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Climate variability necessitates advanced analytical approaches to understand
irregular rainfall patterns, particularly in coastal cities like Semarang, Central Java.
This research employs a dual-analysis framework combining the Seasonal
Autoregressive Integrated Moving Average (SARIMA) model and the Apriori
algorithm to forecast rainfall and uncover hidden meteorological associations.
Analyzing BMKG monthly climatological data from January 2020 to December
2024, the research addresses both temporal trends and variable dependencies. The
SARIMA (1,0,0)(2,1,0),, model projected rainfall dynamics for 2025, identifying
critical wet periods (January-March, November-December) and dry intervals (July-
September), achieving a MAPE of 44.97%. To complement temporal forecasting,
the Apriori algorithm was applied with 50% minimum support and 50% confidence,
generating association rules from daily discretized meteorological data. Results
reveal that the combination of low temperature (Tx_Low, Tn_Low) and moderate
wind speed (FFx_Medium) exhibits the strongest correlation with heavy rainfall
events Lift Ratio 12.34, indicating a 12-fold increased risk compared to random
conditions. By synergizing temporal forecasting with the identification of
meteorological triggers, this research offers a robust basis for early warning systems,
supporting flood mitigation and water resource management strategies in Semarang.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Global climate change in recent years has caused weather
patterns to become increasingly irregular and difficult to
predict. These uncertain conditions have amplified the
frequency and intensity of extreme weather events,
particularly rainfall [1]. As a critical climatic element
measured in millimeters (mm) over specific periods, rainfall
variability serves as a primary indicator of hydrological
dynamics [2]. However, rainfall patterns are showing
significant anomalies due to global warming. This instability
is exacerbated by periodic phenomena such as La Nifia and El
Nifio, which disrupt rainfall distribution in Indonesia,
especially during the transitional seasons [3]. Furthermore,
the Indian Ocean Dipole (IOD) adds another layer of
complexity; a positive 10D can worsen drought during El
Nifio, while a negative 10D occurring simultaneously with La
Nifia can trigger extreme rainfall events [4].

The uncertainty of these patterns has severely impacted
various regions in Indonesia, particularly Semarang City, the
capital of Central Java. Located on the northern coast of Java
Island, Semarang experiences high rainfall intensity, often
resulting in severe flooding [5]. Despite the recurring risks,
existing prediction systems remain unable to provide
adequate early warning information. Consequently, there isan
urgent need for a system that goes beyond merely projecting
future rainfall quantities. An effective solution must
systematically identify seasonal patterns, trends, and the
triggering meteorological variables to serve as a robust basis
for risk mitigation.

Anticipatory action relies on accurate forecasting and a
deep understanding of the factors driving rainfall. Time series
analysis and data mining are highly relevant approaches to
addressing this challenge [6]. To capture future rainfall
patterns, the Seasonal Autoregressive Integrated Moving
Average (SARIMA) model offers an effective solution.
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SARIMA is statistically designed to analyze time series data
exhibiting periodic seasonal patterns, accommodating both
long-term trends and random fluctuations [7]. By utilizing
univariate monthly rainfall data, SARIMA can estimate
periods of peak and minimum rainfall. Thus, it serves as a
viable foundation for an early warning system in Semarang
City.

However, predicting the "when" is not enough;
understanding the "why" is equally crucial. Data mining
offers techniques to explore hidden relationships within
complex meteorological data [8]. One such method is the
Apriori Association Rule Mining algorithm, which identifies
meaningful association rules and item combinations [9]. This
method is employed to uncover patterns between
climatological variables, such as temperature (minimum,
maximum, average), humidity, and wind speed and rainfall
events. The Apriori algorithm utilizes support, confidence,
and lift ratio parameters to evaluate the strength of these
relationships [10]. By revealing hidden patterns undetectable
by standard statistical analysis, Apriori provides a deeper
explanation of the meteorological conditions triggering rain.

Previous researches have demonstrated the efficacy of
SARIMA in rainfall forecasting with varying results. Ramli
et al. (2023) achieved a prediction accuracy of 80.5% (MAPE
19.5%) in Aceh using a SARIMA model (0,0,1)(0,0,1),,
[11]. Similarly, Adams et al. (2020) successfully forecasted a
10% increase in rainfall in Abuja, Nigeria, using a SARIMA
(0,0,2)(0,1,2),, model after confirming stationarity via the
Augmented  Dickey-Fuller test [12].  Furthermore,
Kabbilawsh et al. (2022) applied SARIMA to 29 stations in
India, finding that seasonal components were dominant in
long-term rainfall data [13]. These researches confirm that
SARIMA is a consistent and reliable tool for capturing
seasonal hydrological cycles.

Parallel to this, the Apriori algorithm has proven effective
in identifying meteorological associations. Gunawan et al.
(2023) used Apriori in Tegal City, producing the highest
accuracy of 78.68%. All association rules had a lift ratio >1,
indicating significant and reliable power for predicting
rainfall [14]. Coulibaly et al. (2021) also applied association
rule learning to weather prediction, identifying temperature,
humidity, and wind speed as the most frequent antecedents for
rainfall events [15]. These findings underscore the Apriori
algorithm's ability to explain the specific weather conditions
that trigger precipitation.

Despite these advances, most researches focus either solely
on forecasting the time of rainfall or solely on the causal
variables. Few attempts have been made to integrate these
perspectives. This research addresses this gap by combining
two algorithms typically used separately SARIMA and
Apriori. Using monthly climate data from the Meteorology,
Climatology, and Geophysics Agency (BMKG) Semarang
City (January 2020-December 2024), this research aims to
predict monthly rainfall patterns for 2025 while
simultaneously identifying the interrelationships between
meteorological variables that trigger these events. This dual-

analysis approach integrates temporal forecasting with pattern
discovery to provide a comprehensive tool for
hydrometeorological disaster mitigation.

Il. METHOD

The methodology adopts a dual-analysis approach using
dataset from Semarang City. The Seasonal Autoregressive
Integrated Moving Average (SARIMA) is used to capture
temporal seasonality and forecast future rainfall, while the
Apriori algorithm is employed to identify meteorological
triggers through association rule mining. Figure 1 presents the
comprehensive flowchart guiding this research process.
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Figure 1. Research flow
A. Dataset

The research utilizes meteorological data acquired from
BMKG [16], covering the Semarang City region. The dataset
spans a five-year period from January 2020 to December
2024 and comprises seven key variables: rainfall, average
temperature, minimum temperature, maximum temperature,
average humidity, average wind speed, and maximum wind
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speed. This dataset supports two distinct but complementary
analytical approaches. First, the SARIMA method employs
the univariate monthly rainfall series to forecast precipitation
levels for 2025 and identify seasonal peaks and troughs.
Second, the Apriori algorithm leverages the complete
multivariate dataset to perform association rule mining,
aiming to uncover latent relationships between
climatological variables and rainfall occurrences.

B. Seasonal Autoregressive Integrated Moving Average
(SARIMA)

SARIMA is a time series statistical model designed to
analyze data that shows trends and seasonal patterns
simultaneously. This model is a refinement of the traditional
ARIMA model, but with a seasonal component that can detect
recurring patterns at certain time intervals. SARIMA
combines three main components, namely autoregressive
(AR) which models the relationship between current
observations and previous observations, differencing (1)
which is used to create stationary data, and moving average
(MA) which models the relationship between observations
and past errors [16]. The SARIMA model is generally denoted
as ARIMA(p,d, q)(P, D, Q),, representing both non-seasonal
and seasonal components. In this notation, the non-seasonal
part is defined by the parameters p for the autoregressive
(AR) order, d for the differencing order to achieve
stationarity, and g for the moving average (MA) order. The
seasonal characteristics of the model are captured by the
parameters P,D, dan Q which represent the seasonal
autoregressive, seasonal differencing, and seasonal moving
average orders, respectively. Furthermore, the subscript s
denotes the specific number of seasonal periods, which in this
research corresponds to the 12-month annual hydrological
cycle. In general, the form of the SARIMA [17] presents in
equation (1)

¢, (B)2p(B*)(1 — B)* (1 — B*)?Y, = 0,(B)®(B*)e, (1)

where:
¢p (B)  :non-seasonal AR coefficient with order p
®p,(B5) :seasonal AR coefficient with order p

(1 — B)? : operator for difference of order d
Y, : observation value at time -t,

0,(B)  :non-seasonal MA coefficient with order g
0,(B*®) :seasonal MA coefficient with order g
& : random error (white noise).

1) Preprocessing

Data preprocessing is critical to ensure dataset integrity prior
to modeling. This phase involved two primary procedures to
prepare the rainfall data for time series analysis. First, Linear
Interpolation was employed to address data gaps caused by
recording anomalies. This method estimates missing values
based on the slope between adjacent known data points,

thereby preserving the temporal continuity essential for time
series analysis [18]. Subsequently, daily rainfall records were
aggregated into monthly totals to align the data scale with the
SARIMA model's capacity to detect medium-to-long-term
periodic seasonality. This temporal aggregation transforms
the granular daily observations into a format more suitable for
capturing the broader seasonal patterns inherent in rainfall
data.

2)  Stationarity Data Test

Stationarity data test is a statistical test to determine whether
data has a constant mean, variance and autocorrelation over
time [19]. The Augmented Dickey-Fuller (ADF) test is used
as a formal testing method to detect the presence of a unit root
which indicates non-stationarity. The null hypothesis (Ho)
states that the data has a unit root (not stationary), while the
alternative hypothesis (H:) states that the data is stationary. If
the p-value of the ADF test is smaller than the significance
level of 0.05, then Ho is rejected and the data is considered
stationary. Data that does not meet stationary conditions
requires transformation or differencing before SARIMA
modelling.

3) Split Data

Split data is the process of dividing a dataset into two subsets,
namely training data and testing data for the purposes of
training and evaluating models [20]. This process aims to
prevent overfitting and validate the generalization ability of
the model on data that has not been seen during training. The
training data covers historical records from January 2020 to
December 2023, for a total of 48 months, which is considered
sufficient to capture seasonal variations with a period of s=12.
For evaluation purposes, the testing data covers the period
from January to December 2024.

This research uses an 80:20 split ratio, which is common
practice in time series modelling to balance training and
validation needs. The model's performance on the testing data
is then measured using MAE, RMSE, and MAPE metrics as
indicators of future forecasting reliability

4) Box-Cox Transformation

Box-Cox transformation is a statistical technique used to
stabilize variance and normalize the distribution of time series
data [21]. This transformation is necessary when the data
shows heteroscedasticity (variance is not constant) or a non-
normal distribution, so as to better meet the assumptions of
the SARIMA model. The lambda parameter (1) of the Box-
Cox transformation is estimated only on training data to
prevent data leakage. The parameters A that have been
obtained are then applied to the testing data without refitting,
ensuring that the model does not have information from future
data during training. The inverse transformation process uses
the same A applied to the prediction results to return the values
to the original scale by ensuring the confidence interval does
not produce negative values.
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5)  Model identification (ACF/PACF)

Model identification is the stage of determining the optimal
parameters of SARIMA through Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) analysis
[22]. ACF measures the correlation between observations at
time t and observations at time t-k for various lag k values,
which is used to identify the order of the moving average (q
and Q). PACF measures the correlation after removing the
influence of the intermediate lag, which is used to identify the
autoregressive order (p and P). The cut-off pattern on the ACF
chart indicates the MA order, while the cut-off pattern on the
PACF indicates the AR order. The significant spike at lag
multiple s=12 shows a strong seasonal component, indicating
the need for seasonal parameters (P, D, Q). The combination
of ACF and PACF analysis provides initial guidance for
optimal SARIMA grid search parameters.

6) Model Sarima Selection

Model selection is the process of selecting the best model
from various combinations of SARIMA parameters based on
statistical criteria. Grid search is carried out by trying various
combinations of parameters (p,d,q) (P,D,Q),, and
comparing performance using information criteria. The model
was chosen with the AIC value because it indicated the
optimal balance between goodness of fit and model
complexity, as well as the lowest MAPE for prediction
accuracy. The model with the lowest AIC value that meets
statistical tests is selected as the optimal model [23].

7) Model Validation

Model validation is a verification stage to ensure the
SARIMA model meets statistical assumptions and produces
accurate predictions. Model validation includes checking the
residuals to ensure that the residuals are white noise
(uncorrelated), normally distributed, and have constant
variance (homoscedasticity). The Ljung-Box test was carried
out to detect residual autocorrelation, with a p-value > 0.05
indicating independent residuals. The Jarque-Bera test
evaluates the normality of the residuals, where p-value > 0.05
indicates the residuals are normally distributed [24].

8) Forecasting

Future rainfall values are predicted by applying a validated
SARIMA model to the complete historical dataset from 2020
to 2024, thereby maximizing the capture of temporal and
seasonal patterns. Forecasting results include a point forecast
(single predicted value) and a 95% confidence interval which
shows the range of prediction uncertainty. The inverse Box-
Cox transformation is applied to the method prediction results
to ensure that the prediction value and confidence interval are
not negative.

C. Apriori Algorithm
The Apriori algorithm is a basic method in data mining

that is used to identify frequent itemset and generate
association rules in transactional data sets. This algorithm

uses a bottom-up approach, in which frequently occurring
individual items are systematically identified and repeatedly
developed into larger k-itemsets as long as they meet the
minimum support threshold [25]. In this meteorological
research, Apriori was used to reveal hidden associations
between variables such as temperature, humidity, wind speed,
and rainfall through three main evaluation metrics: support,
confidence, and lift.

Before the mining process began, an important
preliminary stage of data preprocessing was carried out to
convert raw meteorological data into a suitable format. This
stage included handling missing data through linear
interpolation to maintain temporal continuity, followed by
categorizing numerical variables into discrete labels to
facilitate pattern recognition. The results of handling missing
values are shown in Table 1.

TABLEI
SAMPLE OF PREPROCESSED METEOROLOGICAL DATA
Date TAVG | RH_AVG RR .. | FF_AVG
01-01-2020 27.0 88.0 9.6 4.0
02-01-2020 274 87.0 16.7 3.0
03-01-2020 28.4 84.0 2.0 3.0
04-01-2020 27.1 90.0 36.6 2.0
05-01-2020 26.8 92.0 3.7 2.0
27-05-2024 28.3 82.0 0.0 2.0
28-05-2024 28.1 86.0 0.0 1.0
29-05-2024 27.1 88.0 29.8 1.0
30-05-2024 28.4 80.0 0.4 3.0
31-05-2024 28.2 77.0 1.4 3.0

Categorization of numeric variables or discretization is
the process of converting continuous numerical data into
discrete categorical data by dividing a range of values into
certain intervals [26]. This process is very important because
Apriori algorithm is designed to work with categorical or
transactional data. The categorization process helps simplify
data, reduce noise, and make patterns easier to interpret. This
research implements two discretization approaches, namely
manual rule-based binning which applies a fixed threshold
based on BMKG meteorological standards [27], and quantile-
based binning with parameter g=3 (tertile) which divides the
data based on statistical distribution.

After evaluation, the manual rule-based binning
approach was chosen because it produces categories that are
easy to interpret, as shown in Table 2.

TABLEII
CATEGORIZATION OF NUMERIC VARIABLES

Code Variable Category Range
RR Rainfall No Rain 0mm
Light Rain 0.1-20mm
Medium Rain 20-50mm
Heavy Rain 50-100mm
Very Heavy Rain >100mm
Tn Minimum Tn_Low < 24°C
temperature Tn_Medium 24 -26°C
Tn_ High > 26°C
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TX Maximum Tx_Low < 32°C
temperature Tx_ Medium 32 —34°C
Tx_ High > 34°C
Tavg Average Tavg_Low < 28°C
temperature Tavg_ Medium 28 - 30°C
Tavg_ High > 30°C
RH_avg Average RH_Dry <70%
humidity RH_Normal 70 — 85%
RH_ High > 85%
FF_x Maximum wind | FFx_Weak <4m/s
speed FFx_Medium 4 —Tmls
FFx_ Fast > 7m/s
FF_avg Average wind | FFavg_Weak <2m/s
speed FFavg_Medium 2-3m/s
FFavg_ Fast > 3m/s

The final stage of data processing involves conversion
to transaction format, which is the process of transforming
categorical data into transactional format using the one-hot
encoding technique. This technique converts each category of
each variable into a binary column (0 or 1), where a value of
1 indicates the presence of an item in the transaction and 0
indicates its absence [16]. This transformation process
enables the Apriori algorithm to identify patterns of co-
occurrence of various meteorological conditions that occur
simultaneously, with the results of the one-hot encoding
conversion presented in Table 3.

TABLE Il
CONVERSION TO TRANSACTION FORMAT
FFavg_ FFx_ Very Heavy Medium
Fast Medium Rain Rain
1 1 0 0
0 1 0
0 1 1 0
0 0 0 1
0 0 1 0

As the core stage of the association rule mining process,
Apriori algorithm aims to find frequent itemsets and generate
strong association rules. To ensure model robustness, a grid
search evaluation was conducted across various support and
confidence thresholds. This process aims to determine the
optimal sensitivity for detecting both frequent seasonal
patterns and rare, high-impact meteorological anomalies. The
strength of the resulting association rules is then evaluated
through three main metrics, starting from the support value,
confidence, and lift ratio.

Support value is a threshold parameter that determines
how often an itemset must appear in the dataset to be
considered frequent or significant. The minimum support
threshold is set before the algorithm is run and functions as a
filter to eliminate itemsets that rarely appear. Itemsets that
have a support value above or equal to the minimum support
threshold will be considered frequent itemsets and retained
for the next iteration, while itemsets with support below the
threshold will be discarded. Choosing the right minimum
support value is very important: a value that is too high can
result in the loss of interesting patterns, while a value that is
too low can result in too many meaningless rules.

In the context of meteorological data, support value
shows how often a certain combination of weather conditions
occurs within the observation period. The support calculation
is in the equation (2).

The number of transactions is A

Support (A) =
)

The support value of the 2 items is obtained based on equation
calculations (3).

X 100%

Total transactions

The number of transactions is A and B
Total transactions

Support (A,B) =
@)

X 100%

Confidence as a metric that measures how often item B
appears in transactions containing item A, or in other words,
the conditional probability that the consequent will occur if
the antecedent occurs. Once frequent itemsets are found, the
algorithm generates association rules of the form “If A then
B” (A — B), where A is the antecedent and B is the
consequent. Confidence value shows the percentage of
transactions that contain antecedent A that also contain
consequent B. The minimum confidence threshold is used to
filter weak association rules, and only rules with confidence
above the threshold will be retained as strong association
rules. A high confidence value indicates that the rule is
reliable and can be trusted to predict the emergence of
consequences based on antecedents. Confidence calculations
use calculations in the equation (4)

The number of transactions is A and B

Confidence P(B/A) = x 100% 4)

Total transactions

The lift ratio is a metric that measures how strong the
relationship between antecedents and consequences is
compared to if the two items were independent. The lift ratio
shows whether items A and B appear together more often than
expected if they were independent. The results of the lift ratio
value can be used to assess the validity or strength of the rules
formed. The lift ratio calculation is shown in the equation (5)
and (6)

Confidence (A,B)

Lift Ratio = Support (&) 5)
Or
Lift Ratio = Support(A U B) (6)

(Support(A) x Support(B))

I11. RESULT AND DISCUSSION

A. Result of SARIMA Modeling

1) Identification of Annual Rainfall Time Series Plots

The initial stage of SARIMA modeling is identifying data
characteristics through time series graphic visualization. The
data used is monthly rainfall data collected from daily BMKG
Semarang City data for the period January 2020 to December
2024, with a total of 60 monthly observations. The time series

JAIC Vol. 10, No. 1, February 2026: 388 — 397



JAIC

e-1SSN: 2548-6861 393

visualization in Figure 2 aims to identify the existence of
seasonal patterns, trends and data variability, which are the
basis for determining the SARIMA model specifications.

Time Series Plot of Rainfall (RR) in Semarang City 2020-2024
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Figure 2. Time series plot of rainfall in Semarang city (2020-2024)

Figure 2 shows a plot of monthly rainfall time series in
Semarang City. A clear seasonal pattern can be seen, with
high rainfall recurring in the period November-March (rainy
season) and low rainfall in the period June-September (dry
season). The data shows high variability with several periods
experiencing extreme rainfall >600 mm/month, particularly in
early 2021 and 2024. Furthermore, formal testing using the
Augmented Dickey-Fuller (ADF) test will be conducted to
confirm the statistical stationarity of the data.

TABLE IV
STASIONARY TEST
Statistics Value
ADF p-value -3.433522
p-value 0.009868
Critical Value (1%) -3.568486
Critical Value (5%) -2.921360
Critical Value (10%) -2.598662

Table 4 shows the results of the ADF test which produces a
p-value of 0.009868 (<0.05) with a statistical ADF value of -
3.433522 which is smaller than the critical value of 5% (-
2.921360), so the null hypothesis is rejected. This result
confirms that the data is stationary in the mean, so it does not
require non-seasonal differencing (d=0).

2) Box-Cox Transformation and Parameter Identification
Even though the data is stationary, further evaluation of
distribution normality and homoscedasticity is needed to
comprehensively meet the assumptions of the SARIMA
model. Data is divided into training set (48 months) and
testing set (12 months) with a ratio of 80:20 before
transformation to prevent data leakage. The Jarque-Bera test
on the training set produced a p-value of 0.0006 (<0.05) with
a skewness of 0.9731, indicating a non-normal distribution.
The variance ratio is 4.67x (>3x) indicating
heteroscedasticity. This condition can affect the accuracy of
parameter estimates and the reliability of confidence
intervals. Box-Cox transformation with parameter A=0.3156
(estimated only from the training set) succeeded in

normalizing the distribution (Jarque-Bera p-value increased
to 0.9695) and stabilized the variance (variance ratio
decreased to 3.01x), as shown in Table 5.

TABLE V

COMPARISON OF ORIGINAL STATIONARY DATA TEST AND BOX-CoOX
TRANSFORMATION

Metric Original Box-Cox
Jarque-Bera p-value 0.0006 0.9695
Skewness 0.9731 -0.0731
Kurtosis 1.8886 -0.0978
ADF p-value 0.0099 0.0449
Variance Ratio 4.67x 3.01x

After the data is transformed, ACF and PACF analysis is
carried out on the training set to identify the optimal SARIMA
model parameter order. Visual parameter identification was
conducted using ACF and PACF plots on the transformed
training data. The ACF plot (Figure 3) exhibits a slow decay
in non-seasonal lags but displays significant spikes at
multiples of lag 12 (12, 24, 36). This pattern confirms a strong
seasonal component, necessitating the inclusion of a seasonal
differencing parameter (D=1). Conversely, the PACF plot
(Figure 4) demonstrates a distinct cut-off after lag 1,
providing a strong indication for a non-seasonal
Autoregressive term of order 1 (p=1). Based on these visual
diagnostics, the grid search parameter space was constrained

to prioritize seasonal components and low-order
autoregressive terms.
Autocorrelation Function {ACF) - Training Data
Untuk identifikasi MA order (4, Q)
Figure 3. ACF Plot
Partial Autocorrelation Function (PACF) - Training Data
Untuk \;Ienmika‘si AR order (p, P} -
" Lag
Figure 4. PACF Plot
3) SARIMA Model Selection
Following the parameter identification phase, a

comprehensive grid search was executed to evaluate 81
distinct parameter combinations based on the range
p,q €[0,2], d € [0,1], and seasonal parameters P, Q € [0,2],
D € [0,1]. The selection criteria prioritized minimizing the
AIC while ensuring predictive accuracy (MAPE) and
satisfying residual diagnostic assumptions. Table 6 presents a
comparative summary of the top-performing models against
representative alternative candidates.
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TABLE VI meteorological associations is required to uncover the specific

SARIMA MODEL SELECTION variable interactions triggering these events, thereby
SARIMA Model | AIC MAPE [ LB(p) | JB(p) complementing the seasonal baseline established by
(1,0,00(2,1,0);, | 86.05 | 4497 | 0.158 | 0.607 SARIMA.
(1,0,00(21,1);, | 87.97 | 59.19 | 0.174 | 0.619
(1,0,0)(2,1,2);, | 89.90 67.25 0.192 | 0.633 5) Rainfall Forecasting in 2025
(0,1,1)(0,1,1),, | 157.21 | 55.88 0.236 | 0.513 After the model was validated on testing data, the model was
(01,1)(0,0,2),, | 16584 | 6234 | 0.104 | 0.222 then retrained using all data (2020-2024) to produce rainfall

The SARIMA (1,0,0)(2,1,0),, model was identified as the
optimal structure, achieving the lowest AIC (86.05) and
MAPE (44.97%). The table highlights a significant
performance divergence: while the top three models
mentioned AIC scores below 90, alternative candidates (e.g.,
Rank 4 and 5) exhibited a sharp increase in AIC values
(>157). This substantial gap statistically confirms that the
selected model structure provides a significantly superior fit
compared to other potential combinations. Furthermore, the
selected model demonstrated robust statistical validity. As
shown in the diagnostic columns of Table VI, the Ljung-Box
test yielded a p-value of 0.158 (> 0.05), confirming the
absence of autocorrelation in residuals. Similarly, the Jarque-
Bera test resulted in a p-value of 0.607 (> 0.05), validating
that the residuals follow a normal distribution. Consequently,
this model is adopted for forecasting as it offers the best
balance between statistical efficiency and validity.

4)  Performance Evaluation on Testing Data

The SARIMA (1,0,0)(2,1,0);,) model which had been
statistically validated was then evaluated for its generalization
ability on the testing set for the period January to December
2024 which the model had never seen during training.
Evaluation is carried out by comparing the predicted value of
the Box-Cox inverse transformation results with the actual
value using several standard performance metrics in time
series forecasting.

TABLE VII
SUMMARY OF FORECASTING ERRORS FOR THE 2024 TEST DATA
Metric Value
MAE 123.21 mm
RMSE 171.35 mm
MAPE 44.97%

Based on Table 7, the evaluation yielded an MAE of 123.21
mm, an RMSE of 171.35 mm, and a MAPE of 44.97%. While
this value indicates a moderate level of prediction deviation,
it represents the optimal achievable accuracy for this specific
dataset. As previously demonstrated in the model selection
phase Table 6, alternative structural models yielded
significantly higher error rates, ranging from 55% to over
100%. This performance underscores the inherent complexity
of modeling Semarang’s stochastic tropical weather using
univariate time-series data alone. The deviations are largely
driven by extreme rainfall anomalies in early 2024, which
extend beyond historical seasonal trends. Consequently, to
address these irregularities, a supplementary analysis of

predictions for 2025. Table 8 displays the results of monthly
rainfall forecasting for Semarang City throughout 2025.

TABLE VIII
MONTHLY RAINFALL FORECASTING IN 2025
Month Prediction (mm)
January 323.58
February | 334.43
March 306.49
April 213.39
May 124.84
June 156.42
July 107.27
August 47.28
September | 41.39
October 127.74
November | 330.06
December | 299.35

Table 8 shows clear characteristics based on the BMKG's
deterministic monthly rainfall classification. Based on this
standard, January to March and November to December are
classified as high rainfall due to their values (300-500
mm/month), while July to September is categorized as the dry
season due to their values (0-100 mm/month)..

SARIMA(L, 0, 0)x(2, 1, 0, 12): Historical & Forecast

mmmmm

e
S

Figure 5. Rainfall Prediction For 2025

Figure 5 visualizes the forecast, showing a consistent seasonal
pattern where peak rainfall is expected in January (323.58
mm) and February (334.43 mm), while the dry season is
projected to occur from July to September (<110 mm/month).
It is important to interpret these projections within the context
of data limitations. The 95% Confidence Interval (shaded area
in Figure 5) widens significantly during the peak rainy season,
reflecting the higher variance and uncertainty inherent in the
limited five-year historical dataset. While the SARIMA
model successfully captures the recurring seasonal
periodicity, the magnitude of extreme rainfall events may
deviate from the point forecast. Therefore, these predictions
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should be utilized as a baseline trend indicator for flood
mitigation planning, with real-time adjustments made based
on short-term meteorological alerts.

B. Results of the Apriori Algorithm
1)  Frequent Itemset and Parameter Robustness Analysis

The implementation of the Apriori algorithm begins with the
identification of frequent itemsets, defined as combinations of
meteorological variab The Apriori algorithm is usedles such
as Tn, Tx, Tavg, RH_avg, ff _x, ff_avg that co-occur in the
dataset with a frequency exceeding a certain threshold. For
association analysis, continuous daily weather data are
discretized into categorical labels as detailed in the
methodology section. This research applies a grid search
evaluation to test the robustness and sensitivity of the pattern
extraction process to variations in parameter thresholds.
Figure 6 visualizes the distribution of rules formed at various
ranges of Minimum Support (10%-50%) and Confidence
(50%—70%).

Sensitivity of Rule Count to Support & Confidence Thresholds

24
2

0% 20% 30% a0% 50%
Minimum Support

Figure 6. Heatmap Visualization of Parameter Sensitivity

Parameter sensitivity and robustness analyses were used to
ensure model robustness. Grid search evaluation was
performed to assess the Apriori algorithm against various
thresholds. Figure 6 visualizes the sensitivity of the resulting
rules. The heatmap shows that at higher support levels
(>10%), the algorithm is unable to capture the details of
complex weather patterns. Because extreme rainfall is a rare
anomaly (less than 3% of the total data), the analysis is
generally less successful. Therefore, based on this robustness
test, the analysis was expanded to a lower support threshold
of 0.5% to detect potential flood-causing events.

2)  Association rules Mining

Association rules are expressed in the form "If A then B" (A
—B), where the strength of the rule is measured using three
main metrics: support which shows the frequency of
occurrence of the combination A and B, confidence which
shows the conditional probability of B appearing if A occurs,
and lift ratio which shows the degree of correlation between
A and B compared to if they were independent. Unlike the
initial exploration, which only measured the volume of rules
generated, this stage focused on extracting meaningful
meteorological patterns. Based on previous robustness tests,
the mining process was carried out using two targeted

strategies, validating consistency during the rainy season and
identifying early warning indicators for extreme events. To
implement the first strategy, the analysis was specifically
segmented to the rainy season (November—March) to validate
seasonal consistency and maximize the detection of flood-
triggering patterns. Table 9 presents the top association rules
extracted from this high-risk period, ordered by the highest
lift ratio.

TABLE IX
TOP 5 SEASONAL ASSOCIATION RULES (NOV-MAR)

Antecedents and Support | Confidence Lift

Consequent Ratio
RH_High, Tavg_Low, 50 15.2 1.51
Tx_Low — Medium
Rain
FFx_Fast, Tn_Medium 5.5 73.7 1.50
— Light Rain
RH_High, Tavg_Low 52 14.6 1.45
— Medium Rain
RH_High, Tx_Low — 5.2 14.4 1.43
Medium Rain
Tavg_Low, Tx_Low 6.2 141 1.40
— Medium Rain

While the SARIMA model utilizes a full 12-month dataset to
capture annual trends, the Apriori analysis was strategically
segmented specifically for the rainy season (November—
March). This targeted approach was chosen to validate
seasonal consistency and maximize the sensitivity of flood
trigger pattern detection, which in annual analyses is often
obscured by the large amount of non-rainfall data. The results
of this segmented analysis successfully identified a specific
meteorological pattern: a combination of High Humidity
(RH_High) and Low Temperature (Tavg_Low, Tx_ Low)
significantly increases the probability of Moderate Rain, with
a Lift Ratio reaching 1.51. This confirms that high humidity
accompanied by a decrease in temperature is the dominant
cause of rainfall during this period. As a complement to
seasonal analysis, the second strategy focuses on detecting
extreme rainfall events. Although rare, these phenomena have
a major impact, making their detection crucial for establishing
early warning mechanisms. Since extreme rainfall is a
statistical anomaly, the minimum support is adjusted to 0.5%
so that this critical pattern can be detected. Table 10 presents
the rules extracted for Heavy Rainfall, which reveal the most
significant findings of this research.

TABLE X
TOP 5 SEASONAL ASSOCIATION RULES FOR HEAVY RAINFALL DETECTION

Antecedents and Support | Confidence Lift

Consequent Ratio

Tx_Low, Tn_Low, 0.6 29.7 12.34

FFx_Med — Heavy

Rain

FFavg_Med, 0.7 27.1 11.24

Tn_Low, Tx_Low —

Heavy Rain

Hybrid Rainfall Analysis in Semarang by Integrating SARIMA Predictions with Meteorological Association Rules
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FFavg_Med,Tn_Low, 0.6
Tavg_Low— Heavy
Rain

RH_High, Tn_Low, 0.5
Tavg_Low — Heavy
Rain

Tn_Low, Tavg_Low, 0.7
FFx_Med— Heavy
Rain

26.2 10.87

26.2 10.38

245 10.17

The results reveal a strong early warning signal for
hydrometeorological disasters. The top rule indicates that a
specific combination of Low Temperature (Tx, Tn,
Tavg_Low) and Moderate Wind Speed (FFx_Medium)
significantly increase the probability of Heavy Rain, with a
Lift Ratio of 12.34. Statistically, this figure indicates that the
occurrence of this specific weather pattern increases the risk
of heavy rain by up to 12 times compared to random
conditions. This finding confirms that the phenomenon of
temperature drops accompanied by specific wind dynamics is
a valid quantitative parameter as a basis for an early warning
system.

To clarify the scientific contribution of this study, Table 11
provides a comparison between the proposed hybrid
SARIMA-Apriori framework and previous works. Unlike
earlier studies that typically separate temporal forecasting
from causal variable analysis, this research successfully
integrates both to provide operational validation of flood risks
in Semarang City.

TABLE XI
COMPARISON RESULT WITH PREVIOUS STUDIES

Method
SARIMA

Results
SARIMA (0,0,1)(0,0,1)1> model
achieved 80.5% accuracy with
MAPE 19.5% for forecasting
rainfall in Aceh. SARIMA
SARIMA model reliably detects
seasonal pattern changes caused
by climate change.
SARIMA is consistent for multi-
location forecasting with different
climate characteristics and
reliable for strategic water
resource planning
Apriori algorithm is effective for
predicting rainfall in Tegal City
with the highest accuracy of
78.68%. All resulting association
rules have a lift ratio value
greater than 1, indicating a
significant and reliable level of
strength for predicting rainfall.
The results indicate that wind
speed, wind direction,
temperature, humidity, and global
radiation are important factors in
rainfall formation, making the a
priori method effective for
improving the

References
[11] 2023.

[1212020 | SARIMA

[13]2022 | SARIMA

[14] 2023 Apriori

[15] 2021 Apriori

Ours (2025 | SARIMA

& Apriori

Successfully projected 2025
rainfall dynamics with optimal
accuracy (MAPE 44.97%) and
identified critical flood-risk
periods during January—March
and November—December. The
proposed approach provides
operational validation through the
extraction of specific
meteorological signatures, where
a combination of low
temperatures and moderate wind
speeds was found to increase
heavy rainfall risk by 12.34 times
(Lift Ratio 12.34)

1VV. CONCLUSION

This research successfully integrated the dual analysis
framework of the SARIMA model with the Apriori algorithm
to optimize rainfall forecasting and disaster mitigation in
Semarang City. The optimized SARIMA model was able to
effectively map the hydrological cycle in 2025 and indicate
the timing of extreme rainfall events requiring early
preparedness. In this scheme, the SARIMA model plays arole
in providing numerical estimates of rainfall volume, while the
Apriori algorithm serves as an operational validation
mechanism through the extraction of significant weather
patterns. The main findings of this research indicate that a
specific combination of low temperature and moderate wind
speed is a strong indicator of heavy rainfall triggers, with a
Lift Ratio value reaching 12.34. The combination of these two
methods transforms static numerical predictions into a
dynamic early warning system. In this system, peak rainfall
projections are validated through identified events. Thus, the
results of this research provide a stronger foundation for
future flood risk management.

To further enhance the precision of this early warning
system and address the limitations of statistical error, future
research should transition from monthly to daily data
aggregation to capture short-term fluctuations. Furthermore,
subsequent studies are recommended to adopt hybrid
modeling approaches, such as integrating SARIMA with
Deep Learning (e.g., LSTM) or multivariate SARIMAX,
which can directly incorporate the causal variables identified
by Apriori to significantly reduce prediction error and
improve resilience against climate anomalies.
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