
Journal of Applied Informatics and Computing (JAIC) 

Vol.10, No.1, February 2026, pp. 818~828 

e-ISSN: 2548-6861    818 

  

  

http://jurnal.polibatam.ac.id/index.php/JAIC  

Comparison of Transfer learning Models MobileNetV3-Large and EfficientNet-B0 

for Rice Leaf Disease Classification 

 

 

Ahmad Naufal Abiyyu 1*, Majid Rahardi 2* 
* Informatika, Universitas Amikom Yogyakarta 

naufalabiyyu@students.amikom.ac.id 1, majid@amikom.ac.id 2 

 

 

Article Info  ABSTRACT  

Article history: 

Received 2025-12-15 

Revised 2026-01-15 

Accepted 2026-01-20 

 Rice productivity strongly depends on early detection of leaf diseases, while manual 

identification is often delayed and subjective. This study investigates the use of 

lightweight CNN architectures MobileNetV3-Large and EfficientNet-B0 based on 

transfer learning to classify six rice leaf disease classes, namely bacterial leaf blight, 

brown spot, healthy, leaf blast, leaf scald, and narrow brown spot. The dataset is 

obtained from Kaggle and consists of 2,628 images with a balanced class 
distribution, stratified into training, validation, and test sets with a ratio of 

80%:10%:10%. The images are resized to 224×224 pixels and data augmentation 

was applied to the training set. Pretrained ImageNet weights are first used as frozen 

feature extractors, followed by partial fine-tuning of the last 30% backbone layers, 

with custom classification layers trained using the Adam optimizer with an early 

stopping mechanism. Model performance is evaluated using accuracy, precision, 

recall, F1-score, and confusion matrices, while computational efficiency is assessed 

based on parameter count and inference speed measured in frames per second. The 

results show that under partial fine-tuning MobileNetV3-Large achieves 95.83% test 

accuracy and 95.80% macro F1-score with 3.12 million parameters, while 

EfficientNet-B0 obtains 93.18% accuracy and 93.02% macro F1-score with 4.21 

million parameters. Both models achieve inference speeds above 50 frames per 
second, suggesting their potential suitability for deployment on resource-constrained 

devices. Bootstrap analysis suggests the performance gap is clear in the frozen stage 

but becomes less conclusive after partial fine-tuning. Overall, MobileNetV3-Large 

provides the best trade-off between accuracy and efficiency for rice leaf disease 

classification. 
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I. PENDAHULUAN 

Padi merupakan komoditas pangan strategis di Indonesia 

karena beras menjadi makanan pokok masyarakat, sekaligus 
sumber kalori utama bagi sebagian besar penduduk di negara-

negara Asia [1], [2]. Oleh karena itu, kestabilan produksi padi 

berperan penting dalam menjaga ketahanan pangan nasional. 

Berdasarkan data Badan Pusat Statistik (BPS), luas lahan 

panen padi di Indonesia pada tahun 2024 mencapai sekitar 

10,05 juta hektare dengan produksi sekitar 53,14 juta ton 

gabah kering giling (GKG), yang masing-masing tercatat 

menurun sekitar 1,6 persen untuk luas lahan panen dan 1,5 

persen untuk produksi dibandingkan tahun 2023. Jika 

dikonversi menjadi beras, produksi beras tahun 2024 sekitar 

30,62 juta ton, turun sekitar 1,54 persen dari tahun 

sebelumnya [3]. Penurunan produksi ini terjadi di tengah 

pertumbuhan jumlah penduduk dan meningkatnya kebutuhan 

konsumsi, sehingga diperlukan upaya peningkatan 

produktivitas yang lebih efektif dan berkelanjutan [4]. Selain 

faktor makro seperti perubahan iklim dan berkurangnya 

lahan, gangguan organisme pengganggu tanaman, khususnya 

hama dan penyakit padi, juga berkontribusi terhadap 

penurunan hasil panen [5], [6]. Beberapa penyakit penting 
pada padi, seperti bacterial leaf blight, brown spot, blast, 

scald, dan narrow brown spot, dilaporkan sebagai ancaman 

serius di berbagai wilayah penghasil padi, termasuk Indonesia 

[7]. Namun, identifikasi dini penyakit di lapangan masih 

sering mengandalkan inspeksi visual yang subjektif dan 
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membutuhkan keahlian, sehingga berpotensi menghambat 

pengendalian yang cepat dan tepat [8]. 

Seiring dengan berkembangnya teknologi dalam 

mendeteksi penyakit tanaman secara dini, Convolutional 

Neural Network (CNN) menjadi pendekatan utama dalam 

pengolahan citra digital karena kemampuannya 

mengekstraksi fitur visual kompleks secara otomatis. CNN 

konvensional seperti VGG16 dan ResNet50 terbukti akurat, 
tetapi memerlukan daya komputasi besar sehingga tidak 

praktis untuk perangkat lapangan atau mobile [9]. Oleh 

karena itu, dikembangkan arsitektur ringan (lightweight 

CNN) yang lebih efisien secara komputasi namun tetap 

kompetitif dalam hal akurasi. Di antara model tersebut, 

MobileNetV3-Large dan EfficientNet-B0 termasuk yang 

paling populer karena memiliki parameter yang jauh lebih 

kecil, waktu inferensi cepat, dan ukuran model yang relatif 

ringan [10], [11]. Kedua model ini dirancang agar dapat 

dijalankan pada perangkat terbatas seperti ponsel atau edge 

device, yang menjadikannya relevan untuk implementasi di 
sektor pertanian dengan infrastruktur komputasi terbatas. 

Sejumlah studi sebelumnya telah menerapkan arsitektur ini 

untuk klasifikasi penyakit tanaman. Studi oleh Pramudhita et 

al. [12] menggunakan MobileNetV3-Large dan EfficientNet-

B0 untuk mengklasifikasikan penyakit daun stroberi, dan 

menemukan bahwa MobileNetV3-Large memberikan akurasi 

sebesar 92,14%, sedangkan EfficientNet-B0 mencapai 

89,28%, menjadikan MobileNetV3-Large unggul dalam 

seluruh metrik evaluasi. Sementara itu, Dianto et al. [13] 

menerapkan kedua model tersebut pada klasifikasi penyakit 

daun jeruk dan juga melaporkan akurasi tinggi (>90%) untuk 

keduanya, terutama pada kondisi data terbatas dan distribusi 
kelas yang tidak seimbang. Dalam konteks tanaman padi, 

Putra et al. [6] menggunakan MobileNetV2 untuk mendeteksi 

penyakit dan hama daun padi, sedangkan Azis et al. [14] 

menerapkan EfficientNet-B3 dengan pendekatan transfer 

learning. Studi-studi tersebut menunjukkan bahwa arsitektur 

CNN ringan telah banyak dimanfaatkan dalam klasifikasi 

penyakit tanaman secara umum, dengan hasil yang kompetitif 

dalam berbagai kasus dan jenis komoditas. 

Berdasarkan temuan-temuan tersebut, penelitian ini 

difokuskan pada eksplorasi dan perbandingan dua arsitektur 

CNN ringan, yaitu MobileNetV3-Large dan EfficientNet-B0, 
dalam klasifikasi penyakit daun padi. Hingga saat ini, studi 

yang membahas perbandingan langsung antara kedua model 

ini dalam konteks tanaman padi masih sangat terbatas. Di sisi 

lain, sebagian besar penelitian sebelumnya belum 

memperhatikan distribusi data yang seimbang antar kelas, 

yang dapat memicu bias klasifikasi dan menurunkan keadilan 

evaluasi performa model [15]. Oleh karena itu, penelitian ini 

menekankan penggunaan dataset seimbang dengan enam 

kelas penyakit daun padi sebagai bagian dari kontribusi 

utama, guna memastikan bahwa model yang dibangun tidak 

hanya akurat, tetapi juga adil dan andal dalam mengenali 

seluruh kategori penyakit. 
Penelitian ini bertujuan untuk membandingkan kinerja dua 

arsitektur lightweight CNN, yaitu MobileNetV3-Large dan 

EfficientNet-B0, pada tugas klasifikasi enam kelas penyakit 

daun padi berbasis citra. Evaluasi kinerja dilakukan 

menggunakan metrik akurasi, presisi, recall, dan F1-score, 

serta aspek efisiensi komputasi yang diukur melalui jumlah 

parameter, ukuran berkas model, dan kecepatan inferensi 

(frame per second/fps). Selain itu, perbedaan kinerja antar 

model dianalisis menggunakan pendekatan statistik berbasis 

confidence interval (CI) untuk menilai konsistensi selisih 
performa pada data uji. Untuk menilai kemampuan 

generalisasi, model terbaik juga diuji pada dataset eksternal 

yang berbeda dari data pelatihan dengan subset tiga kelas 

yang tersedia. Dengan pendekatan tersebut, penelitian ini 

diharapkan dapat memberikan kontribusi terhadap 

pengembangan sistem deteksi penyakit tanaman berbasis citra 

yang ringan, akurat, dan siap diterapkan di lingkungan 

pertanian dengan keterbatasan perangkat komputasi. 

 

II. METODE  

Metode penelitian ini terdiri dari beberapa tahap utama 
yang disusun secara berurutan, meliputi persiapan dan 

pembagian data, prapemrosesan citra, perancangan serta 

pelatihan model MobileNetV3-Large dan EfficientNet-B0 

berbasis transfer learning, serta evaluasi performa model. 

Setiap tahap saling berkaitan untuk menghasilkan sistem 

klasifikasi penyakit daun padi yang teruji. Alur lengkap 

tahapan penelitian ditunjukkan pada gambar 1. 

 

 
 

Gambar 1. Alur Tahapan Penelitian 

A. Persiapan dan Pembagian Data 

Dataset yang digunakan dalam penelitian ini adalah Rice 

Leafs Disease Dataset yang diperoleh dari platform publik 

Kaggle dan berisi citra daun padi sebanyak 2.628 dengan 

enam kelas didalamnya, yaitu bacterial leaf blight, brown 

spot, healthy, leaf blast, leaf scald, dan narrow brown spot 

[16]. Dataset ini disusun dalam struktur direktori yang telah 

memisahkan data pelatihan dan validasi, sehingga 

memudahkan proses pengaturan ulang data sesuai kebutuhan 

eksperimen. Contoh citra daun padi untuk masing-masing 

kelas ditunjukkan pada Gambar 2. 
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Gambar 2. Contoh Citra Per kelas 

 

Dalam penelitian ini, dataset diorganisasi ulang menjadi 

tiga subset, yaitu data latih (training set), data validasi 

(validation set), dan data uji (test set) dengan rasio 80% : 10% 
: 10%. Seluruh citra pada direktori pelatihan awal 

dimanfaatkan sebagai data latih, sedangkan citra pada 

direktori validasi awal dibagi kembali secara stratified per 

kelas menjadi dua bagian yang sama besar untuk data validasi 

dan data uji. Pendekatan ini memastikan bahwa distribusi 

kelas tetap seimbang pada ketiga subset dan tidak terjadi 

kebocoran data antara tahap pelatihan dan pengujian. 

Ringkasan distribusi jumlah citra pada setiap kelas setelah 

proses pembagian data disajikan pada Tabel I, yang 

menunjukkan bahwa keenam kelas memiliki jumlah sampel 

yang sama pada data latih, data validasi, maupun data uji. 

 
TABEL I 

DATA SPLITTING 

 

Class Training Validation Test 

Bacterial leaf blight 350 44 44 

Brown spot 350 44 44 

Healthy 350 44 44 

Leaf blast 350 44 44 

Leaf scald 350 44 44 

Narrow brown spot 350 44 44 

Total 2100 264 264 

 

B. Prapemrosesan Citra 

Pada tahap prapemrosesan, seluruh citra daun padi diubah 

ukurannya menjadi 224 × 224 piksel dengan tiga kanal warna 

(RGB). Untuk meningkatkan kemampuan generalisasi model, 
data latih kemudian diberikan augmentasi berupa rotasi acak 

dengan faktor 0,05 (sekitar ±18°), horizontal flip, random 

zoom 0,1, penambahan Gaussian noise 0,1, serta penyesuaian 

kecerahan 0,1. Sementara itu, data validasi dan data uji hanya 

dikenai proses resize tanpa augmentasi tambahan.  

C. Perancangan Model Berbasis Transfer learning 

Penelitian ini memanfaatkan pendekatan transfer learning 

dengan dua arsitektur Convolutional Neural Network (CNN) 

ringan, yaitu MobileNetV3-Large dan EfficientNet-B0, yang 

telah dilatih sebelumnya (pretrained) pada dataset ImageNet 

[17]. Proses pelatihan dilakukan dalam dua tahap, yaitu tahap 

frozen untuk melatih kepala klasifikasi pada fitur pralatih, 

serta tahap partial fine-tuning untuk meningkatkan adaptasi 

model terhadap karakteristik citra daun padi. 

1) MobileNetV3-Large: MobileNetV3-Large merupakan 

pengembangan dari keluarga MobileNet yang dirancang 

untuk perangkat dengan sumber daya komputasi terbatas [10]. 
Seperti terlihat pada Gambar 3, arsitektur ini diawali dengan 

lapisan konvolusi awal yang diikuti depthwise separable 

convolution dan deretan blok inverted residual dengan linear 

bottleneck. Di dalam setiap blok juga disisipkan mekanisme 

squeeze-and-excitation (SE) untuk menonjolkan kanal fitur 

yang penting, serta skip connection yang menjaga aliran 

gradien selama pelatihan [18]. Pada bagian akhir jaringan 

terdapat global average pooling dan konvolusi 1×1 (pointwise 

convolution) sebelum menuju kepala klasifikasi. 

 

 
 

Gambar 3. Arsitektur MobileNetV3-Large 

 

Dalam penelitian ini, bobot pralatih MobileNetV3-Large 

pada ImageNet dimanfaatkan sebagai dasar representasi fitur. 
Lapisan klasifikasi asli digantikan dengan rangkaian lapisan 

baru yang terdiri atas Global Average Pooling 2D, satu 

lapisan Dense dengan 128 neuron dan fungsi aktivasi ReLU, 

satu lapisan Dropout dengan rasio 0,5 sebagai regularisasi, 

dan lapisan Dense dengan 6 neuron dan fungsi aktivasi 

softmax untuk menghasilkan probabilitas tiap kelas penyakit 

daun padi. Seluruh lapisan konvolusional backbone 

MobileNetV3-Large dibekukan (frozen) pada tahap frozen 

sehingga hanya parameter pada kepala klasifikasi yang 

dioptimasi. Selanjutnya, dilakukan tahap partial fine-tuning 

dengan membuka 30% lapisan terakhir backbone untuk 

dilatih bersama kepala klasifikasi, sementara lapisan Batch 
Normalization tetap dibekukan untuk menjaga stabilitas 

statistik aktivasi. Konfigurasi ini menghasilkan model dengan 

jumlah parameter yang relatif kecil namun tetap mampu 

mengekstraksi fitur visual yang kaya dari citra daun padi. 

2) EfficientNet-B0: EfficientNet-B0 merupakan model 

dasar dari keluarga EfficientNet yang mengusulkan skema 

penskalaan terpadu (compound scaling) terhadap kedalaman, 
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lebar, dan resolusi jaringan [11]. Seperti ditunjukkan pada 

Gambar 4, arsitektur EfficientNet-B0 tersusun atas tujuh blok 

utama yang masing-masing terdiri atas beberapa Mobile 

Inverted Bottleneck Convolution (MBConv) dengan ukuran 

kernel 3×3 maupun 5×5. Setiap blok MBConv dilengkapi 

dengan mekanisme squeeze-and-excitation (SE) untuk 

melakukan penimbangan ulang kanal fitur, sehingga model 

mampu mencapai keseimbangan antara akurasi dan efisiensi 
komputasi pada berbagai tingkat resolusi [18]. 

 

 
 

Gambar 4. Arsitektur EfficientNet-B0 

 

Serupa dengan MobileNetV3-Large, lapisan klasifikasi 

bawaan EfficientNet-B0 diganti dengan kepala klasifikasi 

berupa Global Average Pooling diikuti Dense 128 (ReLU), 

Dropout 0,5, dan Dense 6 (softmax). Proses pelatihan 

EfficientNet-B0 mengikuti skema dua tahap (frozen dan 

partial fine-tuning) sebagaimana dijelaskan pada subbab 

Pelatihan Model. Dengan rancangan tersebut, penelitian ini 

dapat membandingkan kinerja dua arsitektur CNN ringan 
yang sama-sama efisien namun memiliki strategi desain blok 

yang berbeda pada tugas klasifikasi enam kelas penyakit daun 

padi. 

D. Pelatihan Model 

Kedua model dilatih menggunakan data latih dengan skema 

transfer learning dua tahap, yaitu tahap frozen dan tahap 

partial fine-tuning, di mana pada tahap frozen backbone 

pralatih dibekukan dan hanya kepala klasifikasi yang 

diperbarui. Proses pelatihan tahap frozen dilakukan selama 
maksimal 30 epoch dengan ukuran batch tetap 32, 

menggunakan optimizer Adam dengan learning rate sebesar 

0,0001 dan loss function sparse categorical crossentropy. 

Selanjutnya dilakukan partial fine-tuning dengan membuka 

30% lapisan terakhir pada backbone (setara 56 lapisan 

terakhir pada MobileNetV3-Large dan 71 lapisan terakhir 

pada EfficientNet-B0) menggunakan learning rate sebesar 

0,00001 selama maksimal 15 epoch, dengan lapisan Batch 

Normalization tetap dibekukan. Selama pelatihan, performa 

model dipantau pada data validasi setiap epoch. 

Untuk mencegah overfitting, diterapkan mekanisme early 
stopping berbasis nilai validation loss (loss validasi) dengan 

patience 5, sehingga pelatihan dihentikan lebih awal ketika 

kinerja pada data validasi tidak lagi membaik secara 

signifikan. Selain itu, digunakan pula model checkpoint yang 

menyimpan bobot model terbaik selama pelatihan, yaitu pada 

saat nilai validation accuracy (akurasi validasi) mencapai 

maksimum. Penyesuaian learning rate juga dilakukan 

menggunakan ReduceLROnPlateau berdasarkan validation 

loss dengan faktor 0,5 dan patience 3. Seluruh proses 

pelatihan dan pengukuran waktu inferensi dilakukan pada 

lingkungan Google Colab dengan akselerator GPU NVIDIA 

T4. 

E. Evaluasi dan Perbandingan Model 

Setelah proses pelatihan selesai, model terbaik untuk setiap 

arsitektur dievaluasi menggunakan data uji yang sama sekali 

tidak digunakan selama pelatihan maupun validasi. Evaluasi 

diawali dengan pembuatan confusion matrix, yaitu tabel yang 

merangkum jumlah prediksi benar dan salah untuk setiap 

kelas [19]. Dari confusion matrix tersebut, diperoleh nilai 

dasar berupa True Positive (TP), False Positive (FP), False 

Negative (FN), dan True Negative (TN) yang dihitung untuk 

masing-masing kelas dengan definisi sebagai berikut: 

1) True Positive (TP): sampel suatu kelas yang diprediksi 

benar sebagai kelas tersebut. 

2) False  Positive  (FP): sampel dari kelas lain yang salah 

diprediksi sebagai kelas tersebut. 

3) False  Negative  (FN):  sampel suatu kelas yang gagal 

dikenali dan diprediksi sebagai kelas lain. 

4) True Negative (TN): sampel yang bukan dari kelas 

tersebut dan diprediksi benar sebagai bukan kelas 

tersebut. 

Rumus metrik evaluasi yang digunakan dapat dituliskan 

sebagai berikut: 
1) Akurasi: Menunjukkan proporsi prediksi yang benar 

terhadap seluruh sampel. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2) Presisi: Mengukur ketepatan model ketika 

memprediksi suatu kelas. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3) Recall:    Mengukur kemampuan model menemukan 

kembali sampel yang benar-benar termasuk suatu 

kelas. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4) F1-Score:  Menyatakan rata-rata harmonis antara 

presisi dan recall. 

F1 = 2 ×
Precision × Recall

Precision + Recall
 

Untuk kasus klasifikasi multi-kelas, nilai presisi, recall, dan 

F1-score dirata-ratakan menggunakan pendekatan macro 

average, sehingga setiap kelas memiliki kontribusi yang 

seimbang terhadap metrik keseluruhan. 
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Selain metrik berbasis confusion matrix, penelitian ini juga 

mengukur efisiensi komputasi melalui waktu inferensi rata-

rata per citra, yang kemudian dikonversi menjadi frame per 

second (fps). Waktu inferensi diukur dari rata-rata waktu 

prediksi per citra pada GPU NVIDIA T4 tanpa tahap 

prapemrosesan tambahan. Nilai-nilai evaluasi tersebut 

digunakan untuk membandingkan kinerja dan efisiensi relatif 

antara MobileNetV3-Large dan EfficientNet-B0 pada tugas 

klasifikasi enam kelas penyakit daun padi. 
Untuk memperkuat perbandingan kinerja antar model, 

selisih performa juga dianalisis menggunakan metode paired 

bootstrap pada data uji dan dilaporkan dalam bentuk 

confidence interval (CI) 95% untuk selisih metrik 

(MobileNetV3-Large - EfficientNet-B0). Perbedaan 

dianggap bermakna apabila 95% CI tidak melintasi nol. 

Sebagai validasi tambahan terhadap temuan pada data uji 

internal, model terbaik pada konfigurasi partial fine-tuning 

diuji pada dataset eksternal yang berbeda dari dataset 

pelatihan. Evaluasi eksternal dilakukan pada subset tiga kelas 

yang tersedia, yaitu brown spot, healthy, dan leaf blast, 
menggunakan akurasi dan F1-score (macro average), serta 

proporsi prediksi di luar subset tiga kelas. 

 

III. HASIL DAN PEMBAHASAN 

A. Hasil Pelatihan Model 

Pelatihan model dilakukan menggunakan arsitektur 

MobileNetV3-Large dan EfficientNet-B0 yang termasuk 

keluarga CNN ringan. Kedua model diinisialisasi dengan 

bobot pralatih ImageNet dan digunakan dalam skema transfer 

learning dua tahap, yaitu tahap frozen dan tahap partial fine-

tuning, dengan kepala klasifikasi baru yang dilatih pada 

dataset citra daun padi enam kelas. Dataset terdiri dari 2.628 

citra yang dibagi menjadi 80:10:10 untuk data latih, validasi, 

dan uji. Pada tahap frozen, pelatihan dilakukan selama 

maksimal 30 epoch dengan optimisasi Adam, learning rate 
sebesar 0,0001, dan ukuran batch 32. Selanjutnya, dilakukan 

partial fine-tuning dengan membuka 30% lapisan terakhir 

pada backbone menggunakan learning rate 0,00001 selama 

maksimal 15 epoch. 

Selama pelatihan, kinerja model dipantau melalui metrik 

pada data validasi setiap epoch untuk memastikan proses 

pembelajaran tidak hanya baik pada data latih. Mekanisme 

model checkpoint digunakan untuk menyimpan bobot terbaik 

berdasarkan akurasi validasi tertinggi, sehingga evaluasi 

berikutnya menggunakan model yang benar-benar mewakili 

performa optimal dari masing-masing konfigurasi. Selain itu, 
early stopping berbasis validation loss dan penyesuaian 

learning rate (ReduceLROnPlateau) membantu menjaga 

stabilitas optimisasi ketika peningkatan kinerja pada validasi 

mulai melambat. 

Perilaku pelatihan kedua model ditunjukkan pada kurva 

akurasi dan loss pada Gambar 5 hingga Gambar 8. Pada 

MobileNetV3-Large, akurasi pelatihan meningkat secara 

bertahap sejak epoch awal hingga mencapai nilai di atas 0,90 

pada akhir tahap frozen. Kurva akurasi validasi mengikuti 

pola yang serupa dengan selisih yang relatif kecil, sehingga 

tidak tampak adanya gap besar antara performa pada data latih 

dan data validasi. Hal ini mengindikasikan bahwa model 

memiliki kemampuan generalisasi yang baik dan tidak 

mengalami overfitting yang berarti. Kurva loss pelatihan dan 

validasi juga menurun secara konsisten hingga mendekati 

kisaran sekitar 0,2 pada epoch-epoch akhir tahap frozen, yang 

menunjukkan bahwa proses optimisasi berjalan stabil dan 

model telah mencapai kondisi mendekati konvergensi. 
Setelah dilanjutkan dengan tahap partial fine-tuning, tren 

akurasi dan loss tetap stabil dengan perbaikan yang lebih 

moderat. Grafik akurasi dan loss MobileNetV3-Large 

ditunjukkan pada Gambar 5 dan Gambar 6. 

 

Gambar 5. Grafik akurasi model MobileNetV3-Large 

 

Gambar 6. Grafik loss model MobileNetV3-Large 

EfficientNet-B0 menunjukkan pola pelatihan yang sejenis. 

Akurasi pelatihan dan validasi meningkat secara progresif, 

dengan akurasi validasi yang stabil di kisaran sekitar 0,88–
0,90 pada akhir tahap frozen. Dibandingkan MobileNetV3-

Large, kurva akurasi validasi EfficientNet-B0 tampak sedikit 

lebih fluktuatif pada beberapa epoch, namun tren globalnya 

tetap meningkat. Kurva loss untuk EfficientNet-B0 juga 

menurun secara bertahap dan mulai mendatar pada epoch-

epoch akhir tahap frozen, menandakan bahwa model telah 

mencapai titik jenuh pelatihan pada kisaran 20–30 epoch. 

Setelah dilanjutkan dengan tahap partial fine-tuning, pola loss 

tetap stabil dan perubahan akurasi cenderung moderat. Grafik 
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akurasi dan loss EfficientNet-B0 ditunjukkan pada Gambar 7 

dan Gambar 8. 

 

Gambar 7. Grafik akurasi model EfficientNet-B0 

 

Gambar 8. Grafik loss model EfficientNet-B0 

Secara keseluruhan, hasil pelatihan menunjukkan bahwa 

kedua model mampu beradaptasi dengan baik terhadap 

karakteristik citra daun padi. MobileNetV3-Large cenderung 

menghasilkan kurva akurasi validasi yang sedikit lebih tinggi 

dan lebih stabil pada epoch-epoch akhir dibanding 

EfficientNet-B0, yang selaras dengan hasil evaluasi 

kuantitatif pada data uji yang akan dibahas pada subbab 

berikutnya. 

B. Hasil Evaluasi Model 

 Evaluasi kinerja dilakukan menggunakan data uji yang 

sama sekali tidak digunakan selama tahap pelatihan maupun 

validasi. Tabel II menyajikan ringkasan hasil empat 

konfigurasi (tahap frozen dan partial fine-tuning untuk 

masing-masing model) berdasarkan akurasi, presisi, recall, 

dan F1-score yang dihitung berdasarkan nilai True Positive, 

False Positive, False Negative, dan True Negative pada 

confusion matrix. Untuk setiap model, nilai presisi, recall, dan 

F1-score dirata-ratakan dengan pendekatan macro average, 

sehingga setiap kelas memberikan kontribusi yang seimbang 

terhadap metrik keseluruhan.  

TABEL II 

HASIL EVALUASI MODEL PADA DATA UJI 

Model Akurasi  Presisi Recall F1-score 

MobileNetV3- 
Large (Frozen) 

94,70% 94,65% 94,70% 94,62% 

MobileNetV3- 
Large (Partial FT) 

95,83% 95,79% 95,83% 95,80% 

EfficientNet- 
B0 (Frozen) 

89,39% 89,42% 89,39% 88,83% 

EfficientNet- 
B0 (Partial FT) 

93,18% 93,06% 93,18% 93,02% 

 

Ringkasan hasil evaluasi menunjukkan bahwa pada tahap 
frozen, MobileNetV3-L memperoleh akurasi uji sebesar 

94,70% dengan presisi 94,65%, recall 94,70%, dan F1-score 

94,62%. Sementara itu, EfficientNet-B0 pada tahap frozen 

menghasilkan akurasi 89,39% dengan presisi 89,42%, recall 

89,39%, dan F1-score 88,83%. Setelah dilakukan partial fine-

tuning (Partial FT), kedua model mengalami peningkatan 

kinerja. MobileNetV3-L mencapai akurasi 95,83% dengan 

F1-score 95,80%, sedangkan EfficientNet-B0 mencapai 

akurasi 93,18% dengan F1-score 93,02%. 

Nilai presisi dan recall yang relatif seimbang pada keempat 

konfigurasi menunjukkan bahwa masing-masing arsitektur 
tidak hanya mampu mengenali sampel dengan baik, tetapi 

juga menjaga tingkat kesalahan prediksi pada level yang 

rendah. Secara umum, kedua model menunjukkan performa 

klasifikasi yang tinggi dengan F1-score di atas 88%. 

MobileNetV3-L cenderung memperoleh nilai yang lebih 

tinggi dibanding EfficientNet-B0 pada data uji internal, 

terutama pada tahap frozen. 

Setelah partial fine-tuning, selisih performa kedua model 

mengecil. Untuk menguatkan temuan pada Tabel II, selisih 

performa tersebut dianalisis menggunakan uji statistik paired 

bootstrap dan dilaporkan dalam bentuk confidence interval 

(CI) 95%. 
Pada konfigurasi frozen, selisih akurasi (MobileNetV3-L − 

EfficientNet-B0) sebesar 5,34% dengan 95% CI [1,89%; 

8,71%] dan selisih F1-score makro sebesar 5,87% dengan 

95% CI [2,37%; 9,54%], sehingga perbedaan kinerja pada 

tahap ini bermakna. Setelah partial fine-tuning, selisih akurasi 

menurun menjadi 2,64% dengan 95% CI [-0,38%; 5,68%] dan 

selisih F1-score makro menjadi 2,79% dengan 95% CI [-

0,37%; 6,13%]. Karena 95% CI pada tahap partial fine-tuning 

masih melintasi nol, perbedaan kinerja pada tahap ini belum 

konklusif. 

Selanjutnya, analisis kesalahan dilakukan menggunakan 
confusion matrix untuk mengidentifikasi pasangan kelas yang 

paling sering tertukar pada konfigurasi terbaik. 

C. Analisis Confusion Matrix 

Confusion matrix digunakan untuk menganalisis performa 

klasifikasi per kelas dan mengidentifikasi pola kesalahan 

yang terjadi pada kedua model. Matriks ini merepresentasikan 

jumlah prediksi benar dan salah untuk setiap kombinasi kelas 

aktual dan kelas prediksi pada data uji. Gambar 9 

menampilkan confusion matrix untuk model MobileNetV3-
Large (Partial FT), sedangkan Gambar 10 menunjukkan 

confusion matrix untuk EfficientNet-B0 (Partial FT). Masing-
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masing baris pada matriks merepresentasikan kelas 

sebenarnya, sedangkan kolom merepresentasikan kelas hasil 

prediksi model. 

Pada MobileNetV3-Large, sebagian besar elemen diagonal 

memiliki nilai yang tinggi, yang menunjukkan bahwa model 

mampu mengklasifikasikan mayoritas sampel dengan benar 

pada hampir semua kelas. Kelas bacterial leaf blight, leaf 

scald dan narrow brown spot memiliki tingkat prediksi benar 

yang sangat tinggi tanpa adanya sampel yang salah klasifikasi 
(44/44). Kesalahan kecil terlihat pada kelas healthy, yaitu 2 

sampel diprediksi sebagai leaf blast. Kesalahan klasifikasi 

terutama terjadi pada kelas-kelas dengan gejala bercak yang 

mirip, yakni brown spot dan leaf blast, di mana beberapa 

sampel brown spot teridentifikasi sebagai leaf blast dan 

sebaliknya. Pada kelas brown spot, terdapat 4 sampel yang 

salah prediksi (1 sebagai bacterial leaf blight, 1 sebagai 

healthy, dan 2 sebagai leaf blast). Pada kelas leaf blast, 

terdapat 5 sampel yang salah prediksi (3 sebagai brown spot, 

1 sebagai healthy, dan 1 sebagai narrow brown spot). 

Meskipun demikian, jumlah kesalahan tersebut relatif kecil 
dibandingkan jumlah prediksi benar, sehingga kinerja per 

kelas masih tergolong tinggi secara keseluruhan. 

 

Gambar 9. Confusion Matrix MobileNetV3-Large 

Pada EfficientNet-B0, pola diagonal masih terlihat 

dominan, yang menunjukkan bahwa model ini juga mampu 

mengenali sebagian besar sampel dengan benar. Namun, 

dibandingkan MobileNetV3-Large, tingkat kesalahan 

klasifikasi pada kelas tertentu tampak lebih tinggi. Kelas 

bacterial leaf blight dan narrow brown spot menunjukkan 

prediksi benar yang sangat tinggi tanpa adanya salah 

klasifikasi (44/44). Untuk kelas healthy, sebagian besar 

sampel diprediksi benar (43/44) dengan 1 sampel salah 

prediksi sebagai leaf blast, sedangkan pada kelas leaf scald 

terdapat 1 sampel yang salah prediksi sebagai bacterial leaf 
blight (43/44). Kelas leaf blast menjadi kelas yang paling 

menantang, dengan cukup banyak sampel yang salah 

diprediksi sebagai brown spot atau bahkan healthy. Secara 

rinci, pada kelas leaf blast terdapat 11 sampel yang salah 

prediksi (6 sebagai brown spot, 3 sebagai healthy, dan 2 

sebagai narrow brown spot).Selain itu, beberapa kesalahan 

juga terjadi pada kelas brown spot yang sebagian sampelnya 

diprediksi sebagai leaf blast atau narrow brown spot. (4 

sampel brown spot diprediksi sebagai leaf blast dan 1 sampel 

diprediksi sebagai narrow brown spot). Pola kebingungan ini 

mengindikasikan bahwa EfficientNet-B0 lebih sensitif 

terhadap kemiripan pola bercak antar penyakit, sehingga 
akurasi per kelas untuk kelompok penyakit dengan gejala 

visual yang saling mendekati menjadi sedikit lebih rendah 

dibanding MobileNetV3-Large. 

 
Gambar 10. Confusion Matrix EfficientNet-B0 

Secara umum, analisis confusion matrix menunjukkan 

bahwa kedua model memiliki kemampuan klasifikasi yang 

sangat baik untuk kelas-kelas dengan karakteristik visual 

yang jelas, seperti bacterial leaf blight dan narrow brown 

spot. Tantangan utama terdapat pada kelas-kelas dengan 

gejala bercak yang mirip, khususnya brown spot, leaf blast, 

yang menjadi sumber utama mis-klasifikasi pada kedua 

model. Namun, MobileNetV3-Large menghasilkan distribusi 

prediksi yang lebih seimbang dan tingkat kesalahan yang 
lebih rendah pada kelas-kelas tersebut, yang selaras dengan 

kecenderungan nilai akurasi dan F1-score makro yang lebih 

tinggi pada hasil evaluasi model. 

D. Perbandingan Kinerja Model 

Hasil evaluasi pada data uji menunjukkan bahwa kedua 

model CNN yang digunakan mampu memberikan performa 

klasifikasi yang tinggi. Secara umum, MobileNetV3-Large 

menghasilkan nilai akurasi, presisi, recall, dan F1-score yang 

sedikit lebih tinggi dibandingkan EfficientNet-B0 pada data 
uji internal. Perbedaan ini terlihat lebih jelas pada tahap 

frozen, sedangkan setelah partial fine-tuning selisih performa 

keduanya mengecil. 

Perbandingan pola kesalahan pada confusion matrix 

memperkuat temuan tersebut. MobileNetV3-Large 

cenderung lebih stabil dalam membedakan kelas-kelas 
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dengan gejala bercak yang mirip, seperti brown spot, leaf 

blast, dan narrow brown spot, dengan jumlah mis-klasifikasi 

yang lebih sedikit. EfficientNet-B0 masih menunjukkan 

kebingungan yang lebih besar pada kelompok kelas tersebut, 

misalnya ketika beberapa sampel leaf blast diprediksi sebagai 

brown spot atau healthy. Kondisi ini menjelaskan mengapa 

nilai F1-score makro MobileNetV3-Large pada konfigurasi 

partial fine-tuning tetap lebih tinggi, meskipun selisihnya 
tidak sebesar pada tahap frozen. 

TABEL III 

PERBANDINGAN KINERJA KEDUA MODEL  

Model 
F1-score 

(%) 

Parameter 

(Juta) 

Ukuran 

(MB) 
FPS 

MobileNetV3

-Large 
95,80 3,12 13,99 81,88 

EfficientNet-
B0 

93,02 4,21 18,81 51,60 

 

Dari sisi efisiensi komputasi, perbedaan kedua arsitektur 

terlihat pada jumlah parameter dan ukuran berkas model. 

Ringkasan F1-score dan aspek efisiensi ditunjukkan pada 

Tabel III. MobileNetV3-Large memiliki sekitar 3,12 juta 

parameter dengan ukuran model sekitar 13,99 MB, sedangkan 

EfficientNet-B0 memiliki sekitar 4,21 juta parameter dengan 
ukuran model sekitar 18,81 MB. Kedua model sama-sama 

mampu melakukan inferensi lebih dari 50 frame per detik, 

namun MobileNetV3-Large menunjukkan kecepatan 

inferensi yang lebih tinggi (81,88 fps) dibanding 

EfficientNet-B0 (51,60 fps), sehingga memberikan 

keuntungan tambahan untuk penerapan real-time. Namun, 

kombinasi F1-score yang lebih tinggi, jumlah parameter yang 

lebih sedikit, dan ukuran model yang lebih kecil menjadikan 

MobileNetV3-Large sebagai pilihan yang lebih sesuai untuk 

implementasi pada perangkat dengan sumber daya terbatas, 

sementara EfficientNet-B0 dapat diposisikan sebagai 

alternatif yang tetap kompetitif pada lingkungan dengan 
kapasitas komputasi yang lebih longgar. 

E. Uji Generalisasi pada Dataset Eksternal 

Pengujian eksternal dilakukan sebagai validasi tambahan 

untuk menilai konsistensi kinerja model pada domain data 

yang berbeda dari data uji internal. Dataset eksternal 

diperoleh dari Roboflow Universe [20]  menggunakan folder 

test dan dievaluasi pada tiga kelas yang konsisten dengan 

label pada dataset internal, yaitu brown spot, healthy, dan leaf 
blast, dengan total 276 citra, menggunakan model terbaik 

pada konfigurasi partial fine-tuning. 

TABEL IV 

RINGKASAN HASIL UJI EKSTERNAL 

Model Akurasi F1-score Pred. luar 3 kelas 

MobileNetV3-
Large 

65,22% 61,10% 1,09% 

EfficientNet-

B0 
61,59% 61,72% 4,71% 

 

Hasil pada Tabel IV menunjukkan bahwa performa kedua 

model menurun dibandingkan evaluasi data uji internal, yang 

mengindikasikan adanya perbedaan karakteristik domain 

antara dataset internal dan eksternal. Pada metrik akurasi, 

MobileNetV3-Large memperoleh nilai lebih tinggi, 

sedangkan EfficientNet-B0 menghasilkan F1-score makro 

yang sedikit lebih tinggi. Selain itu, proporsi prediksi di luar 

subset tiga kelas pada EfficientNet-B0 lebih besar dibanding 
MobileNetV3-Large, yang menunjukkan bahwa pada 

sebagian citra eksternal model lebih sering memetakan 

prediksi ke kelas lain di luar subset yang diuji. 

Pola kesalahan prediksi pada MobileNetV3-Large 

ditunjukkan pada confusion matrix ternormalisasi pada 

Gambar 11. Kelas healthy merupakan kelas yang paling stabil 

dikenali (nilai diagonal 0,73). Namun, kelas brown spot 

cukup sering tertukar menjadi healthy (0,41) dan sebagian 

menjadi leaf blast (0,20). Untuk kelas leaf blast, sebagian 

sampel masih keliru diprediksi sebagai healthy (0,23). Pola 

ini menunjukkan bahwa kemiripan gejala bercak antar kelas 
masih menjadi sumber utama mis-klasifikasi pada pengujian 

lintas-dataset. 

 

Gambar 11. Confusion matrix MobileNetV3-Large pada dataset 

eksternal. 

Pada EfficientNet-B0, confusion matrix ternormalisasi 

pada Gambar 12 menunjukkan bahwa kelas leaf blast 
memiliki tingkat pengenalan yang paling tinggi (nilai 

diagonal 0,79), diikuti healthy (0,60) dan brown spot (0,55). 

Kesalahan terbesar terjadi ketika healthy diprediksi sebagai 

leaf blast (0,38). Pada kelas brown spot, sebagian sampel juga 

tertukar menjadi leaf blast (0,27) dan healthy (0,18), 

sedangkan kesalahan pada leaf blast relatif lebih kecil, 

terutama ketika diprediksi sebagai brown spot (0,08) dan 

healthy (0,13). Dibanding MobileNetV3-Large, EfficientNet-

B0 lebih kuat dalam mengenali leaf blast, namun 

menunjukkan kebingungan yang lebih besar pada kelas 

healthy, yang selaras dengan perbedaan kinerja ringkas pada 
evaluasi eksternal. 



826               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  818 – 828 

Gambar 12. Confusion matrix EfficientNet-B0 pada dataset eksternal. 

Secara umum, uji eksternal ini memberikan validasi 

tambahan bahwa kinerja model dapat berubah ketika diuji 

pada domain data yang berbeda dari data pelatihan dan uji 

internal. Perubahan performa ini mengindikasikan adanya 

perbedaan karakteristik citra antara dataset internal dan 

eksternal, terutama pada kelas-kelas dengan gejala bercak 

yang mirip. Ke depan, robustnes model berpotensi diperkuat 

melalui penggunaan data pelatihan yang lebih besar dan lebih 

beragam, misalnya dengan menggabungkan beberapa sumber 

dataset atau menambah variasi kondisi pengambilan citra, 

sehingga model lebih stabil ketika diterapkan pada skenario 
lapangan. 

F. Diskusi 

Hasil eksperimen menunjukkan bahwa kedua arsitektur 

CNN ringan yang digunakan, yaitu MobileNetV3-Large dan 

EfficientNet-B0, mampu memberikan performa klasifikasi 

yang tinggi pada enam kelas penyakit daun padi. Nilai akurasi 

dan F1-score makro yang tinggi pada evaluasi data uji internal 

mengindikasikan bahwa pendekatan transfer learning dengan 
backbone pralatih ImageNet efektif untuk klasifikasi citra 

daun. Selain itu, performa yang relatif merata pada seluruh 

kelas menunjukkan bahwa dataset dengan distribusi seimbang 

membantu mengurangi kecenderungan bias prediksi terhadap 

kelas tertentu pada skenario klasifikasi multi-class. 

Selisih performa antar model juga dianalisis menggunakan 

paired bootstrap berbasis confidence interval (CI) 95%. 

Hasilnya menunjukkan bahwa pada tahap frozen, selisih 

performa MobileNetV3-Large terhadap EfficientNet-B0 

tampak konsisten. Namun, setelah partial fine-tuning selisih 

performa mengecil dan untuk beberapa metrik CI melintasi 

nol, sehingga perbedaan kinerja pada tahap ini belum dapat 
dinyatakan konklusif pada tingkat keyakinan 95%. Oleh 

karena itu, keunggulan MobileNetV3-Large pada konfigurasi 

akhir diinterpretasikan secara hati-hati tanpa menyatakan 

keunggulan signifikan untuk seluruh metrik. 

Uji eksternal yang ditambahkan menunjukkan adanya 

perbedaan performa dibanding pengujian internal, yang 

mengindikasikan perbedaan karakteristik citra antar dataset. 

Temuan ini menguatkan pentingnya data pelatihan yang lebih 

beragam agar model lebih stabil pada skenario lapangan. 

Hasil penelitian ini juga konsisten dengan temuan pada 

studi klasifikasi penyakit daun stroberi dan daun jeruk yang 

menggunakan MobileNetV3-Large dan EfficientNet-B0, di 

mana kedua arsitektur tersebut mampu mencapai akurasi di 
atas 90% pada berbagai jenis tanaman [12], [13]. Pola bahwa 

MobileNetV3-Large sedikit lebih unggul dibanding 

EfficientNet-B0 juga terlihat pada hasil penelitian ini, 

meskipun selisih kinerjanya relatif kecil. Di sisi lain, sejumlah 

penelitian penyakit daun padi juga telah mengeksplorasi 

arsitektur lain, termasuk MobileNetV2 dan varian 

EfficientNet yang lebih besar [6], [14]. Namun, perbedaan 

karakteristik dataset, jumlah kelas, serta protokol pembagian 

data dan evaluasi membuat perbandingan nilai performa antar 

studi tersebut tidak sepenuhnya setara. Oleh karena itu, 

kontribusi utama penelitian ini terletak pada pembandingan 
langsung dua arsitektur lightweight CNN dalam satu skenario 

eksperimen yang seragam, serta evaluasi efisiensi komputasi 

melalui jumlah parameter, ukuran model, dan kecepatan 

inferensi. 

Analisis confusion matrix pada konfigurasi terbaik (partial 

fine-tuning) menunjukkan bahwa kedua model sangat baik 

dalam mengenali kelas dengan karakteristik visual yang jelas, 

seperti bacterial leaf blight, healthy, dan leaf scald, dengan 

tingkat kesalahan yang rendah. Kesalahan klasifikasi 

terutama muncul pada kelas-kelas dengan gejala bercak yang 

memiliki kemiripan visual, yaitu brown spot, leaf blast, dan 

narrow brown spot. Perbedaan kinerja pada kelompok kelas 
ini kemungkinan berkaitan dengan karakteristik arsitektur 

masing-masing model, di mana MobileNetV3-Large 

dirancang untuk ekstraksi fitur yang efisien pada resolusi 

relatif rendah sehingga berpotensi lebih stabil dalam 

membedakan tekstur bercak yang saling berdekatan pada 

pengaturan pelatihan yang sama.  

G. Implikasi Praktis 

Implikasi praktis dari penelitian ini dapat diperluas pada 
beberapa skenario penerapan di lingkungan pertanian. 

Kecepatan inferensi yang diperoleh pada pengujian (di atas 50 

fps pada GPU NVIDIA T4) menunjukkan potensi 

penggunaan real-time, misalnya untuk klasifikasi cepat 

melalui aplikasi smartphone saat pemantauan tanaman, 

integrasi pada drone untuk inspeksi area sawah, maupun pada 

perangkat IoT pertanian sebagai sistem pemantauan berbasis 

kamera. Pada skenario tersebut, citra daun dapat diambil 

menggunakan kamera perangkat, diproses melalui 

prapemrosesan sederhana, lalu model menghasilkan prediksi 

kelas penyakit sebagai keluaran untuk membantu keputusan 

awal di lapangan. Dari sisi efisiensi, MobileNetV3-Large 
memiliki ukuran model yang lebih kecil dan kecepatan 

inferensi yang lebih tinggi dibanding EfficientNet-B0 pada 

lingkungan pengujian yang sama, sehingga lebih 
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menguntungkan untuk perangkat dengan sumber daya 

terbatas. Namun, pengukuran fps pada penelitian ini 

dilakukan pada lingkungan GPU sehingga performanya dapat 

berbeda pada perangkat nyata. Oleh karena itu, pengujian 

langsung pada perangkat target (smartphone, drone, atau edge 

device) diperlukan sebagai tahap lanjutan untuk memvalidasi 

performa implementasi. 

H. Keterbatasan Penelitian 

Penelitian ini memiliki beberapa keterbatasan. Dataset 

internal bersumber dari dataset publik sehingga variasi 

kondisi lapangan, seperti pencahayaan, latar belakang, sudut 

pengambilan, dan tingkat keparahan penyakit, belum 

sepenuhnya terwakili. Sebagai validasi tambahan, penelitian 

ini telah menyertakan uji eksternal pada dataset berbeda, dan 

perbedaan domain data terlihat dari perubahan kinerja pada 

subset tiga kelas yang tersedia. Strategi pelatihan 

menggunakan partial fine-tuning dengan membuka 30% 
lapisan terakhir backbone dan membekukan lapisan Batch 

Normalization dipilih sebagai kompromi untuk meningkatkan 

adaptasi model sekaligus menekan risiko overfitting 

mengingat ukuran dataset pelatihan relatif terbatas, 

sedangkan full fine-tuning berpotensi meningkatkan 

kebutuhan komputasi dan risiko overfitting. Selain itu, 

kecepatan inferensi diukur pada GPU NVIDIA T4 di 

lingkungan Google Colab sehingga nilai fps belum 

merepresentasikan performa pada perangkat smartphone atau 

edge device, dan pengujian langsung pada perangkat target 

diperlukan untuk memvalidasi efisiensi implementasi. 
 

IV. KESIMPULAN 

Penelitian ini membandingkan kinerja dua arsitektur CNN 

ringan, yaitu MobileNetV3-Large dan EfficientNet-B0, pada 

tugas klasifikasi enam kelas penyakit daun padi berbasis citra 

menggunakan pendekatan transfer learning dengan backbone 

pralatih ImageNet. Proses pelatihan dilakukan dalam dua 

tahap, yaitu tahap frozen dan tahap partial fine-tuning. Kedua 

model dilatih pada 2.628 citra yang dibagi menjadi data latih, 

validasi, dan uji dengan rasio 80%:10%:10% dan dievaluasi 

menggunakan metrik akurasi, presisi, recall, dan F1-score 
(macro average). Pada konfigurasi terbaik (partial fine-

tuning), MobileNetV3-Large mencapai akurasi uji 95,83% 

dan F1-score makro 95,80%, sedangkan EfficientNet-B0 

memperoleh akurasi 93,18% dan F1-score makro 93,02%. 

Analisis confusion matrix mengindikasikan bahwa keduanya 

sangat baik dalam mengenali kelas dengan karakteristik 

visual yang jelas, sementara kesalahan utama terjadi pada 

kelas-kelas bercak dengan gejala mirip, di mana 

MobileNetV3-Large menghasilkan jumlah mis-klasifikasi 

yang sedikit lebih rendah. 

Perbandingan kinerja antar model juga diperkuat melalui 

analisis paired bootstrap berbasis confidence interval (CI) 
95%, yang menunjukkan selisih performa tampak konsisten 

pada tahap frozen, namun setelah partial fine-tuning selisih 

mengecil dan untuk beberapa metrik CI melintasi nol 

sehingga interpretasi perbedaan kinerja dilakukan secara hati-

hati. 

Dari sisi efisiensi komputasi, MobileNetV3-Large 

memiliki jumlah parameter 3,12 juta, ukuran model 13,99 

MB, dan kecepatan inferensi 81,88 fps, sedangkan 

EfficientNet-B0 memiliki 4,21 juta parameter, ukuran 18,81 

MB, dan kecepatan inferensi 51,60 fps pada pengujian GPU 

NVIDIA T4. Pada uji eksternal berbasis tiga kelas, performa 
kedua model menurun dibanding pengujian internal yang 

mengindikasikan adanya perbedaan domain data. Kombinasi 

kinerja internal yang lebih tinggi, kompleksitas model yang 

lebih rendah, dan kecepatan inferensi yang memadai 

menjadikan MobileNetV3-Large lebih sesuai sebagai 

kandidat utama untuk implementasi sistem deteksi penyakit 

daun padi pada perangkat dengan sumber daya terbatas, 

sementara EfficientNet-B0 dapat diposisikan sebagai 

alternatif yang kompetitif. Ke depan, penelitian ini dapat 

diperluas dengan pengujian model pada citra daun padi yang 

dikumpulkan langsung dari lapangan dengan variasi kondisi 
pencahayaan, latar belakang, dan tingkat keparahan penyakit 

yang lebih beragam, serta dengan memanfaatkan hasil yang 

diperoleh sebagai dasar pengembangan prototipe aplikasi 

pendukung keputusan berbasis perangkat mobile atau edge 

device agar manfaat model dapat dirasakan secara langsung 

oleh petani dan penyuluh pertanian. 
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