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 Diabetic Retinopathy (DR) is a complication of Diabetes Mellitus (DM), both type 

1 and type 2 DM. Based on its severity, DR is divided into mild DR, moderate DR, 

severe DR, and proliferative DR stages. Manual detection is difficult because there 

is a fairly small difference between normal and DR. The Computer-Aided 

Diagnosis (CAD) system is a solution for detecting the severity of DR quickly and 

accurately so that DR sufferers do not get worse, which can cause blindness. This 

study uses fundus images from the Mesindor dataset consisting of four classes, 

namely normal, mild DR, moderate DR, and severe DR, with the 

InceptionResNetV2-KELM hybrid method. InceptionResNetV2 is used as a feature 
extraction and Kernel Extreme Learning Machine (KELM) as its classification. 

Several types of kernels are applied as model trials. The results show the highest 

sensitivity lies in the polynomial kernel experiment with a sensitivity value of 

99.88%, an accuracy of 99.88%, and a specificity of 99.96%. The method used is 

able to detect very well and is quite time-effective compared to conventional CNN. 
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I. INTRODUCTION 

Diabetic Melillus (DM) complications can cause kidney 

nephron damage called Diabetic Nephropathy, neurons in 
the brain are damaged called Diabetic Neuropathy, and 

Diabetic Retinopathy, which causes infection of the retina 

[1]. The World Health Organization (WHO) predicts 

diabetes as the seventh deadly disease. Recently, around 382 

million people worldwide have suffered from DM, and 

34.60% of them are reported to have Diabetic Retinopathy 

(DR) [2].  Cases of blindness worldwide are more than 

2.60% caused by Diabetic Retinopathy. Almost all people 

with type 1 DM experience Diabetic Retinopathy, and more 

than 60% of people with type 2 DM also experience it [3]. 

According to the International Diabetes Federation, in 2019, 
463 million people with DM aged 20-79 years. It is 

estimated that by 2045, it will reach 700 million people. In 

addition, DM sufferers mostly live in low and middle-

income countries such as Indonesia and India [4]. 

Reducing the prevalence of DR is essential in preventing 

vision loss due to DR [5]. Early DR screening helps control 

and prevent blindness. Fundus imaging is one of the 

modalities that can capture the back (fundus) of the eye. The 

image can visualize the anatomical structures of the eye, 

such as the retina, optic disc, and macula. Manual screening 

of fundus images by a specialist requires high precision, 

laboriousness, is time-consuming, and is prone to human 
error [6]. DR image analysis is a very challenging task 

because the expressions caused by muscle movements are 

subtle and transient [7]. In addition, manual detection is very 

difficult because there is a very small difference between 

normal and DR images [8]. Computer-Aided Diagnosis 

(CAD) systems can diagnose the severity of DR quickly and 

accurately, allowing for timely patient care. CAD systems 

can also reduce computing costs and reduce skilled 

professional resources. The proposed algorithm includes 

stages such as preprocessing, feature extraction, and 

classification [9]. 
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Previous studies have widely used CAD systems to detect 

DR. Eman et al.'s research conducted image segmentation to 

extract four pathological variations. Then, six significant 

features from the segmented pathological features will be 

extracted using the Gray-Level Co-occurrence Matrix 

(GLCM), and the classification method will be used using a 

Support Vector Machine (SVM). The experiment showed 

accuracy and sensitivity values of 81.42% and 74.62%, 
respectively, on Messidor data [10]. Gayathri et al. used 

CNN feature extraction with various classifiers (SVM, 

AdaBoost, Naive Bayes, Random Forest, and J48). The J48 

method outperformed all other classifiers for the Messidor, 

IDRiD, and Kaggle datasets with an average accuracy of 

99.89% for two-class classification and 99.59% for multi-

class classification [5]. Therefore, using feature extraction 

methods to learn DR image features is crucial to improve 

classification performance. 

CNN algorithm can learn image features very well. Habib 

Raj et al., using the CNN model VGGNet, obtained 95.41% 
accuracy, outperforming AlexNet, ResNet, and GoogleNet 

on DR images [11]. Yadav, et al. compared 

InceptionResNetV2, InceptionV3, Xception, MobileNetV2, 

VGG19, and DenseNet201 in classifying DR. The results 

obtained from the study showed that InceptionResNetV2 

proved to be the best model for DR detection and 

classification with 82% accuracy [12]. Although CNN 

performed well, it experienced overfitting problems when 

dealing with small datasets [13]. In addition, adjusting many 

parameters and a complex hierarchical structure caused 

CNN to experience a time-consuming training process [14]. 

Separation of feature learning and classification is a solution 
to this problem. 

Several studies use convolutional features in CNN 

architecture as feature learning, while the classification 

method uses a different method [9]. Qomariyah et al. 

conducted the identification of normal and NPDR classes 

with various CNN feature extraction trials, namely 

VGGNet16, VGGNet19, AlexNet, InceptionV3, 

InceptionResNetV2, GoogleNet, DenseNet201, and 

ResNet50. SVM classification and feature extraction using 

ResNet50 produced the best accuracy of 95.83% on 77 

images from the Messidor base 12 and, while on 70 images 
from the Messidor database of base 13, the best accuracy 

was obtained at 95.24% with the InceptionV3-SVM method 

[15]. Shidqie Taufiqurrahman et al. Diagnosing multiclass 

DR using MobileNetV2-SVM resulted in kappa and 

accuracy of 0.925 and 85%  [16]. Swapna et al. diagnosed 

diabetes using Heart Rate Variability (HRV) data from ECG 

signals. The study applied the CNN-LSTM method to obtain 

an accuracy of 95.10% [17]. Pratap et al. detected normal, 

mild, moderate, and severe DR cataracts from fundus images 

using CNN-SVM with the AlexNet model. The method 

resulted in an accuracy of 92.91% [18]. Based on this study, 

CNN, as a feature learner, is able to learn features from 
images.  

The ELM method has attracted attention in many research 

fields due to its advantages in training speed, strong 

generalization performance, and higher accuracy than ANN 

and SVM [19], [20]. ELM parameters such as weights and 

biases are randomly assigned and do not need to be updated, 

making it very fast. In addition, the structure of ELM is 

simpler than all other gradient-based learning algorithms 

[21]. Nahiduzzaman et al. performed feature extraction using 
CNN and Singular Value Decomposition (SVD) to reduce 

input features from the results of CNN feature extraction. 

This study utilized the Extreme Learning Machine (ELM) 

method as a classifier to obtain accuracy and recall of 

99.73% and 100% for the binary class. In comparison, the 

accuracy of the five DR classes was 98.09% for the APTOS-

2019 dataset and 96.26% for the Messidor-2 data [22]. 

The KELM method improves ELM's shortcomings by 

applying a kernel function. The kernel function is applied 

because the optimal number of neurons in ELM can only be 

obtained by trial and error, resulting in a dimensionality 
catastrophe [23]. For brain tumor classification, Pashaei et 

al. used CNN feature extraction with several classification 

methods, such as KELM, MPL, Stacking, XGBoost, SVM, 

and RBF. KELM obtained the highest accuracy of 93.68% 

compared to using the MPL, Stacking, XGBoost, SVM, and 

RBF methods, which obtained accuracies of 88.80%, 

86.91%, 87.33%, 87.51%, and 86.84%, respectively [24]. 

Ripon et al. applied CNN-KELM in the case of eye image 

recognition from facial images obtained remotely. The study 

compared feature extraction methods and classification 

methods. Haar wavelet, LBP, GLAC, and CNN were used 

for feature extraction experiments, while the classification 
method trials used SVM and KELM. The CNN-KELM 

method obtained the highest accuracy, precision, recall, and 

F1-measure of 99.54%, 99.61%, 99.60%, and 99.57% [25]. 

Novitasari et al. compared various feature extraction 

methods, namely GoogleNet, ResNet18, ResNet50, 

ResNet101, and DenseNet, in diagnosing four DR classes. In 

addition, the study also compared the ELM modification 

methods, namely KELM, MLELM, and DELM. Hybrid 

DenseNet-KELM requires a faster computing time than 

other ELM modifications, 42.75 seconds [26]. 

Based on the previous explanation, this study will identify 
multiclass Diabetic Retinopathy derived from Messidor data: 

normal, mild, moderate, and severe. This study aims to 

obtain an optimal model in an efficient time. The dataset has 

an imbalanced data problem and applies a rotation type 

augmentation. The hybrid CNN method with KELM is used 

to detect DR. The CNN method is used for feature 

extraction, while KELM is used for classification. The CNN 

architecture uses InseptionResNetV2. The extraction results 

are classified using KELM. Experiments with several 

kernels are applied to find the optimal model. Model 

evaluation is evaluated by a confusion matrix based on 

accuracy, sensitivity, and specificity. 
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II. METHOD  

A. Research Stages 

This study conducted Diabetic Retinopathy (DR) 

detection using a hybrid Convolutional Neural Network 

(CNN) type InceptionResNetV2 with Kernel Extreme 

Learning Machine (KELM). The flowchart of this study is 
shown in Figure 1. 

 

Figure 1. Research Flow Diagram 

The input image data was first processed using cropping, 

resizing, CLAHE, and image augmentation. Cropping is 

used to remove unnecessary image portions, resizing to 

adjust the input size before entering the CNN model, 

CLAHE is used to enhance image contrast, and 

augmentation uses a rotation method to balance the classes. 

The next stage is feature extraction using feature learning 

from the InceptionResnetV2 CNN. The classification stage 

uses the KELM method, applying data partitioning using K-
Fold Cross Validation (K-Fold). Classification results are 

evaluated using a confusion matrix. 

B. Data Collection 

This study used input from DR fundus image data. Data 

obtained from Messidor were as many as 1200 [27]. The 

data set contains four classes, namely normal, mild DR, 

moderate DR, and severe DR, each of which has a total of 

516, 153, 247, and 254 data. Sample DR image data is 
shown in Figure 2. Fundus image data in the Messidor 

dataset has different sizes, namely 1440 ×  960, 2240 ×
 1488, and 2304 ×  1536. 

 

 

Figure 2. DR Image Data Sample 

C. Convolutional Neural Network (CNN)  

CNN is a development of the Multi-Layer Perceptron 

(MLP) neural network, built by imitating the pattern of 

neuron connections in the human visual cortex [28]. CNN 

has a high-depth network and has been widely applied to 

image data. CNN is more efficient in various image 

processing applications mainly due to its success in feature 

learning. The biggest advantage of CNN is that it can learn 

features ranging from basic features (such as shape, color, 

and texture) to more complex features. The main idea is to 

get local features from high input layers and transfer them to 

lower layers for more complex features [29]. Feature 

learning in CNN may be more efficient than manually 

designed features such as wavelet features, morphological 

features, shape features, etc.[30]. 
The architecture consists of an input layer of neurons, 

several hidden layers, and an output layer. Neurons in CNN 

have weight, bias, and activation functions, where each 

neuron in one layer is connected to each neuron in the next 

layer [31]. The general CNN architecture is shown in Figure 

3. Based on the figure, CNN consists of two stages: the 

feature extraction stage used for feature extraction and the 

classification stage. The feature extraction stage in CNN 

consists of a convolution layer with ReLU activation and a 

pooling layer, while the classification stage contains a fully 

connected layer and softmax activation [30]. 
 

 

Figure 3. CNN Architecture 

D. InceptionResNetV2 (IRV2) 

 

Figure 4. InceptionResNetV2 Architecture 

IRV2 is a CNN architecture that combines the advantages 

of the Inception module and the Residual module to improve 

accuracy and reduce the number of calculations. IRV2 uses 

the Inception module because it requires less computational 

    
Normal Mild Moderate Severe 
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complexity than the basic inception module and uses 

residual connections to achieve good efficiency [32]. Basic 

inception has a very complicated algorithm, so the number 

of calculations and parameters used becomes a burden on 

improving network performance. On the other hand, the 

ResNet module in ResNet can result in poor feature 

extraction diversity compared to the inception module due to 

the imbalance between depth and width [33]. 

 

Figure 5. Structure of Each Layer of InceptionResNetV2 

The feature extractor in IRV2 is based on the inception 

block, which uses split, transform, and merge functions. The 

inception module has several parallel convolutions and filter 

circuits (1 × 1, 3 × 3, 5 × 5, etc.) combined with the circuits 

in each branch [31]. The output obtained from each 

convolution branch is combined and given as input to the 

next convolution module [34]. The convolution layer uses 

different filters in the inception block such as 1 × 1 is used 

for dimension reduction, (2 × (3 × 3)) to factorize the filter 

into a smaller size, and (1 × 3, 3 × 1 and 1 × 7, 7 × 1) for 

asymmetric [35], [36]. Each Inception block is connected to 

a 1 × 1 convolution filter layer without activation function 
for dimension transformation to achieve input matching. 

This system compensates for the dimensionality reduction in 

the Inception block [32]. The residual network learning unit 

is applied to avoid the problem of complete gradient 

vanishing when training the Inception network model [33]. 

The interior module of the network includes Inception-

Resnet-A, Inception-Resnet-B, and Inception-Resnet-C 

blocks, where the total number of frameworks in each 

module is 10, 20, and 10. The architecture of each IRV2 

layer is shown in Figure 5 [32]. The architecture of IRV2 is 

demonstrated in Figure 4. 

E. K-Fold Cross Validation (K-Fold) 

K-Fold CV is a validation method used to select a model 

in applying learning problems with 𝑛 iterations [37]. This 

method can avoid bias in data selection and overfitting 

problems. K-Fold CV randomly divides the original sample 

𝐷 into mutually exclusive subsets of equal size, namely  =
 𝐷1  ∪ 𝐷2 ∪⋯∪ 𝐷𝑘 . 𝐷𝑖 ∩ 𝐷𝑗 = ∅(𝑖 ≠ 𝑗). The consistency of 

the data distribution in each subset is maintained as much as 

possible, namely from hierarchical sampling by 𝐷 [38]. The 

original sample 𝐷 is randomly divided into a number of 𝑘 

subsets. 𝐾 − 1 is used for training, and the remaining subset 

is used for testing. The algorithm is set for the training 

subsample in each partition, then the average error on the 

test subsample objects is calculated [39]. The use of K-Fold 

CV with 𝑘 =  5 is shown in Figure 6. 
 

 
Figure 6. K-Fold Cross Validation with K=5 

F. Kernel Extreme Learning Machine (KELM) 

KELM is an extension of the ELM method proposed by 

Huang et al. The random determination of weights and 

biases in ELM causes large variations in classification 

accuracy in different trials [40]. ELM has a multicollinearity 

problem when the number of hidden layer nodes is often less 

than the number of training samples. The presence of 

multicollinearity when solving the Moore-Penrose 

Generalized Inverse matrix can cause 𝑯𝑯𝑻 singularity. As a 

result, the ELM output is random and has poor stability and 
generalization ability [41]. KELM overcomes this by 
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adopting a kernel function to replace the ELM hidden layer 

mapping [40]. The kernel takes the hidden layer as an 

unknown feature that maps data from the input space to the 

feature space. Using kernels causes KELM to obtain better 

generalization performance than ELM [42]. In addition, the 

network becomes more stable and does not need to be 

determined randomly by weights and biases [40]. The 

KELM architecture is shown in Figure 7.  

Based on the orthogonal projection method and ridge 
regression theory, the Moore–Penrose Generalized Inverse 

Matrix (𝑯†) can be calculated by Equation 1, and the output 

weight 𝜷 can be calculated by adding a positive constant 
𝐼

𝐶
 to 

balance the empirical and structural risks [43], [44]. Based 

on the Karush-Kuhn-Tucker theory, the Lagrange factor is 

introduced so that the ELM calculation uses Equation 2.  
𝑯† = (𝑯′𝑯)−𝟏𝑯′ (1) 

 𝜷 = {
(
𝐼

𝐶
+𝑯′𝑯)

−1

𝑯′𝒀  , 𝑖𝑓 𝑁 > 𝐿

𝑯′ (
𝐼

𝐶
+ 𝑯′𝑯)

−1

𝒀  , 𝑖𝑓 𝑁 ≤ 𝐿
 

(2) 

Where 𝐶 is the regulation coefficient, 𝑯′ is the transposed 𝑯 

matrix, and 𝑰 is the identity matrix. Then, the ELM output 

function is shown in Equation 4. 

 𝒀 =  𝑯𝜷 

𝒀𝒐𝒖𝒕 =

{
 
 

 
 
ℎ(𝑥) (

𝐼

𝐶
+ 𝑯′𝑯)

−1

𝑯′𝒀 , 𝑖𝑓 𝑁 > 𝐿

ℎ(𝑥) 𝑯′ (
𝐼

𝐶
+ 𝑯′𝑯)

−1

𝒀  , 𝑖𝑓 𝑁 ≤ 𝐿

 
(4) 

Since the mapping condition of the hidden layer feature 

ℎ(𝑥) is unknown, the Mercer condition kernel matrix is 

introduced [41]. According to the Mercer condition, it can be 
applied to ELM to formulate KELM. The ELM kernel 

matrix is first defined by Equation 5. 

Ω𝐸𝐿𝑀 = 𝑯𝑯
′ 𝜖 ℝ𝑁×𝑁 (5) 

Where Ω𝑖𝑗 =  ℎ(𝑥𝑖)ℎ(𝑥𝑗)  =  𝑘(𝑥𝑖 , 𝑥𝑗) and 𝑘(. ) is the kernel 

function. The kernel matrix Ω𝐸𝐿𝑀 is used to replace the 

random matrix 𝑯𝑯′ in ELM, and the kernel function is used 

to map all samples from the 𝑁-dimensional input space to 
the high-dimensional hidden feature space, which can obtain 

more information from the original data, and improve the 

stability and generalization ability of the model [42]. Then 

ℎ(𝑥)𝑯′ can be defined as Equation 6, and 𝜷 in KELM is 

shown in Equation 7.  

 

 

Figure 7. KELM Architecture 

ℎ(𝑥)𝑯′ = [
𝑘(𝑥, 𝑥1
⋮

𝑘(𝑥, 𝑥𝑁

] 
(6) 

𝜷 = (
𝐼

𝐶
𝑰 + Ω𝐸𝐿𝑀)

−1

𝒀   
(7) 

Then, Equation 4 can be changed into Equation 8. 

𝒀𝒐𝒖𝒕 = [
𝑘(𝑥, 𝑥1
⋮

𝑘(𝑥, 𝑥𝑁

]

′

𝜷 
(8) 

Based on Equation 8, ℎ(𝑥) is unrelated to the ELM output, 

while the ELM output is only related to the kernel function 

𝑘(𝑥, 𝑦). Since the kernel function is an inner product, the 

number of hidden layer nodes does not affect the output, and 

there is no need to randomly set the initial weights and 

biases of the hidden layer. In addition, several kernel 

functions, such as Gaussian kernel, linear kernel, polynomial 

kernel, and wavelet kernel, are provided in the modelling 
[41]. The standard kernel functions are listed in Table 1 [42]. 

TABLE 1  

TYPES OF KELM KERNELS 

Category Formula  Parameter 

Linear k(xi, xj) = xi xj
′ − 

Polynomial k(xi, xj) = (xi xj
′ + 1)d d ≥ 1 

RBF 
k(xi, xj) = exp(−

‖xi − xj‖
2

2σ2
) 

σ > 0 

Wavalet  
k(xi, xj) = Cos (

1.675‖xi− xj‖

σ2
) 

exp(
−‖xi − xj‖

2

d
) 

− 
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III. RESULTS AND DISCUSSION 

A. Data Preprocessing And Augmentation 

Data is preprocessed to optimize the classification 

process. The preprocessing process uses manual cropping to 

remove unused retinal fundus image bumps. The 

InceptionRenNetV2 architecture requires an input image 

data size of 299 × 299 × 3, so the fundus image is resized to 
change the image size. The image data used has different 

brightness levels. The data requires handling to increase the 

contrast so that the image becomes sharper and clearer using 

CLAHE. The CLAHE process is applied to each image 

channel, namely the red, green, and blue channels. The 

CLAHE results on each channel are combined. A 

comparison of the histograms of the DR images before and 

after CLAHE can be seen in Figure 8. The figure shows that 

the histograms of the DR images after CLAHE are flatter 

than those of the DR images before CLAHE. The histogram 

values after CLAHE are more even and uniform. 

 
Figure 8. The histograms of the DR images before and after CLAHE 

 

 

Figure 9. DR Sample Results of CLAHE and Rotation at Several Angles 

The dataset used has imbalanced data, so it uses the Data 

Augmentation Process to increase the variance of image data 

and reduce overfitting in the system. The augmentation 

technique in this study uses one type of geometric 

augmentation: rotation. The rotation angle of this study uses 

angles ranging from 1° to 359° with a range of 1°. The 
results of CLAHE and augmentation are shown in Figure 9. 

Changes in the number of images before and after 

augmentation are shown in Table 2. The random sampling 

technique is applied to balance the data by taking 12960 

data, consisting of 3240 in each class. 

TABLE. 2  

DATA CHANGES AFTER AUGMENTATION 

DR 

Messidor  

Classes 

Number of Classes Random 

Sampling 

Results 
Before 

Augmentation 

After 

Augmentation 

Normal 516 185.244 3240 

Mild 153 54.927 3240 

Moderate 247 88.675 3240 

Severe 254 91.186 3240 

B. Feature Extraction 

The preprocessing results are processed to the feature 

extraction stage using InceptionResNetV2. The feature 

learning section in InceptionResNetV2 is used as feature 

extraction to obtain more complex features. Image data 

passes through the InceptionResNetV2 layer to produce 

feature maps as many as convolution kernels. Deep networks 

will extract more complex features in the next layer until the 

last layer in the InceptionResNetV2 feature learning. 

Changes in the feature map from an image to the last layer 
of feature learning are represented in Figure 10. 

 

 

Figure10. Feature map results on CNN Architecture InceptionResNetV2 

TABLE 3  

FEATURE EXTRACTION RESULTS USING INCEPTIONRESNETV2 

No 
Feature 

1 

Feature 

2 

Feature 

3 
⋯ 

Feature 

1536 
Class 

1 1.0346 0.4640 0.1030 ⋯ 0.1364 1 

2 1.4937 0.4222 0.3865 ⋯ 0.2931 1 

3 1.7704 0.1612 0.2999 ⋯ 0.1372 2 

4 1.3112 0.7179 0.1966 ⋯ 0.5669 2 

5 1.2735 0.7342 0.2586 ⋯ 0.3793 3 

6 1.2773 0.4100 0.4393 ⋯ 0.1235 3 

7 1.3604 0.5522 0.2307 ⋯ 0.0714 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮  

12960 1.5560 0.2993 0.3494 ⋯ 0.1452 4 

 

Based on changes in the feature map size, the 

InceptionResNet A, InceptionResNet B, and 

InceptionResNet C blocks maintain their input size. The 

input size differs from the Reduction A and B blocks, which 

tend to reduce the feature map to smaller with more channels 

than the previous input. The resulting feature map in each 
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layer needs to be clarified as the InceptinResNetV2 layer 

deepens. It causes the feature map to learn the image very 

complexly in terms of texture, color, and edge. The feature 

learning process stops at the Global Average Pooling (GAP) 

layer. Each image subjected to feature extraction using this 

architecture gets 1536 features. Samples of feature extraction 

results using InceptionResNetV2 are shown in Table 3. The 

feature extraction results then become input at the 

classification stage using KELM. 

C. Classification and K-Fold 

The classification stage requires training and testing data, 

so dividing the data using K-Fold cross-validation (K-Fold) 

is necessary. This method can avoid bias in data selection 

and overfitting problems. The total data used is 12960. The 

data is divided using K-Fold with K = 5 so that the training 

and testing data are 10368 and 2592, respectively. 

Several trials are required to obtain the optimum model in 

the DR classification process using the hybrid 

InceptionResNetV2-KELM method. InceptionResNetV2 is 

used as a feature extraction to obtain features from the 
image, while KELM is used as a classifier. The KELM 

method uses several trials based on the types of kernels. The 

kernels used include linear, polynomial, RBF, and wavelet 

kernels. Each trial produces a classification model, so the 

best model is selected based on system evaluation. 

 

 
 

Figure 11. Kernel Evaluation Average 

 

Based on Table 4, the experiment of several kernels 

resulted in insignificant differences in evaluation on each 

fold. The average computation time required was around 41 

minutes, but fold 5 in the wavelet kernel took longer at 

around 49 minutes. Figure 11 compares the kernel 

experiments with a regularization coefficient (𝐶) of 10, 

where the kernel parameter value uses 𝑑 = 2 and σ is 

obtained from the standard deviation value. The figure 

shows that the polynomial kernel has the best accuracy 

compared to the linear, RBF, and wavelet kernels. The 

wavelet kernel has the lowest accuracy compared to other 

kernels. The polynomial kernel gets the highest evaluation 

value on the division of fold 2 data with sensitivity (Sen) / 

Recall, accuracy (Acc), specificity (Spec), precision (Prec), 

and F-Score (F1) of 99.88%, 99.88%, 99.96%, 99.88%, and 

99.88% respectively. 

TABLE 4 

 KERNEL TYPE EXPERIMENT EVALUATION RESULTS 

Kernel 5-

Fol

d 

Sen 

(%) 

Acc 

(%) 

Spec  

(%) 

Prec 

(%) 

F1 

(%) 

Tim

e 

RBF Fol

d 1  

99.8

5 

99.8

5 

99.9

5 

99.8

5 

99.8

5 

0h 

41m 
36s 

Fol
d 2  

99.8
8 

99.8
8 

99.9
6 

99.8
8 

99.8
8 

0h 
41m 
39s 

Fol
d 3  

99.6
5 

99.6
5 

99.8
8 

99.6
5 

99.6
5 

0h 
41m 

42s 

Fol
d 4  

99.7
3 

99.7
3 

99.9
1 

99.7
3 

99.7
3 

0h 
41m 
55s 

Fol
d 5  

99.6
9 

99.6
9 

99.9
0 

99.6
9 

99.6
9 

0h 
41m 
34s 

Average 99.7

6 

99.7

6 

99.9

2 

99.7

6 

99.7

6 

 

Linear Fol
d 1  

93.2
9 

93.2
9 

97.7
6 

93.2
8 

93.2
7 

0h 
41m 
34s 

Fol

d 2  

93.7

9 

93.7

9 

97.9

3 

93.7

7 

93.7

7 

0h 

41m 
36s 

Fol
d 3  

92.5
9 

92.5
9 

97.5
3 

92.6
0 

92.5
7 

0h 
41m 
33s 

Fol
d 4  

93.6
0 

93.6
0 

97.8
7 

93.6
3 

93.5
9 

0h 
41m 

31s 

Fol
d 5  

92.5
9 

92.5
9 

97.5
3 

92.5
7 

92.5
7 

0h 
41m 
32s 

Average 93.1

7 

93.1

7 

97.7

2 

93.1

7 

93.1

5 

 

Polynomia
l 

Fol
d 1  

99.8
5 

99.8
5 

99.9
5 

99.8
5 

99.8
5 

0h 
41m 
32s 

Fol
d 2  

99.8
8 

99.8
8 

99.9
6 

99.8
8 

99.8
8 

0h 
41m 
39s 

Fol

d 3  

99.5

8 

99.5

8 

99.8

6 

99.5

8 

99.5

8 

0h 

41m 
36s 

Fol
d 4  

99.8
1 

99.8
1 

99.9
4 

99.8
1 

99.8
1 

0h 
41m 
31s 

Fol
d 5  

99.7
7 

99.7
7 

99.9
2 

99.7
7 

99.7
7 

0h 
41m 

32s 

Average 99.7

8 

99.7

8 
99.9

3 
99.7

8 

99.7

8 

 

Wavelet Fol
d 1  

52.0
8 

52.0
8 

84.0
3 

52.1
1 

52.0
8 

0h 
42m 
5s 

Fol
d 2  

51.0
0 

51.0
0 

83.6
7 

51.0
0 

50.9
9 

0h 
41m 
54s 
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Fol
d 3  

50.9
3 

50.9
3 

83.6
4 

50.9
7 

50.9
4 

0h 
41m 
54s 

Fol
d 4  

51.0
0 

51.0
0 

83.6
7 

50.9
9 

50.9
8 

0h 
41m 
52s 

Fol
d 5  

52.3
5 

52.3
5 

84.1
2 

52.4
0 

52.3
5 

0h 
48m 
59s 

Average 51.4

7 

51.4

7 
83.8

2 
51.4

9 

51.4

7 

 

D. Confusion Matrix 

Figure 12 shows the confusion matrix of the best model; 

the actual class is shown in the rows, while the predicted 

class is shown in the columns. There are mild, moderate, 
normal, and severe DR classes in the rows and columns of 

the confusion matrix above. The values in each box identify 

the amount of data from the actual class predicted by the 

model to be in the predicted class. The boxes on the diagonal 

of the matrix indicate the correctly predicted class, while the 

boxes outside the diagonal indicate the opposite. The data 

predicted according to the actual class in the normal, mild, 

moderate, and severe classes are 648, 648, 648, and 645, 

respectively. In the confusion matrix results, there are three 

incorrectly predicted data. The three data sets should be 

included in the severe class but are predicted to be in the 

moderate class. 
 

 
Figure 12. Fold-2 Confusion Matrix and Kernel Polynomial Results 

 

Figure 13 shows that although excellent classification 

performance was achieved for classes Mild and Normal, a 

slight decrease was observed for classes moderate and 

Severe, where a small number of misclassifications caused 

the precision and recall values to decrease slightly by 
99.54%. Nevertheless, the corresponding F1 score remained 

high at 99.77%, indicating strong classification performance. 

.  

Figure 13. Evaluate the confusion matrix of each class on fold2 

E. Analysis 

The experiment results in detecting diabetic retinopathy 

using the original InceptionResnetV2 are seen in Table 5. 

Based on these results, the average sensitivity/Recall, 
accuracy, specificity, precision, and F1-Score were 97.86%, 

97.86%,  99.29%, 99.89, and 99.86 respectively. The 

experiment used k-fold with k = 5 and CNN parameters such 

as batch size (BS) 16, learning rate (LR) 0.01, and drop out 

(DO) 0.1. The InceptionResNetV2 method produces a model 

that has the highest evaluation with a faster time at fold 2. 

 
TABLE 5  

EVALUATION RESULTS USING INCEPTIONRESNETV2 

5-Fold 
Sen 

(%) 

Acc 

(%) 

Spec 

(%) 

Prec 

(%) 

F1 

(%) 

Ti

me 

Fold 1  96.45  96.45  98.82  96.53 96.44 

47h 
12
m 

48s 

Fold 2  98.50  98.50  99.50  98.50 98.49 

44h 
35
m 

42s 

Fold 3  98.15  98.15  99.38  98.16 98.15 

57h 
35
m 
9s 

Fold 4  97.88  97.88  99.29  97.90 97.88 

59h 
20
m 

52s 

Fold 5  98.34  98.34  99.45  98.35 98.34 
40h 
6m 
59s 

Average 97.86  97.86  99.29  97.89 97.86  

 

Figure 14 shows the difference in evaluation and training 
time when using InceptionResNetV2 and 

InceptionResNetV2-KELM. Based on the analysis of the 

results, the InceptionResNetV2 method produces a lower 

model evaluation than the hybrid InceptionResnetV2-

KELM. Furthermore, its training time was significantly 

longer than the InceptionResNetV2-KELM hybrid method, 

which only took 42 minutes. The InceptionResNetV2-

KELM hybrid method uses feature learning from the 

InceptionResNetV2 model and replaces the classification in 

InceptionResNetV2 with the KELM model, so that the 

training time is more effective and reduces computational 

complexity. KELM adopts the ELM principle by 
implementing kernel functions, so the training process is 

carried out without a backpropagation mechanism. This 

differs from component classification in 

InceptionResNetV2, which relies on backpropagation, 

potentially increasing computational complexity and model 

training time. Figure 15 shows the user interface of the 

detection system application used in this study. 
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Figure 14. Comparison of InceptionResNetV2-KELM with 

InceptionResNetV2 

 
Figure 15. The detection system application interface 

 

TABLE. 6  

COMPARISON OF PREVIOUS RESEARCH USING MESSIDOR DATA 

Source Method 
Sen 

(%) 

Acc 

(%) 

Spec 

(%) 

(AbdelMak
soud et al., 

2020) 

Hybrid 
GLCM 
KELM 

74.62  81.42  94.00 

(Novitasari 
et al., 2023) 

Hybrid 
DenseNet 

KELM 

95.22  95.04  95.04  

(Gayathri et 
al., 2020) 

Hybrid 
CNN 
J48 

-  99.75  0.99  

Our 

research 

Inception 
ResNetV2 

98.50 98.50 98.50 

Hybrid 

Inception

ResNetV2 

KELM 

99.88  99.88  99.96  

 

A comparison of the evaluation results of previous studies 

with this study is shown in Table 6. The extraction method 

using deep learning can learn features well. This study uses a 

hybrid InceptionResNetV2 with KELM to get an accuracy 

of 99.85%. The selection of CNN architecture and 

classification method affects the accuracy and training time. 

The study conducted by (AbdelMaksoud et al., 2020) used 

three extraction types: GLCM, area of ROIs, and bifurcation 

points. Messidor data was preprocessed and segmented first. 

Preprocessing uses a median filter, HEBPDS, for contrast 

enhancement, normalization, and resizing. Then, the 

segmentation process is carried out to extract four 

pathological variations, namely blood vessels (BV), 

exudates (EX), microaneurysms (MA), and hemorrhages 

(HM). Extraction with GLCM applied to BV segmentation 

produces 12 GLCM features; the area of ROIs is calculated 

from the four pathological variations, and the bifurcation 

points from BV segmentation are calculated. The feature 

extraction results are selected as the most relative and 
correlated using PCA. The PCA results were classified using 

MLSVM, obtaining accuracy, sensitivity, and specificity of 

81.42%, 74.62%, and 94%, respectively. Research 

(Novitasari et al., 2023) detected Diabetic Retinopathy using 

hybrid CNN with ELM modifications, namely KELM, 

MLELM, and DELM. CNN extracts features used in the 

classification process using ELM modifications. This study 

conducted experiments using various CNN architectures: 

DenseNet, GoogleNet, ResNet18, ResNet50, and 

ResNet101. Before detection, Messidor data was processed 

by increasing the contrast in the image using CLAHE. The 
best architecture evaluation lies in the DenseNet 

architecture. The best results using the DELM method 

produced an average accuracy of sensitivity and specificity 

of 99.91% each. Research (Gayathri et al., 2020) detecting 

Diabetic Retinopathy using CNN for feature extraction and 

j48 as a classification method obtained an accuracy of 

99.75%. 

IV. CONCLUSION 

The classification results using the InceptionResnetV2-

KELM method obtained good accuracy because feature 

extraction using the feature learning section of the 

InceptionResNetV2 type CNN produces 1536 features. The 
resulting features can represent the image of Diabetic 

Retinopathy. The resulting feature map and the deep layer in 

InceptionResNetV2 must be clarified in each layer. KELM, 

as a classification method, can classify multiclass data well 

and in a relatively fast time. The best model results in 

detecting Diabetic Retinopathy using InceptionResNetV2-

KELM obtained the highest sensitivity in the polynomial 

trial. The evaluation obtained from the model is a sensitivity 

of 99.88%, an accuracy of 99.88%, and a specificity of 

99.96%. The training time on the model takes 41 minutes, 39 

seconds faster than the original InceptionResNetV2. 
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