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 High-dimensional genomic datasets (𝑝 > 𝑛) pose persistent challenges for predictive 

modeling and biomarker-oriented feature selection due to multicollinearity and 

instability of selected feature sets under resampling. Although Elastic Net is widely 

used to address correlated predictors via combined L1/L2 regularization, the 
practical role of the L1/L2 mixing ratio (α) is often treated as a secondary tuning 

choice driven primarily by predictive accuracy. This study investigates how varying 

α shapes the trade-off among selection stability, solution sparsity, and predictive 

performance along the Elastic Net regularization path. Experiments were conducted 

using the publicly available METABRIC breast cancer cohort (n = 1,964) with 

21,113 gene expression features and a binary overall survival status outcome. 

Logistic regression with Elastic Net penalty was fitted across a grid of α values, with 

the regularization strength (λ) selected by cross-validation. Feature selection stability 

was evaluated under repeated resampling using the Jaccard index, Dice coefficient, 

and Adjusted Rand Index (ARI), while sparsity was summarized by the average 

number of non-zero coefficients; predictive performance was assessed using AUC, 
accuracy, and F1-score. Results show a monotonic decline in stability as α increases: 

α = 0.2 yields the highest stability (Jaccard 0.324, Dice 0.487, ARI 0.434), whereas 

LASSO (α = 1.0) produces the lowest stability (Jaccard 0.278, Dice 0.431, ARI 

0.400). In contrast, predictive performance varies only marginally across α (AUC 

0.696–0.704; accuracy 0.666–0.671; F1-score 0.738–0.742), while sparsity changes 

substantially (average selected features 110–204). Coefficient path analyses further 

illustrate abrupt shrinkage under LASSO versus smoother, group-preserving 

shrinkage under Elastic Net, consistent with improved reproducibility under lower-

to-moderate α. Frequency-of-selection analysis highlights genes repeatedly selected 

across resampling, supporting interpretability of stable configurations without 

claiming causal biomarker validity. Overall, the findings demonstrate that α is a 

substantive modeling choice that materially affects stability and sparsity even when 
accuracy is similar, motivating stability-aware tuning for high-dimensional genomic 

prediction and reproducible feature discovery. 

Keywords: 

Elastic Net, 

LASSO, 

High-Dimensional Data, 

Feature Selection Stability, 

Sparsity, 

Regularization Path. 

 

    
This is an open access article under the CC–BY-SA license. 

 

I. INTRODUCTION 

The rapid advancement of high-throughput technologies in 

biomedical and genomic research has led to the routine 

generation of high-dimensional datasets, in which the number 
of measured variables far exceeds the number of observations. 

Such data structures pose fundamental challenges for 

statistical modeling and machine learning, as conventional 

estimation methods often become unreliable due to 

overfitting, noise accumulation, and spurious correlations. 

These difficulties are widely associated with the curse of 

dimensionality, which motivates the need for regularization 

and feature selection strategies that impose parsimony and 
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enable the recovery of meaningful low-dimensional signals 

from complex data spaces [1]. These challenges are 

particularly pronounced in biomedical applications, where 

simulation studies have shown that sample size and 

correlation structure strongly influence variable screening 

performance, even for widely used regularization methods 

[2].  

In genomic applications, high dimensionality is frequently 

accompanied by strong correlations among predictors. These 
correlations arise from genuine biological mechanisms, 

including gene co-regulation, shared molecular pathways, and 

interaction networks. While biologically informative, such 

correlation structures complicate variable selection by 

amplifying instability, whereby small perturbations in 

training data, sampling schemes, or parameter choices result 

in markedly different subsets of selected features. Both 

theoretical and empirical studies identify strong correlation as 

a principal driver of inconsistency in high-dimensional 

variable selection, emphasizing its detrimental impact on 

model reliability and interpretability [3], [4]. Complementary 
theoretical insights highlight how tuning parameters influence 

convergence rates, bias, and variable selection consistency in 

ultra-high dimensional settings [5]. 

Regularization-based approaches have become essential 

tools for addressing these challenges. Among them, the Least 

Absolute Shrinkage and Selection Operator (LASSO) has 

been widely adopted due to its ability to induce sparsity and 

perform variable selection simultaneously. However, LASSO 

exhibits well-documented limitations in the presence of 

multicollinearity. When predictors are correlated, LASSO 

tends to select a single variable from a correlated group, 

ignoring others that may be equally informative. This 
behavior can lead to unstable selection outcomes and reduce 

the reproducibility of results [3]. Despite these drawbacks, 

LASSO continues to be extensively used in biomedical 

research, including clinical and epidemiological studies, 

underscoring the importance of critically evaluating its 

behavior in high-dimensional settings [6]. 

Elastic Net regularization was introduced to address these 

limitations by combining L1 and L2 penalties within a unified 

framework. The inclusion of an L2 component allows Elastic 

Net to better handle correlated predictors by promoting a 

grouping effect, in which correlated variables tend to be 
selected together. This property enhances model robustness 

and stability relative to purely L1-based approaches. 

Consequently, Elastic Net remains a relevant and widely 

applied method in contemporary high-dimensional 

applications. For example, in geological and geochemical 

prospectivity mapping, Elastic Net demonstrated superior 

prediction accuracy and robustness compared to LASSO, 

particularly under correlated predictor structures [7]. Similar 

findings have been reported in comparative studies across 

datasets of varying complexity, where feature selection 

stability was shown to degrade under data perturbations even 

when classification accuracy remained relatively unchanged 
[8]. 

Although predictive accuracy is often emphasized in model 

evaluation, a growing body of literature argues that accuracy 

alone is insufficient for assessing the quality of feature 

selection methods. Feature selection stability, defined as the 

consistency of selected feature sets under perturbations of the 

data or modeling process, has emerged as a critical dimension 

of model reliability. Empirical evidence shows that models 

can maintain stable classification accuracy while exhibiting 

substantial variability in selected features, revealing a 
disconnect between predictive performance and selection 

consistency [9]. In genomic research, where selected features 

are frequently interpreted as candidate biomarkers, such 

instability undermines reproducibility and scientific validity. 

To quantify feature selection stability, various similarity-

based and agreement-based metrics have been proposed, 

including the Jaccard index, Dice coefficient, and Adjusted 

Rand Index (ARI). These measures assess the overlap or 

agreement between feature subsets obtained from different 

perturbations. However, empirical studies demonstrate that 

stability metrics can behave differently depending on dataset 
characteristics and feature selection methods. Investigations 

across multiple gene expression datasets reveal high 

variability in stability values, highlighting the complexity of 

stability assessment [10]. Moreover, critical analyses indicate 

that no single stability metric satisfies all desirable theoretical 

properties, motivating ongoing methodological refinement 

[11]. The ARI, originally developed for clustering validation, 

has also been shown to be applicable for evaluating agreement 

in supervised classification and feature selection contexts 

[12]. 

Beyond metric development, methodological research has 

focused on improving stability through algorithmic 
innovations. Stability selection is a prominent framework that 

enhances feature selection by repeated subsampling and 

aggregation, while providing theoretical control over the 

expected number of false positives. However, conventional 

stability selection methods are often conservative, resulting in 

the selection of only a small number of features. Recent 

advances propose integrating stability paths rather than 

maximizing over them, yielding substantially stronger bounds 

on false positives and improving true positive recovery 

without increasing computational cost. These methods have 

been demonstrated on simulated data and real cancer datasets, 
highlighting their practical relevance [13]. 

Stability-oriented approaches have also been extended to 

other modeling frameworks. For instance, stability selection 

has been applied to regularized structural equation modeling 

to mitigate high false positive rates and inconsistent selection 

results associated with LASSO-based regularization. 

Simulation studies and empirical applications indicate that 

stability selection can substantially reduce false positives and 

improve the correctness of selected model components [14]. 

Although these studies focus on different model classes, they 

underscore a common theme: stability is a fundamental 

concern across regularized modeling approaches. 
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Adaptive regularization methods provide another avenue 

for improving stability and performance. Adaptive LASSO 

and adaptive Elastic Net introduce data-driven weights into 

the penalty term, allowing the degree of regularization to vary 

across predictors. Studies on high-dimensional sparse data 

with multicollinearity show that the choice of adaptive 

weights and their power order strongly influences predictive 

accuracy and selection behavior. Simulation and real-data 
analyses demonstrate that certain adaptive Elastic Net 

configurations outperform standard regularization methods in 

correlated settings [15]. Complementary findings in adaptive 

LASSO-based sparse logistic regression further emphasize 

the importance of tuning choices, including the selection of 

initial estimators, in determining model performance under 

multicollinearity [16]. 

Ensemble feature selection methods have also gained 

attention as a means of improving stability by aggregating 

results across multiple selectors or perturbations. Empirical 

studies on high-dimensional microarray datasets indicate that 
ensemble approaches, particularly voting-based methods, 

yield higher stability and competitive or improved accuracy 

compared to traditional feature selection algorithms [17]. 

Additional evidence from high-dimensional genetic datasets 

confirms that ensemble-based feature selection consistently 

outperforms single-method approaches in terms of stability, 

particularly when evaluated using similarity-based metrics 

such as the Jaccard index [18]. In biomedical contexts such as 

Alzheimer’s disease biomarker discovery, ensemble feature 

selection combined with data-driven thresholding has been 

shown to produce more stable and reproducible feature sets 

without sacrificing predictive performance [19]. These results 
suggest that stability improvements can often be achieved 

without compromising accuracy. 

The stability of feature selection is also influenced by data 

characteristics and pipeline design. Simulation studies 

examining filter-based feature selection methods reveal that 

stability is negatively affected by factors such as 

measurement error, limited sample size, and class imbalance. 

Moreover, different stability metrics respond differently to 

these data properties, with some measures exhibiting greater 

variability than others [20]. These findings highlight the 

importance of evaluating stability within the context of the 
entire modeling pipeline rather than attributing it solely to the 

selection algorithm. 

The growing emphasis on stability aligns with broader 

concerns about reproducibility and replicability in 

computational research. Surveys on reproducible research 

identify complex computational workflows and overreliance 

on performance metrics as contributing factors to 

reproducibility challenges across scientific disciplines [21]. In 

this context, stability analysis provides an essential 

complement to accuracy-based evaluation, particularly in 

high-dimensional biomedical applications where 

reproducibility is critical. 

Despite extensive methodological development, an 

important research gap remains. Although Elastic Net is a 

well-established regularization method, the specific impact of 

the L1/L2 mixing ratio on the trade-off between solution 
sparsity and feature selection stability has not been 

systematically examined, particularly along the regularization 

path. Many applied studies prioritize predictive performance, 

potentially overlooking how tuning the mixing parameter 

influences stability and reproducibility. Given evidence that 

correlation structure and tuning choices strongly affect 

selection behavior [3], [4], [5], a systematic investigation of 

the L1/L2 ratio is both timely and necessary. 

Accordingly, this study aims to evaluate the impact of the 

L1/L2 ratio on selection stability and solution sparsity along 

the Elastic Net regularization path in high-dimensional 
genomic data. By jointly assessing predictive performance, 

stability metrics, and sparsity, this work aligns with recent 

stability-aware methodological perspectives and contributes 

to the development of genomic models that are not only 

predictive but also reproducible, interpretable, and reliable for 

downstream biomarker discovery. 

II. METHOD  

A. Data 

The data used in this study were obtained from the 

Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC), a publicly available genomic 

dataset that provides gene expression profiles and curated 

clinical information for breast cancer research. The dataset 

comprises 1,964 breast cancer patients and includes mRNA 

expression data measured using Illumina microarray 
platforms, along with associated clinical annotations.  

The dataset is distributed under the Open Database 

License (ODbL) version 1.0, which permits use, sharing, and 

modification of the data with appropriate attribution. All 

patient records are fully anonymized; therefore, no additional 

ethical approval was required. All analyses were conducted 

using Python 3.12, with the NumPy, pandas, scikit-learn, and 

matplotlib libraries. Fixed random seeds were used 

throughout the analysis to ensure reproducibility. Table I 

summarizes the structure of the variables used in this study. 

The predictor space consists exclusively of high-dimensional 
gene expression features, while the clinical survival status 

serves as the response variable. 
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TABLE I 

DATA STRUCTURE AND VARIABLES OF THE METABRIC DATASET 

Data Domain Feature Category Indicator 

Gene Expression Data (G1) 

mRNA Expression Profiles 

Continuous expression values for 21,113 

genes measured using Illumina 

microarray platforms 

Correlated Gene Sets 
Groups of genes exhibiting strong 

correlations due to co-regulation 

High-Dimensional Feature Space Predictor space characterized by 𝑝 ≫ 𝑛 

Clinical Outcome (O1) Overall Survival Status Binary outcome (Deceased, Living) 

B. Elastic Net Model 

Elastic Net regularization was employed within a logistic 

regression framework to simultaneously perform 

classification and feature selection. The regression 

coefficients 𝛽 ∈  ℝ𝑝 were estimated by minimizing the 

following penalized negative log-likelihood function [3], 

[22]: 

ℒ(𝛽) = −
1

𝑛
∑[𝑦𝑖 log(𝑝𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖̂)] + 𝜆 (𝛼‖𝛽‖1 +

1 − 𝛼

2
‖𝛽‖2

2)

𝑛

𝑖=1

      (1) 

where 

𝑝𝑖̂ =
1

1 + exp(−𝑋𝑖𝛽)
  ,                               

𝜆 > 0 is the regularization parameter, and 

𝛼 ∈ [0,1]controls the L1/L2 mixing ratio. 

The L1 penalty promotes sparsity, while the L2 penalty 

stabilizes coefficient estimation under multicollinearity, 

making Elastic Net particularly suitable for correlated high-
dimensional genomic data [4], [22]. 

C. Regularization Path and L1/L2 Ratio 

To investigate the impact of the L1/L2 ratio, the Elastic 

Net mixing parameter was varied over a predefined grid 

α∈{0.1,0.2,…,1.0}. For each value of 𝛼, the optimal 

regularization strength 𝜆 was selected using cross-validation 

based on the minimum mean cross-validated loss (𝜆min), 

following standard practice in high-dimensional regularized 

regression [5]. This procedure yields a regularization path 

along which changes in coefficient sparsity, feature selection 

stability, and predictive performance can be systematically 

analyzed. By analyzing the entire regularization path, this 

framework enables systematic examination of how varying 

the balance between L1 and L2 penalties influences solution 

sparsity, feature selection stability, and predictive 
performance 

D. Feature Selection Stability 

For each resampling iteration 𝑟, the selected feature set was 

defined as: 

𝑆(𝑟) = {𝑗: 𝛽𝑗
(𝑟)

≠ 0} 

Feature selection stability was evaluated using three 
complementary metrics commonly used in genomic 

studies[10], [20] 

1) Jaccard Index 

𝐽(𝑆(𝑟) , 𝑆(𝑠)) =
|𝑆(𝑟) ∩ 𝑆(𝑠)|

|𝑆(𝑟) ∪ 𝑆(𝑠)|
                        (2) 

2) Dice Coefficient 

𝐷(𝑆(𝑟) , 𝑆(𝑠)) =
2|𝑆(𝑟) ∩ 𝑆(𝑠)|

|𝑆(𝑟)| + |𝑆(𝑠)|
                        (3) 

3) Adjusted Rand Index (ARI) 

The ARI measures agreement between two feature 

selection partitions while correcting for chance agreement 

[12]. For each value of 𝛼, stability scores were obtained by 
averaging pairwise comparisons across all resampling runs. 

E. Solution Sparsity 

Solution sparsity for a given 𝛼 was defined as the 

number of non-zero coefficients:  

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝛼) =
1

𝑅
∑|𝑆(𝑟)|

𝑅

𝑟=1

                                     (4) 

where 𝑅 denotes the total number of resampling iterations. 
Averaging across resampling runs ensures that sparsity 

reflects the typical model complexity rather than a single 

realization [6]. 

F. Predictive Performance Evaluation 

Predictive performance was assessed on the held-out test 

sets using standard classification metrics: 

 Area Under the ROC Curve (AUC), 

 Accuracy, 

 F1-score. 

Performance metrics were averaged across resampling runs 
to obtain robust estimates [15]. 

G. Trade-off Analysis 
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For each value of 𝛼, the following quantities were jointly 

evaluated: 

1. Predictive performance, 

2. Feature selection stability, 

3. Solution sparsity. 

This multi-criteria analysis enables identification of L1/L2 

ratios that balance accuracy, stability, and interpretability, 
consistent with recent stability-aware methodological 

frameworks [13] 

H. Analysis Procedure 

The overall analysis procedure consists of the following 

steps: 

 
Figure 1. Research Flowchart 

Figure 1 presents the overall research workflow for 

evaluating the impact of the L1/L2 ratio along the Elastic Net 

regularization path. The analysis starts with data 

preprocessing and standardization, followed by Elastic Net 

model fitting across a grid of mixing parameters (𝛼) and 

cross-validated selection of the regularization parameter (𝜆). 
The procedure is embedded within repeated resampling to 

assess robustness and feature selection stability. Stability 

metrics, solution sparsity, and predictive performance are 

then evaluated in parallel and integrated through a joint trade-

off analysis to support interpretation of reliable and 

interpretable models. 

III. RESULTS AND DISCUSSION 
 

This section presents and interprets the empirical findings 

regarding the effect of varying the L1/L2 mixing ratio (𝛼) in 
Elastic Net regularization on feature selection stability, 

predictive performance, and biological interpretability. The 

analysis was conducted on the METABRIC dataset, 

consisting of high-dimensional gene expression profiles from 

1,964 breast cancer patients. Four representative values of 𝛼 

were examined—0.2, 0.5, 0.8, and 1.0—corresponding to 

increasing dominance of the L1 penalty, with 𝛼 = 1.0 

representing the LASSO model. 

A. Feature Selection Stability 

Feature selection stability was evaluated using three 

complementary similarity metrics: Jaccard Index, Dice 

Coefficient, and Adjusted Rand Index (ARI). Table II 

summarizes the average stability scores obtained across 

repeated 5-fold cross-validation for each value of 𝛼. 

TABLE II 

FEATURE SELECTION STABILITY ACROSS 𝛼  VALUES 

Model alpha (⍺) Jaccard Dice ARI 

Elastic Net α = 0.2 0.324 0.487 0.434 

Elastic Net α = 0.5 0.291 0.447 0.411 

Elastic Net α = 0.8 0.285 0.440 0.408 

LASSO α = 1.0 0.278 0.431 0.400 

A clear monotonic decline in stability is observed as 𝛼 

increases. Models with stronger L2 components (𝛼 = 0.2) 

consistently yield higher agreement across resampling 

iterations, while LASSO (𝛼 = 1.0) exhibits the lowest 
stability. This pattern empirically confirms the grouping 

effect of Elastic Net, whereby correlated genes tend to be 

selected together, reducing sensitivity to small perturbations 

in the training data. Importantly, these results demonstrate 

that sparser solutions do not necessarily imply more reliable 

feature selection. Although LASSO enforces aggressive 

sparsity, it does so at the cost of reproducibility, a critical 

limitation in genomic biomarker discovery where consistency 

across studies is essential. 

Although the stability metrics show a consistent 

decreasing trend as 𝛼 increases, the absolute values provide 

additional insight into the inherent difficulty of stable 

biomarker selection in high-dimensional gene expression 

settings. For example, the Jaccard scores (approximately 

0.28–0.32) indicate only moderate overlap between selected 
gene sets across resampling iterations, even in the most stable 

configuration. This suggests that while Elastic Net improves 

reproducibility relative to LASSO, the feature selection 

problem remains intrinsically sensitive to perturbations due to 

the 𝑝 ≫ 𝑛 structure and correlated predictor blocks. 

Importantly, the consistent ordering across Jaccard, Dice, and 

ARI indicates that the stability conclusion is not metric-

dependent, strengthening the robustness of the inference. At 

the same time, the differences in scale across metrics highlight 
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that stability should be interpreted comparatively (across 𝛼) 

rather than as an absolute “good/bad” threshold. 

B. Predictive Performance and Sparsity Trade-off 

A notable finding is that predictive performance (AUC, 

accuracy, F1-score) varies only slightly across 𝛼, whereas 

stability and sparsity change more substantially. This pattern 

is consistent with the fact that, in high-dimensional settings 

with correlated predictors, multiple alternative feature subsets 

can yield similar classification performance because 

correlated genes may encode overlapping predictive signal. 

Consequently, accuracy-driven selection may identify models 

that are “predictively equivalent” but biologically 

inconsistent in terms of selected biomarkers. This reinforces 
the argument that stability should be included as a 

complementary criterion whenever interpretability and 

reproducible feature identification are desired. Predictive 

performance was evaluated using repeated train–test splits, 

and average metrics are reported in Table III alongside the 

average number of selected features. 

TABLE III 

PREDICTIVE PERFORMANCE AND SPARSITY ACROSS 𝛼  VALUES 

Model 𝜶 
Mean  

AUC 
Accuracy F1-score 

Avg.  

# Features 

Elastic Net 0.2 0.704 0.670 0.741 204 

Elastic Net 0.5 0.699 0.671 0.742 139 

Elastic Net 0.8 0.697 0.666 0.738 110 

LASSO 1.0 0.696 0.668 0.739 119 

The results reveal a non-trivial trade-off between model 

complexity and predictive behavior. The model with 𝛼 =
0.2  achieves the highest AUC, suggesting superior global 

class separation across all thresholds. This is consistent with 

its broader feature inclusion, which may capture complex 

multigenic patterns relevant to survival outcomes.  

In contrast, the model with 𝛼 = 0.5 yields the highest F1-

score while using substantially fewer features. This indicates 

a more balanced trade-off between precision and recall, 

particularly relevant in clinical risk stratification where 

correct identification of high-risk patients (DECEASED) is 

critical. The reduced feature set at 𝛼 = 0.5 may also mitigate 

overfitting, leading to more stable decision boundaries. 

Notably, predictive performance remains relatively stable 

across different 𝛼 values, whereas sparsity and stability vary 

considerably. This decoupling underscores the limitation of 

relying solely on accuracy-based metrics when model 

interpretability and reproducibility are key objectives. To 

complement the summary results in Table III, the predictive 

behavior along the regularization path was further examined 

using a heatmap visualization of AUC values across different 
values of α and λ. The heatmap (Figure 2) shows broad 

regions where AUC values remain comparable, indicating 

that similar predictive performance can be achieved across a 

wide range of parameter configurations. For each α, AUC was 

evaluated over a common grid of λ values along the 

regularization path, and the resulting AUC surface is 

summarized as a heatmap. This visualization is descriptive 

and complements the CV-selected 𝜆min  by showing that near-

optimal AUC is achieved across a broad λ range. 

 
Figure 2. Heatmap of AUC values along the Elastic Net regularization 

path for different values of the L1/L2 mixing ratio α 

 

Importantly, no sharply isolated maximum is observed, 

particularly for lower to moderate values of α, where extended 

performance plateaus appear along the regularization path. 
This pattern suggests that predictive accuracy is relatively 

insensitive to the exact choice of α and λ within these regions. 

As a result, accuracy-based tuning alone provides limited 

guidance for selecting the L1/L2 mixing ratio, since many 

configurations yield nearly identical AUC values while 

differing substantially in sparsity and feature selection 

stability. 

 

C. Coefficient Paths and Regularization Dynamics 

While increasing 𝛼 generally shifts the model toward 
stronger sparsity, the observed number of selected features is 

not strictly monotonic across the reported configurations 

(e.g., the average number of features under LASSO is not 

smaller than under all Elastic Net settings). This can occur 

because the final sparsity is jointly determined by the mixing 

ratio 𝛼 and the cross-validated regularization strength 𝜆. In 

practice, different 𝛼 values can lead cross-validation to favor 
different regions of the regularization path, resulting in 

feature counts that do not follow a simple monotonic pattern. 

This observation further supports the importance of analyzing 

regularization dynamics rather than assuming that “higher 𝛼” 

necessarily implies fewer selected features in the tuned 

model. To further examine the effect of regularization on 

coefficient shrinkage and sparsity, coefficient paths were 

analyzed separately for the LASSO and Elastic Net models as 

functions of the regularization parameter 𝜆. Therefore, 
sparsity comparisons across α should be interpreted at their 
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respective CV-selected operating points rather than at 

matched λ values. 

 

Figure 3. Coefficient paths of LASSO 

Figure 3 presents the coefficient paths for the LASSO 

model. As 𝜆 increases, a large proportion of coefficients 

rapidly shrink to zero, reflecting the strong sparsity-inducing 

nature of the L1 penalty. This abrupt elimination of predictors 

indicates that LASSO enforces variable selection 

aggressively, often retaining only a small subset of features. 

While such sparsity can enhance interpretability, it also 

increases sensitivity to data perturbations, particularly in the 

presence of correlated predictors. 

 
Figure 4. Coefficient paths of the Elastic Net model with α = 0.5 

In contrast, Figure 4 illustrates the coefficient paths for the 

Elastic Net model with 𝛼 = 0.5. Compared to LASSO, 

coefficient trajectories exhibit smoother and more gradual 

shrinkage as 𝜆 increases. Many coefficients remain non-zero 

over a wider range of regularization strengths, highlighting 

the stabilizing influence of the L2 component. This behavior 

is consistent with the grouping effect of Elastic Net, which 

allows correlated genes to enter or leave the model together 

rather than being eliminated individually. 

The visual contrast between Figures 3 and 4 underscores 

a fundamental difference in regularization dynamics. While 

LASSO prioritizes sparsity through abrupt coefficient 

suppression, Elastic Net balances sparsity and stability by 

moderating shrinkage across correlated features. These 

dynamics help explain the empirical findings observed in 

earlier sections, where Elastic Net models achieved higher 

feature selection stability without substantial loss in 

predictive performance. 

D. Frequency of Feature Selection and Biological 

Interpretation 

The frequency-of-selection analysis provides an 

interpretable bridge between stability metrics and biological 

plausibility. While pairwise similarity measures summarize 

agreement at the feature-set level, selection frequency 

highlights genes that persistently appear across resampling 

iterations. In biomarker discovery contexts, this perspective is 

particularly valuable because it prioritizes candidates that are 

not only predictive but also robust to data perturbations. The 
higher recurrence rates observed under Elastic Net are 

consistent with its grouped selection behavior, suggesting that 

Elastic Net preferentially retains coherent sets of correlated 

genes rather than isolated single-gene effects. 

To further examine feature-level robustness, the 

frequency with which individual genes were selected across 

repeated resampling iterations was analyzed. Figure 5 

displays the selection frequencies of the top 30 most 

frequently selected genes under the LASSO model and the 

Elastic Net model (α = 0.5). This visualization provides a 

direct comparison of how often each gene is retained across 

resampling runs, complementing the set-level stability 
metrics reported earlier.

 
Figure 5. Selection frequency of the top 30 most frequently selected genes 

under LASSO and Elastic Net (α = 0.5) across repeated resampling 

iterations. 
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As shown in Figure 5, genes selected under the Elastic Net 

model exhibit consistently higher selection frequencies 

compared to those selected under LASSO. This pattern 

indicates improved robustness of individual gene selection 

under Elastic Net, which aligns with its grouping effect in the 

presence of correlated predictors. In contrast, LASSO 

demonstrates greater variability in gene inclusion, reflecting 

its tendency to arbitrarily select single representatives from 

correlated gene groups. 
Several biologically well-established breast cancer–

related genes emerge among the most frequently selected 

features under the Elastic Net model, including FOXC1, 

MKI67, CCNB1, and PLK1. FOXC1 (Forkhead Box C1) is 

strongly associated with epithelial-to-mesenchymal 

transition, cellular motility, and aggressive tumor phenotypes, 

particularly in basal-like and triple-negative breast cancer 

subtypes, which are characterized by poor prognosis [23]. 

MKI67, encoding the Ki-67 proliferation antigen, is widely 

used in clinical practice as a marker of tumor proliferation and 

grade, reinforcing the clinical plausibility of its recurrent 
selection. CCNB1 (Cyclin B1) and PLK1 (Polo-like kinase 1) 

play central roles in G2/M cell-cycle regulation and mitotic 

progression, and their coordinated activity reflects 

dysregulation of proliferative programs commonly observed 

in aggressive cancers [24]. Collectively, these genes 

participate in interconnected regulatory pathways rather than 

acting independently, supporting the relevance of grouped 

feature selection in capturing biologically meaningful gene 

modules. Such organization is consistent with the reported 

role of Forkhead Box transcription factors, particularly 

FOXM1, in coordinating proliferative and cell-cycle 

programs in cancer [25], [26]. 
Importantly, the recurrent selection of these genes does 

not imply causal biomarker validity. Rather, their consistent 

appearance supports the biological plausibility of the 

proposed stability-aware modeling framework. The inclusion 

of an L2 component in Elastic Net promotes grouped 

selection of co-regulated genes, enabling the model to capture 

biologically meaningful gene modules rather than arbitrarily 

selecting isolated predictors. Such behavior is particularly 

advantageous in genomic studies, where disease mechanisms 

are driven by interacting gene networks rather than single-

gene effects. 
Overall, this frequency-based analysis complements the 

stability metrics and coefficient path results by demonstrating 

that Elastic Net yields not only more stable feature sets but 

also more biologically interpretable and reproducible 

candidate biomarkers. These findings reinforce the value of 

incorporating stability-aware regularization strategies in high-

dimensional genomic survival prediction and biomarker-

oriented analyses. 
 

Practical guidance for choosing 𝛼 under different objectives. 

The results provide explicit practical guidance for 

selecting the Elastic Net mixing ratio according to different 

modeling objectives. Rather than treating α as a purely 

technical tuning parameter, its selection should be aligned 

with downstream goals related to prediction, interpretability, 

and reproducibility. 

a. Stability-oriented biomarker discovery 

When reproducibility and consistent feature identification 

are primary objectives, lower to moderate values of α 

(approximately 0.2–0.5) are recommended. In this range, 

the L2 component remains sufficiently strong to preserve 

grouped selection of correlated genes, resulting in higher 
feature selection stability across resampling iterations. 

b. Compact predictive models with balanced performance 

For applications that require a reduced feature set while 

maintaining balanced classification performance (e.g., 

F1-score), intermediate values of α (around 0.5) offer a 

principled compromise between sparsity and stability. 

c. Extreme sparsity and minimal feature sets 

If interpretability is narrowly defined as selecting the 

smallest possible number of features, values of α close to 

1.0 (LASSO) may be attractive. However, the results 

indicate that such configurations come at the cost of 
reduced selection stability and lower reproducibility of 

selected features. 

Overall, these findings underscore that the choice of α should 

be explicitly aligned with the intended use case—prediction-

focused versus biomarker-focused—rather than driven solely 

by predictive accuracy. 

E.  Methodological Implications 

The findings of this study carry several important 

methodological implications for high-dimensional genomic 

modeling and feature selection using regularized regression. 

First, the results demonstrate that the L1/L2 mixing ratio in 

Elastic Net should not be treated as a secondary tuning 

parameter optimized solely for predictive performance. Prior 

methodological work has established that regularization 

choices directly influence sparsity and selection behavior, 
particularly under multicollinearity [3], [22]. The present 

study extends this understanding by empirically showing that 

the mixing parameter fundamentally shapes the trade-off 

between sparsity, stability, and interpretability along the 

regularization path. 

Second, the observed decoupling between predictive 

performance and feature selection stability highlights a 

critical limitation of accuracy-driven model selection. Models 

with comparable AUC, accuracy, and F1-score can yield 

substantially different feature sets across resampling 

iterations. This finding reinforces earlier evidence that 
predictive accuracy alone is insufficient for evaluating feature 

selection methods when reproducibility is a primary objective 

[9], [10]. In genomic biomarker discovery, where selected 

features are often interpreted as biologically meaningful 

candidates, instability across resampling or studies can 

severely undermine scientific validity. 
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Third, the coefficient path analysis provides practical 

insight into the regularization dynamics underlying these 

trade-offs. The abrupt coefficient suppression observed under 

LASSO contrasts sharply with the smoother shrinkage and 

grouped selection behavior of Elastic Net. Such behavior is 

consistent with previous findings that LASSO exhibits 

instability in the presence of correlated predictors, often 

selecting arbitrary representatives from correlated groups [4]. 
In contrast, the grouping effect induced by the L2 component 

of Elastic Net promotes more reproducible selection patterns 

without eliminating sparsity entirely, thereby offering a 

principled compromise between interpretability and 

robustness. 

Finally, the integration of stability analysis, sparsity 

evaluation, and predictive assessment along the regularization 

path represents a generalizable modeling framework that 

extends beyond the specific dataset analyzed in this study. 

Similar challenges related to high dimensionality, correlation 

structure, and reproducibility arise in other omics domains, 
including transcriptomics, proteomics, and metabolomics. 

Emphasizing stability-aware and path-wise analysis aligns 

with broader concerns regarding reproducibility and 

transparency in computational research [21]. By shifting 

emphasis from single-model optimization to systematic 

evaluation across the regularization path, the proposed 

approach contributes to more robust, interpretable, and 

reproducible regularized modeling practices. 

 

Statistical interpretation of stability and regularization 

behavior. 

From a statistical perspective, the observed stability 
patterns reflect the variability of the estimated support under 

perturbations of the data-generating process. In high-

dimensional settings, the selected feature set should be 

regarded as a random object, and stability metrics such as 

Jaccard, Dice, and ARI provide empirical estimates of the 

variability of this support estimator. The decoupling between 

predictive performance and stability observed in this study 

highlights a fundamental distinction between risk 

minimization and support recovery: cross-validation 

optimizes predictive risk but does not control the variance of 

the selected support. 
The L1/L2 mixing ratio plays a central role by modifying 

the geometry of the penalized likelihood. While LASSO 

induces sharp corners that favor aggressive sparsity, this 

geometry amplifies sensitivity to perturbations under 

correlated predictors, particularly when theoretical conditions 

for selection consistency are violated. In contrast, the 

inclusion of an L2 component smooths the penalization 

landscape, reducing abrupt coefficient thresholding and 

stabilizing support recovery. Importantly, the realized 

sparsity is jointly determined by the mixing ratio and the 

cross-validated regularization strength, underscoring that α 

should be interpreted as a structural parameter governing 
stability rather than a mere sparsity control. 

These findings reinforce the need for stability-aware 

regularization strategies in high-dimensional inference, where 

reproducible feature selection is often as important as 

predictive accuracy. 

F. Limitations 

This study focuses on a single benchmark cohort 

(METABRIC) and a single outcome definition (overall 

survival status), which may limit direct generalizability to 

other genomic cohorts or clinical endpoints. In addition, 

feature selection was defined based on non-zero coefficients, 

which can be sensitive to numerical thresholds and 

optimization tolerance in high-dimensional settings. 

Although frequently selected genes were discussed to support 

biological plausibility, systematic pathway enrichment 

analysis and external validation were beyond the scope of this 

study and represent important directions for future work. 

While the empirical analysis is restricted to a linear 
modeling framework and a single dataset, the observed 

stability patterns align with well-established theoretical 

properties of Elastic Net regularization. In particular, the 

monotonic decline in feature selection stability with 

increasing α reflects the reduced influence of the L2 penalty, 

which is known to promote grouped selection under 

correlated predictor structures. As such, the qualitative 

relationship between the L1/L2 mixing ratio and selection 

stability is expected to extend to other high-dimensional 

genomic settings characterized by strong correlations among 

features. 
From a computational perspective, the proposed 

framework involves repeated resampling, cross-validated 

tuning of the regularization parameter, and evaluation across 

multiple values of the L1/L2 mixing ratio. In high-

dimensional settings with tens of thousands of features, this 

design increases runtime and memory requirements, which 

may limit scalability in large-scale genomic studies or 

resource-constrained research environments. Although the 

current analysis is computationally feasible for the 

METABRIC cohort, applying the framework to larger cohorts 

or denser resampling schemes may require parallelization, 
warm-start strategies along the regularization path, or 

preliminary feature screening to improve efficiency. Future 

work will explicitly report computational time and resource 

usage to better characterize the practical cost of stability-

aware regularization. 

Nevertheless, the magnitude of stability gains and the 

optimal choice of α may vary depending on dataset-specific 

factors, including correlation structure, signal-to-noise ratio, 

outcome definition, and sample size. Future work will extend 

this framework to additional genomic cohorts, alternative 

endpoints, and non-linear modeling approaches to further 

assess the external consistency of the observed stability–
sparsity trade-offs. 
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V. CONCLUSION 

This study examined the impact of the L1/L2 mixing ratio 

along the Elastic Net regularization path on feature selection 
stability, sparsity, and predictive performance in high-

dimensional genomic data. Using the METABRIC breast 

cancer dataset, the analysis demonstrated that variation in the 

mixing parameter 𝛼 leads to systematic and interpretable 

differences in model behavior that are not captured by 

predictive accuracy alone. 

The results show that lower values of 𝛼, corresponding to 

a stronger L2 component, consistently improve feature 

selection stability, while LASSO-dominated models produce 

more aggressive sparsity at the cost of reproducibility. 
Importantly, predictive performance metrics such as AUC, 

accuracy, and F1-score remain relatively stable across a wide 

range of 𝛼 values. This decoupling between predictive 

performance and selection stability highlights the limitation 

of accuracy-driven model selection when the primary 

objective includes reliable and interpretable feature 

identification. 

Analysis of coefficient paths further revealed fundamental 

differences in regularization dynamics between LASSO and 

Elastic Net. LASSO induces abrupt coefficient suppression, 

whereas Elastic Net exhibits smoother shrinkage and grouped 
selection of correlated genes. These dynamics explain why 

intermediate L1/L2 ratios, particularly moderate values of 𝛼, 

provide a favorable balance between sparsity, stability, and 

predictive performance. 

From a biological perspective, the frequent selection of 

well-established breast cancer–related genes such as FOXC1, 

MKI67, CCNB1, and PLK1 supports the interpretability and 

translational relevance of the proposed framework. The 

ability of Elastic Net to retain co-regulated gene sets enhances 

confidence in the robustness of identified biomarkers and 

aligns with the network-driven nature of genomic regulation. 
Overall, this study emphasizes that the L1/L2 mixing ratio 

should be regarded as a substantive modeling choice rather 

than a secondary tuning parameter. By integrating stability 

analysis, sparsity evaluation, and predictive assessment along 

the regularization path, the proposed approach advances 

stability-aware modeling practices and supports the 

development of more reliable, interpretable, and reproducible 

genomic prediction models. 
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