall,
particularly relevant in clinical risk stratification where
correct identification of high-risk patients (DECEASED) is
critical. The reduced feature set at « = 0.5 may also mitigate
overfitting, leading to more stable decision boundaries.

Notably, predictive performance remains relatively stable
across different a values, whereas sparsity and stability vary
considerably. This decoupling underscores the limitation of
relying solely on accuracy-based metrics when model
interpretability and reproducibility are key objectives. To
complement the summary results in Table I11, the predictive
behavior along the regularization path was further examined
using a heatmap visualization of AUC values across different
values of a and A. The heatmap (Figure 2) shows broad
regions where AUC values remain comparable, indicating
that similar predictive performance can be achieved across a
wide range of parameter configurations. For each o, AUC was
evaluated over a common grid of A values along the

regularization path, and the resulting AUC surface is
summarized as a heatmap. This visualization is descriptive
and complements the CV-selected A,,,;, by showing that near-
optimal AUC is achieved across a broad A range.

Heatiap Perfortia Elastic Net [AUG)

Figure 2. Heatmap of AUC values along the Elastic Net regularization
path for different values of the L1/L2 mixing ratio o

Importantly, no sharply isolated maximum is observed,
particularly for lower to moderate values of o, where extended
performance plateaus appear along the regularization path.
This pattern suggests that predictive accuracy is relatively
insensitive to the exact choice of a and A within these regions.
As a result, accuracy-based tuning alone provides limited
guidance for selecting the L1/L2 mixing ratio, since many
configurations yield nearly identical AUC values while
differing substantially in sparsity and feature selection
stability.

C. Coefficient Paths and Regularization Dynamics

While increasing a generally shifts the model toward
stronger sparsity, the observed number of selected features is
not strictly monotonic across the reported configurations
(e.g., the average number of features under LASSO is not
smaller than under all Elastic Net settings). This can occur
because the final sparsity is jointly determined by the mixing
ratio a and the cross-validated regularization strength A. In
practice, different a values can lead cross-validation to favor
different regions of the regularization path, resulting in
feature counts that do not follow a simple monotonic pattern.
This observation further supports the importance of analyzing
regularization dynamics rather than assuming that “higher a”
necessarily implies fewer selected features in the tuned
model. To further examine the effect of regularization on
coefficient shrinkage and sparsity, coefficient paths were
analyzed separately for the LASSO and Elastic Net models as
functions of the regularization parameter A. Therefore,
sparsity comparisons across o should be interpreted at their
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respective CV-selected operating points rather than at
matched A values.

788 Cogfficient Path - Lasso 17 0

02 04

Coefficients
0

04

06

T T T T
- 5 -4 3 2

Log Lambda

Figure 3. Coefficient paths of LASSO

Figure 3 presents the coefficient paths for the LASSO
model. As Aincreases, a large proportion of coefficients
rapidly shrink to zero, reflecting the strong sparsity-inducing
nature of the L1 penalty. This abrupt elimination of predictors
indicates that LASSO enforces variable selection
aggressively, often retaining only a small subset of features.
While such sparsity can enhance interpretability, it also
increases sensitivity to data perturbations, particularly in the
presence of correlated predictors.

1086 sasCoefficient Pafh - Elastic Net (2=0.5) 1

Coefficients

04

T T T T
- 5 -4 2 2
Log Lambda

Figure 4. Coefficient paths of the Elastic Net model with o= 0.5

In contrast, Figure 4 illustrates the coefficient paths for the
Elastic Net model with @ = 0.5. Compared to LASSO,
coefficient trajectories exhibit smoother and more gradual
shrinkage as 4 increases. Many coefficients remain non-zero
over a wider range of regularization strengths, highlighting
the stabilizing influence of the L2 component. This behavior

is consistent with the grouping effect of Elastic Net, which
allows correlated genes to enter or leave the model together
rather than being eliminated individually.

The visual contrast between Figures 3 and 4 underscores
a fundamental difference in regularization dynamics. While
LASSO prioritizes sparsity through abrupt coefficient
suppression, Elastic Net balances sparsity and stability by
moderating shrinkage across correlated features. These
dynamics help explain the empirical findings observed in
earlier sections, where Elastic Net models achieved higher
feature selection stability without substantial loss in
predictive performance.

D. Frequency of Feature

Interpretation

The frequency-of-selection analysis provides an
interpretable bridge between stability metrics and biological
plausibility. While pairwise similarity measures summarize
agreement at the feature-set level, selection frequency
highlights genes that persistently appear across resampling
iterations. In biomarker discovery contexts, this perspective is
particularly valuable because it prioritizes candidates that are
not only predictive but also robust to data perturbations. The
higher recurrence rates observed under Elastic Net are
consistent with its grouped selection behavior, suggesting that
Elastic Net preferentially retains coherent sets of correlated
genes rather than isolated single-gene effects.

To further examine feature-level robustness, the
frequency with which individual genes were selected across
repeated resampling iterations was analyzed. Figure 5
displays the selection frequencies of the top 30 most
frequently selected genes under the LASSO model and the
Elastic Net model (o = 0.5). This visualization provides a
direct comparison of how often each gene is retained across
resampling runs, complementing the set-level stability
metrics reported earlier.

wiodel [l Losso [l Eesticne

S I IS F T FIF TS TS OESEF T FEFFFsFTF
& £ 84 FFgeFdsyy FE A

Figure 5. Selection frequency of the top 30 most frequently selected genes
under LASSO and Elastic Net (o = 0.5) across repeated resampling
iterations.

Selection and Biological
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As shown in Figure 5, genes selected under the Elastic Net
model exhibit consistently higher selection frequencies
compared to those selected under LASSO. This pattern
indicates improved robustness of individual gene selection
under Elastic Net, which aligns with its grouping effect in the
presence of correlated predictors. In contrast, LASSO
demonstrates greater variability in gene inclusion, reflecting
its tendency to arbitrarily select single representatives from
correlated gene groups.

Several biologically well-established breast cancer—
related genes emerge among the most frequently selected
features under the Elastic Net model, including FOXC1,
MKI167, CCNB1, and PLK1. FOXCL1 (Forkhead Box C1) is
strongly  associated  with  epithelial-to-mesenchymal
transition, cellular motility, and aggressive tumor phenotypes,
particularly in basal-like and triple-negative breast cancer
subtypes, which are characterized by poor prognosis [23].
MKI67, encoding the Ki-67 proliferation antigen, is widely
used in clinical practice as a marker of tumor proliferation and
grade, reinforcing the clinical plausibility of its recurrent
selection. CCNB1 (Cyclin B1) and PLK1 (Polo-like kinase 1)
play central roles in G2/M cell-cycle regulation and mitotic
progression, and their coordinated activity reflects
dysregulation of proliferative programs commonly observed
in aggressive cancers [24]. Collectively, these genes
participate in interconnected regulatory pathways rather than
acting independently, supporting the relevance of grouped
feature selection in capturing biologically meaningful gene
modules. Such organization is consistent with the reported
role of Forkhead Box transcription factors, particularly
FOXM1, in coordinating proliferative and cell-cycle
programs in cancer [25], [26].

Importantly, the recurrent selection of these genes does
not imply causal biomarker validity. Rather, their consistent
appearance supports the biological plausibility of the
proposed stability-aware modeling framework. The inclusion
of an L2 component in Elastic Net promotes grouped
selection of co-regulated genes, enabling the model to capture
biologically meaningful gene modules rather than arbitrarily
selecting isolated predictors. Such behavior is particularly
advantageous in genomic studies, where disease mechanisms
are driven by interacting gene networks rather than single-
gene effects.

Overall, this frequency-based analysis complements the
stability metrics and coefficient path results by demonstrating
that Elastic Net yields not only more stable feature sets but
also more biologically interpretable and reproducible
candidate biomarkers. These findings reinforce the value of
incorporating stability-aware regularization strategies in high-
dimensional genomic survival prediction and biomarker-
oriented analyses.

Practical guidance for choosing a under different objectives.

The results provide explicit practical guidance for
selecting the Elastic Net mixing ratio according to different
modeling objectives. Rather than treating a as a purely

technical tuning parameter, its selection should be aligned
with downstream goals related to prediction, interpretability,
and reproducibility.

a. Stability-oriented biomarker discovery

When reproducibility and consistent feature identification
are primary objectives, lower to moderate values of a
(approximately 0.2-0.5) are recommended. In this range,
the L2 component remains sufficiently strong to preserve
grouped selection of correlated genes, resulting in higher
feature selection stability across resampling iterations.

b. Compact predictive models with balanced performance

For applications that require a reduced feature set while
maintaining balanced classification performance (e.g.,
F1-score), intermediate values of a (around 0.5) offer a
principled compromise between sparsity and stability.

c. Extreme sparsity and minimal feature sets

If interpretability is narrowly defined as selecting the
smallest possible number of features, values of o close to
1.0 (LASSO) may be attractive. However, the results
indicate that such configurations come at the cost of
reduced selection stability and lower reproducibility of
selected features.

Overall, these findings underscore that the choice of a should
be explicitly aligned with the intended use case—prediction-
focused versus biomarker-focused—rather than driven solely
by predictive accuracy.

E. Methodological Implications

The findings of this study carry several important
methodological implications for high-dimensional genomic
modeling and feature selection using regularized regression.
First, the results demonstrate that the L1/L2 mixing ratio in
Elastic Net should not be treated as a secondary tuning
parameter optimized solely for predictive performance. Prior
methodological work has established that regularization
choices directly influence sparsity and selection behavior,
particularly under multicollinearity [3], [22]. The present
study extends this understanding by empirically showing that
the mixing parameter fundamentally shapes the trade-off
between sparsity, stability, and interpretability along the
regularization path.

Second, the observed decoupling between predictive
performance and feature selection stability highlights a
critical limitation of accuracy-driven model selection. Models
with comparable AUC, accuracy, and F1-score can yield
substantially different feature sets across resampling
iterations. This finding reinforces earlier evidence that
predictive accuracy alone is insufficient for evaluating feature
selection methods when reproducibility is a primary objective
[9], [10]. In genomic biomarker discovery, where selected
features are often interpreted as biologically meaningful
candidates, instability across resampling or studies can
severely undermine scientific validity.

JAIC Vol. 10, No. 1, February 2026: 273 — 283



JAIC

e-1SSN: 2548-6861 281

Third, the coefficient path analysis provides practical
insight into the regularization dynamics underlying these
trade-offs. The abrupt coefficient suppression observed under
LASSO contrasts sharply with the smoother shrinkage and
grouped selection behavior of Elastic Net. Such behavior is
consistent with previous findings that LASSO exhibits
instability in the presence of correlated predictors, often
selecting arbitrary representatives from correlated groups [4].
In contrast, the grouping effect induced by the L2 component
of Elastic Net promotes more reproducible selection patterns
without eliminating sparsity entirely, thereby offering a
principled compromise between interpretability and
robustness.

Finally, the integration of stability analysis, sparsity
evaluation, and predictive assessment along the regularization
path represents a generalizable modeling framework that
extends beyond the specific dataset analyzed in this study.
Similar challenges related to high dimensionality, correlation
structure, and reproducibility arise in other omics domains,
including transcriptomics, proteomics, and metabolomics.
Emphasizing stability-aware and path-wise analysis aligns
with broader concerns regarding reproducibility and
transparency in computational research [21]. By shifting
emphasis from single-model optimization to systematic
evaluation across the regularization path, the proposed
approach contributes to more robust, interpretable, and
reproducible regularized modeling practices.

Statistical interpretation of stability and regularization
behavior.

From a statistical perspective, the observed stability
patterns reflect the variability of the estimated support under
perturbations of the data-generating process. In high-
dimensional settings, the selected feature set should be
regarded as a random object, and stability metrics such as
Jaccard, Dice, and ARI provide empirical estimates of the
variability of this support estimator. The decoupling between
predictive performance and stability observed in this study
highlights a fundamental distinction between risk
minimization and support recovery: cross-validation
optimizes predictive risk but does not control the variance of
the selected support.

The L1/L2 mixing ratio plays a central role by modifying
the geometry of the penalized likelihood. While LASSO
induces sharp corners that favor aggressive sparsity, this
geometry amplifies sensitivity to perturbations under
correlated predictors, particularly when theoretical conditions
for selection consistency are violated. In contrast, the
inclusion of an L2 component smooths the penalization
landscape, reducing abrupt coefficient thresholding and
stabilizing support recovery. Importantly, the realized
sparsity is jointly determined by the mixing ratio and the
cross-validated regularization strength, underscoring that o
should be interpreted as a structural parameter governing
stability rather than a mere sparsity control.

These findings reinforce the need for stability-aware
regularization strategies in high-dimensional inference, where
reproducible feature selection is often as important as
predictive accuracy.

F. Limitations

This study focuses on a single benchmark cohort
(METABRIC) and a single outcome definition (overall
survival status), which may limit direct generalizability to
other genomic cohorts or clinical endpoints. In addition,
feature selection was defined based on non-zero coefficients,
which can be sensitive to numerical thresholds and
optimization tolerance in high-dimensional settings.
Although frequently selected genes were discussed to support
biological plausibility, systematic pathway enrichment
analysis and external validation were beyond the scope of this
study and represent important directions for future work.

While the empirical analysis is restricted to a linear
modeling framework and a single dataset, the observed
stability patterns align with well-established theoretical
properties of Elastic Net regularization. In particular, the
monotonic decline in feature selection stability with
increasing a reflects the reduced influence of the L2 penalty,
which is known to promote grouped selection under
correlated predictor structures. As such, the qualitative
relationship between the L1/L2 mixing ratio and selection
stability is expected to extend to other high-dimensional
genomic settings characterized by strong correlations among
features.

From a computational perspective, the proposed
framework involves repeated resampling, cross-validated
tuning of the regularization parameter, and evaluation across
multiple values of the L1/L2 mixing ratio. In high-
dimensional settings with tens of thousands of features, this
design increases runtime and memory requirements, which
may limit scalability in large-scale genomic studies or
resource-constrained research environments. Although the
current analysis is computationally feasible for the
METABRIC cohort, applying the framework to larger cohorts
or denser resampling schemes may require parallelization,
warm-start strategies along the regularization path, or
preliminary feature screening to improve efficiency. Future
work will explicitly report computational time and resource
usage to hetter characterize the practical cost of stability-
aware regularization.

Nevertheless, the magnitude of stability gains and the
optimal choice of a may vary depending on dataset-specific
factors, including correlation structure, signal-to-noise ratio,
outcome definition, and sample size. Future work will extend
this framework to additional genomic cohorts, alternative
endpoints, and non-linear modeling approaches to further
assess the external consistency of the observed stability—
sparsity trade-offs.
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V. CONCLUSION

This study examined the impact of the L1/L2 mixing ratio
along the Elastic Net regularization path on feature selection
stability, sparsity, and predictive performance in high-
dimensional genomic data. Using the METABRIC breast
cancer dataset, the analysis demonstrated that variation in the
mixing parameter o leads to systematic and interpretable
differences in model behavior that are not captured by
predictive accuracy alone.

The results show that lower values of a, corresponding to
a stronger L2 component, consistently improve feature
selection stability, while LASSO-dominated models produce
more aggressive sparsity at the cost of reproducibility.
Importantly, predictive performance metrics such as AUC,
accuracy, and F1-score remain relatively stable across a wide
range of a values. This decoupling between predictive
performance and selection stability highlights the limitation
of accuracy-driven model selection when the primary
objective includes reliable and interpretable feature
identification.

Analysis of coefficient paths further revealed fundamental
differences in regularization dynamics between LASSO and
Elastic Net. LASSO induces abrupt coefficient suppression,
whereas Elastic Net exhibits smoother shrinkage and grouped
selection of correlated genes. These dynamics explain why
intermediate L1/L2 ratios, particularly moderate values of a,
provide a favorable balance between sparsity, stability, and
predictive performance.

From a biological perspective, the frequent selection of
well-established breast cancer—related genes such as FOXC1,
MKI167, CCNB1, and PLKZ1 supports the interpretability and
translational relevance of the proposed framework. The
ability of Elastic Net to retain co-regulated gene sets enhances
confidence in the robustness of identified biomarkers and
aligns with the network-driven nature of genomic regulation.

Overall, this study emphasizes that the L1/L2 mixing ratio
should be regarded as a substantive modeling choice rather
than a secondary tuning parameter. By integrating stability
analysis, sparsity evaluation, and predictive assessment along
the regularization path, the proposed approach advances
stability-aware modeling practices and supports the
development of more reliable, interpretable, and reproducible
genomic prediction models.
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