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 Markerless Augmented Reality (AR) technology has become increasingly important 

in various applications, yet its performance varies significantly across different 

platforms. This study conducts a comparative experimental analysis of ground plane 

detection performance between iOS and Android platforms using the Vuforia-based 

KreasiFurniture application. The research examines detection speed under varying 

lighting conditions (indoor and outdoor) and camera distances (50 cm, 100 cm, and 

150 cm) through systematic testing with five repetitions per condition. Data were 
analyzed using Three-Way ANOVA with IBM SPSS Statistics 25. Results 

demonstrate that iOS achieves significantly faster and more consistent detection 

(mean = 1.402 seconds, SD = 0.143) compared to Android (mean = 1.541 seconds, 

SD = 0.235), with a statistically significant difference of 0.139 seconds (p = 0.003). 

The optimal detection distance was found at 100 cm for both platforms (p = 0.018). 

While lighting conditions showed no significant main effect (p = 0.129), a significant 

Platform × Light interaction (p = 0.038) was revealed, indicating that iOS maintains 

stable performance across lighting variations, whereas Android experiences 

substantial performance degradation in indoor conditions. These findings provide 

practical recommendations: iOS is preferable for applications requiring consistent 

indoor performance, 100 cm represents the optimal interaction distance for both 
platforms, and Android deployments should implement adaptive strategies for 

variable lighting conditions. 
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I. INTRODUCTION 

The development of augmented reality technology is 
rapidly accelerating and has been applied in various fields, 

education, construction, public health, manufacturing, and 

entertainment [1]. One of the widely used augmented reality 

technologies is marker-based Augmented Reality (AR), an 

immersive technology that utilizes special markers, such as 

QR codes or pattern images, as a reference to display virtual 

objects. Although it is quite reliable under clear conditions, 

this method is less practical as it requires physical markers 

that must be present in the user's place [2]. In addition to 

marker-based AR, a widely used approach in augmented 

reality is Markerless Augmented Reality (MAR). Unlike 
marker-based AR, markerless AR enables the display of 

virtual content without the need for markers, such as QR 

codes or custom images [3].  
Markerless Augmented Reality (AR) makes extensive use 

of Visual Simultaneous Localization and Mapping (Visual 

SLAM) technology. An example in this case was the use of 

ORB-SLAM3 and Visual-Inertial Odometry (VIO). These 

two methods work by combining data obtained from the 

camera with additional information from the Inertial 

Measurement Unit (IMU) sensor, enabling the device to 

perform real-time position and orientation tracking. This 

approach allows AR systems to render virtual objects with a 

high level of accuracy and remain stable, even when the user 

is moving freely in the real environment without the need for 
special markers or markers. [4]. 
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Markerless AR has the advantage of high flexibility, as 

users only need to point the camera at any surface, without the 

need for a marker to display virtual objects. This is especially 

useful in applications such as education, promotion, or 

entertainment that want to create more intuitive interactions. 

[5]. However, this technology also presents significant 

challenges, such as jitter instability (hologram) or errors in 

tracking device position and direction, which often occur 
when visual conditions are less clear or when the device is 

moving too fast [3]. 

The effectiveness of Markerless AR performance also 

depends on the platform used. The iOS (ARKit) and Android 

(ARCore) platforms exhibit different performance 

characteristics in detecting the ground plane. ARKit tends to 

have more stable and responsive tracking performance under 

normal lighting conditions, while ARCore shows better 

capabilities in low-light conditions and has a faster first-plane 

detection time (less than 0.5 seconds compared to ARKit, 

which is about 5 seconds). This difference is influenced by 
the implementation of SLAM algorithms, access to device 

sensors, and different calibration capabilities on each 

platform [6]. 

Previous research indicates that the performance of AR on 

each platform is not always the same. This presents a 

challenge: significant differences exist in ground plane 

detection performance between iOS and Android platforms, 

especially regarding the speed of ground plane detection [6]. 

This difference creates challenges for developers in 

understanding the performance characteristics of each 

platform for the development of markerless AR applications 

[6]. 
Several studies have investigated AR performance across 

platforms, though most focus on tracking accuracy rather than 

detection speed. Nowacki and Woda [6] demonstrated 

fundamental capability differences between ARCore and 

ARKit but did not quantify detection timing under controlled 

conditions. Other research has examined markerless AR 

stability [3] and implementation approaches [5], yet 

systematic comparisons of ground plane detection speed 

across environmental conditions remain limited. This 

research gap is particularly significant for developers who 

must make platform selection decisions without empirical 
performance data under realistic usage scenarios. 

Understanding how platform, distance, and lighting 

conditions interact affect detection speed is essential for 

optimizing user experience in markerless AR applications. 

To address this challenge, this study employs an 

experimental comparative analysis method between the iOS 

and Android platforms, by measuring metrics such as time-to-

first-detection under different light conditions and altitude 

distances. 

This research is expected to yield scientific and practical 

recommendations that can help developers understand the 

characteristics of the detection speed of ground plane 
markerless AR on the iOS platform, facilitating multi-

platform application development. 

II. METHODOLOGY  

This study uses a comparative experiment method, namely 
conducting direct testing of the performance of Vuforia's 

ground plane-based markerless Augmented Reality 

technology on two mobile operating system platforms, 

namely iOS and Android.  This approach was selected to 

enable a fair comparison of detection performance under 

uniform experimental conditions, while allowing the 

examination of performance differences across platforms and 

environmental factors [7]. 

A. Research Object 

This study uses the AR application "KreasiFurniture" 

which was built using the Vuforia Ground Plane and has 

added internal logs that will help in testing. This application 
is modified to be able to measure light intensity, distance, 

angle, and time-to-first detection time with the device 

specifications as shown in Table I. 

B. Research Variables 

In this study, there are three variables, namely independent 

variables, dependent variables, and control variables. 

Independent variables are variables that affect or cause 

changes in dependent variables, in contrast to dependent 

variables that can change in response to independent 

variables. Control variables are variables that are controlled 

or made constant so that the relationship between independent 
variables and dependents is not influenced by external factors 

that are not being studied [8]. 

1) Independent Variables: The Independent variable in the 

research to be conducted is the type of mobile operating 

system platform used to run applications, namely iOS and 

Android. The specifications of the two platforms to be used 

will be shown in Table I. 

TABLE I 

INDEPENDENT VARIABLE SPECIFICATION 

Platform Device Specifications 

iOS iPhone 11 iOS 26, 12 MP Camera, 4GB RAM. 

Android Poco X6 Android 15, 64 MP Camera, 12 GB 

RAM. 

 

Device selection was based on market representativeness 

and availability. The iPhone 11 represents mid-range iOS 

devices widely used in educational and commercial AR 

applications, while maintaining compatibility with current 

ARKit features. The Poco X6 was selected as a representative 

mid-range Android device with comparable price point and 

capable hardware specifications, enabling fair cross-platform 
comparison within the same market segment. Both devices 

support the Vuforia Ground Plane feature and provide 

sufficient computational resources for markerless AR 

applications. 

2) Dependent Variables: The dependent variables in the 

research to be conducted are the results of the performance of 

each platform tested, in the form of ground plane detection 

speed (in seconds). Values are taken from the app's internal 

logs during testing. The specifications of the dependent 

variables will be shown in the following Table II. 
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TABLE II 

VARIABLE DEPENDENT SPECIFICATIONS 

Variable Unit Definition Metric 

Detection 

Speed 

Second(s) The time from the 

camera is directed 

to the surface until 

surface detection 

is recorded. 

Measured using 

the app's 

internal logs 

(start & detect 

timestamp) 

 

3) Control Variables: In the research to be conducted, the 

control variables include the type of lighting, the distance of 

the height of the camera to the surface detection. Control of 

these variables is done to ensure that the differences in 

performance results that arise are actually due to differences 

in the AR platform, not due to environmental conditions or 

other external factors. The specifications of the control 
variables are shown in the following Table III. 

TABLE III 

VARIABLE CONTROL SPECIFICATIONS 

Variable Criterion Metric 

Lighting Type Indoor (7-8 pm) Measured using a light 

meter/lux sensor on the 

device with internal app 

logs. 

Outdoor (12-13 pm) 

Camera 

Height 

Distance to the 

Floor 

Short Distance: 50 cm Measured using the 

app's internal logs. Medium Distance: 100 cm 

Distance: 150 cm 

 

C. Experimental Design 

The experimental design in this study employs a 

comparative within-subjects experiment, where each platform 

is tested under the same conditions, allowing for direct 

comparison of the measurement results [9]. Experiment was 

conducted by running the AR application "KreasiFurniture" 

on two different platforms, namely iOS and Android. Each 

platform was tested using two control variables, namely 

lighting and camera distance to the floor. 
The measurement is made by recording the time it takes for 

the system to detect the ground plane from the moment the 

camera is pointed at the surface, with five repetitions under 

each condition to obtain a standard mean and deviation. 

Control variables are ensured by ensuring that all platforms 

use the same surface type, the same lighting conditions, the 

same camera and floor distances, and the same hardware 

specifications, so that the measurement results can be 

compared fairly. 

The data obtained will be analyzed descriptively to see the 

performance pattern of each platform, then analyzed 
inferentially using Analysis of Variance (ANOVA) to 

determine the influence of platform, light conditions, and 

distance on the speed of ground-plane markerless AR 

detection. 

D. Data Collection Techniques 

The data in this study were collected through direct 

observation of the performance of the AR application 

"KreasiFurniture" which is run on two different platforms, 

namely iOS and Android. Observations were made by paying 

attention to the variation in light conditions, specifically 

indoor and outdoor lighting conditions, as well as the distance 

of the camera from the ground plane surface. Measurements 

include the speed of ground plane detection under various 

lighting conditions and camera altitudes. The detection speed 

is calculated from the time the camera is pointed until the 

system successfully recognizes the ground plane. Each 

combination of conditions is tested five times to obtain valid 

data and allow for the calculation of averages and standard 
deviations. All data were recorded systematically using 

observation sheets and then analyzed using IBM SPSS 

Statistics 25 for both descriptive and inferential analysis. 

E. Data Analysis Methods 

The collected data were analyzed in two ways. First, 

descriptive statistics were used to summarize and describe the 

main characteristics of the dataset, including mean, minimum, 

and maximum values, variability, and overall distribution 

patterns, to provide an initial overview of the detection speed 

of AR applications across different platforms, lighting 

conditions, and distances [10]. Second, inferential analysis 
was conducted using three-way Analysis of Variance 

(ANOVA), a statistical method that simultaneously evaluates 

the main effects of three independent variables (platform, 

distance, and lighting conditions) and their interaction effects 

on the dependent variable (detection speed) [11][12]. This 

approach enables identification of not only which factors 

significantly influence detection speed, but also whether the 

effect of one factor depends on the levels of other factors—

information critical for understanding performance in realistic 

multi-variable environments. When ANOVA indicated 

significant effects, post hoc tests were performed to identify 

which groups differed significantly. All analyses used a 
significance level of p < 0.05. 

 

III. RESULTS AND DISCUSSION 

A. Test Results 

Tests were carried out on the KreasiFurniture AR 

application on two mobile operating system platforms, 

namely iOS and Android, with indoor and outdoor lighting 

conditions, as well as the distance of the camera height to the 

surface, distances of near: 50 cm, medium: 100 cm, and far: 

150 cm sizes. The test results data are obtained from the app's 

internal logs, which automatically record the detection time. 
1) iOS 

After testing the KreasiFurniture AR application on the 

iOS platform, the data presented in Table I was obtained. 

TABLE I 

TEST RESULTS DATA ON IOS PLATFORM 

Distance Light  1 2 3 4 5 

Near: 

50 cm 

Indoor 1,486 1,352 1,251 1,385 1,419 

Outdoor 1,484 1,585 1,319 1,451 1,384 

Medium: 

100 cm 

Indoor 1,251 1,318 1,751 1,284 1,285 

Outdoor 1,251 1,385 1,285 1,419 1,252 

Far: 

150 cm 

Indoor 1,318 1,319 1,352 1,486 1,584 

Outdoor 1,518 1,384 1,352 1,485 1,352 
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2) Android 

Testing of the KreasiFurniture AR application was 

conducted on the Android platform, as shown in Table II.  

TABLE II 
TEST RESULTS DATA ON ANDROID PLATFORM 

Distance Light  1 2 3 4 5 

Near: 

50 cm 

Indoor  1,991 1,807 1,573 1,406 1,757 

Outdoor 1,673 1,506 1,557 1,206 1,573 

Medium: 

100 cm 

Indoor 1,523 1,690 1,389 1,891 1,406 

Outdoor  1,440 1,272 0,905 1,256 1,323 

Far: 

150 cm 

Indoor 1,540 1,389 1,807 1,673 1,506 

Outdoor 1,506 1,974 1,607 1,456 1,640 

 

The raw data from the two platforms were then processed 

using the Three-Way ANOVA method using IBM SPSS 

Statistics 25 to determine whether the difference between the 

platforms was statistically significant. 

B. Descriptive Statistics 

Descriptive statistical analysis was performed to provide 
an overview of the mean, standard deviation, and number of 

samples for each combination of platforms, distances, and 

lighting conditions [10]. 

TABLE III 
DESCRIPTIVE STATISTICS 

Dependent Variable: Time 

Platform 
Dista

nce 
Light Mean 

Std. 

Deviation 
N 

Ios 

50 cm 

Indoor 1.37860 .086887 5 

Outdoor 1.51020 .212868 5 

Total 1.44440 .168241 10 

100 
cm 

Indoor 1.37780 .209966 5 

Outdoor 1.31840 .078459 5 

Total 1.34810 .152675 10 

150 
cm 

Indoor 1.41180 .118474 5 

Outdoor 1.41820 .078033 5 

Total 1.41500 .094636 10 

Total 

Indoor 1.38940 .137957 15 

Outdoor 1.41560 .151716 15 

Total 1.40250 .143100 30 

Android 

50 cm 

Indoor 1.70680 .224562 5 

Outdoor 1.50300 .176730 5 

Total 1.60490 .218704 10 

100 
cm 

Indoor 1.57980 .211440 5 

Outdoor 1.23920 .200244 5 

Total 1.40950 .264415 10 

150 
cm 

Indoor 1.58300 .161005 5 

Outdoor 1.63660 .202731 5 

Total 1.60980 .174888 10 

Total 

Indoor 1.62320 .195790 15 

Outdoor 1.45960 .247656 15 

Total 1.54140 .234600 30 

Total 

50 cm 

Indoor 1.54270 .235984 10 

Outdoor 1.50660 .184486 10 

Total 1.52465 .206987 20 

100 
cm 

Indoor 1.47880 .225384 10 

Outdoor 1.27880 .149330 10 

Total 1.37880 .212488 20 

150 
cm 

Indoor 1.49740 .160938 10 

Outdoor 1.52740 .184993 10 

Total 1.51240 .169459 20 

Total 

Indoor 1.50630 .204526 30 

Outdoor 1.43760 .203032 30 

Total 1.47195 .204994 60 

 

Table III shows that the iOS platform has an overall 

average of 1,403 seconds (SD = 0.143) with the fastest 

performance at a distance of 100cm (mean = 1,348 seconds). 

In contrast, the Android platform shows an average of 1,541 

seconds (SD = 0.235) with higher variability. Detection on 

Android is fastest at a distance of 100 cm (mean = 1,410 
seconds) and at the slowest at a distance of 50 cm (mean = 

1,605 seconds). The larger standard deviation on Android 

indicates that its performance is less consistent than iOS. 

C. Levene's Test of Equality of Error Variances 

The Levene test was conducted to test the assumption of 

homogeneity of variance, namely to check whether the 

variance of detection time between test groups is 

homogeneous or the same. This test is an important 

prerequisite before performing an ANOVA analysis [13][14]. 

TABLE IV 

LEVENE'S TEST OF EQUALITY OF ERROR VARIANCES 

 Living 

Statistic 

df1 df2 Sig. 

Time 

Based on Mean .893 11 48 .553 

Based on Median .404 11 48 .947 

Based on Median and 

with adjusted df 

.404 11 33.489 .944 

Based on trimmed 

mean 

.801 11 48 .638 

 

The results of the Levene test showed a value of F = 0.893 

with a significance of 0.553 (p >0.05), which means that the 

assumption of variance homogeneity was met. This indicates 

the data is eligible for ANOVA analysis and the results of the 

analysis are reliable. 

D. Three-Way ANOVA: Tests of Between-Subjects Effects 

Three-Way ANOVA analysis was conducted to test the 

influence of platform, distance, light, and the interaction 

between variables on the ground plane detection time. This 

test determines whether the observed difference is statistically 

significant [12][15]. 

TABLE V 

TESS OF BETWEEN-SUBJECTS EFFECTS 

Dependent Variable: Time 

Source 

Type III 

Sum of 

Squares 

Df 
Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Correcte

d Model 

1.052a 11 .096 3.219 .002 .424 

Intercept 129.998 1 129.99

8 

4373.1

51 

.000 .989 

Platform .289 1 .289 9.735 .003 .169 

Distance .262 2 .131 4.404 .018 .155 

Light .071 1 .071 2.382 .129 .047 

Platform 

* 

Distance 

.048 2 .024 .807 .452 .033 

Platform 

* Light 

.135 1 .135 4.544 .038 .086 
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Distance

*Light 

.140 2 .070 2.359 .105 .089 

Platform 

* 

Distance 

* Light 

.107 2 .054 1.802 .176 .070 

Error 1.427 48 .030    

Total 132.478 60     

Correcte

d Total 

2.479 59 
    

 

The analysis revealed a significant main effect of platform 

(F = 9.735, p = 0.003, partial η² = 0.169), indicating a large 

effect size according to Cohen's (1988) guidelines (η² ≥ 0.14), 

with iOS achieving faster detection times than Android. 

Distance also showed a significant effect (F = 4.404, p = 

0.018, partial η² = 0.155), similarly indicating a large effect, 
meaning camera distance explains 15.5% of variance in 

detection speed. Light did not show a significant main effect 

(F = 2.382, p = 0.129, partial η² = 0.047), representing a small 

effect size. However, the Platform × Light interaction was 

significant (F = 4.544, p = 0.038, partial η² = 0.086), 

indicating a medium effect size, where the two platforms 

responded differently to lighting conditions. Overall, the 

model explained 42.4% of the variance in detection time (R² 

= 0.424), suggesting that platform, distance, lighting, and 

their interactions substantially account for the observed 

performance differences. 
E. Normality 

To verify that the ANOVA model assumptions were 

satisfied, the Shapiro-Wilk test was conducted on the 

residuals extracted from the Three-Way ANOVA model. 

TABLE VI 

TEST OF NORMALITY 

 Saphiro-Wilk 

 Statistic df Sig. 

Residual for Time .973 60 .204 

 

The test yielded T = 0.973, df = 60, p = 0.204, indicating 
that the residuals were normally distributed (p > 0.05). These 

results, combined with Levene's test confirming homogeneity 

of variance (F = 0.893, p = 0.553), confirm the reliability of 

the ANOVA results presented in Table V. 

F. Estimated Marginal Means 

Estimated Marginal Means (EMMs), also called least-

squares means, are the model-based means for each factor 

level, averaged over or “marginalized” across other factors in 

the model. EMMs provide adjusted group means from the 

fitted model, useful when the design is unbalanced or 

covariates are present and are typically reported with SE and 
confidence intervals. [16] 

1) Platform 

Estimated marginal means display the average detection 

time for each platform after controlling for the influence of 

other variables and comparing the performance of the two 

platforms directly. 

TABLE VII 

ESTIMATES PLATFORM 

Depenedent Variable: Time 

Platform Mean Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Ios 1.402 .031 1.339 1.466 

Android 1.541 .031 1.478 1.605 

TABLE VIII 

PAIRWISE COMPARISONS PLATFORM 

(I) 

Platform 

(J) 

Platform 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig.b 

95% Confidence 

Interval for 

Differenceb 

Lower 

Bound 

Upper 

Bound 

Ios Android -.139* .045 .003 -.228 -.049 

Android Ios .139* .045 .003 .049 .228 

TABLE IX 

UNIVARIATE TESTS PLATFORM 

Dependent Variable: Time 

 
Sum of 

Squares 
Df 

Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Contrast .289 1 .289 9.735 .003 .169 

Error 1.427 48 .030    

Table VI shows iOS has a mean of 1,402 seconds, while 

Android has 1,541 seconds. In Table VII, this difference of 

0.139 seconds is statistically significant (p = 0.003), 

confirming that iOS is consistently faster at detecting the 

ground plane. Table VIII confirms this significance (F = 

9.735, p = 0.003) with a partial eta squared of 0.169, 

indicating a moderate effect size.  

2) Distance 

Marginal means analysis for the distance factor aims to 

identify the optimal distance that results in the fastest 
detection time. 

TABLE X 

DISTANCE ESTIMATES 

Depenedent Variable: Time 

Platform Mean Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

50 cm 1.525 .039 1.447 1.602 

100 cm 1.379 .039 1.301 1.456 

150 cm 1.512 .039 1.435 1.590 

TABLE XI 

PAIRWISE DISTANCE COMPARISONS 

(I) 

Distance 

(J) 

Distance 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig.b 

95% Confidence 

Interval for 

Differenceb 

Lower 

Bound 

Upper 

Bound 

50 cm 
100 cm .146* .055 .031 .011 .281 

150 cm .012 .055 1.000 -.123 .148 

100 cm 
50 cm -.146* .055 .031 -.281 -.011 

150 cm -.134 .055 .054 -.269 .002 

150 cm 
50 cm -.012 .055 1.000 -.148 .123 

100 cm .134 .055 .054 -.002 .269 
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TABLE XII 

UNIVARIATE DISTANCE TESTS 

Dependent Variable: Time 

 
Sum of 

Squares 
Df 

Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Contrast .262 2 .131 4.404 .018 .155 

Error 1.427 48 .030    

 

Table IX shows that a distance of 100 cm results in the 

fastest time (mean = 1.379 seconds), followed by 150 cm 

(1.512 seconds) and 50 cm (1.525 seconds). In Table X, the 

difference between 50 cm and 100 cm is significant (p = 

0.031), indicating that a distance of 100 cm is the optimal 

distance for ground plane detection. Table XI confirms that 

distance has a significant influence on detection time (F = 

4.404, p = 0.018) with a partial eta squared 0.155. 
3) Light 

This interaction analysis tests whether there is an influence 

of different lighting conditions on iOS and Android. 

TABLE XIII 

LIGHT ESTIMATES 

Depenedent Variable: Time 

Platform Mean Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

iOS 1.506 .031 1.443 1.570 

Android 1.438 .031 1.374 1.501 

TABLE XIV 

PAIRWISE COMPARISONS OF LIGHT 

(I) Light (J) Light 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig.b 

95% Confidence 

Interval for 

Differenceb 

Lower 

Bound 

Upper 

Bound 

Indoor Outdoor .069 .045 .129 -.021 .158 

Outdoor Indoor -.069 .045 .129 -.158 .021 

TABLE XV 

UNIVARIATE LIGHT TESTS 

Dependent Variable: Time 

 
Sum of 

Squares 
Df 

Mean 

Square 
F Sig. 

Partial 

Eta 

Squared 

Contrast .071 1 .071 2.382 .129 .047 

Error 1.427 48 .030    

 

Table XII and Table XIII show that indoor conditions have 

a mean of 1.506 seconds and outdoor 1.438 seconds. 

Although outdoor is slightly faster, this difference is not 

significant (p = 0.129). However, significant interaction 

between Platform × Light shows the influence of light differs 

between iOS and Android. 
G. Interaction Effects 

An interaction effect occurs when the effect of one factor 

on the outcome depends on the level of another factor. In a 

three-way ANOVA, you must examine two-way and three-

way interactions; a significant interaction means main effects 

alone do not fully describe the pattern, and interpretation 

should focus on the interaction, often visualized via 

profile/interaction plots, and be followed by simple-effects or 

post-hoc comparisons. [17] 

1) Platform*Distance 

This interaction analysis evaluates whether the effiect of 

distance on detection time differs between the two platforms. 

TABLE XVI 

PLATFORM * DISTANCE 

Dependent Variable: Time 

Platform Distance Mean 
Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

iOS 

50 cm 1.444 .055 1.335 1.554 

100 cm 1.348 .055 1.238 1.458 

150 cm 1.415 .055 1.305 1.525 

Android 

50 cm 1.605 .055 1.495 1.715 

100 cm 1.410 .055 1.300 1.519 

150 cm 1.610 .055 1.500 1.719 

 

Table XV shows that on iOS, the detection time is 

relatively stable at all distances. In contrast, Android shows 
greater variability, with optimal performance at a distance of 

100 cm. Although in Table V the interaction was not 

statistically significant (p = 0.452), this pattern shows that 

iOS is more consistent across different distances. 

2) Platform*Light 

This interaction analysis tested whether the effect of 

lighting conditions differed between iOS and Android, which 

proved to be significant (p = 0.038) in Table V. 

TABLE XVII 

PLATFORM * LIGHT 

Dependent Variable: Time 

Platform Light Mean 
Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

iOS 
Indoor 1.389 .045 1.300 1.479 

Outdoor 1.416 .045 1.326 1.505 

Android 
Indoor 1.623 .045 1.534 1.713 

Outdoor 1.460 .045 1.370 1.549 

 

iOS shows a small difference between indoor (1,389 

seconds) and outdoor (1,416 seconds), just 0.027 seconds. In 

contrast, Android shows a big difference: indoor (1,623 

seconds) is much slower than outdoor (1,460 seconds), with a 

difference of 0.163 seconds. This indicates that Android is 

more sensitive to changes in lighting conditions. 
 

3) Distance*Light 

This analysis evaluates the effect of different distances on 

different lighting conditions. 
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TABLE XVIII 

DISTANCE * LIGHT 

Dependent Variable: Time 

Distance Light Mean 
Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

50 cm 
Indoor 1.543 .055 1.433 1.652 

Outdoor 1.507 .055 1.397 1.616 

100 cm 
Indoor 1.479 .055 1.369 1.588 

Outdoor 1.279 .055 1.169 1.388 

150 cm 
Indoor 1.497 .055 1.388 1.607 

Outdoor 1.527 .055 1.418 1.637 

 

In table V, the interaction was not significant (p = 0.105), 

but the pattern showed that at a distance of 100 cm, the 

difference between indoor (1.479 seconds) and outdoor 

(1.279 seconds) was greatest (0.200 seconds), indicating that 

the medium distance was most sensitive to lighting 

conditions. 

4) Platform*Distance*Light 

This three-way interaction analysis provides a 

comprehensive picture of how the three factors interact 
simultaneously. 

TABLE XIX 

PLATFORM * DISTANCE * LIGHT 

Dependent Variable: Time 

Platform Distance Light Mean 
Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

iOS 

50 cm 
Indoor 1.379 .077 1.224 1.534 

Outdoor 1.510 .077 1.355 1.665 

100 cm 
Indoor 1.378 .077 1.223 1.533 

Outdoor 1.318 .077 1.163 1.473 

150 cm 
Indoor 1.412 .077 1.257 1.567 

Outdoor 1.418 .077 1.263 1.573 

Android 

50 cm 
Indoor 1.707 .077 1.552 1.862 

Outdoor 1.503 .077 1.348 1.658 

100 cm 
Indoor 1.580 .077 1.425 1.735 

Outdoor 1.239 .077 1.084 1.394 

150 cm 
Indoor 1.583 .077 1.428 1.738 

Outdoor 1.637 .077 1.482 1.792 

 

Although not significant in Table V (p = 0.176), the pattern 

shows that Android is much more sensitive to lighting 

conditions than iOS, especially at close and medium 

distances. iOS shows stable performance in a wide range of 

combinations of conditions. 
 

H. Post Hoc Test 

Post hoc tests are multiple-comparison procedures run after 

a significant ANOVA to identify which specific group means 

differ. In this study, we used the Tukey HSD and Bonferroni 

methods. [18] 

 

 

 

 

TABLE XX 

MULTIPLE COMPARISONS I 

Dependent Variable: Time 

 
(I) 

Distance 

(J) 

Distance 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig. 

Tukey 

HSD 

50 cm 
100 cm .14585* .054522 .027 

150 cm .01225 .054522 .973 

100 cm 
50 cm -.14585* .054522 .027 

150 cm -.13360* .054522 .046 

150 cm 
50 cm -.01225 .054522 .973 

100 cm .13360* .054522 .046 

Bonfer

roni 

50 cm 
100 cm .14585* .054522 .031 

150 cm .01225 .054522 1.000 

100 cm 
50 cm -.14585* .054522 .031 

150 cm -.13360 .054522 .054 

150 cm 
50 cm -.01225 .054522 1.000 

100 cm .13360 .054522 .054 

TABLE XXI 

MULTIPLE COMPARISONS II 

Dependent Variable: Time 

 
(I) 

Distance 

(J) 

Distance 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Tukey HSD 

50 cm 
100 cm .01399 .27771 

150 cm -.11961 .14411 

100 cm 
50 cm -.27771 -.01399 

150 cm -.26546 -.00174 

150 cm 
50 cm -.14411 .11961 

100 cm .00174 .26546 

Bonferroni 

50 cm 
100 cm .01059 .28111 

150 cm -.12301 .14751 

100 cm 
50 cm -.28111 -.01059 

150 cm -.26886 .00166 

150 cm 
50 cm -.14751 .12301 

100 cm -.00166 .26886 

 

In Table XIX and Table XX the results show. At a distance 

of 50 cm vs 100 cm, it was significant (p = 0.031) with a 
distance of 100 cm faster 0.146 seconds. At 100 cm vs 150 

cm, it was close to significance (p = 0.054). While 50 cm vs 

150 cm, it does not look significant (p = 1,000). This confirms 

the distance of 100 cm is the optimal distance for both 

platforms. 

I. Homogeneous Subsets 

Homogeneous subsets are groups formed by some post-hoc 

procedures, where group means that do not differ significantly 

are placed in the same subset. The output helps summarize 

which levels form non-significant clusters at the chosen α[18]. 

TABLE XXII 

HOMOGENEOUS SUBSETS 

Time 

 Distance N 
Subset 

1 2 

S.S. S.S. 

100 cm 20 1.37880  

150 cm 20  1.51240 

50 cm 20  1.52465 

Sig.  1.000 .973 

 

The results showed two subsets, namely the distance of 100 

cm forming a separate subset (the fastest), while the distance 
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of 50 cm and 150 cm were in one subset (no significant 

difference). 

J. Profile Plots 

Profile plots graphically display estimated means for factor 

levels across another factor; they are the standard visual tool 

to inspect interactions [16]. 

1) Distance*Platform*Light 

 

 

Figure 1. EMM of Time at Indoor 

 

Figure 2. EMM of Time at Outdoor 

The graphics at Figures 1 and 2 show iOS having a 

relatively flat (consistent) line across all distances, while 

Android shows large fluctuations. The difference in platforms 

is more noticeable in indoor conditions, with the two 

platforms converging in outdoor conditions, especially at a 

distance of 100 cm. 

2) Distance*Light*Platform 

 

Figure 3. EMM of Time at iOS 

 

Figure 4. EMM of Time at Android 

In Figures 3 and 4, the graphs show Android's much higher 
sensitivity to lighting changes than iOS's, with the largest 

indoor-outdoor gap visible at 100 cm on Android. 

3) Platform * Light * Distance 

 

Figure 5. EMM of Time at 50 cm 

 

Figure 6. EMM of Time at 100 cm 
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Figure 7. EMM of Time at 150 cm 

Figure 5, Figure 6, and Figure 7 show that at all distances, 

iOS has more consistent performance between indoor and 
outdoor. The gap between iOS and Android is largest in 

indoor conditions at a distance of 50 cm. 

4) Platform 

 

 

Figure 8. EMM or Platform 

Figure 8 shows the overall mean difference between iOS 
(1,402 seconds) and Android (1,541 seconds), confirming the 

consistent superiority of the iOS platform. 

5) Distance 

 

Figure 9. EMM of Distance 

In the graph in Figure 9, visualized that a distance of 100 

cm results in the fastest detection time (1.379 seconds), 
indicating the optimal distance for ground plane detection at 

a medium distance. 

6) Light 

 

Figure 10. EMM of Light 

Judging from Figure 10, the graph shows a small difference 

between indoor (1,506 seconds) and outdoor (1,438 seconds), 
which is not statistically significant. However, this graph does 

not capture significant Platform × Light interactions, 

demonstrating the importance of analyzing the effects of 

interactions. 

IV. DISCUSSION 

A. Technical Interpretation 

Although this study used Vuforia Ground Plane, the 

observed performance differences reflect the underlying 

native AR platforms. Vuforia relies on ARKit for iOS and 

ARCore for Android to perform actual plane detection, acting 

as a cross-platform wrapper. 

The superior iOS performance (1.402 s vs. 1.541 s) stems 
from ARKit’s tight hardware–software integration. Apple co-

designs cameras and SLAM algorithms for a limited device 

range, enabling aggressive optimization. In contrast, ARCore 

must accommodate hundreds of Android devices from 

various manufacturers, requiring more conservative 

algorithms that prioritize compatibility over speed, which 

explains both the slower detection time and higher variability 

observed on Android (SD = 0.235 vs. 0.143). 

Importantly, the Platform × Light interaction (p = 0.038) 

highlights that detection performance is not determined by a 

single factor in isolation. Android performance degraded 
significantly under indoor lighting conditions (1.623 s) 

compared to outdoor conditions (1.460 s), whereas iOS 

remained relatively stable (1.389 s vs. 1.416 s). This 

interaction suggests that ARKit may employ more 

sophisticated image preprocessing algorithms optimized for 

variable lighting conditions, potentially including advanced 

noise reduction and contrast enhancement specifically tuned 

for Apple's camera hardware. In contrast, ARCore's cross-

manufacturer compatibility requirements necessitate more 

conservative algorithms that perform reliably across diverse 

sensor configurations but may sacrifice performance in 

challenging lighting scenarios. However, the specific 
algorithmic implementations are proprietary and warrant 

further investigation through controlled hardware-level 

experiments. 
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Similarly, the optimal detection distance of 100 cm reflects 

shared SLAM constraints across both platforms, representing 

a balance between field-of-view coverage and feature 

resolution required for reliable plane detection. Overall, these 

findings demonstrate the importance of interaction analysis, 

as the influence of one factor on detection performance 

depends on the level of other factors and cannot be fully 

explained by main effects alone. 
B. Generalizability and Limitations 

This study provides empirical findings on the comparison 

of ground plane detection speed in markerless Augmented 

Reality across iOS and Android platforms. However, the 

generalizability of the results remains limited. The 

experiments were conducted using a single markerless AR 

application (KreasiFurniture) and a single AR framework 

(Vuforia); therefore, the findings primarily reflect the 

characteristics of this specific implementation and may differ 

when using other frameworks such as native ARKit or 

ARCore. 
Furthermore, the evaluation was performed on a limited 

number of devices, with one representative iOS device and 

one Android device. Variations in hardware specifications, 

including camera quality, sensor configuration, and 

processing capability, may influence ground plane detection 

performance across platforms. The number of repetitions per 

experimental condition (five trials) was exploratory and may 

be insufficient for broader statistical generalization. 

The experiments were also conducted under controlled 

environmental conditions, including predefined lighting 

settings and camera distances. More dynamic real-world 

usage scenarios were not fully captured in this study. Future 
research is encouraged to incorporate multiple applications, 

AR frameworks, devices, and more diverse testing conditions 

to enhance the generalizability of the findings. 

C. Practical Recommendations 

Based on the observed performance characteristics, 

developers of cross-platform markerless AR applications 

should account for platform-specific behavior despite the use 

of abstraction frameworks such as Vuforia. iOS demonstrates 

more consistent ground plane detection, particularly under 

indoor lighting conditions, suggesting that it is better suited 

for applications where environmental control is limited. In 
contrast, Android implementations require greater attention to 

lighting variability, especially in indoor scenarios where 

detection latency increases. 

The identification of an optimal detection distance of 

approximately 100 cm provides a practical reference for 

spatial interaction design. Applications should encourage user 

interaction within this range to ensure stable plane detection, 

particularly for object placement tasks such as furniture 

visualization. Deviations from this distance may reduce 

detection reliability due to limitations in feature distribution 

and field-of-view coverage inherent to SLAM-based 

approaches. 
For Android-focused deployments, adaptive design 

strategies are recommended, including user guidance for 

improving lighting conditions and extended detection time 

thresholds to accommodate higher latency. Additionally, 

testing and quality assurance procedures should incorporate 

platform-specific benchmarks rather than uniform acceptance 

criteria, reflecting the inherent differences between ARKit 

and ARCore observed in this study. 

Sample size considerations should also be addressed in 

future implementations. While this study employed five 
repetitions per condition, adequate for exploratory factorial 

analysis, production applications should conduct more 

extensive testing (minimum 10-15 repetitions per condition) 

to establish reliable performance baselines. Additionally, 

developers should implement runtime performance 

monitoring to detect and adapt to device-specific variations, 

particularly on Android, where hardware diversity may 

produce performance characteristics not captured in limited 

device testing. 

V. CONCLUSION 

This study provides empirical evidence that ground plane 
detection performance in markerless AR differs significantly 

across mobile platforms, even when using cross-platform 

frameworks. Through systematic three-way ANOVA 

analysis, we demonstrated that iOS achieves faster and more 

consistent detection than Android (mean difference = 0.139 

seconds, p = 0.003, η² = 0.169), while an interaction distance 

of 100 cm yields optimal performance on both platforms (p = 

0.018, η² = 0.155). Critically, the significant Platform × Light 

interaction (p = 0.038, η² = 0.086) reveals that lighting 

conditions affect platforms differently: iOS maintains stable 

performance across lighting variations, whereas Android 

experiences substantial degradation in indoor conditions. 
These findings have important implications for AR 

application development. First, platform selection should 

consider deployment environment—iOS is preferable for 

indoor applications requiring consistent performance, while 

Android requires adaptive design strategies for variable 

lighting. Second, interaction design should target the 100 cm 

optimal distance to maximize detection reliability. Third, 

cross-platform frameworks like Vuforia do not fully abstract 

platform-level differences; developers must account for 

native AR capabilities (ARKit vs ARCore) when optimizing 

user experience. 
Future research should extend these findings by 

incorporating additional platforms, multiple AR frameworks, 

diverse device models, and larger sample sizes to enhance 

generalizability. Investigation of runtime adaptive algorithms 

that dynamically adjust detection parameters based on 

environmental conditions would provide practical solutions 

for the performance variations identified in this study. 
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