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Rice productivity strongly depends on early detection of leaf diseases, while manual
identification is often delayed and subjective. This study investigates the use of
lightweight CNN architectures MobileNetV3-Large and EfficientNet-BO based on
transfer learning to classify six rice leaf disease classes, namely bacterial leaf blight,
brown spot, healthy, leaf blast, leaf scald, and narrow brown spot. The dataset is
obtained from Kaggle and consists of 2,628 images with a balanced class
distribution, stratified into training, validation, and test sets with a ratio of
80%:10%:10%. The images are resized to 224x224 pixels and data augmentation
was applied to the training set. Pretrained ImageNet weights are first used as frozen
feature extractors, followed by partial fine-tuning of the last 30% backbone layers,
with custom classification layers trained using the Adam optimizer with an early
stopping mechanism. Model performance is evaluated using accuracy, precision,
recall, F1-score, and confusion matrices, while computational efficiency is assessed
based on parameter count and inference speed measured in frames per second. The
results show that under partial fine-tuning MobileNetV3-Large achieves 95.83% test
accuracy and 95.80% macro F1-score with 3.12 million parameters, while
EfficientNet-BO obtains 93.18% accuracy and 93.02% macro F1-score with 4.21
million parameters. Both models achieve inference speeds above 50 frames per
second, suggesting their potential suitability for deployment on resource-constrained
devices. Bootstrap analysis suggests the performance gap is clear in the frozen stage
but becomes less conclusive after partial fine-tuning. Overall, MobileNetV3-Large
provides the best trade-off between accuracy and efficiency for rice leaf disease
classification.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN

Padi merupakan komoditas pangan strategis di Indonesia
karena beras menjadi makanan pokok masyarakat, sekaligus
sumber kalori utama bagi sebagian besar penduduk di negara-
negara Asia [1], [2]. Oleh karena itu, kestabilan produksi padi
berperan penting dalam menjaga ketahanan pangan nasional.
Berdasarkan data Badan Pusat Statistik (BPS), luas lahan
panen padi di Indonesia pada tahun 2024 mencapai sekitar
10,05 juta hektare dengan produksi sekitar 53,14 juta ton
gabah kering giling (GKG), yang masing-masing tercatat
menurun sekitar 1,6 persen untuk luas lahan panen dan 1,5
persen untuk produksi dibandingkan tahun 2023. Jika
dikonversi menjadi beras, produksi beras tahun 2024 sekitar

30,62 juta ton, turun sekitar 1,54 persen dari tahun
sebelumnya [3]. Penurunan produksi ini terjadi di tengah
pertumbuhan jumlah penduduk dan meningkatnya kebutuhan
konsumsi, sehingga diperlukan upaya peningkatan
produktivitas yang lebih efektif dan berkelanjutan [4]. Selain
faktor makro seperti perubahan iklim dan berkurangnya
lahan, gangguan organisme pengganggu tanaman, khususnya
hama dan penyakit padi, juga berkontribusi terhadap
penurunan hasil panen [5], [6]. Beberapa penyakit penting
pada padi, seperti bacterial leaf blight, brown spot, blast,
scald, dan narrow brown spot, dilaporkan sebagai ancaman
serius di berbagai wilayah penghasil padi, termasuk Indonesia
[7]. Namun, identifikasi dini penyakit di lapangan masih
sering mengandalkan inspeksi visual yang subjektif dan
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membutuhkan keahlian, sehingga berpotensi menghambat
pengendalian yang cepat dan tepat [8].

Seiring dengan berkembangnya teknologi dalam
mendeteksi penyakit tanaman secara dini, Convolutional
Neural Network (CNN) menjadi pendekatan utama dalam
pengolahan  citra  digital karena  kemampuannya
mengekstraksi fitur visual kompleks secara otomatis. CNN
konvensional seperti VGG16 dan ResNet50 terbukti akurat,
tetapi memerlukan daya komputasi besar sehingga tidak
praktis untuk perangkat lapangan atau mobile [9]. Oleh
karena itu, dikembangkan arsitektur ringan (lightweight
CNN) vyang lebih efisien secara komputasi namun tetap
kompetitif dalam hal akurasi. Di antara model tersebut,
MobileNetV3-Large dan EfficientNet-BO termasuk yang
paling populer karena memiliki parameter yang jauh lebih
kecil, waktu inferensi cepat, dan ukuran model yang relatif
ringan [10], [11]. Kedua model ini dirancang agar dapat
dijalankan pada perangkat terbatas seperti ponsel atau edge
device, yang menjadikannya relevan untuk implementasi di
sektor pertanian dengan infrastruktur komputasi terbatas.

Sejumlah studi sebelumnya telah menerapkan arsitektur ini
untuk Klasifikasi penyakit tanaman. Studi oleh Pramudhita et
al. [12] menggunakan MobileNetV3-Large dan EfficientNet-
BO untuk mengklasifikasikan penyakit daun stroberi, dan
menemukan bahwa MobileNetV3-Large memberikan akurasi
sebesar 92,14%, sedangkan EfficientNet-BO mencapai
89,28%, menjadikan MobileNetV3-Large unggul dalam
seluruh metrik evaluasi. Sementara itu, Dianto et al. [13]
menerapkan kedua model tersebut pada klasifikasi penyakit
daun jeruk dan juga melaporkan akurasi tinggi (>90%) untuk
keduanya, terutama pada kondisi data terbatas dan distribusi
kelas yang tidak seimbang. Dalam konteks tanaman padi,
Putra et al. [6] menggunakan MobileNetV2 untuk mendeteksi
penyakit dan hama daun padi, sedangkan Azis et al. [14]
menerapkan EfficientNet-B3 dengan pendekatan transfer
learning. Studi-studi tersebut menunjukkan bahwa arsitektur
CNN ringan telah banyak dimanfaatkan dalam klasifikasi
penyakit tanaman secara umum, dengan hasil yang kompetitif
dalam berbagai kasus dan jenis komoditas.

Berdasarkan temuan-temuan tersebut, penelitian ini
difokuskan pada eksplorasi dan perbandingan dua arsitektur
CNN ringan, yaitu MobileNetV3-Large dan EfficientNet-BO0,
dalam klasifikasi penyakit daun padi. Hingga saat ini, studi
yang membahas perbandingan langsung antara kedua model
ini dalam konteks tanaman padi masih sangat terbatas. Di sisi
lain, sebagian besar penelitian sebelumnya belum
memperhatikan distribusi data yang seimbang antar kelas,
yang dapat memicu bias Kklasifikasi dan menurunkan keadilan
evaluasi performa model [15]. Oleh karena itu, penelitian ini
menekankan penggunaan dataset seimbang dengan enam
kelas penyakit daun padi sebagai bagian dari kontribusi
utama, guna memastikan bahwa model yang dibangun tidak
hanya akurat, tetapi juga adil dan andal dalam mengenali
seluruh kategori penyakit.

Penelitian ini bertujuan untuk membandingkan kinerja dua
arsitektur lightweight CNN, yaitu MobileNetV3-Large dan

EfficientNet-BO, pada tugas Klasifikasi enam kelas penyakit
daun padi berbasis citra. Evaluasi kinerja dilakukan
menggunakan metrik akurasi, presisi, recall, dan F1-score,
serta aspek efisiensi komputasi yang diukur melalui jumlah
parameter, ukuran berkas model, dan kecepatan inferensi
(frame per second/fps). Selain itu, perbedaan kinerja antar
model dianalisis menggunakan pendekatan statistik berbasis
confidence interval (CI) untuk menilai konsistensi selisih
performa pada data uji. Untuk menilai kemampuan
generalisasi, model terbaik juga diuji pada dataset eksternal
yang berbeda dari data pelatihan dengan subset tiga kelas
yang tersedia. Dengan pendekatan tersebut, penelitian ini
diharapkan dapat memberikan  kontribusi  terhadap
pengembangan sistem deteksi penyakit tanaman berbasis citra
yang ringan, akurat, dan siap diterapkan di lingkungan
pertanian dengan keterbatasan perangkat komputasi.

I1. METODE

Metode penelitian ini terdiri dari beberapa tahap utama
yang disusun secara berurutan, meliputi persiapan dan
pembagian data, prapemrosesan citra, perancangan serta
pelatinan model MobileNetV3-Large dan EfficientNet-BO
berbasis transfer learning, serta evaluasi performa model.
Setiap tahap saling berkaitan untuk menghasilkan sistem
klasifikasi penyakit daun padi yang teruji. Alur lengkap
tahapan penelitian ditunjukkan pada gambar 1.

Prapemrosesan Data

Vuiai Persiapan dan
Pembagian Data Resize Augmentasi

Pelatihan Model

= = =

Gambar 1. Alur Tahapan Penelitian

A. Persiapan dan Pembagian Data

Dataset yang digunakan dalam penelitian ini adalah Rice
Leafs Disease Dataset yang diperoleh dari platform publik
Kaggle dan berisi citra daun padi sebanyak 2.628 dengan
enam kelas didalamnya, yaitu bacterial leaf blight, brown
spot, healthy, leaf blast, leaf scald, dan narrow brown spot
[16]. Dataset ini disusun dalam struktur direktori yang telah
memisahkan data pelatihan dan validasi, sehingga
memudahkan proses pengaturan ulang data sesuai kebutuhan
eksperimen. Contoh citra daun padi untuk masing-masing
kelas ditunjukkan pada Gambar 2.
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Gambar 2. Contoh Citra Per kelas

Dalam penelitian ini, dataset diorganisasi ulang menjadi
tiga subset, yaitu data latih (training set), data validasi
(validation set), dan data uji (test set) dengan rasio 80% : 10%

10%. Seluruh citra pada direktori pelatinan awal
dimanfaatkan sebagai data latih, sedangkan citra pada
direktori validasi awal dibagi kembali secara stratified per
kelas menjadi dua bagian yang sama besar untuk data validasi
dan data uji. Pendekatan ini memastikan bahwa distribusi
kelas tetap seimbang pada ketiga subset dan tidak terjadi
kebocoran data antara tahap pelatihan dan pengujian.

Ringkasan distribusi jumlah citra pada setiap kelas setelah
proses pembagian data disajikan pada Tabel 1, yang
menunjukkan bahwa keenam kelas memiliki jumlah sampel
yang sama pada data latih, data validasi, maupun data uji.

TABEL |
DATASPLITTING
Class Training | Validation Test
Bacterial leaf blight 350 44 44
Brown spot 350 44 44
Healthy 350 44 44
Leaf blast 350 44 44
Leaf scald 350 44 44
Narrow brown spot 350 44 44
Total 2100 264 264

B. Prapemrosesan Citra

Pada tahap prapemrosesan, seluruh citra daun padi diubah
ukurannya menjadi 224 x 224 piksel dengan tiga kanal warna
(RGB). Untuk meningkatkan kemampuan generalisasi model,
data latih kemudian diberikan augmentasi berupa rotasi acak
dengan faktor 0,05 (sekitar £18°), horizontal flip, random
zoom 0,1, penambahan Gaussian noise 0,1, serta penyesuaian
kecerahan 0,1. Sementara itu, data validasi dan data uji hanya
dikenai proses resize tanpa augmentasi tambahan.

C. Perancangan Model Berbasis Transfer learning

Penelitian ini memanfaatkan pendekatan transfer learning
dengan dua arsitektur Convolutional Neural Network (CNN)

ringan, yaitu MobileNetV3-Large dan EfficientNet-B0, yang
telah dilatih sebelumnya (pretrained) pada dataset ImageNet
[17]. Proses pelatihan dilakukan dalam dua tahap, yaitu tahap
frozen untuk melatih kepala klasifikasi pada fitur pralatih,
serta tahap partial fine-tuning untuk meningkatkan adaptasi
model terhadap karakteristik citra daun padi.

1) MobileNetV3-Large: MobileNetV3-Large merupakan
pengembangan dari keluarga MobileNet yang dirancang
untuk perangkat dengan sumber daya komputasi terbatas [10].
Seperti terlihat pada Gambar 3, arsitektur ini diawali dengan
lapisan konvolusi awal yang diikuti depthwise separable
convolution dan deretan blok inverted residual dengan linear
bottleneck. Di dalam setiap blok juga disisipkan mekanisme
squeeze-and-excitation (SE) untuk menonjolkan kanal fitur
yang penting, serta skip connection yang menjaga aliran
gradien selama pelatihan [18]. Pada bagian akhir jaringan
terdapat global average pooling dan konvolusi 1x1 (pointwise
convolution) sebelum menuju kepala Klasifikasi.

Depthwise separable convolution

1% 1 projection
Tayer
e

1 x 1 pointwise convolution

T Output

7x7 %960

Adaptative average
pooling

7x7x160

14x14 x 112
14 x 14 x 80

Inverted residual block
(bottlenek)

224 %224 %3

Gambar 3. Arsitektur MobileNetV3-Large

Dalam penelitian ini, bobot pralatih MobileNetV3-Large
pada ImageNet dimanfaatkan sebagai dasar representasi fitur.
Lapisan klasifikasi asli digantikan dengan rangkaian lapisan
baru yang terdiri atas Global Average Pooling 2D, satu
lapisan Dense dengan 128 neuron dan fungsi aktivasi ReL U,
satu lapisan Dropout dengan rasio 0,5 sebagai regularisasi,
dan lapisan Dense dengan 6 neuron dan fungsi aktivasi
softmax untuk menghasilkan probabilitas tiap kelas penyakit
daun padi. Selurun lapisan konvolusional backbone
MobileNetV3-Large dibekukan (frozen) pada tahap frozen
sehingga hanya parameter pada kepala klasifikasi yang
dioptimasi. Selanjutnya, dilakukan tahap partial fine-tuning
dengan membuka 30% lapisan terakhir backbone untuk
dilatih bersama kepala klasifikasi, sementara lapisan Batch
Normalization tetap dibekukan untuk menjaga stabilitas
statistik aktivasi. Konfigurasi ini menghasilkan model dengan
jumlah parameter yang relatif kecil namun tetap mampu
mengekstraksi fitur visual yang kaya dari citra daun padi.

2) EfficientNet-B0: EfficientNet-BO merupakan model
dasar dari keluarga EfficientNet yang mengusulkan skema
penskalaan terpadu (compound scaling) terhadap kedalaman,
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lebar, dan resolusi jaringan [11]. Seperti ditunjukkan pada
Gambar 4, arsitektur EfficientNet-B0 tersusun atas tujuh blok
utama yang masing-masing terdiri atas beberapa Mobile
Inverted Bottleneck Convolution (MBConv) dengan ukuran
kernel 3x3 maupun 5x5. Setiap blok MBConv dilengkapi
dengan mekanisme squeeze-and-excitation (SE) untuk
melakukan penimbangan ulang kanal fitur, sehingga model
mampu mencapai keseimbangan antara akurasi dan efisiensi
komputasi pada berbagai tingkat resolusi [18].

Block 1
Block 2
Block 3
Block 5

Block 7

—Aa—

Input Image
v
Conv3 X3
MBConvi, 3 X 3
MBConv6, 3 X 3
MBConve, 3 X 3
MBConve, 5 X5
MBConv6, 5 X 5
MBConv6, 3 X 3
MBConv6, 3 X 3
MBConv6, 3 X 3
MBConv6, 5 X 5
MBConv, 5 X 5
MBConv6, 5 X 5
MBConvé, 5 X 5
MBConv6, 5 X 5
MBConv6, 5 X 5
MBConv6, 5 X 5
MBConvé, 3 X 3
v
Feature Map

Gambar 4. Arsitektur EfficientNet-B0

Serupa dengan MobileNetV3-Large, lapisan klasifikasi
bawaan EfficientNet-BO diganti dengan kepala klasifikasi
berupa Global Average Pooling diikuti Dense 128 (ReLU),
Dropout 0,5, dan Dense 6 (softmax). Proses pelatihan
EfficientNet-BO mengikuti skema dua tahap (frozen dan
partial fine-tuning) sebagaimana dijelaskan pada subbab
Pelatihan Model. Dengan rancangan tersebut, penelitian ini
dapat membandingkan kinerja dua arsitektur CNN ringan
yang sama-sama efisien namun memiliki strategi desain blok
yang berbeda pada tugas klasifikasi enam kelas penyakit daun
padi.

D. Pelatihan Model

Kedua model dilatih menggunakan data latih dengan skema
transfer learning dua tahap, yaitu tahap frozen dan tahap
partial fine-tuning, di mana pada tahap frozen backbone
pralatih dibekukan dan hanya kepala Kklasifikasi yang
diperbarui. Proses pelatihan tahap frozen dilakukan selama
maksimal 30 epoch dengan ukuran batch tetap 32,
menggunakan optimizer Adam dengan learning rate sebesar
0,0001 dan loss function sparse categorical crossentropy.
Selanjutnya dilakukan partial fine-tuning dengan membuka
30% lapisan terakhir pada backbone (setara 56 lapisan
terakhir pada MobileNetV3-Large dan 71 lapisan terakhir
pada EfficientNet-B0) menggunakan learning rate sebesar
0,00001 selama maksimal 15 epoch, dengan lapisan Batch
Normalization tetap dibekukan. Selama pelatihan, performa
model dipantau pada data validasi setiap epoch.

Untuk mencegah overfitting, diterapkan mekanisme early
stopping berbasis nilai validation loss (loss validasi) dengan
patience 5, sehingga pelatihan dihentikan lebih awal ketika
kinerja pada data validasi tidak lagi membaik secara
signifikan. Selain itu, digunakan pula model checkpoint yang
menyimpan bobot model terbaik selama pelatihan, yaitu pada

saat nilai validation accuracy (akurasi validasi) mencapai
maksimum. Penyesuaian learning rate juga dilakukan
menggunakan ReduceLROnPlateau berdasarkan validation
loss dengan faktor 0,5 dan patience 3. Seluruh proses
pelatihan dan pengukuran waktu inferensi dilakukan pada
lingkungan Google Colab dengan akselerator GPU NVIDIA
T4.

E. Evaluasi dan Perbandingan Model

Setelah proses pelatihan selesai, model terbaik untuk setiap
arsitektur dievaluasi menggunakan data uji yang sama sekali
tidak digunakan selama pelatihan maupun validasi. Evaluasi
diawali dengan pembuatan confusion matrix, yaitu tabel yang
merangkum jumlah prediksi benar dan salah untuk setiap
kelas [19]. Dari confusion matrix tersebut, diperoleh nilai
dasar berupa True Positive (TP), False Positive (FP), False
Negative (FN), dan True Negative (TN) yang dihitung untuk
masing-masing kelas dengan definisi sebagai berikut:

1) True Positive (TP): sampel suatu kelas yang diprediksi
benar sebagai kelas tersebut.

2) False Positive (FP): sampel dari kelas lain yang salah
diprediksi sebagai kelas tersebut.

3) False Negative (FN): sampel suatu kelas yang gagal
dikenali dan diprediksi sebagai kelas lain.

4) True Negative (TN): sampel yang bukan dari kelas
tersebut dan diprediksi benar sebagai bukan kelas
tersebut.

Rumus metrik evaluasi yang digunakan dapat dituliskan
sebagai berikut:
1) Akurasi: Menunjukkan proporsi prediksi yang benar
terhadap seluruh sampel.

TP+ TN
Accuracy = p TN FP+ FN
2) Presisi:  Mengukur  ketepatan model  ketika
memprediksi suatu kelas.
L TP
Precision = TP+ FP

3) Recall: Mengukur kemampuan model menemukan
kembali sampel yang benar-benar termasuk suatu
kelas.

Recall = e
T TP+FN
4) F1-Score: Menyatakan rata-rata harmonis antara

presisi dan recall.

Precision X Recall
F1=2x

Precision + Recall

Untuk kasus klasifikasi multi-kelas, nilai presisi, recall, dan
Fl-score dirata-ratakan menggunakan pendekatan macro
average, sehingga setiap kelas memiliki kontribusi yang
seimbang terhadap metrik keseluruhan.
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Selain metrik berbasis confusion matrix, penelitian ini juga
mengukur efisiensi komputasi melalui waktu inferensi rata-
rata per citra, yang kemudian dikonversi menjadi frame per
second (fps). Waktu inferensi diukur dari rata-rata waktu
prediksi per citra pada GPU NVIDIA T4 tanpa tahap
prapemrosesan tambahan. Nilai-nilai evaluasi tersebut
digunakan untuk membandingkan kinerja dan efisiensi relatif
antara MobileNetV3-Large dan EfficientNet-BO pada tugas
klasifikasi enam kelas penyakit daun padi.

Untuk memperkuat perbandingan kinerja antar model,
selisih performa juga dianalisis menggunakan metode paired
bootstrap pada data uji dan dilaporkan dalam bentuk
confidence interval (Cl) 95% untuk selisih metrik
(MobileNetVV3-Large -  EfficientNet-B0).  Perbedaan
dianggap bermakna apabila 95% CI tidak melintasi nol.

Sebagai validasi tambahan terhadap temuan pada data uji
internal, model terbaik pada konfigurasi partial fine-tuning
diuji pada dataset eksternal yang berbeda dari dataset
pelatihan. Evaluasi eksternal dilakukan pada subset tiga kelas
yang tersedia, yaitu brown spot, healthy, dan leaf blast,
menggunakan akurasi dan F1-score (macro average), serta
proporsi prediksi di luar subset tiga kelas.

I11. HASIL DAN PEMBAHASAN

A. Hasil Pelatihan Model

Pelatihan model dilakukan menggunakan arsitektur
MobileNetV3-Large dan EfficientNet-BO yang termasuk
keluarga CNN ringan. Kedua model diinisialisasi dengan
bobot pralatih ImageNet dan digunakan dalam skema transfer
learning dua tahap, yaitu tahap frozen dan tahap partial fine-
tuning, dengan kepala Klasifikasi baru yang dilatih pada
dataset citra daun padi enam kelas. Dataset terdiri dari 2.628
citra yang dibagi menjadi 80:10:10 untuk data latih, validasi,
dan uji. Pada tahap frozen, pelatihan dilakukan selama
maksimal 30 epoch dengan optimisasi Adam, learning rate
sebesar 0,0001, dan ukuran batch 32. Selanjutnya, dilakukan
partial fine-tuning dengan membuka 30% lapisan terakhir
pada backbone menggunakan learning rate 0,00001 selama
maksimal 15 epoch.

Selama pelatihan, kinerja model dipantau melalui metrik
pada data validasi setiap epoch untuk memastikan proses
pembelajaran tidak hanya baik pada data latih. Mekanisme
model checkpoint digunakan untuk menyimpan bobot terbaik
berdasarkan akurasi validasi tertinggi, sehingga evaluasi
berikutnya menggunakan model yang benar-benar mewakili
performa optimal dari masing-masing konfigurasi. Selain itu,
early stopping berbasis validation loss dan penyesuaian
learning rate (ReduceLROnPlateau) membantu menjaga
stabilitas optimisasi ketika peningkatan kinerja pada validasi
mulai melambat.

Perilaku pelatihan kedua model ditunjukkan pada kurva
akurasi dan loss pada Gambar 5 hingga Gambar 8. Pada
MobileNetV3-Large, akurasi pelatihan meningkat secara
bertahap sejak epoch awal hingga mencapai nilai di atas 0,90
pada akhir tahap frozen. Kurva akurasi validasi mengikuti

pola yang serupa dengan selisih yang relatif kecil, sehingga
tidak tampak adanya gap besar antara performa pada data latih
dan data validasi. Hal ini mengindikasikan bahwa model
memiliki kemampuan generalisasi yang baik dan tidak
mengalami overfitting yang berarti. Kurva loss pelatihan dan
validasi juga menurun secara konsisten hingga mendekati
kisaran sekitar 0,2 pada epoch-epoch akhir tahap frozen, yang
menunjukkan bahwa proses optimisasi berjalan stabil dan
model telah mencapai kondisi mendekati konvergensi.
Setelah dilanjutkan dengan tahap partial fine-tuning, tren
akurasi dan loss tetap stabil dengan perbaikan yang lebih
moderat. Grafik akurasi dan loss MobileNetV3-Large
ditunjukkan pada Gambar 5 dan Gambar 6.

MobileNetV3-Large - Accuracy (Frozen + FT)
1.0 ¥
—— train_acc

val_acc
097 ——- start_FT

0.8

Accuracy
o e
) ~

<o
n

=]
S

T T T T
0 10 20 30 40
Epoch

Gambar 5. Grafik akurasi model MobileNetV3-Large

MobileNetV3-Large - Loss {Frozen + FT)

—— train_loss
val_loss
-—- start_FT

0 10 20 30 40
Epoch

Gambar 6. Grafik loss model MobileNetV3-Large

EfficientNet-BO menunjukkan pola pelatihan yang sejenis.
Akurasi pelatihan dan validasi meningkat secara progresif,
dengan akurasi validasi yang stabil di kisaran sekitar 0,88—
0,90 pada akhir tahap frozen. Dibandingkan MobileNetV3-
Large, kurva akurasi validasi EfficientNet-BO tampak sedikit
lebih fluktuatif pada beberapa epoch, namun tren globalnya
tetap meningkat. Kurva loss untuk EfficientNet-BO juga
menurun secara bertahap dan mulai mendatar pada epoch-
epoch akhir tahap frozen, menandakan bahwa model telah
mencapai titik jenuh pelatihan pada kisaran 20-30 epoch.
Setelah dilanjutkan dengan tahap partial fine-tuning, pola loss
tetap stabil dan perubahan akurasi cenderung moderat. Grafik
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akurasi dan loss EfficientNet-BO ditunjukkan pada Gambar 7
dan Gambar 8.

EfficientNet-BO - Accuracy (Frozen + FT)
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Gambar 7. Grafik akurasi model EfficientNet-B0
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Gambar 8. Grafik loss model EfficientNet-BO

Secara keseluruhan, hasil pelatihan menunjukkan bahwa
kedua model mampu beradaptasi dengan baik terhadap
karakteristik citra daun padi. MobileNetV3-Large cenderung
menghasilkan kurva akurasi validasi yang sedikit lebih tinggi
dan lebih stabil pada epoch-epoch akhir dibanding
EfficientNet-BO, yang selaras dengan hasil evaluasi
kuantitatif pada data uji yang akan dibahas pada subbab
berikutnya.

B. Hasil Evaluasi Model

Evaluasi kinerja dilakukan menggunakan data uji yang
sama sekali tidak digunakan selama tahap pelatihan maupun
validasi. Tabel Il menyajikan ringkasan hasil empat
konfigurasi (tahap frozen dan partial fine-tuning untuk
masing-masing model) berdasarkan akurasi, presisi, recall,
dan F1-score yang dihitung berdasarkan nilai True Positive,
False Positive, False Negative, dan True Negative pada
confusion matrix. Untuk setiap model, nilai presisi, recall, dan
F1-score dirata-ratakan dengan pendekatan macro average,
sehingga setiap kelas memberikan kontribusi yang seimbang
terhadap metrik keseluruhan.

TABEL Il
HASIL EVALUASI MODEL PADA DATA UJI

Model Akurasi | Presisi Recall F1-score
mfgé"zgf;;ﬁ) 94,70% | 94,65% | 94,70% | 94,62%
L;\:';eb'(';fa'\'rﬁg\(in 95.83% | 9579% | 9583% | 95,80%
'gg‘z::ep;z'\e'ﬁt) 80,39% | 89,42% | 89,39% | 88,83%
BEOTF(’:;?E;'I\IE% 93,18% | 93,06% | 93,18% | 93,02%

Ringkasan hasil evaluasi menunjukkan bahwa pada tahap
frozen, MobileNetV3-L memperoleh akurasi uji sebesar
94,70% dengan presisi 94,65%, recall 94,70%, dan F1-score
94,62%. Sementara itu, EfficientNet-BO pada tahap frozen
menghasilkan akurasi 89,39% dengan presisi 89,42%, recall
89,39%, dan F1-score 88,83%. Setelah dilakukan partial fine-
tuning (Partial FT), kedua model mengalami peningkatan
kinerja. MobileNetV3-L mencapai akurasi 95,83% dengan
Fl-score 95,80%, sedangkan EfficientNet-BO mencapai
akurasi 93,18% dengan F1-score 93,02%.

Nilai presisi dan recall yang relatif seimbang pada keempat
konfigurasi menunjukkan bahwa masing-masing arsitektur
tidak hanya mampu mengenali sampel dengan baik, tetapi
juga menjaga tingkat kesalahan prediksi pada level yang
rendah. Secara umum, kedua model menunjukkan performa
klasifikasi yang tinggi dengan Fl1-score di atas 88%.
MobileNetV3-L cenderung memperoleh nilai yang lebih
tinggi dibanding EfficientNet-BO pada data uji internal,
terutama pada tahap frozen.

Setelah partial fine-tuning, selisih performa kedua model
mengecil. Untuk menguatkan temuan pada Tabel I, selisih
performa tersebut dianalisis menggunakan uji statistik paired
bootstrap dan dilaporkan dalam bentuk confidence interval
(CI) 95%.

Pada konfigurasi frozen, selisih akurasi (MobileNetV3-L —
EfficientNet-B0) sebesar 5,34% dengan 95% CI [1,89%;
8,71%] dan selisih F1-score makro sebesar 5,87% dengan
95% CI [2,37%; 9,54%], sehingga perbedaan Kinerja pada
tahap ini bermakna. Setelah partial fine-tuning, selisih akurasi
menurun menjadi 2,64% dengan 95% CI [-0,38%; 5,68%] dan
selisih F1-score makro menjadi 2,79% dengan 95% CI [-
0,37%; 6,13%]. Karena 95% CI pada tahap partial fine-tuning
masih melintasi nol, perbedaan kinerja pada tahap ini belum
konklusif.

Selanjutnya, analisis kesalahan dilakukan menggunakan
confusion matrix untuk mengidentifikasi pasangan kelas yang
paling sering tertukar pada konfigurasi terbaik.

C. Analisis Confusion Matrix

Confusion matrix digunakan untuk menganalisis performa
klasifikasi per kelas dan mengidentifikasi pola kesalahan
yang terjadi pada kedua model. Matriks ini merepresentasikan
jumlah prediksi benar dan salah untuk setiap kombinasi kelas
aktual dan kelas prediksi pada data uji. Gambar 9
menampilkan confusion matrix untuk model MobileNetV3-
Large (Partial FT), sedangkan Gambar 10 menunjukkan
confusion matrix untuk EfficientNet-BO0 (Partial FT). Masing-
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masing baris pada matriks merepresentasikan kelas
sebenarnya, sedangkan kolom merepresentasikan kelas hasil
prediksi model.

Pada MobileNetV3-Large, sebagian besar elemen diagonal
memiliki nilai yang tinggi, yang menunjukkan bahwa model
mampu mengklasifikasikan mayoritas sampel dengan benar
pada hampir semua kelas. Kelas bacterial leaf blight, leaf
scald dan narrow brown spot memiliki tingkat prediksi benar
yang sangat tinggi tanpa adanya sampel yang salah klasifikasi
(44/44). Kesalahan kecil terlihat pada kelas healthy, yaitu 2
sampel diprediksi sebagai leaf blast. Kesalahan klasifikasi
terutama terjadi pada kelas-kelas dengan gejala bercak yang
mirip, yakni brown spot dan leaf blast, di mana beberapa
sampel brown spot teridentifikasi sebagai leaf blast dan
sebaliknya. Pada kelas brown spot, terdapat 4 sampel yang
salah prediksi (1 sebagai bacterial leaf blight, 1 sebagai
healthy, dan 2 sebagai leaf blast). Pada kelas leaf blast,
terdapat 5 sampel yang salah prediksi (3 sebagai brown spot,
1 sebagai healthy, dan 1 sebagai narrow brown spot).
Meskipun demikian, jumlah kesalahan tersebut relatif kecil
dibandingkan jumlah prediksi benar, sehingga kinerja per
kelas masih tergolong tinggi secara keseluruhan.

Cenfusion Matrix - MobileNetV3-Large_PartialFT (Counts)

bacterial_leaf_blight

brown_spot

healthy -

True label

leaf_blast -

leaf_scald 4

Narrow_brown_spot 4

Predicted label

Gambar 9. Confusion Matrix MobileNetV3-Large

Pada EfficientNet-BO, pola diagonal masih terlihat
dominan, yang menunjukkan bahwa model ini juga mampu
mengenali sebagian besar sampel dengan benar. Namun,
dibandingkan  MobileNetV3-Large, tingkat kesalahan
Kklasifikasi pada kelas tertentu tampak lebih tinggi. Kelas
bacterial leaf blight dan narrow brown spot menunjukkan
prediksi benar yang sangat tinggi tanpa adanya salah
klasifikasi (44/44). Untuk kelas healthy, sebagian besar
sampel diprediksi benar (43/44) dengan 1 sampel salah
prediksi sebagai leaf blast, sedangkan pada kelas leaf scald
terdapat 1 sampel yang salah prediksi sebagai bacterial leaf
blight (43/44). Kelas leaf blast menjadi kelas yang paling
menantang, dengan cukup banyak sampel yang salah
diprediksi sebagai brown spot atau bahkan healthy. Secara

rinci, pada kelas leaf blast terdapat 11 sampel yang salah
prediksi (6 sebagai brown spot, 3 sebagai healthy, dan 2
sebagai narrow brown spot).Selain itu, beberapa kesalahan
juga terjadi pada kelas brown spot yang sebagian sampelnya
diprediksi sebagai leaf blast atau narrow brown spot. (4
sampel brown spot diprediksi sebagai leaf blast dan 1 sampel
diprediksi sebagai narrow brown spot). Pola kebingungan ini
mengindikasikan bahwa EfficientNet-BO lebih sensitif
terhadap kemiripan pola bercak antar penyakit, sehingga
akurasi per kelas untuk kelompok penyakit dengan gejala
visual yang saling mendekati menjadi sedikit lebih rendah
dibanding MobileNetV3-Large.

Confusion Matrix - EfficientNet-BO_PartialFT (Counts)
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Gambar 10. Confusion Matrix EfficientNet-BO

Secara umum, analisis confusion matrix menunjukkan
bahwa kedua model memiliki kemampuan klasifikasi yang
sangat baik untuk kelas-kelas dengan karakteristik visual
yang jelas, seperti bacterial leaf blight dan narrow brown
spot. Tantangan utama terdapat pada kelas-kelas dengan
gejala bercak yang mirip, khususnya brown spot, leaf blast,
yang menjadi sumber utama mis-klasifikasi pada kedua
model. Namun, MobileNetV3-Large menghasilkan distribusi
prediksi yang lebih seimbang dan tingkat kesalahan yang
lebih rendah pada kelas-kelas tersebut, yang selaras dengan
kecenderungan nilai akurasi dan F1-score makro yang lebih
tinggi pada hasil evaluasi model.

D. Perbandingan Kinerja Model

Hasil evaluasi pada data uji menunjukkan bahwa kedua
model CNN yang digunakan mampu memberikan performa
klasifikasi yang tinggi. Secara umum, MobileNetV3-Large
menghasilkan nilai akurasi, presisi, recall, dan F1-score yang
sedikit lebih tinggi dibandingkan EfficientNet-B0O pada data
uji internal. Perbedaan ini terlihat lebih jelas pada tahap
frozen, sedangkan setelah partial fine-tuning selisih performa
keduanya mengecil.

Perbandingan pola kesalahan pada confusion matrix
memperkuat ~ temuan  tersebut.  MobileNetV3-Large
cenderung lebih stabil dalam membedakan kelas-kelas
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dengan gejala bercak yang mirip, seperti brown spot, leaf
blast, dan narrow brown spot, dengan jumlah mis-klasifikasi
yang lebih sedikit. EfficientNet-BO masih menunjukkan
kebingungan yang lebih besar pada kelompok kelas tersebut,
misalnya ketika beberapa sampel leaf blast diprediksi sebagai
brown spot atau healthy. Kondisi ini menjelaskan mengapa
nilai F1-score makro MobileNetV3-Large pada konfigurasi
partial fine-tuning tetap lebih tinggi, meskipun selisinnya
tidak sebesar pada tahap frozen.

TABEL Il
PERBANDINGAN KINERJA KEDUA MODEL
F1-score | Parameter | Ukuran
Model (%) (Juta) (MB) FPS
MobileNetV3 | 4 g 3,12 13,99 | 81,88
-Large
Eﬁ'c'égt’\'et' 93,02 421 1881 | 51,60

Dari sisi efisiensi komputasi, perbedaan kedua arsitektur
terlihat pada jumlah parameter dan ukuran berkas model.
Ringkasan F1-score dan aspek efisiensi ditunjukkan pada
Tabel 11l. MobileNetV3-Large memiliki sekitar 3,12 juta
parameter dengan ukuran model sekitar 13,99 MB, sedangkan
EfficientNet-BO memiliki sekitar 4,21 juta parameter dengan
ukuran model sekitar 18,81 MB. Kedua model sama-sama
mampu melakukan inferensi lebih dari 50 frame per detik,

namun  MobileNetV3-Large menunjukkan  kecepatan
inferensi  yang lebih tinggi (81,88 fps) dibanding
EfficientNet-BO (51,60 fps), sehingga memberikan

keuntungan tambahan untuk penerapan real-time. Namun,
kombinasi F1-score yang lebih tinggi, jumlah parameter yang
lebih sedikit, dan ukuran model yang lebih kecil menjadikan
MobileNetV3-Large sebagai pilihan yang lebih sesuai untuk
implementasi pada perangkat dengan sumber daya terbatas,
sementara EfficientNet-BO dapat diposisikan sebagai
alternatif yang tetap kompetitif pada lingkungan dengan
kapasitas komputasi yang lebih longgar.

E. Uji Generalisasi pada Dataset Eksternal

Pengujian eksternal dilakukan sebagai validasi tambahan
untuk menilai konsistensi Kinerja model pada domain data
yang berbeda dari data uji internal. Dataset eksternal
diperoleh dari Roboflow Universe [20] menggunakan folder
test dan dievaluasi pada tiga kelas yang konsisten dengan
label pada dataset internal, yaitu brown spot, healthy, dan leaf
blast, dengan total 276 citra, menggunakan model terbaik
pada konfigurasi partial fine-tuning.

TABEL IV
RINGKASAN HASIL UJI EKSTERNAL
Model Akurasi Fl-score | Pred. luar 3 kelas
MobileNetV3- 0 0 0
Large 65,22% 61,10% 1,09%
Eﬁ'c'gg“\'et' 6159% | 61,72% 4,71%

Hasil pada Tabel IV menunjukkan bahwa performa kedua
model menurun dibandingkan evaluasi data uji internal, yang
mengindikasikan adanya perbedaan karakteristik domain
antara dataset internal dan eksternal. Pada metrik akurasi,
MobileNetV3-Large memperoleh nilai lebih tinggi,
sedangkan EfficientNet-BO menghasilkan F1-score makro
yang sedikit lebih tinggi. Selain itu, proporsi prediksi di luar
subset tiga kelas pada EfficientNet-B0 lebih besar dibanding
MobileNetV3-Large, yang menunjukkan bahwa pada
sebagian citra eksternal model lebih sering memetakan
prediksi ke kelas lain di luar subset yang diuji.

Pola kesalahan prediksi pada MobileNetV3-Large
ditunjukkan pada confusion matrix ternormalisasi pada
Gambar 11. Kelas healthy merupakan kelas yang paling stabil
dikenali (nilai diagonal 0,73). Namun, kelas brown spot
cukup sering tertukar menjadi healthy (0,41) dan sebagian
menjadi leaf blast (0,20). Untuk kelas leaf blast, sebagian
sampel masih Kkeliru diprediksi sebagai healthy (0,23). Pola
ini menunjukkan bahwa kemiripan gejala bercak antar kelas
masih menjadi sumber utama mis-klasifikasi pada pengujian
lintas-dataset.

Confusion Matrix - MobileNetV3-Large - Dataset External (Normalized)
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Gambar 11. Confusion matrix MobileNetV3-Large pada dataset
eksternal.

Pada EfficientNet-B0, confusion matrix ternormalisasi
pada Gambar 12 menunjukkan bahwa kelas leaf blast
memiliki tingkat pengenalan yang paling tinggi (nilai
diagonal 0,79), diikuti healthy (0,60) dan brown spot (0,55).
Kesalahan terbesar terjadi ketika healthy diprediksi sebagai
leaf blast (0,38). Pada kelas brown spot, sebagian sampel juga
tertukar menjadi leaf blast (0,27) dan healthy (0,18),
sedangkan kesalahan pada leaf blast relatif lebih kecil,
terutama ketika diprediksi sebagai brown spot (0,08) dan
healthy (0,13). Dibanding MobileNetV3-Large, EfficientNet-
BO lebih kuat dalam mengenali leaf blast, namun
menunjukkan kebingungan yang lebih besar pada kelas
healthy, yang selaras dengan perbedaan kinerja ringkas pada
evaluasi eksternal.
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Confusion Matrix - EfficientNet-B0 - Dataset External (Normalized)
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Gambar 12. Confusion matrix EfficientNet-B0 pada dataset eksternal.

Secara umum, uji eksternal ini memberikan validasi
tambahan bahwa kinerja model dapat berubah ketika diuji
pada domain data yang berbeda dari data pelatihan dan uji
internal. Perubahan performa ini mengindikasikan adanya
perbedaan Kkarakteristik citra antara dataset internal dan
eksternal, terutama pada kelas-kelas dengan gejala bercak
yang mirip. Ke depan, robustnes model berpotensi diperkuat
melalui penggunaan data pelatihan yang lebih besar dan lebih
beragam, misalnya dengan menggabungkan beberapa sumber
dataset atau menambah variasi kondisi pengambilan citra,
sehingga model lebih stabil ketika diterapkan pada skenario
lapangan.

F. Diskusi

Hasil eksperimen menunjukkan bahwa kedua arsitektur
CNN ringan yang digunakan, yaitu MobileNetV3-Large dan
EfficientNet-BO, mampu memberikan performa klasifikasi
yang tinggi pada enam kelas penyakit daun padi. Nilai akurasi
dan F1-score makro yang tinggi pada evaluasi data uji internal
mengindikasikan bahwa pendekatan transfer learning dengan
backbone pralatih ImageNet efektif untuk Klasifikasi citra
daun. Selain itu, performa yang relatif merata pada seluruh
kelas menunjukkan bahwa dataset dengan distribusi seimbang
membantu mengurangi kecenderungan bias prediksi terhadap
kelas tertentu pada skenario klasifikasi multi-class.

Selisih performa antar model juga dianalisis menggunakan
paired bootstrap berbasis confidence interval (CI) 95%.
Hasilnya menunjukkan bahwa pada tahap frozen, selisih
performa MobileNetV3-Large terhadap EfficientNet-BO
tampak konsisten. Namun, setelah partial fine-tuning selisih
performa mengecil dan untuk beberapa metrik Cl melintasi
nol, sehingga perbedaan kinerja pada tahap ini belum dapat
dinyatakan konklusif pada tingkat keyakinan 95%. Oleh
karena itu, keunggulan MobileNetV3-Large pada konfigurasi
akhir diinterpretasikan secara hati-hati tanpa menyatakan
keunggulan signifikan untuk seluruh metrik.

Uji eksternal yang ditambahkan menunjukkan adanya
perbedaan performa dibanding pengujian internal, yang
mengindikasikan perbedaan karakteristik citra antar dataset.
Temuan ini menguatkan pentingnya data pelatihan yang lebih
beragam agar model lebih stabil pada skenario lapangan.

Hasil penelitian ini juga konsisten dengan temuan pada
studi klasifikasi penyakit daun stroberi dan daun jeruk yang
menggunakan MobileNetV3-Large dan EfficientNet-BO, di
mana kedua arsitektur tersebut mampu mencapai akurasi di
atas 90% pada berbagai jenis tanaman [12], [13]. Pola bahwa
MobileNetV3-Large sedikit lebih unggul dibanding
EfficientNet-BO juga terlihat pada hasil penelitian ini,
meskipun selisih kinerjanya relatif kecil. Di sisi lain, sejumlah
penelitian penyakit daun padi juga telah mengeksplorasi
arsitektur  lain, termasuk MobileNetV2 dan varian
EfficientNet yang lebih besar [6], [14]. Namun, perbedaan
karakteristik dataset, jumlah kelas, serta protokol pembagian
data dan evaluasi membuat perbandingan nilai performa antar
studi tersebut tidak sepenuhnya setara. Oleh karena itu,
kontribusi utama penelitian ini terletak pada pembandingan
langsung dua arsitektur lightweight CNN dalam satu skenario
eksperimen yang seragam, serta evaluasi efisiensi komputasi
melalui jumlah parameter, ukuran model, dan kecepatan
inferensi.

Analisis confusion matrix pada konfigurasi terbaik (partial
fine-tuning) menunjukkan bahwa kedua model sangat baik
dalam mengenali kelas dengan karakteristik visual yang jelas,
seperti bacterial leaf blight, healthy, dan leaf scald, dengan
tingkat kesalahan yang rendah. Kesalahan Klasifikasi
terutama muncul pada kelas-kelas dengan gejala bercak yang
memiliki kemiripan visual, yaitu brown spot, leaf blast, dan
narrow brown spot. Perbedaan kinerja pada kelompok kelas
ini kemungkinan berkaitan dengan karakteristik arsitektur
masing-masing model, di mana MobileNetV3-Large
dirancang untuk ekstraksi fitur yang efisien pada resolusi
relatif rendah sehingga berpotensi lebih stabil dalam
membedakan tekstur bercak yang saling berdekatan pada
pengaturan pelatihan yang sama.

G. Implikasi Praktis

Implikasi praktis dari penelitian ini dapat diperluas pada
beberapa skenario penerapan di lingkungan pertanian.
Kecepatan inferensi yang diperoleh pada pengujian (di atas 50
fps pada GPU NVIDIA T4) menunjukkan potensi
penggunaan real-time, misalnya untuk Kklasifikasi cepat
melalui aplikasi smartphone saat pemantauan tanaman,
integrasi pada drone untuk inspeksi area sawah, maupun pada
perangkat loT pertanian sebagai sistem pemantauan berbasis
kamera. Pada skenario tersebut, citra daun dapat diambil
menggunakan kamera perangkat, diproses melalui
prapemrosesan sederhana, lalu model menghasilkan prediksi
kelas penyakit sebagai keluaran untuk membantu keputusan
awal di lapangan. Dari sisi efisiensi, MobileNetV3-Large
memiliki ukuran model yang lebih kecil dan kecepatan
inferensi yang lebih tinggi dibanding EfficientNet-BO pada
lingkungan pengujian yang sama, sehingga lebih
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menguntungkan untuk perangkat dengan sumber daya
terbatas. Namun, pengukuran fps pada penelitian ini
dilakukan pada lingkungan GPU sehingga performanya dapat
berbeda pada perangkat nyata. Oleh karena itu, pengujian
langsung pada perangkat target (smartphone, drone, atau edge
device) diperlukan sebagai tahap lanjutan untuk memvalidasi
performa implementasi.

H. Keterbatasan Penelitian

Penelitian ini memiliki beberapa keterbatasan. Dataset
internal bersumber dari dataset publik sehingga variasi
kondisi lapangan, seperti pencahayaan, latar belakang, sudut
pengambilan, dan tingkat keparahan penyakit, belum
sepenuhnya terwakili. Sebagai validasi tambahan, penelitian
ini telah menyertakan uji eksternal pada dataset berbeda, dan
perbedaan domain data terlihat dari perubahan kinerja pada
subset tiga kelas yang tersedia. Strategi pelatihan
menggunakan partial fine-tuning dengan membuka 30%
lapisan terakhir backbone dan membekukan lapisan Batch
Normalization dipilih sebagai kompromi untuk meningkatkan
adaptasi model sekaligus menekan risiko overfitting
mengingat ukuran dataset pelatihan relatif terbatas,
sedangkan full fine-tuning berpotensi meningkatkan
kebutuhan komputasi dan risiko overfitting. Selain itu,
kecepatan inferensi diukur pada GPU NVIDIA T4 di
lingkungan Google Colab sehingga nilai fps belum
merepresentasikan performa pada perangkat smartphone atau
edge device, dan pengujian langsung pada perangkat target
diperlukan untuk memvalidasi efisiensi implementasi.

1V. KESIMPULAN

Penelitian ini membandingkan kinerja dua arsitektur CNN
ringan, yaitu MobileNetV3-Large dan EfficientNet-B0, pada
tugas Klasifikasi enam kelas penyakit daun padi berbasis citra
menggunakan pendekatan transfer learning dengan backbone
pralatih ImageNet. Proses pelatihan dilakukan dalam dua
tahap, yaitu tahap frozen dan tahap partial fine-tuning. Kedua
model dilatih pada 2.628 citra yang dibagi menjadi data latih,
validasi, dan uji dengan rasio 80%:10%:10% dan dievaluasi
menggunakan metrik akurasi, presisi, recall, dan Fl-score
(macro average). Pada konfigurasi terbaik (partial fine-
tuning), MobileNetV3-Large mencapai akurasi uji 95,83%
dan F1-score makro 95,80%, sedangkan EfficientNet-BO
memperoleh akurasi 93,18% dan F1-score makro 93,02%.
Analisis confusion matrix mengindikasikan bahwa keduanya
sangat baik dalam mengenali kelas dengan karakteristik
visual yang jelas, sementara kesalahan utama terjadi pada
kelas-kelas bercak dengan gejala mirip, di mana
MobileNetV3-Large menghasilkan jumlah mis-klasifikasi
yang sedikit lebih rendah.

Perbandingan kinerja antar model juga diperkuat melalui
analisis paired bootstrap berbasis confidence interval (Cl)
95%, yang menunjukkan selisih performa tampak konsisten
pada tahap frozen, namun setelah partial fine-tuning selisih
mengecil dan untuk beberapa metrik CI melintasi nol

sehingga interpretasi perbedaan kinerja dilakukan secara hati-
hati.

Dari sisi efisiensi komputasi, MobileNetV3-Large
memiliki jumlah parameter 3,12 juta, ukuran model 13,99
MB, dan kecepatan inferensi 81,88 fps, sedangkan
EfficientNet-BO memiliki 4,21 juta parameter, ukuran 18,81
MB, dan kecepatan inferensi 51,60 fps pada pengujian GPU
NVIDIA T4. Pada uji eksternal berbasis tiga kelas, performa
kedua model menurun dibanding pengujian internal yang
mengindikasikan adanya perbedaan domain data. Kombinasi
kinerja internal yang lebih tinggi, kompleksitas model yang
lebih rendah, dan kecepatan inferensi yang memadai
menjadikan MobileNetV3-Large lebih sesuai sebagai
kandidat utama untuk implementasi sistem deteksi penyakit
daun padi pada perangkat dengan sumber daya terbatas,
sementara EfficientNet-BO dapat diposisikan sebagai
alternatif yang kompetitif. Ke depan, penelitian ini dapat
diperluas dengan pengujian model pada citra daun padi yang
dikumpulkan langsung dari lapangan dengan variasi kondisi
pencahayaan, latar belakang, dan tingkat keparahan penyakit
yang lebih beragam, serta dengan memanfaatkan hasil yang
diperoleh sebagai dasar pengembangan prototipe aplikasi
pendukung keputusan berbasis perangkat mobile atau edge
device agar manfaat model dapat dirasakan secara langsung
oleh petani dan penyuluh pertanian.
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