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 Climate variability necessitates advanced analytical approaches to understand 

irregular rainfall patterns, particularly in coastal cities like Semarang, Central Java. 

This research employs a dual-analysis framework combining the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model and the Apriori 

algorithm to forecast rainfall and uncover hidden meteorological associations. 

Analyzing BMKG monthly climatological data from January 2020 to December 
2024, the research addresses both temporal trends and variable dependencies. The 

SARIMA (1,0,0)(2,1,0)12 model projected rainfall dynamics for 2025, identifying 

critical wet periods (January-March, November-December) and dry intervals (July-

September), achieving a MAPE of 44.97%. To complement temporal forecasting, 

the Apriori algorithm was applied with 50% minimum support and 50% confidence, 

generating association rules from daily discretized meteorological data. Results 

reveal that the combination of low temperature (Tx_Low, Tn_Low) and moderate 

wind speed (FFx_Medium) exhibits the strongest correlation with heavy rainfall 

events Lift Ratio 12.34, indicating a 12-fold increased risk compared to random 

conditions. By synergizing temporal forecasting with the identification of 

meteorological triggers, this research offers a robust basis for early warning systems, 
supporting flood mitigation and water resource management strategies in Semarang. 
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I. INTRODUCTION 

Global climate change in recent years has caused weather 

patterns to become increasingly irregular and difficult to 

predict. These uncertain conditions have amplified the 

frequency and intensity of extreme weather events, 

particularly rainfall [1]. As a critical climatic element 

measured in millimeters (mm) over specific periods, rainfall 
variability serves as a primary indicator of hydrological 

dynamics [2]. However, rainfall patterns are showing 

significant anomalies due to global warming. This instability 

is exacerbated by periodic phenomena such as La Niña and El 

Niño, which disrupt rainfall distribution in Indonesia, 

especially during the transitional seasons [3]. Furthermore, 

the Indian Ocean Dipole (IOD) adds another layer of 

complexity; a positive IOD can worsen drought during El 

Niño, while a negative IOD occurring simultaneously with La 

Niña can trigger extreme rainfall events  [4].  

The uncertainty of these patterns has severely impacted 
various regions in Indonesia, particularly Semarang City, the 

capital of Central Java. Located on the northern coast of Java 

Island, Semarang experiences high rainfall intensity, often 

resulting in severe flooding [5].  Despite the recurring risks, 

existing prediction systems remain unable to provide 

adequate early warning information. Consequently, there is an 

urgent need for a system that goes beyond merely projecting 

future rainfall quantities. An effective solution must 

systematically identify seasonal patterns, trends, and the 

triggering meteorological variables to serve as a robust basis 

for risk mitigation. 
Anticipatory action relies on accurate forecasting and a 

deep understanding of the factors driving rainfall. Time series 

analysis and data mining are highly relevant approaches to 

addressing this challenge [6]. To capture future rainfall 

patterns, the Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model offers an effective solution. 
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SARIMA is statistically designed to analyze time series data 

exhibiting periodic seasonal patterns, accommodating both 

long-term trends and random fluctuations [7]. By utilizing 

univariate monthly rainfall data, SARIMA can estimate 

periods of peak and minimum rainfall. Thus, it serves as a 

viable foundation for an early warning system in Semarang 

City. 

However, predicting the "when" is not enough; 
understanding the "why" is equally crucial. Data mining 

offers techniques to explore hidden relationships within 

complex meteorological data [8]. One such method is the 

Apriori Association Rule Mining algorithm, which identifies 

meaningful association rules and item combinations [9]. This 

method is employed to uncover patterns between 

climatological variables, such as temperature (minimum, 

maximum, average), humidity, and wind speed and rainfall 

events. The Apriori algorithm utilizes support, confidence, 

and lift ratio parameters to evaluate the strength of these 

relationships [10]. By revealing hidden patterns undetectable 
by standard statistical analysis, Apriori provides a deeper 

explanation of the meteorological conditions triggering rain. 

Previous researches have demonstrated the efficacy of 

SARIMA in rainfall forecasting with varying results. Ramli 

et al. (2023) achieved a prediction accuracy of 80.5% (MAPE 

19.5%) in Aceh using a SARIMA model (0,0,1)(0,0,1)12 

[11]. Similarly, Adams et al. (2020) successfully forecasted a 

10% increase in rainfall in Abuja, Nigeria, using a SARIMA 

(0,0,2)(0,1,2)12 model after confirming stationarity via the 

Augmented Dickey-Fuller test [12]. Furthermore, 
Kabbilawsh et al. (2022) applied SARIMA to 29 stations in 

India, finding that seasonal components were dominant in 

long-term rainfall data [13]. These researches confirm that 

SARIMA is a consistent and reliable tool for capturing 

seasonal hydrological cycles. 

Parallel to this, the Apriori algorithm has proven effective 

in identifying meteorological associations. Gunawan et al. 

(2023) used Apriori in Tegal City, producing the highest 

accuracy of 78.68%. All association rules had a lift ratio >1, 

indicating significant and reliable power for predicting 

rainfall [14]. Coulibaly et al. (2021) also applied association 

rule learning to weather prediction, identifying temperature, 
humidity, and wind speed as the most frequent antecedents for 

rainfall events [15]. These findings underscore the Apriori 

algorithm's ability to explain the specific weather conditions 

that trigger precipitation. 

Despite these advances, most researches focus either solely 

on forecasting the time of rainfall or solely on the causal 

variables. Few attempts have been made to integrate these 

perspectives. This research addresses this gap by combining 

two algorithms typically used separately SARIMA and 

Apriori. Using monthly climate data from the Meteorology, 

Climatology, and Geophysics Agency (BMKG) Semarang 
City (January 2020–December 2024), this research aims to 

predict monthly rainfall patterns for 2025 while 

simultaneously identifying the interrelationships between 

meteorological variables that trigger these events. This dual-

analysis approach integrates temporal forecasting with pattern 

discovery to provide a comprehensive tool for 

hydrometeorological disaster mitigation. 

II. METHOD  

The methodology adopts a dual-analysis approach using 

dataset from Semarang City. The Seasonal Autoregressive 

Integrated Moving Average (SARIMA) is used to capture 

temporal seasonality and forecast future rainfall, while the 
Apriori algorithm is employed to identify meteorological 

triggers through association rule mining. Figure 1 presents the 

comprehensive flowchart guiding this research process. 

 

 

Figure 1. Research flow 

A. Dataset 

The research utilizes meteorological data acquired from 

BMKG [16], covering the Semarang City region. The dataset 
spans a five-year period from January 2020 to December 

2024 and comprises seven key variables: rainfall, average 

temperature, minimum temperature, maximum temperature, 

average humidity, average wind speed, and maximum wind 
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speed. This dataset supports two distinct but complementary 

analytical approaches. First, the SARIMA method employs 

the univariate monthly rainfall series to forecast precipitation 

levels for 2025 and identify seasonal peaks and troughs. 

Second, the Apriori algorithm leverages the complete 

multivariate dataset to perform association rule mining, 

aiming to uncover latent relationships between 

climatological variables and rainfall occurrences. 

B. Seasonal Autoregressive Integrated Moving Average 

(SARIMA) 

 SARIMA is a time series statistical model designed to 

analyze data that shows trends and seasonal patterns 

simultaneously. This model is a refinement of the traditional 

ARIMA model, but with a seasonal component that can detect 

recurring patterns at certain time intervals. SARIMA 

combines three main components, namely autoregressive 

(AR) which models the relationship between current 

observations and previous observations, differencing (I) 

which is used to create stationary data, and moving average 

(MA) which models the relationship between observations 

and past errors [16]. The SARIMA model is generally denoted 

as  𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠, representing both non-seasonal 
and seasonal components. In this notation, the non-seasonal 

part is defined by the parameters 𝑝 for the autoregressive 

(AR) order, 𝑑 for the differencing order to achieve 

stationarity, and 𝑞 for the moving average (MA) order. The 

seasonal characteristics of the model are captured by the 

parameters 𝑃, 𝐷, dan 𝑄 which represent the seasonal 

autoregressive, seasonal differencing, and seasonal moving 

average orders, respectively. Furthermore, the subscript 𝑠 
denotes the specific number of seasonal periods, which in this 

research corresponds to the 12-month annual hydrological 

cycle. In general, the form of the SARIMA [17] presents in 

equation (1) 

ϕ
𝑝

(𝐵)Φ𝑃(𝐵𝑆)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = θ𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜀𝑡    (1) 

 
where: 

ϕ
𝑝

(𝐵)      : non-seasonal AR coefficient with order p 

Φ𝑃(𝐵𝑆)    : seasonal AR coefficient with order p 

(1 − 𝐵)𝑑  : operator for difference of order d 

𝑌𝑡               : observation value at time -𝑡, 

θ𝑞(𝐵)       : non-seasonal MA coefficient with order q 

Θ𝑄(𝐵𝑠)     : seasonal MA coefficient with order q 

𝜀𝑡               : random error (white noise). 

1) Preprocessing 

Data preprocessing is critical to ensure dataset integrity prior 
to modeling. This phase involved two primary procedures to 

prepare the rainfall data for time series analysis. First, Linear 

Interpolation was employed to address data gaps caused by 

recording anomalies. This method estimates missing values 

based on the slope between adjacent known data points, 

thereby preserving the temporal continuity essential for time 

series analysis [18]. Subsequently, daily rainfall records were 

aggregated into monthly totals to align the data scale with the 

SARIMA model's capacity to detect medium-to-long-term 

periodic seasonality. This temporal aggregation transforms 

the granular daily observations into a format more suitable for 

capturing the broader seasonal patterns inherent in rainfall 

data. 

2) Stationarity Data Test 

Stationarity data test is a statistical test to determine whether 

data has a constant mean, variance and autocorrelation over 
time [19]. The Augmented Dickey-Fuller (ADF) test is used 

as a formal testing method to detect the presence of a unit root 

which indicates non-stationarity. The null hypothesis (H₀) 

states that the data has a unit root (not stationary), while the 

alternative hypothesis (H₁) states that the data is stationary. If 

the p-value of the ADF test is smaller than the significance 

level of 0.05, then H₀ is rejected and the data is considered 

stationary. Data that does not meet stationary conditions 

requires transformation or differencing before SARIMA 

modelling. 

3) Split Data 

Split data is the process of dividing a dataset into two subsets, 

namely training data and testing data for the purposes of 

training and evaluating models [20]. This process aims to 

prevent overfitting and validate the generalization ability of 

the model on data that has not been seen during training. The 

training data covers historical records from January 2020 to 

December 2023, for a total of 48 months, which is considered 

sufficient to capture seasonal variations with a period of s=12. 

For evaluation purposes, the testing data covers the period 

from January to December 2024.  

This research uses an 80:20 split ratio, which is common 
practice in time series modelling to balance training and 

validation needs. The model's performance on the testing data 

is then measured using MAE, RMSE, and MAPE metrics as 

indicators of future forecasting reliability 

. 

4) Box-Cox Transformation 

Box-Cox transformation is a statistical technique used to 

stabilize variance and normalize the distribution of time series 
data [21]. This transformation is necessary when the data 

shows heteroscedasticity (variance is not constant) or a non-

normal distribution, so as to better meet the assumptions of 

the SARIMA model. The lambda parameter (λ) of the Box-

Cox transformation is estimated only on training data to 

prevent data leakage. The parameters λ that have been 

obtained are then applied to the testing data without refitting, 

ensuring that the model does not have information from future 

data during training. The inverse transformation process uses 

the same λ applied to the prediction results to return the values 

to the original scale by ensuring the confidence interval does 

not produce negative values. 
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5) Model identification (ACF/PACF) 

Model identification is the stage of determining the optimal 

parameters of SARIMA through Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) analysis 
[22]. ACF measures the correlation between observations at 

time t and observations at time t-k for various lag k values, 

which is used to identify the order of the moving average (q 

and Q). PACF measures the correlation after removing the 

influence of the intermediate lag, which is used to identify the 

autoregressive order (p and P). The cut-off pattern on the ACF 

chart indicates the MA order, while the cut-off pattern on the 

PACF indicates the AR order. The significant spike at lag 

multiple s=12 shows a strong seasonal component, indicating 

the need for seasonal parameters (P, D, Q). The combination 

of ACF and PACF analysis provides initial guidance for 

optimal SARIMA grid search parameters. 

6) Model Sarima Selection 

Model selection is the process of selecting the best model 

from various combinations of SARIMA parameters based on 

statistical criteria. Grid search is carried out by trying various 

combinations of parameters (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑠, and 
comparing performance using information criteria. The model 

was chosen with the AIC value because it indicated the 

optimal balance between goodness of fit and model 

complexity, as well as the lowest MAPE for prediction 

accuracy. The model with the lowest AIC value that meets 

statistical tests is selected as the optimal model [23]. 

7) Model Validation 

Model validation is a verification stage to ensure the 

SARIMA model meets statistical assumptions and produces 

accurate predictions. Model validation includes checking the 

residuals to ensure that the residuals are white noise 
(uncorrelated), normally distributed, and have constant 

variance (homoscedasticity). The Ljung-Box test was carried 

out to detect residual autocorrelation, with a p-value > 0.05 

indicating independent residuals. The Jarque-Bera test 

evaluates the normality of the residuals, where p-value > 0.05 

indicates the residuals are normally distributed [24]. 

8) Forecasting 

Future rainfall values are predicted by applying a validated 

SARIMA model to the complete historical dataset from 2020 

to 2024, thereby maximizing the capture of temporal and 
seasonal patterns. Forecasting results include a point forecast 

(single predicted value) and a 95% confidence interval which 

shows the range of prediction uncertainty. The inverse Box-

Cox transformation is applied to the method prediction results 

to ensure that the prediction value and confidence interval are 

not negative. 

C. Apriori Algorithm 

The Apriori algorithm is a basic method in data mining 

that is used to identify frequent itemset and generate 

association rules in transactional data sets. This algorithm 

uses a bottom-up approach, in which frequently occurring 

individual items are systematically identified and repeatedly 

developed into larger k-itemsets as long as they meet the 

minimum support threshold [25]. In this meteorological 

research, Apriori was used to reveal hidden associations 

between variables such as temperature, humidity, wind speed, 

and rainfall through three main evaluation metrics: support, 

confidence, and lift.  

Before the mining process began, an important 

preliminary stage of data preprocessing was carried out to 

convert raw meteorological data into a suitable format. This 

stage included handling missing data through linear 

interpolation to maintain temporal continuity, followed by 

categorizing numerical variables into discrete labels to 
facilitate pattern recognition. The results of handling missing 

values are shown in Table 1. 

TABLE I 

SAMPLE OF PREPROCESSED METEOROLOGICAL DATA 

Date TAVG RH_AVG RR ... FF_AVG 

01–01-2020 27.0 88.0 9.6 … 4.0 

02-01-2020 27.4 87.0 16.7 … 3.0 

03-01-2020 28.4 84.0 2.0 … 3.0 

04-01-2020 27.1 90.0 36.6 … 2.0 

05-01-2020 26.8 92.0 3.7 … 2.0 

… … … … … ... 

27-05-2024 28.3 82.0 0.0 … 2.0 

28-05-2024 28.1 86.0 0.0 … 1.0 

29-05-2024 27.1 88.0 29.8 … 1.0 

30-05-2024 28.4 80.0 0.4 … 3.0 

31-05-2024 28.2 77.0 1.4 … 3.0 

 

Categorization of numeric variables or discretization is 

the process of converting continuous numerical data into 

discrete categorical data by dividing a range of values into 

certain intervals [26]. This process is very important because 

Apriori algorithm is designed to work with categorical or 
transactional data. The categorization process helps simplify 

data, reduce noise, and make patterns easier to interpret. This 

research implements two discretization approaches, namely 

manual rule-based binning which applies a fixed threshold 

based on BMKG meteorological standards [27], and quantile-

based binning with parameter q=3 (tertile) which divides the 

data based on statistical distribution.  

After evaluation, the manual rule-based binning 

approach was chosen because it produces categories that are 

easy to interpret, as shown in Table 2. 

TABLE II 

CATEGORIZATION OF NUMERIC VARIABLES 

Code Variable Category Range 

RR Rainfall No Rain  

Light Rain  

Medium Rain 

Heavy Rain  

Very Heavy Rain 

0 mm 

0.1-20mm 

20-50mm 

50-100mm 

>100mm 

Tn Minimum 

temperature 

Tn_ Low 

Tn_Medium 

Tn_ High 

< 24℃ 

24 - 26℃ 

> 26℃ 
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Tx Maximum 

temperature 

Tx_Low 

Tx_ Medium 

Tx_ High 

< 32℃ 

32 − 34℃ 

> 34℃ 

Tavg Average 

temperature 

Tavg_Low 

Tavg_ Medium 

Tavg_ High 

< 28℃ 

28 - 30℃ 

> 30℃ 

RH_avg Average 

humidity 

RH_Dry 

RH_Normal 

RH_ High 

< 70% 

70 – 85% 

> 85% 

FF_x Maximum wind 

speed 

FFx_Weak 

FFx_Medium 

FFx_ Fast 

< 4m/s 

4 – 7m/s 

> 7m/s 

FF_avg Average wind 

speed 

FFavg_Weak 

FFavg_Medium 

FFavg_ Fast 

< 2m/s 

2 – 3m/s 

> 3m/s 

The final stage of data processing involves conversion 
to transaction format, which is the process of transforming 

categorical data into transactional format using the one-hot 

encoding technique. This technique converts each category of 

each variable into a binary column (0 or 1), where a value of 

1 indicates the presence of an item in the transaction and 0 

indicates its absence [16]. This transformation process 

enables the Apriori algorithm to identify patterns of co-

occurrence of various meteorological conditions that occur 

simultaneously, with the results of the one-hot encoding 

conversion presented in Table 3.  

TABLE III 

CONVERSION TO TRANSACTION FORMAT 

FFavg_ 

Fast 

FFx_ 

Medium 

Very Heavy 

Rain 

.... Medium 

Rain 

1 1 0 .... 0 

0 1 0 .... 0 

0 1 1 .... 0 

0 0 0 .... 1 

0 0 1 .... 0 

As the core stage of the association rule mining process, 
Apriori algorithm aims to find frequent itemsets and generate 

strong association rules. To ensure model robustness, a grid 

search evaluation was conducted across various support and 

confidence thresholds. This process aims to determine the 

optimal sensitivity for detecting both frequent seasonal 

patterns and rare, high-impact meteorological anomalies. The 

strength of the resulting association rules is then evaluated 

through three main metrics, starting from the support value, 
confidence, and lift ratio. 

Support value is a threshold parameter that determines 
how often an itemset must appear in the dataset to be 

considered frequent or significant. The minimum support 

threshold is set before the algorithm is run and functions as a 

filter to eliminate itemsets that rarely appear. Itemsets that 

have a support value above or equal to the minimum support 

threshold will be considered frequent itemsets and retained 

for the next iteration, while itemsets with support below the 

threshold will be discarded. Choosing the right minimum 

support value is very important: a value that is too high can 

result in the loss of interesting patterns, while a value that is 

too low can result in too many meaningless rules.  

In the context of meteorological data, support value 

shows how often a certain combination of weather conditions 

occurs within the observation period. The support calculation 

is in the equation (2). 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴) =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝐴 

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
× 100%         

(2) 

The support value of the 2 items is obtained based on equation 

calculations (3). 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴, 𝐵) =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
× 100%     

(3) 

Confidence as a metric that measures how often item B 

appears in transactions containing item A, or in other words, 

the conditional probability that the consequent will occur if 
the antecedent occurs. Once frequent itemsets are found, the 

algorithm generates association rules of the form “If A then 

B” (A → B), where A is the antecedent and B is the 

consequent. Confidence value shows the percentage of 

transactions that contain antecedent A that also contain 

consequent B. The minimum confidence threshold is used to 

filter weak association rules, and only rules with confidence 

above the threshold will be retained as strong association 

rules. A high confidence value indicates that the rule is 

reliable and can be trusted to predict the emergence of 

consequences based on antecedents. Confidence calculations 
use calculations in the equation (4) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑃(𝐵/𝐴) =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
× 100%             (4) 

The lift ratio is a metric that measures how strong the 

relationship between antecedents and consequences is 

compared to if the two items were independent. The lift ratio 

shows whether items A and B appear together more often than 

expected if they were independent. The results of the lift ratio 

value can be used to assess the validity or strength of the rules 

formed. The lift ratio calculation is shown in the equation (5) 
and (6) 

𝐿𝑖𝑓𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴,𝐵)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐵)
                  (5) 

Or 

𝐿𝑖𝑓𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ 𝐵)

(𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐵))
        (6) 

 

III. RESULT AND DISCUSSION 

A. Result of SARIMA Modeling 

1) Identification of Annual Rainfall Time Series Plots 

The initial stage of SARIMA modeling is identifying data 

characteristics through time series graphic visualization. The 

data used is monthly rainfall data collected from daily BMKG 

Semarang City data for the period January 2020 to December 

2024, with a total of 60 monthly observations. The time series 
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visualization in Figure 2 aims to identify the existence of 

seasonal patterns, trends and data variability, which are the 

basis for determining the SARIMA model specifications. 

 

Figure 2. Time series plot of rainfall in Semarang city (2020-2024) 

Figure 2 shows a plot of monthly rainfall time series in 

Semarang City. A clear seasonal pattern can be seen, with 

high rainfall recurring in the period November-March (rainy 
season) and low rainfall in the period June-September (dry 

season). The data shows high variability with several periods 

experiencing extreme rainfall >600 mm/month, particularly in 

early 2021 and 2024. Furthermore, formal testing using the 

Augmented Dickey-Fuller (ADF) test will be conducted to 

confirm the statistical stationarity of the data. 

TABLE IV 

STASIONARY TEST 

Statistics Value 

ADF p-value -3.433522 

p-value 0.009868 

Critical Value (1%) -3.568486 

Critical Value (5%) -2.921360 

Critical Value (10%) -2.598662 

 

Table 4 shows the results of the ADF test which produces a 

p-value of 0.009868 (<0.05) with a statistical ADF value of -

3.433522 which is smaller than the critical value of 5% (-

2.921360), so the null hypothesis is rejected. This result 
confirms that the data is stationary in the mean, so it does not 

require non-seasonal differencing (d=0). 

2) Box-Cox Transformation and Parameter Identification 

Even though the data is stationary, further evaluation of 

distribution normality and homoscedasticity is needed to 

comprehensively meet the assumptions of the SARIMA 

model. Data is divided into training set (48 months) and 

testing set (12 months) with a ratio of 80:20 before 

transformation to prevent data leakage. The Jarque-Bera test 

on the training set produced a p-value of 0.0006 (<0.05) with 

a skewness of 0.9731, indicating a non-normal distribution. 

The variance ratio is 4.67x (>3x) indicating 

heteroscedasticity. This condition can affect the accuracy of 

parameter estimates and the reliability of confidence 
intervals. Box-Cox transformation with parameter λ=0.3156 

(estimated only from the training set) succeeded in 

normalizing the distribution (Jarque-Bera p-value increased 

to 0.9695) and stabilized the variance (variance ratio 

decreased to 3.01x), as shown in Table 5. 

TABLE V 

COMPARISON OF ORIGINAL STATIONARY DATA TEST AND BOX-COX 

TRANSFORMATION 

Metric Original Box-Cox 

Jarque-Bera p-value 0.0006 0.9695 

Skewness 0.9731 -0.0731 

Kurtosis 1.8886 -0.0978 

ADF p-value 0.0099 0.0449 

Variance Ratio 4.67x 3.01x 

 

After the data is transformed, ACF and PACF analysis is 

carried out on the training set to identify the optimal SARIMA 

model parameter order. Visual parameter identification was 

conducted using ACF and PACF plots on the transformed 

training data. The ACF plot (Figure 3) exhibits a slow decay 

in non-seasonal lags but displays significant spikes at 

multiples of lag 12 (12, 24, 36). This pattern confirms a strong 
seasonal component, necessitating the inclusion of a seasonal 

differencing parameter (D=1). Conversely, the PACF plot 

(Figure 4) demonstrates a distinct cut-off after lag 1, 

providing a strong indication for a non-seasonal 

Autoregressive term of order 1 (p=1). Based on these visual 

diagnostics, the grid search parameter space was constrained 

to prioritize seasonal components and low-order 

autoregressive terms. 

 

Figure 3. ACF Plot  

 

Figure 4. PACF Plot 

3) SARIMA Model Selection 

Following the parameter identification phase, a 

comprehensive grid search was executed to evaluate 81 

distinct parameter combinations based on the range 

𝑝, 𝑞 𝜖 [0,2], 𝑑 𝜖 [0,1],  and seasonal parameters 𝑃, 𝑄 𝜖 [0,2],
𝐷 𝜖 [0,1]. The selection criteria prioritized minimizing the 

AIC while ensuring predictive accuracy (MAPE) and 

satisfying residual diagnostic assumptions. Table 6 presents a 

comparative summary of the top-performing models against 

representative alternative candidates.  
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TABLE VI 

SARIMA MODEL SELECTION 

SARIMA Model AIC MAPE LB(p) JB(p) 

(1,0,0)(2,1,0)12 86.05 44.97 0.158 0.607 

(1,0,0)(2,1,1)12 87.97 59.19 0.174 0.619 

(1,0,0)(2,1,2)12 89.90 67.25 0.192 0.633 

(0,1,1)(0,1,1)12 157.21 55.88 0.236 0.513 

(0,1,1)(0,0,2)12 165.84 62.34 0.104 0.222 

 

The SARIMA (1,0,0)(2,1,0)12 model was identified as the 

optimal structure, achieving the lowest AIC (86.05) and 

MAPE (44.97%). The table highlights a significant 

performance divergence: while the top three models 

mentioned AIC scores below 90, alternative candidates (e.g., 

Rank 4 and 5) exhibited a sharp increase in AIC values 

(>157). This substantial gap statistically confirms that the 

selected model structure provides a significantly superior fit 

compared to other potential combinations. Furthermore, the 
selected model demonstrated robust statistical validity. As 

shown in the diagnostic columns of Table VI, the Ljung-Box 

test yielded a p-value of 0.158 (> 0.05), confirming the 

absence of autocorrelation in residuals. Similarly, the Jarque-

Bera test resulted in a p-value of 0.607 (> 0.05), validating 

that the residuals follow a normal distribution. Consequently, 

this model is adopted for forecasting as it offers the best 

balance between statistical efficiency and validity. 

 

4) Performance Evaluation on Testing Data 

The SARIMA (1,0,0)(2,1,0)12) model which had been 

statistically validated was then evaluated for its generalization 

ability on the testing set for the period January to December 
2024 which the model had never seen during training. 

Evaluation is carried out by comparing the predicted value of 

the Box-Cox inverse transformation results with the actual 

value using several standard performance metrics in time 

series forecasting. 

TABLE VII 

SUMMARY OF FORECASTING ERRORS FOR THE 2024 TEST DATA 

Metric Value 

MAE 123.21 mm 

RMSE 171.35 mm 

MAPE 44.97% 

 

Based on Table 7, the evaluation yielded an MAE of 123.21 
mm, an RMSE of 171.35 mm, and a MAPE of 44.97%. While 

this value indicates a moderate level of prediction deviation, 

it represents the optimal achievable accuracy for this specific 

dataset. As previously demonstrated in the model selection 

phase Table 6, alternative structural models yielded 

significantly higher error rates, ranging from 55% to over 

100%. This performance underscores the inherent complexity 

of modeling Semarang’s stochastic tropical weather using 

univariate time-series data alone. The deviations are largely 

driven by extreme rainfall anomalies in early 2024, which 

extend beyond historical seasonal trends. Consequently, to 
address these irregularities, a supplementary analysis of 

meteorological associations is required to uncover the specific 

variable interactions triggering these events, thereby 

complementing the seasonal baseline established by 

SARIMA.  

 

5) Rainfall Forecasting in 2025 

After the model was validated on testing data, the model was 

then retrained using all data (2020-2024) to produce rainfall 

predictions for 2025. Table 8 displays the results of monthly 

rainfall forecasting for Semarang City throughout 2025. 

TABLE VIII 

MONTHLY RAINFALL FORECASTING IN 2025 

Month Prediction (mm) 

January 323.58 

February  334.43 

March  306.49 

April  213.39 

May  124.84 

June  156.42 

July  107.27 

August  47.28 

September  41.39 

October  127.74 

November  330.06 

December  299.35 

 

Table 8 shows clear characteristics based on the BMKG's 

deterministic monthly rainfall classification. Based on this 

standard, January to March and November to December are 

classified as high rainfall due to their values (300-500 

mm/month), while July to September is categorized as the dry 
season due to their values (0-100 mm/month).. 

 

 

Figure 5. Rainfall Prediction For 2025 

Figure 5 visualizes the forecast, showing a consistent seasonal 

pattern where peak rainfall is expected in January (323.58 

mm) and February (334.43 mm), while the dry season is 

projected to occur from July to September (<110 mm/month). 

It is important to interpret these projections within the context 

of data limitations. The 95% Confidence Interval (shaded area 

in Figure 5) widens significantly during the peak rainy season, 

reflecting the higher variance and uncertainty inherent in the 

limited five-year historical dataset. While the SARIMA 

model successfully captures the recurring seasonal 
periodicity, the magnitude of extreme rainfall events may 

deviate from the point forecast. Therefore, these predictions 
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should be utilized as a baseline trend indicator for flood 

mitigation planning, with real-time adjustments made based 

on short-term meteorological alerts. 

B. Results of the Apriori Algorithm 

1) Frequent Itemset and Parameter Robustness Analysis 

The implementation of the Apriori algorithm begins with the 

identification of frequent itemsets, defined as combinations of 

meteorological variab The Apriori algorithm is usedles such 

as Tn, Tx, Tavg, RH_avg, ff_x, ff_avg that co-occur in the 
dataset with a frequency exceeding a certain threshold. For 

association analysis, continuous daily weather data are 

discretized into categorical labels as detailed in the 

methodology section. This research applies a grid search 

evaluation to test the robustness and sensitivity of the pattern 

extraction process to variations in parameter thresholds. 

Figure 6 visualizes the distribution of rules formed at various 

ranges of Minimum Support (10%–50%) and Confidence 

(50%–70%). 

 

Figure 6. Heatmap Visualization of Parameter Sensitivity  

Parameter sensitivity and robustness analyses were used to 
ensure model robustness. Grid search evaluation was 

performed to assess the Apriori algorithm against various 

thresholds. Figure 6 visualizes the sensitivity of the resulting 

rules. The heatmap shows that at higher support levels 

(>10%), the algorithm is unable to capture the details of 

complex weather patterns. Because extreme rainfall is a rare 

anomaly (less than 3% of the total data), the analysis is 

generally less successful. Therefore, based on this robustness 
test, the analysis was expanded to a lower support threshold 

of 0.5% to detect potential flood-causing events. 

2) Association rules Mining 

Association rules are expressed in the form "If A then B" (A 

→B), where the strength of the rule is measured using three 
main metrics: support which shows the frequency of 

occurrence of the combination A and B, confidence which 

shows the conditional probability of B appearing if A occurs, 

and lift ratio which shows the degree of correlation between 

A and B compared to if they were independent. Unlike the 

initial exploration, which only measured the volume of rules 

generated, this stage focused on extracting meaningful 

meteorological patterns. Based on previous robustness tests, 

the mining process was carried out using two targeted 

strategies, validating consistency during the rainy season and 

identifying early warning indicators for extreme events. To 

implement the first strategy, the analysis was specifically 

segmented to the rainy season (November–March) to validate 

seasonal consistency and maximize the detection of flood-

triggering patterns. Table 9 presents the top association rules 

extracted from this high-risk period, ordered by the highest 

lift ratio. 

TABLE IX 

TOP 5 SEASONAL ASSOCIATION RULES (NOV–MAR) 

Antecedents and 

Consequent 

Support Confidence Lift 

Ratio 

RH_High, Tavg_Low, 
Tx_Low → Medium 

Rain 

5.0 15.2 1.51 

FFx_Fast, Tn_Medium 
→ Light Rain 

5.5 73.7 1.50 

RH_High, Tavg_Low 
→ Medium Rain 

5.2 14.6 1.45 

RH_High, Tx_Low → 

Medium Rain 

5.2 14.4 1.43 

Tavg_Low, Tx_Low 
→ Medium Rain 

6.2 14.1 1.40 

 

While the SARIMA model utilizes a full 12-month dataset to 

capture annual trends, the Apriori analysis was strategically 

segmented specifically for the rainy season (November–

March). This targeted approach was chosen to validate 

seasonal consistency and maximize the sensitivity of flood 

trigger pattern detection, which in annual analyses is often 

obscured by the large amount of non-rainfall data. The results 

of this segmented analysis successfully identified a specific 

meteorological pattern: a combination of High Humidity 

(RH_High) and Low Temperature (Tavg_Low, Tx_Low) 

significantly increases the probability of Moderate Rain, with 
a Lift Ratio reaching 1.51. This confirms that high humidity 

accompanied by a decrease in temperature is the dominant 

cause of rainfall during this period. As a complement to 

seasonal analysis, the second strategy focuses on detecting 

extreme rainfall events. Although rare, these phenomena have 

a major impact, making their detection crucial for establishing 

early warning mechanisms. Since extreme rainfall is a 

statistical anomaly, the minimum support is adjusted to 0.5% 

so that this critical pattern can be detected. Table 10 presents 

the rules extracted for Heavy Rainfall, which reveal the most 

significant findings of this research. 

TABLE X 

TOP 5 SEASONAL ASSOCIATION RULES FOR HEAVY RAINFALL DETECTION 

Antecedents and 

Consequent 

Support Confidence Lift 

Ratio 

Tx_Low, Tn_Low, 
FFx_Med → Heavy 

Rain 

0.6 29.7 12.34 

FFavg_Med, 
Tn_Low, Tx_Low → 

Heavy Rain 

0.7 27.1 11.24 
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FFavg_Med,Tn_Low, 
Tavg_Low→ Heavy 

Rain 

0.6 26.2 10.87 

RH_High, Tn_Low, 
Tavg_Low → Heavy 

Rain 

0.5 26.2 10.38 

Tn_Low, Tavg_Low, 
FFx_Med→ Heavy 

Rain 

0.7 24.5 10.17 

 

The results reveal a strong early warning signal for 

hydrometeorological disasters. The top rule indicates that a 

specific combination of Low Temperature (Tx, Tn, 

Tavg_Low) and Moderate Wind Speed (FFx_Medium) 

significantly increase the probability of Heavy Rain, with a 

Lift Ratio of 12.34. Statistically, this figure indicates that the 

occurrence of this specific weather pattern increases the risk 
of heavy rain by up to 12 times compared to random 

conditions. This finding confirms that the phenomenon of 

temperature drops accompanied by specific wind dynamics is 

a valid quantitative parameter as a basis for an early warning 

system. 

To clarify the scientific contribution of this study, Table 11 

provides a comparison between the proposed hybrid 

SARIMA-Apriori framework and previous works. Unlike 

earlier studies that typically separate temporal forecasting 

from causal variable analysis, this research successfully 

integrates both to provide operational validation of flood risks 

in Semarang City. 

TABLE XI 

COMPARISON RESULT WITH PREVIOUS STUDIES  

References Method Results 

 [11] 2023. SARIMA SARIMA (0,0,1)(0,0,1)₁₂ model 

achieved 80.5% accuracy with 
MAPE 19.5% for forecasting 
rainfall in Aceh. SARIMA  

[12] 2020 SARIMA SARIMA model reliably detects 
seasonal pattern changes caused 
by climate change.  

[13] 2022  SARIMA SARIMA is consistent for multi-

location forecasting with different 
climate characteristics and 
reliable for strategic water 
resource planning 

[14] 2023 Apriori Apriori algorithm is effective for 
predicting rainfall in Tegal City 
with the highest accuracy of 
78.68%. All resulting association 

rules have a lift ratio value 
greater than 1, indicating a 
significant and reliable level of 
strength for predicting rainfall. 

[15] 2021 Apriori The results indicate that wind 
speed, wind direction, 
temperature, humidity, and global 

radiation are important factors in 
rainfall formation, making the a 
priori method effective for 
improving the  

Ours (2025 SARIMA 
& Apriori  

Successfully projected 2025 
rainfall dynamics with optimal 

accuracy (MAPE 44.97%) and 
identified critical flood-risk 
periods during January–March 
and November–December. The 
proposed approach provides 
operational validation through the 
extraction of specific 
meteorological signatures, where 

a combination of low 
temperatures and moderate wind 
speeds was found to increase 
heavy rainfall risk by 12.34 times 
(Lift Ratio 12.34) 

 

IV. CONCLUSION 

This research successfully integrated the dual analysis 

framework of the SARIMA model with the Apriori algorithm 

to optimize rainfall forecasting and disaster mitigation in 

Semarang City. The optimized SARIMA model was able to 

effectively map the hydrological cycle in 2025 and indicate 

the timing of extreme rainfall events requiring early 

preparedness. In this scheme, the SARIMA model plays a role 
in providing numerical estimates of rainfall volume, while the 

Apriori algorithm serves as an operational validation 

mechanism through the extraction of significant weather 

patterns. The main findings of this research indicate that a 

specific combination of low temperature and moderate wind 

speed is a strong indicator of heavy rainfall triggers, with a 

Lift Ratio value reaching 12.34. The combination of these two 

methods transforms static numerical predictions into a 

dynamic early warning system. In this system, peak rainfall 

projections are validated through identified events. Thus, the 

results of this research provide a stronger foundation for 
future flood risk management. 

To further enhance the precision of this early warning 

system and address the limitations of statistical error, future 

research should transition from monthly to daily data 

aggregation to capture short-term fluctuations. Furthermore, 

subsequent studies are recommended to adopt hybrid 

modeling approaches, such as integrating SARIMA with 

Deep Learning (e.g., LSTM) or multivariate SARIMAX, 

which can directly incorporate the causal variables identified 

by Apriori to significantly reduce prediction error and 

improve resilience against climate anomalies. 
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