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This systematic literature review (SLR) analyses 16 studies published between 2020
and 2025 that applied transformer-based or other machine learning models to predict
cardiovascular disease (CVD) using electronic health records (EHRS). Following the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, the review ensures transparency in the identification, screening, and
quality appraisal of eligible studies. The key findings reveal a rapid shift from
traditional machine learning models, such as Random Forest, toward transformer
architectures like the Bidirectional Encoder Representation from Transformers for
Electronic Health Record (BEHRT) and its variants. These models demonstrate a
superior discrimination (Area Under Curve:0.84 to 0.93) due to their capacity to
model long-term temporal dependencies. Explainable Al (XAIl) tools, such as
attention visualisation, were frequently employed, yet clinical interpretability and
integration into decision support remain underexplored. The review also highlights
opportunities in federated and privacy-preserving learning, multimodal data fusion,
and hybrid architectures that integrate transformers with traditional machine learning
methods. This review addresses a gap in the past literature by being the first SLR to
compare transformer variants for the prediction of CVDs. Other SLRs examined
general CVD risk models, but the present SLR analyses interpretability, external
validation and methodological limitations to transformer models. The findings of the
recent SLR reported challenges that include data-shift limitations, model-poor
population generalisation and their limitations to clinical adoption, which highlights
the need for more evaluation protocols and clinicians’ interpretability frameworks.

This is an open-access article under the CC-BY-SA license.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are a group of disorders
affecting the heart and blood vessels [1]. CVDs are a leading
cause of morbidity and mortality worldwide from
Noncommunicable disease [2]-[4], accounting for 17.0
million deaths, representing one-third of global deaths[5],
and putting a heavy load on healthcare systems and national
economies. CVD mortality is common in the majority of
developed, developing, and impoverished nations [1],
[6].[7]. To address the global burden of CVD [1], healthcare
systems are prioritising strategies that predict the onset to
enable early intervention [5],[4]. The increased use of
Electronic Health Records (EHRS) has created significant

opportunities for CVD prediction [8]. EHRSs capture a variety
of patient data, including demographic information, medical
histories and lab results, which offers a longitudinal view of
patient data[9] (Figure 1). Traditional risk scores, such as
Systematic Coronary Risk Evaluation (SCORE) and
QResearch Cardiovascular Risk Algorithm, Version 3
(QRISK3), have been widely used to estimate the risk of
CVD; however, their performance is suboptimal in diverse
populations [8]. Artificial intelligence(Al) technologies,
such as Machine Learning, are used to enhance medical
research, personalised treatment and diagnostic accuracy of
diseases [10], and when EHRs are integrated with Machine
Learning (ML) models, they improve the identification of
individuals who are at risk [9]. The researcher developed ML
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and Deep Learning (DL) predictive models to address
traditional methods, demonstrating superior calibration and
discrimination compared to conventional strategies [9].
Several studies have applied deep learning techniques to
CVD prediction using EHR data. For example, [3] employed
a recurrent neural network to model longitudinal patient
reports and reported an improved discrimination compared
to logistic regression. However, their approach struggled
with long-term dependencies and lacked interpretability, and
[8] reviewed 79 Artificial Intelligence (Al)-based CVD
studies with 486 predictive models that reported high bias
despite promising accuracy. Similarly,[11] demonstrated
strong predictive performance using a deep neural network
but also highlighted limited external validation across the
healthcare system. The study [9] revealed that ML models
achieved a higher score in predictive accuracy (AUC-0.87)
than QRISK3 (AUC-0.77), and reported that the model lacks
interpretability and external validation. However, predictive
models often face challenges such as institutional bias or
missing data and insufficient infrastructure [7], which limits
their clinical adoption.

Figure 1. Patient Electronic Health Record

Figure 1 shows an EHR example that includes diagnosis,
medication, lab results, procedures, and clinical notes from
the date of visit.

More recently, transformer-based architectures have been
introduced to address the limitation of sequential models in
handling long-term dependencies within EHR data[12]. A
researcher in 2020 proposed BEHRT [13], a bidirectional
transformer model that represents patient medical histories as
sequences of clinical tokens, achieving superior performance
in the cardiovascular risk task. Subsequent studies, including
Carefully Optimised and Rigorously Evaluated BEHRT
(CORE-BEHRT)[13] and Hi-BEHRT [14], refined the
original architecture to improve efficiency and
interpretability. Similarly [15], implemented prediction on
CVD using a transformer-based model (TRisk) which
demonstrated a superior performance of (Concordance-index
-0.91) compared to QRISKS3, later [16] comes with Clinical
Electronic Health Records(CEHR)-Bidirectional Encoder
Representations  from  Transformers(BERT),  which
introduced time token and age embedding into the
transformer architecture to help the system identify whether
a diagnosis was made recently or over years ago to help in
disease predictions.[17] introduced Medical-BERT, which is
a transformer-based deep learning model that is designed to
work with structured EHRs. The study examined diagnosis
codes, medications, and procedures. The Med-BERT learns

from diagnosis codes to predict the onset of a risk. The model
excludes time-gap embedding that was used in BEHRT [18],
which limited temporal precision. [19] introduced an
innovation, Multimodal-BEHRT, which integrates textual
clinical notes and tabular data for disease predictions. The
Multimodal-BEHRT was used to predict Breast cancer.[20]
introduced another approach, Targeted-BEHRT, where
causal inference capabilities were added to improve
interpretability. Despite these advances, existing studies vary
widely in evaluation protocols, outcome definitions and
validation strategies, making it difficult to draw consistent
conclusions regarding clinical applicability.

Although there are growing opportunities in leveraging
transformation-based EHR models, no existing systematic
literature review (SLR) has examined these models
specifically for CVDs prediction, how they validate external,
how they compare with traditional ML and their use of
explainability tools. Past studies on SLRs have focused on
generic models for CVD prediction or on how transformers
are used for clinical tasks, leaving a gap in understanding the
transformer’s specific strengths and weaknesses in CVD
modelling using longitudinal EHRs.This SLR addresses
these gaps by providing a focused and comparative synthesis
of transformer-based models for CVD prediction using
EHRs. The study will be guided by the following research
questions.

1. What are the most common algorithms and transformer
models that have been applied to Cardiovascular disease
prediction leveraging EHRS?

2. How do the transformer models perform compared to
traditional, deep learning and machine learning
approaches based on evaluation metrics such as AUC,
F1-score, calibration and accuracy?

3. What explainable artificial intelligence (XAl)
techniques have been integrated into Transformer
models to improve clinical interpretability?

4. What limitations and opportunities are presented by
transformer models for future empirical investigation?

Il. METHOD

This SLR was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [21].

A. Search Strategy

A search for relevant studies is conducted across various
databases, including PubMed, Xplore Digital Library
(IEEE), and Scopus. The search terms used across different
databases are summarised as: General search term
(“Cardiovascular diseases “OR “Heart disease” OR “CVD”)
AND (“Electronic Health Records” OR “EHRs”) AND
(“Prediction” OR “Risk*”) AND (“Transformer” OR
“BEHRT” OR “Machine learning “OR “Deep learning “OR
“Neural Network™) that was used across the 3 data sources.
Using the search terms, the identified studies were from
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PubMed (72), IEEE (5), and Scopus (30), totalling 107
studies from 2020 to 2025 in the English language.
B. Inclusion and Exclusion Criteria

The searches were restricted to the following inclusion
criteria, as outlined in Table I, and exclusion criteria in Table
I1, using a Population, Intervention, Comparator, Outcome,

Study (PICOS) framework [22].Table I shows the inclusion
criteria used in the selection of studies.
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TABLE II
EXCLUSION CRITERIA
Category Exclusion Rationale
Data source Studies not using | Included are EHR-
EHRs based models
Outcome Studies focusing on | Maintains  thematic
disease prediction | relevance.
which are not related to
CVvD
| TABLEI Publication Abstracts that lack a | Ensures
NCLUSION CRITERIA Type full methodology methodological depth
Category Inclusion Rationale
Population Human . studies using | Studies that Simulation Simulated dataset Highlight real clinical
Electronic Health | ensure the relevance
Records(EHRs) ,>= 18 years | clinical
related to cardiovascular | relevance  of
disease(CVD) EHR-based

models for the
prediction task.

Intervention

utilise
BERT,

Studies that
transformers  like
Hybrid
Transformer(Recurrent
Neural Network) for
prediction, diagnoses or risk
assessment of CVD and other
traditional Machine Learning.

Studies that
target the
contribution of
transformers or
ML models for
CVD outcomes.

Comparator Studies that compare | Allow
transformer models with other | benchmarking
machine learning/deep | and
learning models and use | comparative
metrics to assess each model. | analysis of

model
performance.

Outcome Studies that report quantitative | Ensures the
predictive performance | inclusion of
metrics like AUC, F1-score | studies with
and precision. measurable

outcomes.

Study Peer-reviewed empirical | Studies that
studies, preprints  with | guarantee
methodological details. methodological

rigour and
reproducibility.

Publication From 2020 -2025, i.e. for the | Studies

Year definition of a term, earlier | included
years can be used. leveraging

current
developments
for CvD
prediction.

Table 1l presents the exclusion criteria used to guide the
selection of studies.

C. Screening studies

The PRISMA flow chart illustrates the 3 databases that were
searched, with results of PubMed (72), IEEE (5), and Scopus
(30). Mendeley was used to store the downloaded studies and
remove duplicate records; the initial total was 107. Records
that remained after removing duplicates numbered 97. The
screening process consisted of 2 stages: title and abstract
screening, and full-text screening. During the abstract and
title screening, we assessed the study aim and methods to
determine if each paper fell within our scope of review. The
number of eliminated studies was 70. A total of 27 papers
remained, and they were reviewed to determine whether they
addressed the research questions. After a full-text review, 12
documents were excluded. Sixteen studies were included and
are listed in Table 1V.

D. Eligibility Criteria

The studies included were developing a prediction model
using EHRs with tabular data, which is structured such as
demographic, diagnosis codes, medication and lab tests. The
eligible studies had to use ML/DL and transformers to predict
the onset of CVDs with model performance evaluation
metrics and report performance metrics comparing the
baseline models. The studies that integrated any of the
Explainable Al or did not integrate were included. The
studies that were not eligible were the ones that used other
data types (e.g. genomic datasets) to predict the onset of
CVDs. The study on a specific population (e.g. studies
investigating the performance of predictive models in the
HIV-positive population only) was excluded, and those that
were using EHRs to predict non-CVDs forecasting. All
studies included had to be written in English. Studies that fall
between 2020 and 2025 were included to ensure that studies
included leveraged current developments for CVD
prediction. The researcher [18] introduced a transformer
called BEHRT in 2020, which marked the emergence of
transformer-based models that reshaped EHR modelling.
Restricting the period ensured that the evaluation of modern
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models and enhanced methodological comparability, given
the advancement of Al tools, earlier papers (before 2020)
relied most on conventional ML models.

E. Assessment of Study Quality and Risk of Bias

The methodological quality and risk of bias of the included
studies were systematically evaluated using the Prediction
Model Risk of Bias Assessment Tool(PROBAST). This
framework assesses bias across four domains: participants,
predictors, outcomes and statistical analysis. Each study was
independently assessed by two reviewers (O.C and B.N),
with discrepancies resolved through consensus. Each domain
was rated as” low risk”,” moderate”, or “high risk” according
to the PROBAST guidelines and the overall risk of bias was
assigned to each study. The risk of bias assessments was
considered when interpreting the findings. The detailed risk
of bias assessment is presented in Table Ill.Risk of bias
assessments were used to contextualise findings across
studies, with conclusions prioritised from low-risk studies
and results from moderate- and high-risk studies interpreted
cautiously when drawing comparative and translational
inferences.

F. Risk Assessment

Table 111 summarises the overall Risk of Bias scores for 16
studies assessed using PROBAST. This tool evaluates
prediction models across four domains (participant,
predictor, outcome, and analysis) to identify bias levels.
Table Il show the Overall ROB using PROBAST. Six
studies rated moderate (37%), including both traditional and
hybrid ML, models like XGBSE, MT-GRU and Hybrid ML
[23]-[24], the models demonstrated high predictive accuracy
but lacked in dataset diversity.4 studies rated Low (25%),
which included transformer based models like Targeted
BEHRT, BEHRT, Hi-BEHRT and Federated BEHRT
[10],[24],[20],[25], the models showed a strong data
representation and the use of large dataset like MIMIC-II
enhanced validation across different data types. Four studies
rated Low-Moderate (25%), the models classified were
Hybrid, which combine ML and transformers [15]-[16],
[13],[26].

For each study that was included, the PROBAST domains
(participants, predictors, outcomes, analysis) were scored on
a 0-2 scale, which produced an overall bias which ranged
from O(high bias) to 8 (low bias). There were studies scoring
>= 6 were classified as low risk, between 4-5 were classified
as moderate risk, and <=3 were classified as high risk.

TABLE Il
OVERALL RISK OF BIAS

Author Overall ROB Percentage
[10].[241,[201], [25] Low 25
[23],[27],27], Moderate 37
[28].[29].[24]
[15], [16], [13],[26] Low-moderate 25
[30],)[31] High 13

The studies lacked transparency in Hyperparameter

optimisation, which increased the risk of bias. 12% (2
studies) rated high [28], [29], a common factor being that the
models used publicly available Kaggle datasets, which
lacked longitudinal EHR validation. The PROBAST
assessment highlighted improved methodological quality
from 2020 to 2025, with the introduction of a hybrid
architecture aimed at reducing bias. The 16 studies reveal a
need for explainable model frameworks that will aim to
reduce bias and facilitate better clinical adoption.

111 RESULTS AND DISCUSSIONS

This section represents the characteristics of the included
studies. Figure 2 presents the PRISMA diagram of the
search and the screening results.

Records identified through
database searching

PubMed = 72

Identification

IEEE =5 Additional records
Scopus =30 identified through other
Total = 107 sources
- n=28
() v v
Records after duplicates
E‘ removed (n=9 7 )
€
8 Records excluded (n=7 0 )
g Based on:
L. Abstract did not meet the
inclusion criteria which
v lacked EHR-based
e | modelling.
_— | ———» 2.Studies that focused on un
() Records f‘ge;;ned related data sources like
wearable devices
£
2
= Full-text articles excluded, with reasons
i . n=12)
Full-text articles «  Nouse of Transformer/ML/DLto
assessed for » perform CVD related tasks.
- elr:glb.',h.“ «  Prediction of diseases which are
et not related to CVD outcome.
‘ «  Non EHRs mentioned or
discussed.
¥ «  Outside time range (2020-2025
- «  Population specific (e.g. HIV+
3 Studies i only)
S tudies included (n=16)
]
&

[

Figure 2. PRISMA chart
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TABLE IV
SUMMARY OF INCLUDED STUDIES
Autho | Country | EHRs ML/Transf | Compariso | CVD Opportunities | Challenges XAl used Performance
r source(data | ormer n Models outcomes metrics
set) /Task
[23] United Oxford Multi-Task -QResearch | -Myocardial | -Longitudinal Limited -Attention -Area  Under
Kingdom | University Gated Cardiovasc | Infarction(M | Electronic external weights Curve(AUC)M
Hospital Recurrent ular  Risk | I)-Ishaemic Health validation 1- 0.897
EHR Unit(MT- Algorithm stroke Record(EHR) -Stroke -0.849
GRU )/MT- | Version
Attention- 2(QRISK?2)
based(Att)- ,
GRU(RNN) | -Logistic
Regression(
LR ) single
GRU
[15] UK -Clinical - -QRISK Cardiovascu | -Improved Requires Attention Concordance-
Practice Transformer | -ML lar individualised | validations visualisation | index and
Research risk  model disease(CV risk AUC
Datalink (TRisk) D) treatment | stratification. improved
(CPRD) selection reporting  (-+
0.1) in papers
[30] Saudi Kaggle -Ensemble -Random Binary CVD | Tabular data | -Public RF feature | -RF accuracy
Arabia ML Forest(RF) presence enhances a | datasets do | importance 88.65%;
-Deep -Extreme strong not  show -AUC  (0.92-
Neural Gradient benchmark real clinical 0.94)
Network(D Boosting data.
NN) (XGBoost) -Lack of
-DNN external
-K-Nearest validation.
Neighbours
(KNN)

[18] -UK -CPRD Bidirectiona | -Recurrent CVD onset The long | -Limited Attention Precision gains
| Encoder | Neural dependency of | external visualisation | 8 to 13% over
Representati | Network models validation Deep Learning
on from | (RNN) -High (DL) baselines
Transformer | -Long computation
S for | Short-Term al needs
Electronic Memory(L
Health STM)

Records(BE | -RETAIN
HRT) model | -Deep care
[16] United Columbia Clinical -BEHRT Heart Temporal US data only | Attention -AUC 0.80 -
States of | University Electronic - Failure(HF) reasoning. used component 0.84
America Irving Health MEDBERT analysis -Precision
(USA) Medical Records -BI-LSTM Recall (PR)-
Centre-New | (CEHR- -XGBoost AUC -0.32
York BERT)
Presbyterian
Hospital-
Observation
al  Medical
Outcomes
Partnership
(CUIMC-
NYP
OMOP)

[13] UK CPRD Carefully -BEHRT CVD-related | Improved Requires -No XAl | High
Optimised -Other risk calibration external specified, calibration and
and transformer | prediction validation -attention accuracy Vs
Rigorously S across analysis BEHRT
Evaluated- different (improved)

Record institutions.
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(CORE)-
BEHRT
[14] UK CPRD Hierarchical | -BEHRT -HF Incorporates - Bootstrap -AUROC:
-BEHRT -CEHR- -Stroke multimodal, Architectura | Your Own | Percentage
BERT -Chronic hence | complexity | Latent change 1-5%
-RNN Kidney enhancing -Challenges (BYOL) -AUROC PC
- Disease model in 18 % s
Convolutio | (CKD) efficiency. deployment BEHRT
nal Neural
Network(C
NN)
[20] United Clinical Targeted- -Regression | Estimation Casual Computatio Attention — | -Lower
Kingdom | Practice BEHRT -BEHRT of drug | inference nal intensive | doubly Standard
Research -Dragonnet | effect robust Absolute Error
Datalink -Targeted estimation (SAE) Vs
(longitudinal Maximum benchmarks;
EHR) Likelihood -accurate
Estimation Relative Risk
(TMLE) (RR)
estimation
[25] Israel Medical Federated - -Next -visit | -Training data | Simulation Attention- -Average
Information BEHRT Centralised | diagnosis of the same | cost based precision =
Mart for BEHR prediction hospital (near- interpretabili | 0.63;
Intensive -Local (including central ty - within 3% of
Care- models CVD) performance) the central
Version 11 -The  model model
(MIMIC-111) can train on
several patient
datasets.
[26] USA MIMIC-III BERT-based | -CNN Multi- Captures -Leverages Attention -AUC=0.90 vs
-LSTM disease temporal ICU data | visualisation | CNN =0.84
-RETAIN support, embedding only -LSTM =0.86.
including -Requires
CVD heavy
diagnostic computing
[27] China Patient ML-based -RF -CVD onset. | -The ML | There is a | Shapley Competitive
safety and | predictive -LR models need for | Additive AUC reported
EHR dataset | model(XGB | -XGBoost applicable to | external Explanation
SE) clinical validation s (SHAP)
settings. due to
dataset
heterogeneit
y.
[32] China China -KNN LR baseline | -Coronary Transparent Limited SHAP. -LGB AUC =
Health and | -RF Artery pre-processing | recall 0.818
Retirement -XGB Disease -F1=0.509
Longitudinal | -Light (CAD) -Recall =
Study Gradient -HF 43.1%
(CHARLYS) Boosting -Angina
cohort (LGB) -Stroke
[28] Turkey Kaggle -XGBoost Support Binary CVD | Clinical - SHAP -XGBoost
-RF Vector presence (1 | Predictors Generalisati AUC =0.803
Machine or 0) identified on limits -F1=0.75
(SVM) -No
-KNN longitudinal
-LR EHR
[31] Turkey -University Hybrid ML | -LR Binary CVD | Enhanced -Overfitting SHAP -XGBoost
of -RF presence (1 | feature risk. accuracy =
California, -XGBoost or 0) selection -Small non- 97.4%
Irvine (UCI) -SVM pipeline. longitudinal -AUC =0.98
heart -DNN datasets
disease.
-Kaggle
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[29] USA Biomarkers -RF ASCVD(At | CVD onset Biomarkers Limited Feature AUC =0.90 to
integrated -SVM heroscleroti are integrated | external importance 0.96
cohort -Neural c with EHR validation analyses
Network Cardiovasc
(NN) ular
Disease)sco
res
[24] -UK Irregular- Hybrid (ML | -Standard CVD  risk | Irregular Difficulties Temporal Improved
-China timed EHR and ML prediction sampling is | in pre- | embedding discrimination
Transformer | -DL addressed. processing and attention | and calibration
)

A.Characteristics of Included studies

Table IV shows a summary of 16 studies (study
characteristics) from 2020-2025. The included studies
employ DL, ML, and transformers as the main predictive
models applied to CVD outcomes, leveraging EHRs. Each
study is categorised by model type, explainable method used,
CVD task, comparative benchmark and performance metrics.
Sixteen studies utilised EHRs from Western Healthcare
Systems, the United Kingdom (7), China (3), the United
States of America (3), and also from Saudi Arabia (1), Israel
(1), and Turkey (2). This synthesis highlights the
methodological and interpretability techniques, which are
guided by the research questions

B. Publication Trends

The studies chosen were from 2020 to 2025; Figure3 shows
the trends in the distribution of years.

Trend of Studies by year

2020 2021 2022 2023 2024 2025
==@==Years

Figure 3. Trend of studies by year

Figure 3 shows the trends in the publication year from 2020
to 2025, the eligible years for the review. In 2020, there were
2 studies; in 2021, there were 2 studies. The least studied was
1 study, 2022. In 2023, there were 3 studies; in 2024, there
were five studies, and 3 studies were published in 2025. The
studies were published in different countries (Figure 4). The
Line chart (Figure 3) represents the rise in research interest
in transformer-based and Al-driven prediction models for
CVD using EHRs. In 2022, there was a decline, but the
number increased from 2023 to 2024, reflecting the growth
of Data-driven solutions in healthcare.

C. Study Distribution

The findings were from 6 different countries, as shown in
Figure 4 in 2020-2025. The pie chart in Figure 4 shows the
distribution of countries in the included studies for review. It
shows that 41% of studies (7\16) were from the UK, which
dominates the research area, meaning the UK has more active
research and better EHR access.

Study Distribution

Turke:
Y Saudi Arabia

Israel

China Country

UK -7/16

USA - 3/16

China - 3/16

Saudi Arabia - 1/16
Turkey - 2/16

mmm |srael - 1/16

UK
USA

Figure 4. The distribution of studies by country

18%(3) from the USA shows that it is another centre for CVD
research on transformers, and China reported 18%(3), which
is the second leading, Turkey has 2 studies (12%)
highlighting research interest on CVD predictive
modelling,6%(1 each) from Saudi Arabia and Israel indicate
emerging interest, but less research output compared to the
UK or the USA. The distribution indicates the growing
interest in Data-driven predictive modelling in healthcare.

D. Performance and Distribution of Model Types

Figure 5 shows the distribution of model types; ML models
were most used (9 studies), transformers were applied in 7
studies most used (BEHRT, CORE-BEHRT, Hi-BEHRT,
Federated BEHRT and TRisk) [25],[20],[14]. In 2 studies
Hybrid approach highlighted the interest in integrating
models for temporal reasoning.
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Performance and Model Distribution

10

o N B OO

H Model Type

Figure5. Performance and distribution of model type

The reported AUC values ranged from 0.84 to 0.93; however,
these variations should be interpreted in light of difference in
study design and data characteristics. Higher AUCs were
generally observed in studies using curated datasets with
limited population diversity, whereas studies relying on real-
world EHR data demonstrated a greater performance
variability. Differences in longitudinal depth, feature
engineering strategies and validation approaches further
contributed to the observed performance spread.

Notably, higher AUC values were predominantly observed
in studies using curated or single-institution datasets with
limited population heterogeneity, whereas studies relying on
real-world, longitudinal EHRs exhibited greater performance
variability, underscoring the influence of study design and
data characteristics on reported discrimination.

E. Model usage and best performance frequency

Figure 6 presents a clustered comparison of model usage
across studies and the frequency with which each model
achieved the best performance. Transformer-based model
demonstrates stronger performance relative to their adoption
compared with traditional and deep learning approaches.
Among transformers, BEHRT shows the best performance in
two studies, being evaluated in three studies.

Model usage and perfromance frequency

Hybrid
Random Forest
CNN

RNN

LSTM

DNN
XGBoost
T-BEHRT
Hi-BEHRT
CORE-BEHRT
BEHRT

I'[[[[ | 1[[ [l HI

o
=
N

3 4 5

M Best Performance  ® Used in studies

Figure 6. Model Usage

CORE-BEHRT was also used in three studies, but it
achieved the best performance in only one, while Hi-BEHRT
achieved top performance in its single evaluation. Targeted-
BEHRT did not outperform baseline models. These results
show BEHRT’s effectiveness for longitudinal EHR-based
CVD prediction. Traditional machine learning models were
frequently used but less consistently dominant. Random
forest was a commonly applied ML model that appeared in
four studies and performed best in two, which reflected its
strength on tabular data but shows limited modelling
capacity. XGBoost showed competitive performance but did
not exceed the transformer-based models. Deep learning
models like LSTM, CNN, RNN and DNN were evaluated in
one to two studies each and achieved moderate performance.
Lastly, the hybrid ML-Transformer model demonstrated
promising results in limited evaluations (1). Figure 6
indicates that transformer-based, particularly BEHRT,
achieves superior performance, which supports their growing
adoption for CVD prediction from longitudinal EHRSs.

F. Cardiovascular Disease Outcomes

The CVD outcomes are presented in Table V.

TABLE V
CARDIOVASCULAR DISEASE OUTCOME

CVD Task Number of Studies

Stroke 3

CVD outcome 10

Heart Failure

Chronic Kidney Disease

Drug

Coronary Artery Disease

Angina

Rl RlR PP w

Next visit
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Table V shows that the general Cardiovascular disease
(CVD) outcome was mentioned in 10 studies, which is the
largest category. This indicates that researchers aimed to
build broad CVD risk prediction models using EHRs. Three
studies evaluated the use of predictive models in Stroke,
which indicates a significant interest in using EHRs for real-
time detection of stroke. Similarly, 3 studies evaluated Heart
failures using transformer models because HF involves long-
term clinical histories where the transformer can model well,
whereas specific CVD types like Chronic Kidney Disease

(CKD), Drug effects, Coronary Artery Disease (C, Angina,
and next visit predictions were done in 1 study, showing that
they are not frequently addressed. Studies like [14] evaluated
3 CVD outcomes like HF, Stroke and CKD simultaneously
using Hi-BEHRT, which is a transformer-based model which
leverages multimodal data(unstructured and structured data)
to make predictions. Another study evaluated Heart failure
[16] only on CEHR-BERT.

G. Challenges and Opportunities of Transformer Models

TABLE VI
OPPORTUNITIES AND CHALLENGES OF TRANSFORMER MODELS
Transformer Model Opportunities Challenges
[18] e  Captures long-term dependencies in e  High computational cost.
EHRs e  Limited external validation.

attention mechanisms

e Interpretability enhanced through

clinical adoption.

[13] e Improves calibration and stability for e  Limited transparency in Hyperparameter

e  Enhance interpretability and readiness of | e  Limited external validation.

tuning.

across institutions.
e  Decentralised data storage.

BEHRT outputs.
[14] e  Supports multimodal learning to enhance | ¢  Computational cost.
efficiency in long-term CVD prediction. e  Challenges in integrating multimodal data for
deployment.
[25] e  Privacy is preserved due to local training | ¢  High communication and simulation cost.

e Limited external validation across
heterogeneous systems.

[20] e Integrated causal inferences to enhance e  Computationally intensive for large datasets.

drug effect estimation e  Limited validation across different
populations.

[15] e  Employs attention visualisations for e  Limited validation in diverse and larger
clinical interpretability to improve cohorts.
individualised risk stratification and e  Limited interpretability
treatment selection.

[33] e Incorporates age and time embedding for | e  Dataset restricted to the US.
temporal reasoning in prediction. e Moderate interpretability.

e Limited external validation.

improved disease prediction.

[17] e  Enables disease prediction across multiple | e  Excludes temporal embeddings (used in
domains. BEHRT)
e  Provides a foundation for structured e  Limited temporal precision.
medical data.
[19] e Integrate textual clinical notes and tabular | e  Increased risk of overfitting.
data. e  High architectural complexity.

e  Enables cross-modal learning for e  Lacks specific validation for CVD outcomes.

Table VI shows most common challenge (6 counts) is the
computational cost or complexity [18],[14], [19], [25].[15],
[25], followed by the limited validation, which enhances
generalisation of the model for clinical adoption. Models like
multimodal [19] had challenges in integrating data (structured
and unstructured), overfitting risk was noted, and
communication or simulation cost was identified as a

challenge in [25], where local training is done on patient
EHRs. Lastly,[13]demonstrated a limited transparency in
Hyperparameter tuning.

The most noted opportunities are improved predictive
performance in 5 models [16]-[18],[14], [19] and enhanced
interpretability through attention visualisation techniques.3
models demonstrated their ability to capture long-term or
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temporal dependencies [16]-[18] that enhanced model
predictions. The preservation of privacy and causal inference
capabilities are not common as they appear in 1 model
each[20], [25]. Multimodal learning[19] is a growing
opportunity, but it is still used in a few studies.

H. Explainable Al

All studies (16) included feature importance or Explainable
Al or attention techniques to help interpret the outputs,
making models more understandable. Figure 7 shows the XAl
used in a number of studies.

Attention weights(AW)-1, Temporal embedding-1, Feature
importance (1), SHAP (5), Attention visualisation (6) and
Bootstrap Your Own Latent(BYOL) -1 studies.

Explainable Artificial Intelligence

AV
SHAP
FlI

HIE
AW
BYOL

0 2 4 6 8

Number of Studies

Figure 7. Explainable Al

The chart highlights AV being the most used XAl in the
included studies for interpretability. The bar plot (Figure 7)
shows that researchers are trying to bridge the gap of the
“black box” by demonstrating how the model predicted any
CVD task to enhance clinician trust; however, the models are
still not deployed in clinical settings.

Across the 16 reviewed studies, three dominant patterns
arose, such as: a) the transformer model outperformed
DL/ML in capturing the temporal dependencies, even though
the model remained inconsistent in external validation and
calibration. b) XGBoost was noted to be the highest ML
model, which achieved high accuracy on small curated
datasets, which highlights inflation in performance.
Transformer models were shown to rely on post-hoc attention
visualisation, not clinically grounded explanatory
mechanisms, so these patterns demonstrated the
fragmentation of methodological strategies and lack of
evaluation protocols across the reviewed papers.

Overall, the evidence suggests that performance gains alone
are insufficient to justify clinical adoption; instead,
interpretability, robustness under data shift, and workflow
integration emerge as equally critical determinants of real-
world utility.

|. Discussion

A critical synthesis of the reviewed papers demonstrates
that, despite the discriminative performance of transformer
models, they still lack external validations. This section
answers the four research questions and is numbered as
follows.

1) RQ1 What are the most common algorithms and
transformer models that have been applied to
Cardiovascular disease prediction leveraging EHRS?

Among the conventional algorithms, XGBoost and Random
Forest remain the most used machine learning baselines for
benchmarking, which is due to their robustness on tabular
EHRSs[34], [35]. They are not suitable for longitudinal EHRs
due to their limitations in temporal reasoning and lack of
contextual embedding [32]

The random forest algorithm is a powerful machine learning
algorithm that uses multiple decision trees for classification
and regression tasks, and it operates under supervised learning
[31],[7], [36]. It is constructed using decision trees, which are
generated from random samples of data and the final output
is determined by the majority voting among the trees [34].
The RF algorithm was used [30] within an ensemble for
Binary CVD detection, utilising the Kaggle dataset with
feature importance to analyse the output. Similarly, [31]
compared RF with other ML models using the same dataset
as [27], highlighting RF as outperforming the ML
models.[29] Integrated RF to predict CVD outcomes with
biomarker data, and feature importance was used to interpret
the predictions.RF is also used in other fields besides
healthcare, like in banking, where RF predicts
creditworthiness or detects fraud, and in e-commerce, it is
utilised to predict customer preferences based on their past
behaviour [34].

The strengths of RF are that it performs well with
heterogeneous and structured inputs, and the models that use
RF are explainable via feature importance or SHAP. RF have
a versatility ability for regression and classification, and has
reduced overfitting [34]. The challenges with it are that RF
involve longer training times due to the number of trees,
which slows down real-time predictions [34]. There is no
temporal sequencing, which is a limitation for progressive
diseases. The author [30] reported RF accuracy to be 88.7%
with an AUC ranging from 0.92 to 0.94 for curated
datasets.[29] evaluated RF to be the top model with an AUC
ranging from 0.90 to 0.96 in cases where biomarkers are
integrated.

XGBoost is an optimised gradient boosted tree algorithm that
builds trees sequentially, where each tree corrects the errors
of the previous ensemble on tabular data. The process is
adding trees that model the residuals through tree pruning
[35]. The model was a top-performing baseline in studies like
[31],[28] for binary CVD classifications with a high AUC
(0.98) for curated data. [27], [32] used XGBoost for a
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longitudinal-oriented task, where they integrated SHAP to
visualise the interpretation of feature contributions.

The strengths of XGBoost are effective in distinguishing
between classes [35] and showed superiority in discrimination
on tabular sets, for example [31], XGBoost achieved the best
among other ML baselines with AUC =0.98, and its accuracy
was 97% and can be integrated with SHAP or other
techniques to provide feature importance.

The challenge is the limited temporal embedding and
overfitting on the curated data [35].

Transformers represent a state-of-the-art deep learning
architecture that supports NLP tasks such as word/sentence
predictions[37]. They have become one of the most influential
architectures in artificial intelligence, where computers have
achieved great success not only in NLP but also in vision and
speech processing [38]. The transformer models adopted by
the studies under review are BEHRT[18], which adapts
transformer models originating from Natural Language
Processing, tokenises diagnoses/medications, and procedures
in a patient timeline. BEHRT uses self-attention to allow the
model to weigh the importance of past events to predict future
outcomes. The original paper [18] introduced BEHRT to
predict 301 diseases, CVD included, from CPRD and MIMIC
datasets, when compared against LSTM, CNN and other ML
baselines.BEHRT improved discrimination and provided
understandable explanations. BEHRT was reported [16]to
outperform RNN approaches and prior BERT-based models
for multi-disease tasks. The strengths reported in BEHRT are
gains in precision of 8-13% over DL baselines, enhanced
understandability of the model output, and BEHRT is a base
for variants, capturing longitudinal trajectories in EHRs
[16].BEHRT challenges are the need for large longitudinal
datasets, limited deployment in resource-constrained settings,
and the need for external validation across
institutions.BEHRT reported 0.84-0.93 for the CVDs task,
compared to LSTM/CNN.

BEHRT variants (Hi-BEHRT, Federated-BEHRT, Targeted-

BEHRT)

Hi-BEHRT [14] introduces multimodal inputs, CORE-

BEHRT [13] is an evaluated BEHRT that focuses on

calibration for clinical use, while Targeted-BEHRT [20] uses

causal inference for treatment effect on the individual, and

Federated-BEHRT [25] trains the BEHRT model locally on

the participating institute’s dataset.

e CORE-BEHRT improved calibration [13] to make
BEHRT clinically adoptable.

e Hi-BEHRT [14] used multimodal data to predict HF,
Stroke and CKD.

e Targeted-BEHRT [20] extended the BEHRT and used
causal inference to estimate drug effects within EHRs.

o Federated-BEHRT,[25]trained the BEHRT model on
local datasets or devices to maintain data privacy.

Despite promising predictive performance, the clinical

implementation  of transformer based model for

cardiovascular disease prediction remains limited. Most
studies have not evaluated integration within routine clinical
workflows, real-time inference feasibility or any clinician
interactions with the model outputs. Furthermore, the absence
of prospective validation and impact assessment restricts the
translational readiness of these models, underscoring the need
for deployment-oriented evaluation beyond retrospective
performance metrics.

2) RQ2 How do the transformer models perform
compared to traditional, deep learning and machine
learning approaches based on evaluation metrics
such as AUC:

The Area under Curve(AUC) is a common metric for
assessing the discriminative ability of prediction models [39].
In this study, AUC was commonly used as a performance
metric, followed by accuracy [32],[28], F1-Score, Precision,
calibration, Concordance-index, Precision-Recall AUC, and
Average Precision. Across 16 included papers, transformers
(BEHRT, CORE-BEHRT, Hi-BEHRT) achieved AUC (0.84
t0 0.93), which shows a higher discrimination and calibration
compared to Deep Learning AUC (0.83 to 0.90) and Machine
Learning AUC (0.80 to 0.98), which depend on dataset
quality[13], [14], [16], [18]. The TRisk model utilised the
CPRD dataset, which refined patient stratifications and
enhanced treatment allocation, improving by 0.1 over
QRISKS in concordance index[15].

CORE-BEHRT enhanced calibration, which was a bedrock of
clinicians' translation [13], while Hi-BEHRT reported
improved discrimination (AUCROC = 0.91) among the
multimodal datasets [14]. The Targeted-BEHRT[20] reduced
the standard error by integrating causal inference for
estimating drug effects. Another transformer-based study
achieved an AUC of 0.957 for CVD classification by
combining with statistical feature filtering [40]. Despite the
performance gain in transformers, there is still a
generalisation concern; for instance, there is a study that
assessed deep learning models under data shifts [41], reported
that models like BEHRT capture trajectories, and
performance lowered when no stationary data was used
[42].In comparison, traditional ML achieved high AUC (0.98)
[28] on small curated datasets but had poor generalisation on
longitudinal EHRs [30],[31].

While transformer-based architectures offer advantages in
modelling  long-term  temporal  dependencies and
heterogeneous EHR data, conventional machine learning
models such as Random Forest, Gradient Boosting, and
Logistic Regression remain competitive for structured tabular
datasets. Several reviewed studies reported comparable
performance between transformers and non-transformer
models when temporal complexity was limited, suggesting
that model selection should be guided by data characteristics
rather than architectural novelty alone.
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3) RQ3 What explainable artificial intelligence (XAl)
techniques have been integrated into Transformer
models to improve clinical interpretability?

Interpretability is vital in clinical modelling [43] to
understand how systems make decisions, as it remains a
critical issue for clinicians or stakeholders who are involved
in the process and affected by the prediction result [44].
Explainable Artificial Intelligence enhances models to be
understandable and transparent in diagnostic tasks [45], [46],
[47],[48]. Among transformer-based studies, attention
weights have been used to show relevant temporal events.
Hybrid models integrate SHAP or Feature importance. For
example, [49] explored code-level interpretability of the
transformer models. Fifteen out of sixteen studies integrated
a type of Explainable Al (XAI) tool to enhance model
understandability. The frequently used techniques were
SHAP and Attention visualisation [25], [29],[28]. The
dominance of attention-based methods indicates that
interpretability is central to transformer-based modelling,
though clinical explainability remains limited [11], [15],
[18]. An example is the TRisk model that used attention
mechanisms to visualise the risk driving events that are in a
patient timeline [13], and BEHRT used bidirectional
attention weights for the interpretation of diagnosis
[10].SHAP was noted to be used most by ML models to rank
the significance of biochemical predictors and their
demographic characteristics[28],[28].Hi-BERHT deployed
Bootstrap your own Latent(BYOL) for multimodal feature
interpretation [14].

However, while attention maps provide some insight, many
studies still rely on post-hoc XAl rather than inherently
interpretable model structures[3], [8]. Moreover, only a
minority of studies translate XAl outputs into actionable
clinical insights. A key gap is the translation of model
interpretation into clinician-friendly decision support by
aligning the clinical interpretability and technical
frameworks. Despite the great opportunity demonstrated by
the XAl tools, there was limited proof that the interpretability
outputs were evaluated in the clinical workflow and from the
XAl tools, attention maps dominated in transformer-based
studies, offering partial interpretability. The maps may
produce misleading explanations when the attention does not
correlate with casual drivers. This gap demonstrates a
disconnection between clinical explainability and technical
interpretability.

4)  RQ4 What limitations and opportunities are presented
by transformer models for future empirical investigation?

Transformer-based models have achieved state-of-the-art
results in predicting CVD [3]. However, they face key
limitations that hinder their adoption in the clinical sector,
including data privacy concerns, as EHRs contain sensitive
patient information [6], challenges in integrating multimodal
data, even though its modelling has emerged as a powerful

approach in clinical research[50], high computational costs,
and a lack of external validations[51], [52] across diverse
settings [6], [25]. As shown in the summary table 1V, studies
are concentrated in different countries, often using databases
like CPRD, a US-based dataset, which means other
populations are underrepresented, and models are not trained
on diverse datasets to improve generalisation [29], [9], [11],
[12],[53]. Leveraging longitudinal EHRs restricts model
adoption or applicability in low-resource settings with
inconsistent data [9], [11]. While attention visualisations [9],
[10], [12], [15], [25], [26] offer insights into model outputs,
interpretability remains a concern due to the lack of
transparency required for clinical adoption. Another
limitation is the absence of fairness[54] or bias analysis; from
the reviewed studies, performance disparities related to
socioeconomic groups, sex, and age were not evaluated,
despite CVD risk varying across populations[16]. Without
fairness assessments, transformer models risk exacerbating
existing health inequalities.

Despite the limitations noted, some opportunities for
transformer-based models emerged, like multimodal
transformers  (HI-BEHRT) [14], [55]. The model
demonstrated the use of different EHR structures to predict
the onset of Heart failure, thereby improving efficacy.
Multimodal data analysis is a great emerging opportunity in
the healthcare setting as many modalities are considered in
the analysis or prediction of a certain risk, which makes
models more accurate as all aspects are investigated, such as
data from wearable devices, clinical notes and imaging[55].
Another opportunity emerging is federated learning, which
stands as a pathway to enable multi-institutional collaboration
with centralised storage of data [25]. The ability of
transformer-based models to capture long-term dependences
in EHRs [18] makes the models outperform ML techniques.
The transformer-based model, such as BEHRT, can identify
relationships in patient data over time to understand the
evolution of the disease under study. The transformers
reviewed in studies [15], [16], [25] enhanced interpretability
through attention mechanisms where weight is given to each
past event, like the medication the patient is subscribed to,
which promotes transparency since the clinicians will see the
events the model predicted on, and how much weight they
each carried. The study [13] demonstrated how transformers
improved calibration with their estimation probability more
likely to be the same as the real-world events, making it stable
for clinical adoption. Privacy of patient EHRs improved by
the introduction of federated learning [25], where there was
local training across institutions, aimed at decentralising data
storage through simulation of the system to enable clinicians
to make informed decisions for their patients.

From a clinical implementation perspective, the reviewed
evidence suggests that transformer-based models are not yet
ready for routine deployment. Most studies remain
retrospective, lack prospective evaluation, and do not assess
the feasibility of real-time inference or clinician interaction
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with  model outputs. Furthermore, issues related to
computational cost, calibration monitoring, and integration
into existing clinical workflows remain largely unaddressed,
particularly in resource-constrained healthcare settings. These
gaps highlight the need for implementation-focused studies
that move beyond algorithmic performance toward clinical
utility.

J. Limitations of the study

Generalisation across populations remains a significant
challenge. Most studies were conducted using data from
single institutions or healthcare systems, thereby increasing
the risk of population-specific biases and data shift.
Variations in demographic composition, clinical coding
practices, and healthcare delivery models may substantially
reduce model performance when applied to external settings,
underscoring the need for multi-centre validation and
robustness testing. The concentration of studies in a small
number of countries and healthcare systems further amplifies
concerns about population generalisability, as models trained
on homogeneous cohorts may fail to perform reliably when
exposed to demographic, clinical, and institutional shifts.

K. Future work

Future research should focus on four key priorities such as:
1) systematic evaluation of robustness under temporal and
distributed data shifts; 2) large-scale external validation
across geographically and demographically diverse
populations; 3) integration of intrinsic interpretability
mechanisms within transformer architectures to support
clinical decision making; and 4) simulation-based studies
assessing clinical impact and workflow integration.
Together, these priorities constitute a focused research agenda
for advancing transformer-based CVD prediction models
from experimental success toward clinically deployable
decision support systems.

L. Implication of the study

1) Practical implications: Healthcare organisations seeking
to implement transformer-based models for the prediction of
CVD may consider the model as a state-of-the-art option
using longitudinal EHRs, but there should be a plan for
computational cost and a strategic way to integrate the models
into the clinical workflow. Healthcare providers must account
for external validation and calibration monitoring when
deploying models in the healthcare sector. Finally,
policymakers and funders in healthcare should support
federated learning or the standardisation of EHRs to facilitate
the adoption of transformer models across all settings.

2) Theoretical implications: The results represent a
learning theory by demonstrating how transformer-based
models like BEHRT or BEHRT’s variants capture temporal
dependencies in EHR data, which outperform traditional
CNNs and RNNS in modelling longitudinal patient
trajectories. The study extends explainable Al by identifying

attention mechanisms and SHAP visualisation for model
understandability. This reinforces trust in Al systems by
demonstrating how the features contributed to the model's
output to enhance clinical adoption. Lastly, the review
demonstrated the theory of information integration by
highlighting multimodal transformers such as Hi-BEHRT that
support precision medicine. The present SLR advances theory
by demonstrating that sequential attention-based architectures
offer a novel approach to modeling the disease progression
task. This revealed their weakness in situations marked by
irregular sampling, differences across institutions, and
missing data.

1VV. CONCLUSION

The SLR highlights the growing potential of transformer-
based models for cardiovascular disease prediction from
electronic health records. While these models demonstrate
strong performance in handling longitudinal and
heterogeneous data, current evidence remains largely
experimental. Widespread clinical adoption will depend on
rigorous external validation, careful consideration of
generalisability, and meaningful integration of interpretability
and deployment constraints. Consequently, transformer-
based approaches should be viewed as promising but not yet

ready for deployment in routine cardiovascular risk
prediction.
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