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Markerless Augmented Reality (AR) technology has become increasingly important
in various applications, yet its performance varies significantly across different
platforms. This study conducts a comparative experimental analysis of ground plane
detection performance between iOS and Android platforms using the VVuforia-based
KreasiFurniture application. The research examines detection speed under varying
lighting conditions (indoor and outdoor) and camera distances (50 cm, 100 cm, and
150 cm) through systematic testing with five repetitions per condition. Data were
analyzed using Three-Way ANOVA with IBM SPSS Statistics 25. Results
demonstrate that iOS achieves significantly faster and more consistent detection
(mean = 1.402 seconds, SD = 0.143) compared to Android (mean = 1.541 seconds,
SD = 0.235), with a statistically significant difference of 0.139 seconds (p = 0.003).
The optimal detection distance was found at 100 cm for both platforms (p = 0.018).
While lighting conditions showed no significant main effect (p = 0.129), a significant
Platform x Light interaction (p = 0.038) was revealed, indicating that iOS maintains
stable performance across lighting variations, whereas Android experiences
substantial performance degradation in indoor conditions. These findings provide
practical recommendations: iOS is preferable for applications requiring consistent
indoor performance, 100 cm represents the optimal interaction distance for both
platforms, and Android deployments should implement adaptive strategies for
variable lighting conditions.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

The development of augmented reality technology is
rapidly accelerating and has been applied in various fields,
education, construction, public health, manufacturing, and
entertainment [1]. One of the widely used augmented reality
technologies is marker-based Augmented Reality (AR), an
immersive technology that utilizes special markers, such as
QR codes or pattern images, as a reference to display virtual
objects. Although it is quite reliable under clear conditions,
this method is less practical as it requires physical markers
that must be present in the user's place [2]. In addition to
marker-based AR, a widely used approach in augmented
reality is Markerless Augmented Reality (MAR). Unlike
marker-based AR, markerless AR enables the display of

virtual content without the need for markers, such as QR
codes or custom images [3].

Markerless Augmented Reality (AR) makes extensive use
of Visual Simultaneous Localization and Mapping (Visual
SLAM) technology. An example in this case was the use of
ORB-SLAM3 and Visual-Inertial Odometry (VI1O). These
two methods work by combining data obtained from the
camera with additional information from the Inertial
Measurement Unit (IMU) sensor, enabling the device to
perform real-time position and orientation tracking. This
approach allows AR systems to render virtual objects with a
high level of accuracy and remain stable, even when the user
is moving freely in the real environment without the need for
special markers or markers. [4].
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Markerless AR has the advantage of high flexibility, as
users only need to point the camera at any surface, without the
need for a marker to display virtual objects. This is especially
useful in applications such as education, promotion, or
entertainment that want to create more intuitive interactions.
[5]. However, this technology also presents significant
challenges, such as jitter instability (hologram) or errors in
tracking device position and direction, which often occur
when visual conditions are less clear or when the device is
moving too fast [3].

The effectiveness of Markerless AR performance also
depends on the platform used. The iOS (ARKIit) and Android
(ARCore) platforms  exhibit  different performance
characteristics in detecting the ground plane. ARKit tends to
have more stable and responsive tracking performance under
normal lighting conditions, while ARCore shows better
capabilities in low-light conditions and has a faster first-plane
detection time (less than 0.5 seconds compared to ARKit,
which is about 5 seconds). This difference is influenced by
the implementation of SLAM algorithms, access to device
sensors, and different calibration capabilities on each
platform [6].

Previous research indicates that the performance of AR on
each platform is not always the same. This presents a
challenge: significant differences exist in ground plane
detection performance between iOS and Android platforms,
especially regarding the speed of ground plane detection [6].
This difference creates challenges for developers in
understanding the performance characteristics of each
platform for the development of markerless AR applications
[6].

Several studies have investigated AR performance across
platforms, though most focus on tracking accuracy rather than
detection speed. Nowacki and Woda [6] demonstrated
fundamental capability differences between ARCore and
ARKit but did not quantify detection timing under controlled
conditions. Other research has examined markerless AR
stability [3] and implementation approaches [5], yet
systematic comparisons of ground plane detection speed
across environmental conditions remain limited. This
research gap is particularly significant for developers who
must make platform selection decisions without empirical
performance data under realistic usage scenarios.
Understanding how platform, distance, and lighting
conditions interact affect detection speed is essential for
optimizing user experience in markerless AR applications.

To address this challenge, this study employs an
experimental comparative analysis method between the i0OS
and Android platforms, by measuring metrics such as time-to-
first-detection under different light conditions and altitude
distances.

This research is expected to yield scientific and practical
recommendations that can help developers understand the
characteristics of the detection speed of ground plane
markerless AR on the iOS platform, facilitating multi-
platform application development.

Il. METHODOLOGY

This study uses a comparative experiment method, namely
conducting direct testing of the performance of Vuforia's
ground plane-based markerless Augmented Reality
technology on two mobile operating system platforms,
namely iOS and Android. This approach was selected to
enable a fair comparison of detection performance under
uniform experimental conditions, while allowing the
examination of performance differences across platforms and
environmental factors [7].

A. Research Object

This study uses the AR application "KreasiFurniture"
which was built using the Vuforia Ground Plane and has
added internal logs that will help in testing. This application
is modified to be able to measure light intensity, distance,
angle, and time-to-first detection time with the device
specifications as shown in Table I.

B. Research Variables

In this study, there are three variables, namely independent

variables, dependent wvariables, and control variables.
Independent variables are variables that affect or cause
changes in dependent variables, in contrast to dependent
variables that can change in response to independent
variables. Control variables are variables that are controlled
or made constant so that the relationship between independent
variables and dependents is not influenced by external factors
that are not being studied [8].
1) Independent Variables: The Independent variable in the
research to be conducted is the type of mobile operating
system platform used to run applications, namely iOS and
Android. The specifications of the two platforms to be used
will be shown in Table I.

TABLE |
INDEPENDENT VARIABLE SPECIFICATION

Platform Device Specifications

i0S iPhone 11 i0S 26, 12 MP Camera, 4GB RAM.

Android Poco X6 Android 15, 64 MP Camera, 12 GB
RAM.

Device selection was based on market representativeness

and availability. The iPhone 11 represents mid-range iOS
devices widely used in educational and commercial AR
applications, while maintaining compatibility with current
ARKit features. The Poco X6 was selected as a representative
mid-range Android device with comparable price point and
capable hardware specifications, enabling fair cross-platform
comparison within the same market segment. Both devices
support the Vuforia Ground Plane feature and provide
sufficient computational resources for markerless AR
applications.
2) Dependent Variables: The dependent variables in the
research to be conducted are the results of the performance of
each platform tested, in the form of ground plane detection
speed (in seconds). Values are taken from the app's internal
logs during testing. The specifications of the dependent
variables will be shown in the following Table I1.
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TABLE I
VARIABLE DEPENDENT SPECIFICATIONS

Variable Unit Definition Metric
Detection Second(s) The time from the | Measured using
Speed camera is directed | the app's
to the surface until | internal logs
surface detection | (start & detect

is recorded. timestamp)

3) Control Variables: In the research to be conducted, the
control variables include the type of lighting, the distance of
the height of the camera to the surface detection. Control of
these variables is done to ensure that the differences in
performance results that arise are actually due to differences
in the AR platform, not due to environmental conditions or
other external factors. The specifications of the control
variables are shown in the following Table I1I.

TABLE Il
VARIABLE CONTROL SPECIFICATIONS

Variable Criterion Metric

Lighting Type | Indoor (7-8 pm)

Outdoor (12-13 pm)

Measured using a light
meter/lux sensor on the
device with internal app

logs.
Camera Short Distance: 50 cm Measured using the
Height Medium Distance: 100 cm app's internal logs.
Distancetothe | pjstance: 150 cm
Floor

C. Experimental Design

The experimental design in this study employs a
comparative within-subjects experiment, where each platform
is tested under the same conditions, allowing for direct
comparison of the measurement results [9]. Experiment was
conducted by running the AR application "KreasiFurniture"
on two different platforms, namely iOS and Android. Each
platform was tested using two control variables, namely
lighting and camera distance to the floor.

The measurement is made by recording the time it takes for
the system to detect the ground plane from the moment the
camera is pointed at the surface, with five repetitions under
each condition to obtain a standard mean and deviation.
Control variables are ensured by ensuring that all platforms
use the same surface type, the same lighting conditions, the
same camera and floor distances, and the same hardware
specifications, so that the measurement results can be
compared fairly.

The data obtained will be analyzed descriptively to see the
performance pattern of each platform, then analyzed
inferentially using Analysis of Variance (ANOVA) to
determine the influence of platform, light conditions, and
distance on the speed of ground-plane markerless AR
detection.

D. Data Collection Techniques

The data in this study were collected through direct
observation of the performance of the AR application
"KreasiFurniture" which is run on two different platforms,
namely iOS and Android. Observations were made by paying

attention to the variation in light conditions, specifically
indoor and outdoor lighting conditions, as well as the distance
of the camera from the ground plane surface. Measurements
include the speed of ground plane detection under various
lighting conditions and camera altitudes. The detection speed
is calculated from the time the camera is pointed until the
system successfully recognizes the ground plane. Each
combination of conditions is tested five times to obtain valid
data and allow for the calculation of averages and standard
deviations. All data were recorded systematically using
observation sheets and then analyzed using IBM SPSS
Statistics 25 for both descriptive and inferential analysis.
E. Data Analysis Methods

The collected data were analyzed in two ways. First,
descriptive statistics were used to summarize and describe the
main characteristics of the dataset, including mean, minimum,
and maximum values, variability, and overall distribution
patterns, to provide an initial overview of the detection speed
of AR applications across different platforms, lighting
conditions, and distances [10]. Second, inferential analysis
was conducted using three-way Analysis of Variance
(ANOVA), a statistical method that simultaneously evaluates
the main effects of three independent variables (platform,
distance, and lighting conditions) and their interaction effects
on the dependent variable (detection speed) [11][12]. This
approach enables identification of not only which factors
significantly influence detection speed, but also whether the
effect of one factor depends on the levels of other factors—
information critical for understanding performance in realistic
multi-variable environments. When ANOVA indicated
significant effects, post hoc tests were performed to identify
which groups differed significantly. All analyses used a
significance level of p < 0.05.

I11. RESULTS AND DISCUSSION

A. Test Results

Tests were carried out on the KreasiFurniture AR
application on two mobile operating system platforms,
namely iOS and Android, with indoor and outdoor lighting
conditions, as well as the distance of the camera height to the
surface, distances of near: 50 cm, medium: 100 cm, and far:
150 cm sizes. The test results data are obtained from the app's
internal logs, which automatically record the detection time.
1) i0S

After testing the KreasiFurniture AR application on the
iOS platform, the data presented in Table | was obtained.

TABLE |
TEST RESULTS DATA ON I0S PLATFORM

Distance Light 1 2 3 4 5
Near: Indoor 1,486 | 1,352 | 1,251 | 1,385 | 1,419
50 cm Outdoor 1,484 | 1,585 | 1,319 | 1,451 | 1,384
Medium: Indoor 1,251 | 1,318 | 1,751 | 1,284 | 1,285
100 cm Outdoor 1,251 | 1,385 | 1,285 | 1,419 | 1,252
Far: Indoor 1,318 | 1,319 | 1,352 | 1,486 | 1,584
150 cm Outdoor 1,518 | 1,384 | 1,352 | 1,485 | 1,352
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2) Android Total 1.51240 .169459 20
Testing of the KreasiFurniture AR application was Indoor 1.50630 | .204526 | 30
conducted on the Android platform, as shown in Table II. Total | Outdoor | 1.43760 | .203032 | 30
Total 1.47195 .204994 60
TABLE Il
TEST RESULTS DATA ON ANDROID PLATFORM .

- - Table Ill shows that the iOS platform has an overall

Distance Light 1 2 3 4 5 f _ ith the f
Near: indoor 1991 | 1807 | 1573 | 1,406 | 1757 average 0 1,403_seconds (SD = 0.143) with the fastest
50 cm Outdoor 1,673 | 1,506 | 1557 | 1,206 | 1573 performance at a distance of 100cm (mean = 1,348 seconds).
Medium: | Indoor 1523 | 1,690 | 1,389 | 1,891 | 1,406 In contrast, the Android platform shows an average of 1,541
'1:00 cm ?létdoor 1"5138 ig;; fllgg? 1;32 1252 seconds (SD = 0.235) with higher variability. Detection on

ar. naoor , , y s ) id i1 i =

150 cm Outdoor U506 1974 | Leo7 | La56 | Loo Android is fastest at a distance of 100 cm (mean = 1,410

The raw data from the two platforms were then processed
using the Three-Way ANOVA method using IBM SPSS
Statistics 25 to determine whether the difference between the
platforms was statistically significant.

B. Descriptive Statistics

Descriptive statistical analysis was performed to provide
an overview of the mean, standard deviation, and number of
samples for each combination of platforms, distances, and
lighting conditions [10].

seconds) and at the slowest at a distance of 50 cm (mean =
1,605 seconds). The larger standard deviation on Android
indicates that its performance is less consistent than iOS.
C. Levene's Test of Equality of Error Variances

The Levene test was conducted to test the assumption of
homogeneity of variance, namely to check whether the
variance of detection time between test groups is
homogeneous or the same. This test is an important
prerequisite before performing an ANOVA analysis [13][14].

TABLE IV
LEVENE'S TEST OF EQUALITY OF ERROR VARIANCES

TABLE Il
DESCRIPTIVE STATISTICS Living dfl df2 Sig.
- — Statistic
Dependent Var_lable. Time Based on Mean .893 11 48 553
Platform | Dist Light Mean Std. N Based on Median 404 11 | 48 947
nce Deviation Time Based on Median and | .404 11 | 33.489 | .944
Indoor 1.37860 .086887 5 with adjusted df
50 cm Outdoor 1.51020 .212868 5 Based on trimmed | .801 11 | 48 638
Total 1.44440 .168241 10 mean
100 Indoor 1.37780 .209966 5
Outdoor | 1.31840 | .078459 5 The results of the Levene test showed a value of F = 0.893
| cm Total | 1.34810 | .152675 | 10 | with a significance of 0.553 (p >0.05), which means that the
o8 150 Indoor 1.41180 | .118474 | 5 assumption of variance homogeneity was met. This indicates
om Outdoor | 1.41820 | .078033 | 5 the data is eligible for ANOVA analysis and the results of the
Total 1.41500 | .094636 | 10 | analysis are reliable.
Indoor 1.38940 | 137957 | 15 | D. Three-Way ANOVA: Tests of Between-Subjects Effects
Total | Outdoor | 1.41560 | .151716 | 15 Three-Way ANOVA analysis was conducted to test the
Total 1.40250 | 143100 | 30 | jnfluence of platform, distance, light, and the interaction
Indoor | 1.70680 | .224562 | 5 between variables on the ground plane detection time. This
50cm | Outdoor | 1.50300 | 176730 | 5 | aqt determines whether the observed difference is statistically
Total L604%0 | 218704 | 10 |  ioificant [12][15]
100 Indoor 1.57980 .211440 5 9 '
Outdoor 1.23920 .200244 5 TABLEV
) cm Total 140950 | 264415 | 10 TESS OF BETWEEN-SUBJECTS EFFECTS
Android 150 Indoor 1.58300 .161005 5 Dependent Variable: Time
o |_Outdoor | 163660 | 202731 | 5 Type 111 Mean [ Partial
Total | 1.60980 | .174888 | 10 Source | Sumof | Df | g e | F | SO Eta
indoor | 1.62320 | 195790 | 15 Squares Squared
: : Correcte | 1.052a | 11 | .096 | 3.219 | .002 424
Total Outdoor | 1.45960 | .247656 | 15 d Model
Total 154140 | .234600 | 30 Intercept | 129.998 | 1 | 129.99 | 43731 | .000 989
Indoor 1.54270 .235984 | 10 8 51
50 cm Outdoor 1.50660 .184486 10 Platform 289 1 289 9.735 .003 169
Total 1.52465 206987 20 Distance 262 2 131 4.404 .018 .155
Indoor | 1.47880 | 225384 | 10 Light o1 11| 071 | 2382 | 129 | 047
Total %:ﬂ? outdoor | 127880 1 129330 | 10 Platform 048 2 | 024 807 | 452 033
Total | 1.37880 | 212488 | 20 Distance
150 Indoor 149740 | .160938 | 10 Platform 135 1 135 4544 | 038 086
cm Outdoor 1.52740 .184993 10 * Light
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Distance 140 2 .070 2.359 .105 .089
*Light
Platform 107 2 .054 1.802 176 .070
*
Distance
* Light
Error 1.427 48 .030
Total 132.478 60
Correcte 2479 59
d Total

The analysis revealed a significant main effect of platform
(F =9.735, p = 0.003, partial n?> = 0.169), indicating a large
effect size according to Cohen's (1988) guidelines (n?> > 0.14),
with i0OS achieving faster detection times than Android.
Distance also showed a significant effect (F = 4.404, p =
0.018, partial n2 = 0.155), similarly indicating a large effect,
meaning camera distance explains 15.5% of variance in
detection speed. Light did not show a significant main effect
(F=2.382, p=0.129, partial n?> = 0.047), representing a small
effect size. However, the Platform x Light interaction was
significant (F = 4.544, p = 0.038, partial n* = 0.086),
indicating a medium effect size, where the two platforms
responded differently to lighting conditions. Overall, the
model explained 42.4% of the variance in detection time (R2
= 0.424), suggesting that platform, distance, lighting, and
their interactions substantially account for the observed
performance differences.

E. Normality

To verify that the ANOVA model assumptions were
satisfied, the Shapiro-Wilk test was conducted on the
residuals extracted from the Three-Way ANOVA model.

TABLE VI
TEST OF NORMALITY

Saphiro-Wilk
Statistic df Sig.
Residual for Time 973 60 204

The test yielded T = 0.973, df = 60, p = 0.204, indicating
that the residuals were normally distributed (p > 0.05). These
results, combined with Levene's test confirming homogeneity
of variance (F = 0.893, p = 0.553), confirm the reliability of
the ANOVA results presented in Table V.

F. Estimated Marginal Means

Estimated Marginal Means (EMMs), also called least-
squares means, are the model-based means for each factor
level, averaged over or “marginalized” across other factors in
the model. EMMs provide adjusted group means from the
fitted model, useful when the design is unbalanced or
covariates are present and are typically reported with SE and
confidence intervals. [16]

1) Platform

Estimated marginal means display the average detection
time for each platform after controlling for the influence of
other variables and comparing the performance of the two
platforms directly.

TABLE VII
ESTIMATES PLATFORM

Depenedent Variable: Time
95% Confidence Interval
Platform Mean Std. Error Lower Upper
Bound Bound
los 1.402 .031 1.339 1.466
Android 1.541 .031 1.478 1.605
TABLE VIII
PAIRWISE COMPARISONS PLATFORM
95% Confidence
Mean Interval for
M &) i Std. , ; '
Platform | Platform Difference Error Sig.b Difference
(1-9) Lower | Upper
Bound | Bound
los Android -.139" .045 .003 -.228 -.049
Android los 139" .045 .003 .049 228
TABLE IX
UNIVARIATE TESTS PLATFORM
Dependent Variable: Time
Partial
SS uurgr%fs Df SMSSPe F Sig. Eta
q q Squared
Contrast .289 1 .289 9.735 .003 .169
Error 1.427 48 .030

Table VI shows iOS has a mean of 1,402 seconds, while
Android has 1,541 seconds. In Table VII, this difference of
0.139 seconds is statistically significant (p = 0.003),
confirming that iOS is consistently faster at detecting the
ground plane. Table VIII confirms this significance (F =
9.735, p = 0.003) with a partial eta squared of 0.169,
indicating a moderate effect size.

2) Distance

Marginal means analysis for the distance factor aims to
identify the optimal distance that results in the fastest
detection time.

TABLE X
DISTANCE ESTIMATES

Depenedent Variable: Time

95% Confidence Interval
Platform Mean Std. Error Lower Upper
Bound Bound
50 cm 1.525 .039 1.447 1.602
100 cm 1.379 .039 1.301 1.456
150 cm 1.512 .039 1.435 1.590
TABLE XI
PAIRWISE DISTANCE COMPARISONS
95% Confidence
Mean Interval for
0 i Difference | 0" Sig.b Difference®
Distance | Distance Error
(1-J) Lower | Upper
Bound | Bound
50 em 100 cm 146" .055 .031 011 281
150 cm .012 .055 1.000 -.123 148
100 em 50 cm -.146" .055 .031 -.281 -.011
150 cm -.134 .055 .054 -.269 .002
150 om 50 cm -.012 .055 1.000 -.148 123
100 cm 134 .055 .054 -.002 .269
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TABLE XII
UNIVARIATE DISTANCE TESTS

Dependent Variable: Time

Partial
Ssquun;r?efs Df S'\cfj:rne F Sig. Eta
Squared
Contrast .262 2 131 4.404 .018 .155
Error 1.427 48 .030

Table IX shows that a distance of 100 cm results in the
fastest time (mean = 1.379 seconds), followed by 150 cm
(1.512 seconds) and 50 cm (1.525 seconds). In Table X, the
difference between 50 cm and 100 cm is significant (p =
0.031), indicating that a distance of 100 cm is the optimal
distance for ground plane detection. Table XI confirms that
distance has a significant influence on detection time (F =
4.404, p = 0.018) with a partial eta squared 0.155.

3) Light

This interaction analysis tests whether there is an influence

of different lighting conditions on iOS and Android.

TABLE XI1lI
LIGHT ESTIMATES

Depenedent Variable: Time
95% Confidence Interval
Platform Mean Std. Error Lower Upper
Bound Bound
i0OS 1.506 .031 1.443 1.570
Android 1.438 .031 1.374 1.501
TABLE XIV
PAIRWISE COMPARISONS OF LIGHT
95% Confidence
Mean std In_terval fog
(1) Light | (J) Light | Difference | ~ - | Sig.b Difference
(1-9) Lower | Upper
Bound | Bound
Indoor Outdoor .069 .045 129 -.021 158
Outdoor | Indoor -.069 .045 129 -.158 .021
TABLE XV
UNIVARIATE LIGHT TESTS
Dependent Variable: Time
Partial
:quumarc;]; Df SI\(;IS::e F Sig. Eta
Squared
Contrast 071 1 071 2.382 129 .047
Error 1.427 48 .030

Table XI1 and Table XI1I show that indoor conditions have
a mean of 1506 seconds and outdoor 1.438 seconds.
Although outdoor is slightly faster, this difference is not
significant (p = 0.129). However, significant interaction
between Platform x Light shows the influence of light differs
between i0S and Android.
G. Interaction Effects

An interaction effect occurs when the effect of one factor
on the outcome depends on the level of another factor. In a
three-way ANOVA, you must examine two-way and three-
way interactions; a significant interaction means main effects
alone do not fully describe the pattern, and interpretation

should focus on the interaction, often visualized via
profile/interaction plots, and be followed by simple-effects or
post-hoc comparisons. [17]
1) Platform*Distance

This interaction analysis evaluates whether the effiect of
distance on detection time differs between the two platforms.

TABLE XVI
PLATFORM * DISTANCE

Dependent Variable: Time
95% Confidence
- Std. Interval
Platform | Distance Mean Error Lower Upper
Bound Bound
50 cm 1.444 .055 1.335 1.554
i0S 100 cm 1.348 .055 1.238 1.458
150 cm 1.415 .055 1.305 1.525
50 cm 1.605 .055 1.495 1.715
Android 100 cm 1.410 .055 1.300 1519
150 cm 1.610 .055 1.500 1.719

Table XV shows that on iOS, the detection time is
relatively stable at all distances. In contrast, Android shows
greater variability, with optimal performance at a distance of
100 cm. Although in Table V the interaction was not
statistically significant (p = 0.452), this pattern shows that
iOS is more consistent across different distances.

2) Platform*Light

This interaction analysis tested whether the effect of
lighting conditions differed between iOS and Android, which
proved to be significant (p = 0.038) in Table V.

TABLE XVII
PLATFORM * LIGHT

Dependent Variable: Time
95% Confidence
. Std. Interval

Platform Light Mean Error Lower Upper
Bound Bound
i0s Indoor 1.389 .045 1.300 1.479
Outdoor 1.416 .045 1.326 1.505
Android Indoor 1.623 .045 1.534 1.713
Outdoor 1.460 .045 1.370 1.549

iOS shows a small difference between indoor (1,389
seconds) and outdoor (1,416 seconds), just 0.027 seconds. In
contrast, Android shows a big difference: indoor (1,623
seconds) is much slower than outdoor (1,460 seconds), with a
difference of 0.163 seconds. This indicates that Android is
more sensitive to changes in lighting conditions.

3) Distance*Light
This analysis evaluates the effect of different distances on
different lighting conditions.

Experimental Comparison of Ground Plane Detection Speed Across Mobile Platforms
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TABLE XVIII TABLE XX
DISTANCE * LIGHT MULTIPLE COMPARISONS |
Dependent Variable: Time Dependent Variable: Time
95% Confidence Mean
) ) . Std. .
. . Std. Interval . ( . Difference Sig.
Distance Light Mean Error Lower Upper Distance | Distance (1-2) Error
Bound Bound 50 cm 100 cm .14585" .054522 027
50 cm Indoor 1.543 .055 1433 1,652 150 cm 01225 054522 973
Outdoor | 1.507 .055 1.397 1.616 Tukey |00 om |20 Cm -.14585 054522 027
100 cm Indoor 1.479 .055 1.369 1.588 HSD 150 cm -.13360" 1054522 046
Outdoor | 1.279 .055 1.169 1.388 150 em |_0¢cm -.01225 054522 973
150 cm Indoor 1.497 .055 1.388 1.607 100 cm .13360" 1054522 046
Outdoor | 1527 .055 1.418 1.637 socm |100cm 14585 054522 031
150 cm 01225 054522 | 1.000
In table V, the interaction was not significant (p = 0.105), B:’O”rfief 100 cm 15500‘3(:”;] '-11‘;%%% -82322; -gg}l
but the pattern showed that at a distance of 100 cm, the 0 om 01205 552527 | 1.000
difference between indoor (1.479 seconds) and outdoor 150 em —55cm 13360 054522 054
(1.279 seconds) was greatest (0.200 seconds), indicating that TABLE XX

the medium distance was most sensitive to lighting
conditions.

MULTIPLE COMPARISONS |1

4) Platform*Distance*Light Dependent Variable: Time
. . . . . (0) 1
This three-way interaction analysis provides a 0) Q) 95% Confidence Interval
. . . . . Lower Upper
comprehensive picture of how the three factors interact Distance | Distance Bound Bound
simultaneously. 50 om 100 cm 01399 27771
Soon | oT | ot
PLATFORM * DISTANCE * LIGHT Tukey HSD 100 cm 150 cm 26546 00174
Dependent Variable: Time 150 em 50 cm -.14411 11961
959% Confidence 100 cm 00174 26546
. . Std. Interval 100 cm .01059 28111
Platform Distance |~ Light | Mean Error | Lower | Upper 50 cm 150 cm -.12301 14751
Bound Bound . 50 cm -.28111 -.01059
coom | Indoor | 1379 | 077 | 1224 | 153 Bonferroni | 100¢m 55— 76886 00166
Outdoor | 1510 | .077 1.355 1.665 150 cm 50 cm -14751 12301
i0s | 100cm |Indoor [ 1378 | 077 1.223 1.533 100 cm -00166 26886
Outdoor | 1.318 077 1.163 1473
150¢m |indoor | 1412 | 077 | 1257 | 1.567 In Table XIX and Table XX the results show. At a distance
Outdoor | 1.418 077 1.263 1.573 . S _ .
indoor 1 1.707 077 1552 1862 of 50 cm vs 100 cm, it was significant (p = 0.031) with a
50¢m  Sitdoor | 1.503 | 077 | 1348 | L1658 distance of 100 cm faster 0.146 seconds. At 100 cm vs 150
Android | 100 cm | /ndoor [ 1580 | 077 1425 | 1735 cm, it was close to significance (p = 0.054). While 50 cm vs
Outdoor | 1239 | .077 1.084 | 1394 150 c¢m, it does not look significant (p = 1,000). This confirms
150 cm | Indoor | 1583 | 077 | 1428 | 1738 the distance of 100 cm is the optimal distance for both
Outdoor | 1.637 077 1.482 1.792 platforms

Although not significant in Table V (p = 0.176), the pattern
shows that Android is much more sensitive to lighting
conditions than iOS, especially at close and medium
distances. iOS shows stable performance in a wide range of
combinations of conditions.

H. Post Hoc Test

Post hoc tests are multiple-comparison procedures run after
a significant ANOVA to identify which specific group means
differ. In this study, we used the Tukey HSD and Bonferroni
methods. [18]

I. Homogeneous Subsets

Homogeneous subsets are groups formed by some post-hoc
procedures, where group means that do not differ significantly
are placed in the same subset. The output helps summarize
which levels form non-significant clusters at the chosen a[18].

TABLE XXIlI
HOMOGENEOUS SUBSETS
Time
. Subset
Distance N 1 >
100 cm 20 1.37880
150 cm 20 1.51240
S:S.8S. 50 cm 20 1.52465
Sig. 1.000 973

The results showed two subsets, namely the distance of 100
cm forming a separate subset (the fastest), while the distance
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of 50 cm and 150 cm were in one subset (no significant
difference).

J. Profile Plots

Profile plots graphically display estimated means for factor
levels across another factor; they are the standard visual tool

to inspect interactions [16].
1) Distance*Platform*Light

Estimated Marginal Means

1.700
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Estimated Marginal Means

1300

The graphics at Figures 1 and 2 show iOS having a
relatively flat (consistent) line across all distances, while
Android shows large fluctuations. The difference in platforms
is more noticeable in indoor conditions, with the two
platforms converging in outdoor conditions, especially at a
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at Light = Indoor
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Figure 1. EMM of Time at Indoor
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Figure 2. EMM of Time at Outdoor

distance of 100 cm.
2) Distance*Light*Platform
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Figure 3. EMM of Time at iOS
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/
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Figure 4. EMM of Time at Android

In Figures 3 and 4, the graphs show Android's much higher
sensitivity to lighting changes than iOS's, with the largest
indoor-outdoor gap visible at 100 cm on Android.
3) Platform * Light * Distance

1.700
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1400

1.600
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Estimated Marginal Means of Time
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Figure 5. EMM of Time at 50 cm
Estimated Marginal Means of Time

at Distance = 100 cm

Light

Indoor
~— Outdoor

i0S Android
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Figure 6. EMM of Time at 100 cm
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Estimated Marginal Means of Time
at Distance = 150 cm
1650 Light
y. Indoor

n
Outdoor

1.600

1550
1500 /
1450

1.400

Estimated Marginal Means

i0S Android

Platform
Figure 7. EMM of Time at 150 cm

Figure 5, Figure 6, and Figure 7 show that at all distances,
iOS has more consistent performance between indoor and
outdoor. The gap between iOS and Android is largest in
indoor conditions at a distance of 50 cm.

4) Platform

Estimated Marginal Means of Time

1530
1500
1470

1440

Estimated Marginal Means

1410

i0S Android

Platform
Figure 8. EMM or Platform

Figure 8 shows the overall mean difference between iOS
(1,402 seconds) and Android (1,541 seconds), confirming the
consistent superiority of the iOS platform.

5) Distance

Estimated Marginal Means of Time
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Estimated Marginal Means
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50 cm 100 cm 150 cm

Distance
Figure 9. EMM of Distance

In the graph in Figure 9, visualized that a distance of 100
cm results in the fastest detection time (1.379 seconds),
indicating the optimal distance for ground plane detection at
a medium distance.

6) Light

Estimated Marginal Means of Time

1500

1480

1.460

Estimated Marginal Means

1440

Indoor Outdoor

Light
Figure 10. EMM of Light

Judging from Figure 10, the graph shows a small difference
between indoor (1,506 seconds) and outdoor (1,438 seconds),
which is not statistically significant. However, this graph does
not capture significant Platform x Light interactions,
demonstrating the importance of analyzing the effects of
interactions.

1V. DI1SCUSSION

A. Technical Interpretation

Although this study used Vuforia Ground Plane, the
observed performance differences reflect the underlying
native AR platforms. Vuforia relies on ARKit for iOS and
ARCore for Android to perform actual plane detection, acting
as a cross-platform wrapper.

The superior i0S performance (1.402 s vs. 1.541 s) stems
from ARKit’s tight hardware—software integration. Apple co-
designs cameras and SLAM algorithms for a limited device
range, enabling aggressive optimization. In contrast, ARCore
must accommodate hundreds of Android devices from
various manufacturers, requiring more conservative
algorithms that prioritize compatibility over speed, which
explains both the slower detection time and higher variability
observed on Android (SD = 0.235 vs. 0.143).

Importantly, the Platform x Light interaction (p = 0.038)
highlights that detection performance is not determined by a
single factor in isolation. Android performance degraded
significantly under indoor lighting conditions (1.623 s)
compared to outdoor conditions (1.460 s), whereas iOS
remained relatively stable (1.389 s vs. 1.416 s). This
interaction suggests that ARKit may employ more
sophisticated image preprocessing algorithms optimized for
variable lighting conditions, potentially including advanced
noise reduction and contrast enhancement specifically tuned
for Apple's camera hardware. In contrast, ARCore's cross-
manufacturer compatibility requirements necessitate more
conservative algorithms that perform reliably across diverse
sensor configurations but may sacrifice performance in
challenging lighting scenarios. However, the specific
algorithmic implementations are proprietary and warrant
further investigation through controlled hardware-level
experiments.
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Similarly, the optimal detection distance of 100 cm reflects
shared SLAM constraints across both platforms, representing
a balance between field-of-view coverage and feature
resolution required for reliable plane detection. Overall, these
findings demonstrate the importance of interaction analysis,
as the influence of one factor on detection performance
depends on the level of other factors and cannot be fully
explained by main effects alone.

B. Generalizability and Limitations

This study provides empirical findings on the comparison
of ground plane detection speed in markerless Augmented
Reality across iOS and Android platforms. However, the
generalizability of the results remains limited. The
experiments were conducted using a single markerless AR
application (KreasiFurniture) and a single AR framework
(Vuforia); therefore, the findings primarily reflect the
characteristics of this specific implementation and may differ
when using other frameworks such as native ARKit or
ARCore.

Furthermore, the evaluation was performed on a limited
number of devices, with one representative iOS device and
one Android device. Variations in hardware specifications,
including camera quality, sensor configuration, and
processing capability, may influence ground plane detection
performance across platforms. The number of repetitions per
experimental condition (five trials) was exploratory and may
be insufficient for broader statistical generalization.

The experiments were also conducted under controlled
environmental conditions, including predefined lighting
settings and camera distances. More dynamic real-world
usage scenarios were not fully captured in this study. Future
research is encouraged to incorporate multiple applications,
AR frameworks, devices, and more diverse testing conditions
to enhance the generalizability of the findings.

C. Practical Recommendations

Based on the observed performance -characteristics,
developers of cross-platform markerless AR applications
should account for platform-specific behavior despite the use
of abstraction frameworks such as VVuforia. iOS demonstrates
more consistent ground plane detection, particularly under
indoor lighting conditions, suggesting that it is better suited
for applications where environmental control is limited. In
contrast, Android implementations require greater attention to
lighting variability, especially in indoor scenarios where
detection latency increases.

The identification of an optimal detection distance of
approximately 100 cm provides a practical reference for
spatial interaction design. Applications should encourage user
interaction within this range to ensure stable plane detection,
particularly for object placement tasks such as furniture
visualization. Deviations from this distance may reduce
detection reliability due to limitations in feature distribution
and field-of-view coverage inherent to SLAM-based
approaches.

For Android-focused deployments, adaptive design
strategies are recommended, including user guidance for

improving lighting conditions and extended detection time
thresholds to accommodate higher latency. Additionally,
testing and quality assurance procedures should incorporate
platform-specific benchmarks rather than uniform acceptance
criteria, reflecting the inherent differences between ARKit
and ARCore observed in this study.

Sample size considerations should also be addressed in
future implementations. While this study employed five
repetitions per condition, adequate for exploratory factorial
analysis, production applications should conduct more
extensive testing (minimum 10-15 repetitions per condition)
to establish reliable performance baselines. Additionally,
developers should implement runtime performance
monitoring to detect and adapt to device-specific variations,
particularly on Android, where hardware diversity may
produce performance characteristics not captured in limited
device testing.

V. CONCLUSION

This study provides empirical evidence that ground plane
detection performance in markerless AR differs significantly
across mobile platforms, even when using cross-platform
frameworks. Through systematic three-way ANOVA
analysis, we demonstrated that iOS achieves faster and more
consistent detection than Android (mean difference = 0.139
seconds, p=0.003, n2 = 0.169), while an interaction distance
of 100 cm yields optimal performance on both platforms (p =
0.018, n? = 0.155). Critically, the significant Platform x Light
interaction (p = 0.038, n> = 0.086) reveals that lighting
conditions affect platforms differently: iOS maintains stable
performance across lighting variations, whereas Android
experiences substantial degradation in indoor conditions.

These findings have important implications for AR
application development. First, platform selection should
consider deployment environment—iOS is preferable for
indoor applications requiring consistent performance, while
Android requires adaptive design strategies for variable
lighting. Second, interaction design should target the 100 cm
optimal distance to maximize detection reliability. Third,
cross-platform frameworks like Vuforia do not fully abstract
platform-level differences; developers must account for
native AR capabilities (ARKit vs ARCore) when optimizing
user experience.

Future research should extend these findings by
incorporating additional platforms, multiple AR frameworks,
diverse device models, and larger sample sizes to enhance
generalizability. Investigation of runtime adaptive algorithms
that dynamically adjust detection parameters based on
environmental conditions would provide practical solutions
for the performance variations identified in this study.
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