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 Waste sorting at the source remains a major challenge in Indonesia due to limited 

public awareness and the absence of accessible tools for waste classification. While 

YOLO-based object detection has been widely applied for waste detection, the 

adoption of the latest YOLO architecture in web-based, real-time public-oriented 

systems remains limited. This study aims to develop and experimentally evaluate a 

web-based waste detection system using YOLOv12 with a transfer learning 

approach to classify waste into organic, inorganic, and hazardous (B3) categories 

along with their subcategories. The system was developed using the Flask 
framework and supports image upload and real-time camera-based detection. A real-

world dataset was annotated and divided into training, validation, and testing sets for 

experimental evaluation. The proposed model achieved a precision of 0.86, recall of 

0.74, mAP@0.5 of 0.83, and mAP@0.5:0.95 of 0.68, with an average inference time 

of 0.0187 seconds per image (53.40 FPS). Overall, these results indicate that 

YOLOv12 with transfer learning provides an effective balance between accuracy 

and inference speed for web-based real-time waste detection systems, supporting its 

applicability for practical waste sorting solutions. 
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I. INTRODUCTION 

Waste management in Indonesia remains a major challenge 

in environmental management. Based on data from the 

National Waste Management Information System (SIPSN), 

the amount of waste generated in Indonesia in 2024 exceeded 

34 million tons, with approximately 40% of the total not being 

properly managed [1]. This condition leads to various 

environmental impacts and increases the workload of officers 

at Final Disposal Sites (TPA), particularly due to the time-

consuming and inefficient waste sorting process. 

On the other hand, public understanding of waste 

categories such as organic, inorganic, and hazardous (B3) 
waste is still limited. Many individuals have difficulty 

identifying the correct classification, causing waste that has 

already been sorted to be mixed again. In addition, interviews 

with TPA officers revealed that the public often feels 

confused about what actions should be taken after waste has 

been sorted. These issues indicate the need for a supporting 

tool that can help the community accurately identify waste 

categories and determine appropriate follow-up actions for 

the resulting sorted waste. 

Advancements in computer vision, particularly the YOLO 

(You Only Look Once) algorithm, enable the development of 

image-based systems capable of recognizing objects and 

providing information about waste categories. YOLO is an 
end-to-end convolutional neural network-based object 

detection framework that detects objects across the entire 

image in a single processing stage, eliminating the need for 

region proposal mechanisms [2]. This approach enables high 

inference speed while maintaining competitive detection 

accuracy, making YOLO well suited for real-time systems. 

Several previous studies have applied YOLOv3, YOLOv5, 

YOLOv8, and YOLOv11 for waste detection. Soerya et al. 

applied YOLOv3 to identify and classify office waste [3]. The 

system was developed on an NVIDIA Jetson Nano device to 

support real-time processing. The results showed that 

YOLOv3 was able to detect waste objects with good accuracy 
even when running on embedded devices. These findings 
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demonstrate that YOLO can be efficiently implemented in 

systems with limited computational resources. 

Research conducted by Abdillah et al. developed a web-

based system for classifying organic and inorganic waste 

using YOLOv5 [4]. The system allows users to perform waste 

detection through a web interface by directly uploading 

images. The results showed that the integration of YOLOv5 

into a web-based system was able to provide accurate and 
responsive classification results. This study indicates that 

YOLO can be utilized to support practical and easily 

accessible waste sorting for users. 

Suwela and Hedriyadi applied a transfer learning approach 

using YOLOv8 to detect types of waste [5]. The model was 

trained by leveraging pretrained weights, enabling improved 

detection performance compared to training from scratch. 

Evaluation results showed that the use of transfer learning 

increased accuracy and training efficiency on relatively 

limited datasets. This study demonstrates that YOLOv8 is 

effective for waste classification using a transfer learning 
approach. 

Research conducted by Mustapha et al. evaluated the 

performance of YOLOv11 in detecting biodegradable and 

non-biodegradable kitchen waste in real-time [6]. The system 

was tested under real-time scenarios to assess model accuracy 

and inference speed. The results showed that YOLOv11 

achieved high accuracy with processing speeds suitable for 

real-time applications. These findings indicate an 

improvement in YOLOv11 performance compared to 

previous versions in the context of waste detection. 

Recent studies have also conducted comparative 

evaluations among various YOLO architectures to identify 
performance improvements across versions. Dipo et al. 

compared YOLOv8, YOLOv9, YOLOv10, YOLOv11, and 

YOLOv12 using F1-score and mAP@0.5 metrics across 50 

and 100 training epochs. The results demonstrated that 

YOLOv12 achieved the highest performance, reaching an F1-

score of 0.75 and mAP@0.5 of 0.78 at 100 epochs, 

outperforming previous YOLO versions. In contrast, 

YOLOv11 exhibited comparable performance but showed 

limitations in detecting small objects, while YOLOv8 and 

YOLOv10 demonstrated stable yet slightly lower detection 

accuracy [7]. These findings indicate that YOLOv12 provides 
improved learning capability and generalization performance 

compared to earlier YOLO architectures. 

In addition to comparisons among YOLO versions, several 

studies have evaluated YOLO against other object detection 

architectures. Keylabs reported that YOLOv8 achieved an 

inference latency of 1.3 ms with mAP@0.5 of 0.62, 

significantly outperforming Faster R-CNN, which recorded a 

latency of 54 ms and mAP@0.5 of 0.41 [8]. Furthermore, 

Srivastava et al. showed that YOLO consistently 

outperformed SSD and Faster R-CNN in real-time detection 

scenarios, particularly in terms of inference speed [9]. Other 

studies also confirmed that YOLO-based models provide 
superior accuracy-speed trade-offs compared to SSD, Faster 

R-CNN, and EfficientDet across various object detection 

environments. These results highlight the suitability of YOLO 

architectures for real-time and web-based detection systems. 

Based on these comparative studies, YOLOv12 was 

selected as the core detection model in this research due to its 

superior detection accuracy, improved multi-scale object 

detection capability, and favorable accuracy-speed trade-off 

for real-time applications. Compared to earlier YOLO 

versions and other object detection architectures, YOLOv12 
demonstrates stronger performance in detecting small and 

diverse objects, which is particularly important for waste 

detection scenarios. Unlike previous studies that primarily 

focused on earlier YOLO versions or non-web-based 

implementations, this study applies YOLOv12 within a real-

time web-based waste detection system, thereby extending 

the application of the latest YOLO architecture in the waste 

management domain. 

Despite the demonstrated advantages of YOLOv12 and 

other YOLO-based models, numerous studies on waste 

detection still predominantly focus on industrial 
environments or controlled experimental settings, with 

limited emphasis on public-oriented applications. In addition, 

performance evaluations are often conducted independently 

for each YOLO version, without systematic comparison 

under consistent conditions. Moreover, the application of 

YOLOv12 as the latest version, which introduces 

improvements in accuracy and multi-scale detection [10], has 

not been sufficiently explored, particularly within web-based 

systems designed for education and daily use by the general 

public. 

Based on these research gaps, this study develops a web-

based waste detection system that integrates a YOLOv12 
model using a transfer learning approach. Transfer learning 

leverages pre-trained weights from large-scale datasets by 

retaining early convolutional layers that capture general 

visual features, such as edges and textures, while fine-tuning 

the later layers to learn task-specific features from the waste 

dataset [11]. This approach reduces training time and 

computational requirements while improving model 

performance, particularly when the available dataset is 

limited. 

The system is designed to be easily accessible to the 

general public through various devices, helping users 
recognize waste categories and perform accurate waste 

sorting at the source. Users can perform detection by 

uploading waste images or activating a camera for real-time 

detection, after which the system displays classification 

results into organic, inorganic, or hazardous (B3) categories 

along with their subcategories. In addition, the system 

provides confidence scores and action recommendations for 

each detected waste category to support informed decision-

making. This integration aims to enhance user awareness and 

encourage proper waste management practices in daily 

activities. 
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II. METHOD  

This study was conducted by following a series of 

sequential processes, meaning that each stage must be 
completed before proceeding to the next stage. The research 

workflow is illustrated in Figure 1. 

 
Figure 1. Research Flow 

A. Problem Identification 

The research begins with the process of identifying 
problems related to the low level of public understanding in 

distinguishing waste categories (organic, inorganic, and 

hazardous/B3). This condition causes the waste sorting 

process to be suboptimal, resulting in mixed waste and 

increasing the management burden at Final Disposal Sites. 

This stage is conducted to establish a basis for determining 

the focus and scope of the research. 

B. Problem Formulation 

This stage is carried out to clarify the direction of the 

research. The problem formulations that become the focus of 

this study are how to design a YOLOv12-based waste 

detection model and how to integrate it into a web-based 

system, so that it can help the public recognize types of waste 

quickly. These problem formulations then serve as guidelines 

in defining the research objectives and methodology. 

C. Literature Review 

At this stage, a review of the literature is conducted 

covering deep learning–based object detection, the 

development of YOLO models, transfer learning techniques, 

and related previous studies. The literature review is 

performed to strengthen the theoretical foundation, 

understand prior technological developments, identify 

research gaps, and determine the most appropriate methods to 
be applied. 

D. Requirements Engineering/Planning 

Requirements engineering is conducted to define the 

research requirements, which include user requirements, 

functional requirements, and non-functional requirements of 

the system. 

1)   User Requirements: User requirements are derived 

from the perspective of end users. In this study, user 

requirements include the ability to perform waste detection by 

uploading images or activating the camera directly (real-

time), obtaining fast and accurate waste classification results, 

receiving information about appropriate follow-up actions for 

the detected waste, and accessing information about the 

nearest waste bank locations. 

2)   Functional Requirements: Functional requirements 

relate to the functions within the system. These include the 

system’s ability to accept uploaded waste images, detect 
waste in real-time through a camera, perform classification 

using YOLOv12, display detection and classification results, 

provide appropriate action recommendations, and display an 

interactive map showing waste bank locations. 

3)   Non-Functional Requirements: Non-functional 
requirements are not directly related to system functions but 

refer to the characteristics and quality attributes required for 

proper system operation. These include the system being 

accessible at any time via a web browser, being comfortable 

and easy to use for users from all backgrounds, being 

accessible across various devices such as laptops, 
smartphones, and tablets, performing detection in less than 3 

seconds, having a simple and intuitive user interface, and 

being easy to modify.  

E. Data Collection 

At this stage, a literature review is conducted on deep 

learning–based object detection, the development of YOLO 
models, transfer learning techniques, and similar previous 

studies. This process aims to strengthen the theoretical 

foundation, understand prior technological developments, 

identify research gaps, and determine the most suitable 

methods to be applied. 

F. System Design 

The system design consists of two main components: the 

YOLOv12 model training process and the development of a 

web-based system using the Waterfall method. These two 

processes are designed to ensure that the model is capable of 

accurately detecting waste categories and can be optimally 

integrated into the system. 

1)   Model Training Process: The YOLOv12 model 

training is conducted through a series of structured stages, 

starting from dataset preparation to model performance 

evaluation. The YOLOv12 training workflow is illustrated in 

Figure 2. 

 

Figure 2. Model Training Workflow 
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The dataset used in this study consists of 2500 waste 

images, collected directly from the surrounding environment 

to represent real-world waste disposal conditions. The dataset 

covers 20 waste subcategories, with 125 images per 

subcategory, ensuring a balanced distribution at the image 

level. The images were captured under diverse lighting 

conditions, including indoor and outdoor environments, 

natural and artificial lighting, as well as variations in 
brightness and shadows. Additionally, images were taken 

from different viewpoints and backgrounds to increase data 

diversity and improve model generalization. 

All images were manually annotated using the Roboflow 

platform, following a consistent annotation standard. Each 

waste object in an image was labeled using tight bounding 

boxes that fully enclosed the visible object area, along with its 

corresponding waste category label (organic, inorganic, or 

hazardous/B3) and subcategory. Images containing multiple 

waste objects were annotated with multiple bounding boxes, 

resulting in variations in the number of bounding boxes per 
image. 

After annotation, an Exploratory Data Analysis (EDA) was 

conducted to analyze class distribution, bounding box 

frequency, and object diversity. The dataset was then split into 

training, validation, and testing sets with a ratio of 70:20:10, 

ensuring that each subset maintained a similar class 

distribution. 

During the preprocessing stage, images were resized to 640 

× 640 pixels, and data augmentation techniques were applied 

to the training set, including rotation, horizontal and vertical 

flipping, brightness adjustment, Gaussian blur, and motion 

blur. These augmentations were performed to enhance data 
variability and better represent real-world conditions. 

The YOLOv12 model is initialized using pretrained 

weights through a transfer learning approach. The training 

process is carried out by adjusting parameters such as learning 

rate, batch size, number of epochs, and other relevant 

hyperparameters. After training is completed, the model is 

evaluated using precision, recall, mean Average Precision 

(mAP), and FPS (frames per second) metrics. 

Precision is a metric that measures how often the model 

makes correct predictions [12]. This metric is used to assess 

how accurate the model is in making positive predictions. The 
precision formula is shown in Equation (1): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                           (1)                     

With 

𝑇𝑃: positive predictions that match the ground truth  

labels (True Positive) 

𝐹𝑃: positive predictions that do not match the ground 
truth labels (False Positive) 

Recall is a metric that measures how well the model 

identifies all actual positive instances. This metric describes 

the model’s ability to correctly predict positive data. The 

recall formula is shown in Equation (2): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             (2) 

With 

𝑇𝑃: positive predictions that match the ground truth  

labels (True Positive) 

𝐹𝑁: negative predictions that differ from the actual 

positive ground truth labels (False Negative) 

 

Mean Average Precision (mAP) is the average of all 
AP values calculated for each class in the dataset. AP 

(Average Precision) is an evaluation metric that combines 

precision and recall into a single value and is used to evaluate 

bounding box localization and confidence scores. The mAP 

formula is shown in Equation (3): 

 

𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝑖

𝐶
𝑖=1                             (3) 

With 

𝐴𝑃𝑖: AP value of the 𝑖-th class 

𝐶: total number of classes in the dataset 

 

After the evaluation process shows satisfactory and 

expected results, the best-trained model is then deployed 

directly into the web-based system. 

2)   Web System Development: The selection of a system 

development method must be aligned with project 

requirements. Therefore, a well-structured and well-

documented framework is required to avoid ad hoc 

development and to maintain system consistency and quality 

[13]. Based on these considerations, the waste detection 

system is developed using the Waterfall method, which is a 

sequential software development approach in which each 

stage must be completed before proceeding to the next stage 
[14]. The stages of the Waterfall method are illustrated in 

Figure 3. 

 

Figure 3. Stages of the Waterfall Method 
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The development process begins with a system 

requirements analysis to identify specifications that meet user 

needs. This analysis is conducted through brainstorming 

sessions and interviews with relevant stakeholders. Based on 

the results of this analysis, requirements modeling is 

performed using a use case diagram to illustrate the 

interactions between users and the system [15], as shown in 

Figure 4. 

 

Figure 4. Use Case Diagram of the Waste Detection System 

In the developed system, user interactions are modeled 

through several main use cases, namely uploading images or 

activating the camera to perform detection. The system 

provides options for filtering waste categories and adjusting 

the confidence score threshold so that the displayed detection 
results meet user needs. After the inference process is 

performed by the model, the system displays detection results 

in the form of bounding boxes, category labels, confidence 

scores, and action recommendations based on the detected 

waste category. Users also can obtain information about the 

nearest waste bank locations by granting location access to the 

system. 

In addition to the use case diagram, requirements modeling 

is also conducted using an activity diagram to describe the 

main activity flow in the waste detection process. The activity 

diagram is shown in Figure 5. 

 

Figure 5. Activity Diagram of the Waste Detection System 

In this system, the user activity flow begins with selecting 

the desired function, either performing waste detection or 

viewing waste bank location information. For the detection 

process, users can choose to upload an image or use the 
camera to obtain real-time images. The received image is then 

sent to the YOLOv12 model for waste detection and 

classification. The detection results are displayed in the form 

of bounding boxes, category labels, confidence scores, and 

action recommendations. If users want to access information 

about waste bank locations, the system displays the nearest 

locations based on the user’s granted location access. 

However, if the user denies location access, the system 

displays all available waste bank locations. 

A sequence diagram is also constructed to illustrate the 

sequence of communication between the front-end, back-end, 

and the YOLOv12 model during the detection process [16]. 
The sequence diagram is shown in Figure 6. 



JAIC e-ISSN: 2548-6861    289 

 

Real-Time Waste Detection System Using YOLOv12 with Transfer Learning 
(Adellia Jovina, Ester Lumba) 

 

Figure 6. Sequence Diagram of the Waste Detection System 

In the detection process, users can upload images or 

activate the camera to obtain real-time visual input. The 

received image is then sent to the back-end and processed by 

the YOLOv12 model to generate predictions in the form of 

bounding boxes, category labels, confidence scores, and 

action recommendations, which are subsequently returned 

and displayed to the user. For the waste bank location feature, 

the system obtains the user’s coordinates via the device’s GPS 

and forwards them to the back-end to search for the nearest 

waste bank locations. The identified locations are then sent 

back to the web system and presented to the user through the 
interface. 

After the analysis stage is completed, the system 

development process proceeds to the design stage. The system 

design is carried out by ensuring a simple and intuitive user 

experience. This approach aligns with user-centered design 

principles, where the system must be designed to meet user 

needs and ensure user comfort so that the resulting solution is 

effective [17]. The design stage is conducted based on the 

results of the requirements analysis from the previous stage. 

The designed web system consists of two pages, namely the 

Main page and the Waste Bank Location page, with a simple 

layout to ensure ease of use for users from diverse 

backgrounds. Figure 7 shows the interface design of the main 

page displayed after users access the website. 

 

 

Figure 7. Main Page of the System 

 

 

Figure 8. Interface After Dropdown Interaction 

Figure 8 shows the interface when users select the waste 
category filter dropdown, where waste category options are 

displayed. The confidence score threshold filter uses a slider 

element, in which the percentage value changes as users move 

the slider thumb. 
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Figure 9. Interface After Image Upload 

Figure 9 illustrates the interface after an image is uploaded. 
The uploaded image is displayed along with the detection 

results, including bounding boxes, category labels, 

confidence scores, and action recommendations. 

 

Figure 10. Camera-Based Detection Interface 

Figure 10 illustrates the interface when users perform real-

time detection using the camera, while Figure 11 shows the 

waste bank location page, which contains an interactive map. 

 

Figure 11. Waste Bank Location Page 

After the design stage is completed, the resulting website 

interface designs are implemented into program units, 

forming a website that is ready for testing. During the testing 

stage, each unit developed in the previous stage is tested to 

ensure that all functionalities work properly. After unit 

testing, all components are integrated into a single system and 

tested again to ensure there are no failures. The final stage of 

the development process is maintenance. At this stage, the 

website has been fully developed and is ready for deployment. 

If any errors are identified that were not detected in earlier 
stages, the necessary fixes are treated as new system 

requirements. 

G. Implementation 

At the implementation stage, three main processes are 

carried out as follows. 

1)    Model Training Process: The YOLOv12 model 

training is conducted through a series of structured stages, 

starting from dataset preparation to model performance 

evaluation. The YOLOv12 training workflow is illustrated in 
Figure 2. 

2)   Website Development: The website is developed as 
the medium for running the detection process. It is designed 

with a simple and intuitive interface. The development 

process follows the stages of the Waterfall method illustrated 

in Figure 3. 

3)   Model Integration into the Website: The best-

performing YOLOv12 model is integrated into the website 

back-end. This integration enables the model to process user-
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submitted images and display prediction results directly, 

without requiring additional installations. 

H. System Testing 

The developed system, integrated with the YOLOv12 

model, is then tested using black-box testing and website 
detection system testing. This stage is conducted to ensure 

that the model correctly detects waste categories, the website 

displays results without errors or failures, and real-time 

detection performance operates smoothly. 

I. Result Analysis 

The test results are analyzed to evaluate the effectiveness 

of the proposed method. The analysis uses precision, recall, 

mAP, and FPS metrics to determine the accuracy of the 

YOLOv12 model in recognizing waste categories, as well as 
to assess the stability and performance of the web-based 

system. 

J. Conclusions and Recommendations 

This stage represents the final phase of the research 

workflow. At this stage, the authors summarize the research 

findings, evaluate the achievement of the research objectives, 

and provide recommendations for future improvements and 

further research. 
 

 

III. RESULT AND DISCUSSION 

A. Results 

The initial dataset consisted of 2500 waste images with a 

balanced distribution across each subcategory, namely 125 

images per subcategory. All images were annotated using 

bounding boxes and waste category labels through the 

Roboflow platform. The images were then analyzed during 

the Exploratory Data Analysis (EDA) stage to ensure object 

diversity. The EDA results shown in Figure 12 indicate that 

the Kulit Kuaci (Sunflower Seed Shell) class accounts for 

54.6% of the total bounding boxes, while other classes have 

proportions that are 1-4% lower. This finding indicates that 

categories with the same number of images may contain 
different numbers of objects within those images. 

 

Figure 12. Bounding Box Distribution for Each Class 

The preprocessing stage included resizing images to 

640×640 pixels and applying data augmentation. The 

augmentation techniques used were horizontal and vertical 

flipping, rotation (−15° to +15°), brightness adjustment 

(−15% to +15%), exposure adjustment (−10% to +10%), blur 

(up to 1.5 px), and noise addition (up to 0.1% of pixels). This 

augmentation process increased the number of images from 

2500 to 6020. The dataset was then split into training, 

validation, and testing sets with a ratio of 70:20:10. 

The YOLOv12 model was trained using a transfer learning 
approach with pretrained weights from YOLOv8n, which had 

been trained on the COCO dataset. The YOLOv12 

architecture was imported via the “yolo12.yaml” file, which 

defines the backbone and head structures of the object 

detection model. Initial training was conducted for 80 epochs 

by freezing several early layers, using the AdamW optimizer 

with a learning rate of 0.0001, a weight decay of 0.0005, a 

batch size of 16, an image size of 640×640 pixels, and 

patience = 10 for early stopping, where training stops if no 

performance improvement is observed over the last 10 

epochs. 
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Figure 13. Initial Training Results 

The graphs in Figure 13 show a decrease in both training 

loss and validation loss, including box_loss, cls_loss, and 

dfl_loss, indicating that the learning process proceeded in a 

stable manner. Meanwhile, evaluation metrics such as 

precision, recall, and mAP continuously increased until 

convergence. At the end of training, the model achieved a 

precision of 0.86, a recall of 0.71, an mAP@0.5 of 0.81, and 
an mAP@0.5:0.95 of 0.65. These results indicate that the 

model learned effectively without experiencing overfitting. 

Training was then continued with fine-tuning on the best 

model obtained from the initial training phase. Fine-tuning 

was performed for up to 100 epochs using the SGD optimizer, 

with a learning rate of 0.005, momentum of 0.937, weight 

decay of 0.0005, and a patience value of 10. Several light 

augmentation techniques were also applied, including HSV 

adjustments (hue 0.015, saturation 0.7, value 0.4), image 

translation (up to 10%), random scaling (up to 50%), and 

horizontal flipping with a probability of 0.5. 

 

 

Figure 14. Fine-Tuning Results 

Figure 14 shows a more stable loss reduction and 

convergence compared to the initial training phase. Training 

stopped at epoch 52 due to early stopping, indicating that no 

significant performance improvement was observed over the 

last 10 epochs. Metrics such as precision, recall, and mAP 

also showed consistent improvement throughout the training 

process. At the final stage, the model achieved a precision of 
0.88, a recall of 0.72, an mAP@0.5 of 0.82, and an 

mAP@0.5:0.95 of 0.66. These results demonstrate that fine-

tuning successfully improved detection accuracy without 

introducing overfitting, allowing the model to achieve good 

generalization on unseen data. 

After training, evaluation was conducted using the 

validation set. The mAP@0.5 and mAP@0.5:0.95 values 

presented in Table I indicate that the YOLOv12 model 

achieved stable performance. Precision and recall metrics 

were also well balanced, showing that the model can 

accurately recognize waste objects without overfitting. In 

addition, inference speed testing showed that the model 
processed images with an average time of 0.0180 seconds per 
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image, equivalent to 55.67 FPS, making it suitable for real-

time detection. 

TABEL I 

EVALUATION RESULTS ON THE VALIDATION DATASET 

Metric Value 

Precision 0.8838 

Recall 0.7186 

mAP@0.5 0.8215 

mAP@0.5:0.95 0.6649 

FPS 55.67 

Average Inference Time 0.0180s 

 

Testing on the test dataset showed that the YOLOv12 
model maintained consistent performance, with precision, 

recall, and mAP values as presented in Table 2. The model 

also demonstrated high inference speed, with an average 

processing time of 0.0187 seconds per image or 53.40 FPS, 

indicating that the system remains responsive to new data. 

These results confirm that the model can detect waste objects 

quickly and accurately under various testing conditions and 

effectively supports real-time detection. 

TABEL II 

EVALUATION RESULTS ON THE TEST DATASET 

Metric Value 

Precision 0.8602 

Recall 0.7362 

mAP@0.5 0.8287 

mAP@0.5:0.95 0.6788 

FPS 53.40 

Average Inference Time 0.0187s 

 

B. System Development Results 

The web-based system was developed using HTML, CSS, 

JavaScript, and the Flask framework as the back-end. Flask 

was chosen due to its lightweight and flexible nature, as well 

as its minimal dependencies, which simplify website 

development [18]. To support system accessibility without 

requiring additional installation, the waste detection 
application was deployed on the Hugging Face Spaces 

platform. This platform provides a lightweight hosting 

environment, supports Flask integration, and allows the 

model to be executed directly through a web browser. 

 

Figure 15. Main Page 

Figure 15 shows the page displayed when the website is 

first accessed. This page serves as the Main page where waste 

detection is performed. 

 

Figure 16. Detection Filters 

Users can configure detection filters according to their 

preferences. The category filter allows users to select a 

specific waste category to be detected, while the confidence 

threshold filter indicates the level of confidence required by 

the model in recognizing waste objects. 

 

Figure 17. Detection via Image Upload 

Figure 17 shows the interface after users upload an image 

for detection. The uploaded image file name is displayed 

along with a red cross (×) icon that allows users to remove the 

file and perform detection again. An image preview is 

displayed together with the detection results and action 
recommendations. 
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Figure 18. Real-Time Detection Using Camera 

Figure 18 shows the real-time detection interface when 

camera access is activated and permitted. Detection results 

and action recommendations are displayed in real time 

according to the objects captured by the camera. 

 

Figure 19. Waste Bank Location Page 

Figure 19 shows the initial view of the Waste Bank 

Location page, where the website requests permission to 

access the user’s location. If permission is granted, the nearest 

waste bank locations are displayed along with the user’s 

current location point, as shown in Figure 20. However, if the 

user denies location access, all available waste bank locations 

are displayed on the map, as shown in Figure 21. 

 

Figure 20. Nearest Waste Bank Locations 

 

 

Figure 21. All Waste Bank Locations 

C. System Testing 

The system testing conducted includes black-box testing 

and detection accuracy testing, as described below.  

1)   Black-Box Testing: Black-box testing is a software 

testing method used to evaluate system functionality without 

examining the internal code or structure [19]. The testing 

results are presented in Table 3. 

TABEL III 
BLACK-BOX TESTING 

No. 
Test Case Expected Result Test 

Result 

1. Navigation 
menu 
functionality 

The displayed 
page matches the 
active navigation 
menu. 

Successful 

2. Waste category 
filter 

The category 
changes according 

to user selection. 

Successful 

3. Confidence 
threshold filter 

The confidence 
value changes 
according to the 

Successful 
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slider thumb 
position. 

4. Image upload File name, image 
preview, detection 
results, and action 
recommendations 
are displayed. 

Successful 

5. Real-time 
detection with 

camera access 

Real-time preview, 
detection results, 

action 
recommendations, 
and the “Turn Off 
Camera” button 
are displayed. 

Successful 

6. Turn off 
camera 

The camera is turn 
off and the real-
time preview 

disappears. 

Successful 

7. Map display The map displays 
waste bank 
locations. 

Successful 

8. Website 
responsiveness 

The website can be 
accessed on 
various devices 

and adapts to 
different screen 
sizes. 

Successful 

 

2)   Detection Accuracy Testing: Detection accuracy 

testing is conducted using two approaches, including image 

upload-based detection and real-time detection. The results 

are presented in Table 4 and Table 5. 

TABEL IV 

DETECTION RESULTS USING IMAGE UPLOAD 

Detection Result Ground Truth 
Confidence 

Score 

Organic – 
Banana Peel 

Organic – Banana 
Peel 

95.3% 

Organic – Orange 

Peel 

Organic – Orange 

Peel 
97.4% 

Organic – 
Leftover Rice 

Organic – 
Leftover Rice 

91.4% 

Organic – 
Chicken Bone 

Organic – 
Chicken Bone 

91.5% 

Organic – Fish 

Bone 

Organic – Fish 

Bone 
83.0% 

Organic – 
Eggshell 

Organic – 
Eggshell 

94.9% 

Organic – Onion 
Peel 

Organic – Onion 
Peel 

74.3% 

Organic – 

Sunflower Seed 
Shell 

Organic – 

Sunflower Seed 
Shell 

82.9% 

Inorganic – 
Plastic Bottle 

Inorganic – 
Plastic Bottle 

94.2% 

Inorganic – 
Plastic Bag 

Inorganic – 
Plastic Bag 

95.1% 

Inorganic –
Plastic Container 

Inorganic –
Plastic Container 

93.7% 

Inorganic – 
Beverage Can 

Inorganic – 
Beverage Can 

88.1% 

Inorganic – 
Cardboard 

Inorganic – 
Cardboard 

93.2% 

Inorganic – Paper Inorganic – Paper 96.1% 

Inorganic – 
Tissue 

Inorganic – 
Tissue 

93.8% 

Inorganic – 

Styrofoam 

Inorganic – 

Styrofoam 
95.9% 

B3 – Battery B3 – Battery 93.3% 

B3 – Light Bulb B3 – Light Bulb 92.5% 

B3 – Mosquito 
Repellent Can 

B3 – Mosquito 
Repellent Can 

82.2% 

B3 – Hand 

Sanitizer Bottle 

B3 – Hand 

Sanitizer Bottle 
88.8% 

 

TABEL V 

REAL-TIME DETECTION RESULTS 

Detection Result Ground Truth 
Confidence 

Score 

Organic – 
Banana Peel 

Organic – Banana 
Peel 

95.5% 

Organic – Orange 
Peel 

Organic – Orange 
Peel 

70.7% 

Organic – 
Leftover Rice 

Organic – 
Leftover Rice 

96.4% 

Organic – 
Chicken Bone 

Organic – 
Chicken Bone 

94.5% 

Organic – Fish 
Bone 

Organic – Fish 
Bone 

85.1% 

Organic – 
Eggshell 

Organic – 
Eggshell 

93.1% 

Organic – Onion 
Peel 

Organic – Onion 
Peel 

94.0% 

Organic – 
Sunflower Seed 
Shell 

Organic – 
Sunflower Seed 
Shell 

87.1% 

Inorganic – 
Plastic Bottle 

Inorganic – 
Plastic Bottle 

74.3% 

Inorganic – 
Plastic Bag 

Inorganic – 
Plastic Bag 

88.7% 

Inorganic –
Plastic Container 

Inorganic –
Plastic Container 

91.0% 

B3 – Battery 
Inorganic – 
Beverage Can 

89.1% 

Inorganic – 
Cardboard 

Inorganic – 
Cardboard 

90.9% 

Inorganic – Paper Inorganic – Paper 89.0% 

Inorganic – 
Tissue 

Inorganic – 
Tissue 

80.3% 

Inorganic – 
Styrofoam 

Inorganic – 
Styrofoam 

94.2% 

B3 – Battery B3 – Battery 94.9% 

B3 – Light Bulb B3 – Light Bulb 93.6% 

B3 – Mosquito 
Repellent Can 

B3 – Mosquito 
Repellent Can 

81.0% 

B3 – Hand 
Sanitizer Bottle 

B3 – Hand 
Sanitizer Bottle 

86.8% 
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The testing results indicate that the system is capable of 

detecting and classifying waste objects with high accuracy. In 

the image upload-based testing, all samples were correctly 

identified according to the ground truth labels, with 

confidence scores ranging from 74.3% to 97.4%. Meanwhile, 

real-time camera-based testing also demonstrated good 

performance, with confidence scores ranging from 70.7% to 

95.5%. 

Despite the overall high detection accuracy, several 
limitations were observed during real-time testing. The most 

notable error occurred when a beverage can was misclassified 

as a battery, which represents a false positive for the B3 

category and a false negative for the inorganic category. This 

type of error indicates confusion between subcategories that 

share similar visual characteristics, particularly cylindrical 

shape, metallic appearance, and reflective surfaces. 

In addition to misclassification, certain classes exhibited 

lower confidence scores, such as onion peel, sunflower seed 

shell, and plastic bottle during real-time detection. These 

cases are primarily influenced by lighting variations, motion 
blur, and partial occlusion, which commonly occur in real-

world usage scenarios. Objects with small size, irregular 

texture, or deformable shapes were more susceptible to 

reduced confidence, even when correctly classified. 

These findings suggest that while YOLOv12 demonstrates 

strong generalization capability, its performance can be 

affected by visual similarity across waste subcategories and 

challenging real-time conditions. Future improvements may 

include incorporating additional training samples for visually 

similar classes, applying class-aware data augmentation, and 

integrating post-detection filtering or hierarchical 

classification to reduce confusion between hazardous (B3) 
and non-hazardous waste categories. 

While the proposed system demonstrates strong 

performance on the collected dataset, its generalization to 

unseen waste categories and new environmental conditions 

remains a challenge. The current model relies on supervised 

learning and therefore requires additional annotated data to 

adapt to new waste types or changes in visual appearance 

caused by different lighting, backgrounds, or camera devices. 

From a sustainability perspective, the system can be 

extended through incremental learning or periodic model 

retraining using newly collected data, allowing it to 
continuously adapt to evolving waste patterns. In addition, the 

modular design of the web-based system enables future 

integration of updated models without major changes to the 

application layer. These strategies can support the long-term 

usability and deployment of the system beyond the initial data 

collection environment. 

Although the proposed system provides waste 

classification results, confidence scores, and action 

recommendations, this study did not directly evaluate changes 

in user behavior, such as increased awareness or participation 

in waste sorting. However, the inclusion of explanatory 

feedback and information on waste handling and waste banks 
has the potential to support user understanding and decision-

making, particularly for users with limited prior knowledge of 

waste categories. Future studies may incorporate user-based 

evaluations to quantitatively assess the system’s impact on 

user awareness and waste sorting behaviour. 

IV. CONCLUSION 

This study successfully developed a web-based waste 

detection system using the YOLOv12 model through a 

transfer learning approach. Compared to previous studies that 

mainly focused on offline or mobile-based detection, the 
proposed system extends existing findings by enabling real-

time waste detection directly through a web platform without 

requiring additional installation. The experimental results 

demonstrate that transfer learning and fine-tuning effectively 

improve both detection accuracy and inference speed, 

achieving a precision of 0.86, recall of 0.74, mAP@0.5 of 

0.83, mAP@0.5-0.95 of 0.67, and an inference speed of 53.40 

FPS. 

System testing also shows a high level of consistency 

between detection results and ground truth labels, with an 

average confidence score above 80% under various testing 
scenarios. These results indicate that the proposed system has 

good generalization capability and can operate reliably under 

diverse lighting conditions, backgrounds, and image qualities 

in real-world environments. 

Although the results are promising, this study is still 

limited by the size and diversity of the dataset and the 

occurrence of misclassification in visually similar waste 

subcategories, particularly under real-time conditions. 

Therefore, future research may focus on improving detection 

robustness through dataset expansion, class-aware 

augmentation, and hierarchical classification, as well as 

exploring adaptive learning strategies to support 
generalization to unseen waste categories and evolving 

environmental conditions. Beyond technical enhancements, 

future work should also incorporate user-centered evaluations 

to assess the impact of the proposed system on public 

awareness, participation, and waste sorting behavior. 

In addition to model-level improvements, future work may 

also explore system-level integration to increase the practical 

impact of the proposed approach. The waste detection system 

can be extended to mobile applications to enable on-site waste 

classification using smartphone cameras, or integrated with 

IoT-based smart bins to support automatic waste sorting at the 
source. Furthermore, integration with local government or 

municipal waste management systems could enable real-time 

data collection, monitoring, and decision support for waste 

management policies. Such integrations have the potential to 

enhance the scalability and real-world applicability of the 

proposed system. 
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