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 This systematic literature review (SLR) analyses 16 studies published between 2020 

and 2025 that applied transformer-based or other machine learning models to predict 

cardiovascular disease (CVD) using electronic health records (EHRs). Following the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines, the review ensures transparency in the identification, screening, and 

quality appraisal of eligible studies. The key findings reveal a rapid shift from 
traditional machine learning models, such as Random Forest, toward transformer 

architectures like the Bidirectional Encoder Representation from Transformers for 

Electronic Health Record (BEHRT) and its variants. These models demonstrate a 

superior discrimination (Area Under Curve:0.84 to 0.93) due to their capacity to 

model long-term temporal dependencies. Explainable AI (XAI) tools, such as 

attention visualisation, were frequently employed, yet clinical interpretability and 

integration into decision support remain underexplored. The review also highlights 

opportunities in federated and privacy-preserving learning, multimodal data fusion, 

and hybrid architectures that integrate transformers with traditional machine learning 

methods. This review addresses a gap in the past literature by being the first SLR to 

compare transformer variants for the prediction of CVDs. Other SLRs examined 
general CVD risk models, but the present SLR analyses interpretability, external 

validation and methodological limitations to transformer models. The findings of the 

recent SLR reported challenges that include data-shift limitations, model-poor 

population generalisation and their limitations to clinical adoption, which highlights 

the need for more evaluation protocols and clinicians’ interpretability frameworks. 
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I. INTRODUCTION 

Cardiovascular diseases (CVDs) are a group of disorders 

affecting the heart and blood vessels [1]. CVDs are a leading 

cause of morbidity and mortality worldwide from 

Noncommunicable disease [2]-[4], accounting for 17.0 

million deaths, representing one-third of global deaths[5], 

and putting a heavy load on healthcare systems and national 

economies. CVD mortality is common in the majority of 
developed, developing, and impoverished nations [1], 

[6],[7].To address the global burden of CVD [1], healthcare 

systems are prioritising strategies that predict the onset to 

enable early intervention [5],[4]. The increased use of 

Electronic Health Records (EHRs) has created significant 

opportunities for CVD prediction [8]. EHRs capture a variety 

of patient data, including demographic information, medical 
histories and lab results, which offers a longitudinal view of 

patient data[9] (Figure 1). Traditional risk scores, such as 

Systematic Coronary Risk Evaluation (SCORE) and 

QResearch Cardiovascular Risk Algorithm, Version 3 

(QRISK3), have been widely used to estimate the risk of 

CVD; however, their performance is suboptimal in diverse 

populations [8]. Artificial intelligence(AI) technologies, 

such as Machine Learning, are used to enhance medical 

research, personalised treatment and diagnostic accuracy of 

diseases [10], and when EHRs are integrated with Machine 

Learning (ML) models, they improve the identification of 
individuals who are at risk [9]. The researcher developed ML 
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and Deep Learning (DL) predictive models to address 

traditional methods, demonstrating superior calibration and 

discrimination compared to conventional strategies [9].  

 Several studies have applied deep learning techniques to 

CVD prediction using EHR data. For example, [3] employed 

a recurrent neural network to model longitudinal patient 

reports and reported an improved discrimination compared 

to logistic regression. However, their approach struggled 

with long-term dependencies and lacked interpretability, and 
[8] reviewed 79 Artificial Intelligence (AI)-based CVD 

studies with 486 predictive models that reported high bias 

despite promising accuracy. Similarly,[11] demonstrated 

strong predictive performance using a deep neural network 

but also highlighted limited external validation across the 

healthcare system. The study [9] revealed that ML models 

achieved a higher score in predictive accuracy (AUC-0.87) 

than QRISK3 (AUC-0.77), and reported that the model lacks 

interpretability and external validation. However, predictive 

models often face challenges such as institutional bias or 

missing data and insufficient infrastructure [7], which limits 
their clinical adoption.  

 

 
Figure 1. Patient Electronic Health Record 

 

 

Figure 1 shows an EHR example that includes diagnosis, 
medication, lab results, procedures, and clinical notes from 

the date of visit. 

More recently, transformer-based architectures have been 

introduced to address the limitation of sequential models in 

handling long-term dependencies within EHR data[12]. A 

researcher in 2020 proposed BEHRT [13], a bidirectional 

transformer model that represents patient medical histories as 

sequences of clinical tokens, achieving superior performance 

in the cardiovascular risk task. Subsequent studies, including   

Carefully Optimised and Rigorously Evaluated BEHRT 

(CORE-BEHRT)[13] and Hi-BEHRT [14], refined the 
original architecture to improve efficiency and 

interpretability. Similarly [15], implemented prediction on 

CVD using a transformer-based model (TRisk) which 

demonstrated a superior performance of (Concordance-index 

-0.91) compared to QRISK3, later [16] comes with Clinical 

Electronic Health Records(CEHR)-Bidirectional Encoder 

Representations from Transformers(BERT), which 

introduced time token and age embedding into the 

transformer architecture to help the system identify whether 

a diagnosis was made recently or over years ago to help in 

disease predictions.[17] introduced Medical-BERT, which is 

a transformer-based deep learning model that is designed to 
work with structured EHRs. The study examined diagnosis 

codes, medications, and procedures. The Med-BERT learns 

from diagnosis codes to predict the onset of a risk. The model 

excludes time-gap embedding that was used in BEHRT [18], 

which limited temporal precision. [19] introduced an 

innovation, Multimodal-BEHRT, which integrates textual 

clinical notes and tabular data for disease predictions. The 

Multimodal-BEHRT was used to predict Breast cancer.[20] 

introduced another approach, Targeted-BEHRT, where 

causal inference capabilities were added to improve 

interpretability. Despite these advances, existing studies vary 
widely in evaluation protocols, outcome definitions and 

validation strategies, making it difficult to draw consistent 

conclusions regarding clinical applicability. 

Although there are growing opportunities in leveraging 

transformation-based EHR models, no existing systematic 

literature review (SLR) has examined these models 

specifically for CVDs prediction, how they validate external, 

how they compare with traditional ML and their use of 

explainability tools. Past studies on SLRs have focused on 

generic models for CVD prediction or on how transformers 

are used for clinical tasks, leaving a gap in understanding the 
transformer’s specific strengths and weaknesses in CVD 

modelling using longitudinal EHRs.This SLR addresses 

these gaps by providing a focused and comparative synthesis 

of transformer-based models for CVD prediction using 

EHRs. The study will be guided by the following research 

questions.  

1. What are the most common algorithms and transformer 

models that have been applied to Cardiovascular disease 

prediction leveraging EHRS? 

2. How do the transformer models perform compared to 

traditional, deep learning and machine learning 

approaches based on evaluation metrics such as AUC, 
F1-score, calibration and accuracy? 

3. What explainable artificial intelligence (XAI) 

techniques have been integrated into Transformer 

models to improve clinical interpretability? 

4. What limitations and opportunities are presented by 

transformer models for future empirical investigation? 

 

II. METHOD 

   This SLR was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) [21]. 

 

A. Search Strategy 

     A search for relevant studies is conducted across various 
databases, including PubMed, Xplore Digital Library 

(IEEE), and Scopus. The search terms used across different 

databases are summarised as: General search term 

(“Cardiovascular diseases “OR “Heart disease” OR “CVD”) 

AND (“Electronic Health Records” OR “EHRs”) AND 

(“Prediction” OR “Risk*”) AND (“Transformer” OR 

“BEHRT” OR “Machine learning “OR “Deep learning “OR 

“Neural Network”) that was used across the 3 data sources. 

Using the search terms, the identified studies were from 
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PubMed (72), IEEE (5), and Scopus (30), totalling 107 

studies from 2020 to 2025 in the English language. 

B. Inclusion and Exclusion Criteria  

 

The searches were restricted to the following inclusion 

criteria, as outlined in Table I, and exclusion criteria in Table 

II, using a  Population, Intervention, Comparator, Outcome, 

Study (PICOS)  framework [22].Table I shows the inclusion 
criteria used in the selection of studies. 

TABLE I 

INCLUSION CRITERIA 

Category Inclusion Rationale 

Population Human studies using 
Electronic Health 

Records(EHRs) ,>= 18 years 
related to cardiovascular 
disease(CVD) 

Studies that 
ensure the 

clinical 
relevance of 
EHR-based 
models for the 
prediction task. 

Intervention Studies that utilise 
transformers like BERT, 
Hybrid 

Transformer(Recurrent 
Neural Network) for 
prediction, diagnoses or risk 
assessment of CVD and other 
traditional Machine Learning. 

Studies that 
target the 
contribution of 

transformers or 
ML models for 
CVD outcomes. 

Comparator Studies that compare 
transformer models with other 

machine learning/deep 
learning models and use 
metrics to assess each model. 

 Allow 
benchmarking 

and 
comparative 
analysis of 
model 
performance. 

Outcome Studies that report quantitative 
predictive performance 
metrics like AUC, F1-score 

and precision. 

 

Ensures the 
inclusion of 
studies with 

measurable 
outcomes. 

Study  Peer-reviewed empirical 
studies, preprints with 
methodological details. 

Studies that 
guarantee 
methodological 
rigour and 
reproducibility. 

Publication 
Year 

From 2020 -2025, i.e. for the 
definition of a term, earlier 
years can be used. 

Studies 
included 
leveraging 
current 
developments 
for CVD 
prediction. 
 

 

Table II presents the exclusion criteria used to guide the 
selection of studies. 

 

 

 

TABLE II 

EXCLUSION CRITERIA 

Category Exclusion Rationale 

Data source Studies not using 

EHRs 

Included are EHR-

based models 

Outcome Studies focusing on 
disease prediction 
which are not related to 
CVD  

Maintains thematic 
relevance. 

Publication 
Type 

Abstracts that lack a 
full methodology 

Ensures 
methodological depth 

Simulation Simulated dataset Highlight real clinical 
relevance 

 
C. Screening studies  

     

The PRISMA flow chart illustrates the 3 databases that were 
searched, with results of PubMed (72), IEEE (5), and Scopus 

(30). Mendeley was used to store the downloaded studies and 

remove duplicate records; the initial total was 107. Records 

that remained after removing duplicates numbered 97. The 

screening process consisted of 2 stages: title and abstract 

screening, and full-text screening. During the abstract and 

title screening, we assessed the study aim and methods to 

determine if each paper fell within our scope of review. The 

number of eliminated studies was 70. A total of 27 papers 

remained, and they were reviewed to determine whether they 

addressed the research questions. After a full-text review, 12 
documents were excluded. Sixteen studies were included and 

are listed in Table IV. 

 

 D. Eligibility Criteria 

   

The studies included were developing a prediction model 

using EHRs with tabular data, which is structured such as 

demographic, diagnosis codes, medication and lab tests. The 

eligible studies had to use ML/DL and transformers to predict 

the onset of CVDs with model performance evaluation 

metrics and report performance metrics comparing the 

baseline models. The studies that integrated any of the 
Explainable AI or did not integrate were included. The 

studies that were not eligible were the ones that used other 

data types (e.g. genomic datasets) to predict the onset of 

CVDs. The study on a specific population (e.g. studies 

investigating the performance of predictive models in the 

HIV-positive population only) was excluded, and those that 

were using EHRs to predict non-CVDs forecasting. All 

studies included had to be written in English. Studies that fall 

between 2020 and 2025 were included to ensure that studies 

included leveraged current developments for CVD 

prediction. The researcher [18] introduced a transformer 
called BEHRT in 2020, which marked the emergence of 

transformer-based models that reshaped EHR modelling. 

Restricting the period ensured that the evaluation of modern 
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models and enhanced methodological comparability, given 

the advancement of AI tools, earlier papers (before 2020) 

relied most on conventional ML models. 

 

E. Assessment of Study Quality and Risk of Bias 

 

The methodological quality and risk of bias of the included 

studies were systematically evaluated using the Prediction 

Model Risk of Bias Assessment Tool(PROBAST). This 
framework assesses bias across four domains: participants, 

predictors, outcomes and statistical analysis. Each study was 

independently assessed by two reviewers (O.C and B.N), 

with discrepancies resolved through consensus. Each domain 

was rated as” low risk”,” moderate”, or “high risk” according 

to the PROBAST guidelines and the overall risk of bias was 

assigned to each study. The risk of bias assessments was 

considered when interpreting the findings. The detailed risk 

of bias assessment is presented in Table III.Risk of bias 

assessments were used to contextualise findings across 

studies, with conclusions prioritised from low-risk studies 
and results from moderate- and high-risk studies interpreted 

cautiously when drawing comparative and translational 

inferences. 

 

 F. Risk Assessment 

   

Table III summarises the overall Risk of Bias scores for 16 

studies assessed using PROBAST. This tool evaluates 

prediction models across four domains (participant, 

predictor, outcome, and analysis) to identify bias levels. 

Table III show the Overall ROB using PROBAST. Six 

studies rated moderate  (37%), including both traditional and 
hybrid ML, models like XGBSE, MT-GRU and Hybrid ML 

[23]-[24], the models demonstrated high predictive accuracy 

but lacked in dataset diversity.4 studies rated Low  (25%), 

which included transformer based models like Targeted  

BEHRT, BEHRT, Hi-BEHRT and Federated BEHRT 

[10],[24],[20],[25], the models showed a strong data 

representation and the use of large dataset like MIMIC-II 

enhanced validation across different data types. Four studies 

rated Low-Moderate (25%), the models classified were 

Hybrid, which combine ML and transformers [15]-[16], 

[13],[26]. 
For each study that was included, the PROBAST domains 

(participants, predictors, outcomes, analysis) were scored on 

a 0-2 scale, which produced an overall bias which ranged 

from 0(high bias) to 8 (low bias). There were studies scoring 

>= 6 were classified as low risk, between 4-5 were classified 

as moderate risk, and <=3 were classified as high risk. 

 

 

 

 

 

TABLE III 

OVERALL RISK OF BIAS 

Author Overall ROB Percentage 

[10],[24],[20], [25] Low 25 

 [23],[27],27], 

[28],[29],[24] 

Moderate 37 

[15] ,  [16], [13],[26] 
 

Low-moderate 25 

[30], )[31] High 13 

 
The studies lacked transparency in Hyperparameter 

optimisation, which increased the risk of bias. 12% (2 

studies) rated high [28], [29], a common factor being that the 

models used publicly available Kaggle datasets, which 

lacked longitudinal EHR validation. The PROBAST 

assessment highlighted improved methodological quality 

from 2020 to 2025, with the introduction of a hybrid 
architecture aimed at reducing bias. The 16 studies reveal a 

need for explainable model frameworks that will aim to 

reduce bias and facilitate better clinical adoption. 

 

III RESULTS AND DISCUSSIONS 

  This section represents the characteristics of the included 
studies. Figure 2 presents the PRISMA diagram of the 

search and the screening results. 

 

Figure 2. PRISMA chart 
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TABLE IV 

SUMMARY OF INCLUDED STUDIES 

Autho

r 

Country  EHRs 

source(data

set) 

 

ML/Transf

ormer 

Compariso

n Models 

CVD 

outcomes 

/Task 

Opportunities Challenges XAI used  Performance 

metrics  

[23] United  

Kingdom 

Oxford 

University 

Hospital 

EHR  

 

Multi-Task 

Gated 

Recurrent 

Unit(MT-

GRU )/MT-

Attention-

based(Att)-

GRU(RNN) 

-QResearch 

Cardiovasc

ular Risk 

Algorithm 

Version 

2(QRISK2)

, 

-Logistic 

Regression(

LR ) single 

GRU 

-Myocardial 

Infarction(M

I)-Ishaemic 

stroke  

-Longitudinal 

Electronic 

Health 

Record(EHR) 

 

 

Limited 

external 

validation 

 

-Attention 

weights 

-Area Under 

Curve(AUC)M

I- 0.897 

-Stroke -0.849 

 [15] 

 

UK -Clinical 

Practice 

Research 

Datalink 

(CPRD) 

 

-

Transformer 

risk model 

(TRisk) 

-QRISK  

-ML 

Cardiovascu

lar 

disease(CV

D) treatment 

selection 

 

-Improved 

individualised 

risk 

stratification. 

 

Requires 

validations  

 

Attention 

visualisation 

Concordance-

index and 

AUC 

improved 

reporting (-+ 

0.1 ) in papers  

[30] Saudi 

Arabia 

Kaggle -Ensemble 

ML  

-Deep 

Neural 

Network(D

NN) 

-Random 

Forest(RF) 

-Extreme 

Gradient 

Boosting 

(XGBoost) 

-DNN 

-K-Nearest 

Neighbours

(KNN) 

Binary CVD 

presence 

Tabular data 

enhances a 

strong 

benchmark  

 

-Public 

datasets do 

not show 

real clinical 

data. 

-Lack of 

external 

validation. 

RF feature 

importance 

-RF accuracy 

88.65%; 

-AUC (0.92-

0.94) 

[18] -UK -CPRD Bidirectiona

l Encoder 

Representati

on from 

Transformer

s for 

Electronic 

Health 

Records(BE

HRT) model 
 

-Recurrent 

Neural 

Network 

(RNN) 

-Long 

Short-Term 

Memory(L

STM) 

-RETAIN 

-Deep care 

CVD onset The long 

dependency of 

models 

 

 

-Limited 

external 

validation  

-High 

computation

al needs 

Attention 

visualisation 

Precision gains 

8 to 13% over 

Deep Learning 

(DL) baselines 

[16] United 

States of 

America 

(USA) 

Columbia 

University 

Irving 

Medical 

Centre-New 

York 

Presbyterian 

Hospital-

Observation

al Medical 

Outcomes 

Partnership 

(CUIMC-

NYP 

OMOP) 

Clinical 

Electronic 

Health 

Records 

(CEHR-

BERT) 

-BEHRT  

-

MEDBERT 

-BI-LSTM 

-XGBoost  

Heart 

Failure(HF) 

Temporal 

reasoning. 
.  

 

US data only 

used  

Attention 

component 

analysis 

-AUC 0.80 -

0.84 

-Precision 

Recall (PR)-

AUC -0.32 

[13] UK CPRD Carefully 

Optimised 

and 

Rigorously 

Evaluated- 

Record 

-BEHRT  

-Other 

transformer

s 

CVD-related 

risk 

prediction 

Improved 

calibration 

 

Requires 

external 

validation 

across 

different 

institutions. 

-No XAI 

specified, 

-attention 

analysis 

(improved) 

High 

calibration and 

accuracy vs 

BEHRT 
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(CORE)-

BEHRT 

 

 [14] UK CPRD Hierarchical

-BEHRT 

-BEHRT  

-CEHR-

BERT 

-RNN 

-

Convolutio

nal Neural 

Network(C

NN) 

-HF 

-Stroke 

-Chronic 

Kidney 

Disease 

(CKD) 

Incorporates 

multimodal, 

hence 

enhancing 

model 

efficiency. 
. 

 

-

Architectura

l complexity  

-Challenges 

in 

deployment 

Bootstrap 

Your Own 

Latent 

(BYOL) 

-AUROC: 

Percentage 

change 1-5% 

-AUROC PC 

1-8 % vs 

BEHRT 

[20] United 

Kingdom 

Clinical 

Practice 

Research 

Datalink 

(longitudinal 

EHR) 

Targeted-

BEHRT 

-Regression  

-BEHRT 

-Dragonnet  

-Targeted 

Maximum 

Likelihood 

Estimation 

(TMLE) 
 

Estimation 

of drug 

effect 

Casual 

inference 

 

Computatio

nal intensive 

Attention –

doubly 

robust 

estimation 

-Lower 

Standard 

Absolute Error 

(SAE) vs 

benchmarks;  

-accurate 

Relative Risk 

(RR) 

estimation 

 

 [25] Israel Medical 

Information 

Mart for 

Intensive 

Care-

Version III 

(MIMIC-III) 

Federated 

BEHRT 

-

Centralised 

BEHR  

-Local 

models 

-Next -visit 

diagnosis 

prediction 

(including 

CVD) 

-Training data 

of the same 

hospital (near-

central 

performance) 

-The model 

can train on 

several patient 

datasets. 

 

Simulation 

cost 

Attention-

based 

interpretabili

ty 

-Average 

precision = 

0.63; 

- within 3% of 

the central 

model 

 [26] USA MIMIC-III 
 

BERT-based  -CNN 

-LSTM 

-RETAIN 

Multi-

disease 

support, 

including 

CVD 

diagnostic  

Captures 

temporal 

embedding 

 

-Leverages 

ICU data 

only  

-Requires 

heavy 

computing 

Attention 

visualisation 

 

-AUC= 0.90 vs 

CNN =0.84 

- LSTM =0.86. 

 

[27] China  Patient 

safety and 

EHR dataset 

ML-based 

predictive 

model(XGB

SE) 

-RF  

-LR 

-XGBoost 

-CVD onset. -The ML 

models 

applicable to 

clinical 

settings. 

 

 

There is a 

need for 

external 

validation 

due to 

dataset 

heterogeneit

y. 

 

Shapley 

Additive 

Explanation

s (SHAP) 

Competitive 

AUC reported 

 [32] China China 

Health and 

Retirement 

Longitudinal 

Study 

(CHARLS) 

cohort  

-KNN 

-RF 

-XGB 

-Light 

Gradient 

Boosting 

(LGB) 
 

LR baseline -Coronary 

Artery 

Disease 

(CAD) 

-HF 

-Angina 

-Stroke 

Transparent 

pre-processing 

 

Limited 

recall 

 

 

SHAP. -LGB AUC = 

0.818 

-F1 = 0.509  

-Recall = 

43.1% 

[28] Turkey 

 

Kaggle  -XGBoost  

-RF 

Support 

Vector 

Machine 

(SVM)  

-KNN 

-LR 

Binary CVD 

presence (1 

or 0) 

Clinical 

Predictors 

identified  

 

-

Generalisati

on limits 

-No 

longitudinal 

EHR 

 

SHAP -XGBoost 

AUC =0.803 

- F1= 0.75 

[31] Turkey -University 

of 

California, 

Irvine (UCI) 

heart 

disease. 

-Kaggle 

 Hybrid ML -LR 

-RF 

-XGBoost 

-SVM  

-DNN 

Binary CVD 

presence (1 

or 0) 

Enhanced 

feature 

selection 

pipeline. 

 

-Overfitting 

risk. 

-Small non-

longitudinal 

datasets 

SHAP -XGBoost 

accuracy = 

97.4% 

-AUC =0.98 
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[29] USA  Biomarkers 

integrated 

cohort 

-RF 

-SVM 

-Neural 

Network 

(NN) 
 

ASCVD(At

heroscleroti

c 

Cardiovasc

ular 

Disease)sco

res  

CVD onset Biomarkers 

are integrated 

with EHR  

 

Limited 

external 

validation 

Feature 

importance 

analyses 

AUC = 0.90 to 

0.96 

 

 [24] -UK  

-China  

Irregular-

timed EHR 

Hybrid (ML 

and 

Transformer

) 

-Standard 

ML  

-DL  

CVD risk 

prediction 

Irregular 

sampling is 

addressed. 

 

Difficulties 

in pre-

processing 

Temporal 

embedding 

and attention 

Improved 

discrimination 

and calibration 

        
A.Characteristics of Included studies 

 

  Table IV shows a summary of 16 studies (study 

characteristics) from 2020-2025. The included studies 

employ DL, ML, and transformers as the main predictive 

models applied to CVD outcomes, leveraging EHRs. Each 
study is categorised by model type, explainable method used, 

CVD task, comparative benchmark and performance metrics. 

Sixteen studies utilised EHRs from Western Healthcare 

Systems, the United Kingdom (7), China (3), the United 

States of America (3), and also from Saudi Arabia (1), Israel 

(1), and Turkey (2). This synthesis highlights the 

methodological and interpretability techniques, which are 

guided by the research questions 

B. Publication Trends 

 

   The studies chosen were from 2020 to 2025; Figure3 shows 

the trends in the distribution of years. 

 
                   Figure 3. Trend of studies by year 

 

Figure 3 shows the trends in the publication year from 2020 

to 2025, the eligible years for the review. In 2020, there were 

2 studies; in 2021, there were 2 studies. The least studied was 

1 study, 2022. In 2023, there were 3 studies; in 2024, there 

were five studies, and 3 studies were published in 2025. The 
studies were published in different countries (Figure 4). The 

Line chart (Figure 3) represents the rise in research interest 

in transformer-based and AI-driven prediction models for 

CVD using EHRs. In 2022, there was a decline, but the 

number increased from 2023 to 2024, reflecting the growth 

of Data-driven solutions in healthcare. 
 

C. Study Distribution 

 

   The findings were from 6 different countries, as shown in 

Figure 4 in 2020-2025. The pie chart in Figure 4 shows the 

distribution of countries in the included studies for review. It 

shows that 41% of studies (7\16) were from the UK, which 

dominates the research area, meaning the UK has more active 
research and better EHR access.  

 

 
Figure 4. The distribution of studies by country 

 

18%(3) from the USA shows that it is another centre for CVD 
research on transformers, and China reported 18%(3), which 

is the second leading, Turkey has 2 studies (12%) 

highlighting research interest on CVD predictive 

modelling,6%(1 each) from Saudi Arabia and Israel indicate 

emerging interest, but less research output compared to the 

UK or the USA. The distribution indicates the growing 

interest in Data-driven predictive modelling in healthcare. 

 

D. Performance and Distribution of Model Types 
 
  Figure 5 shows the distribution of model types; ML models 

were most used (9 studies), transformers were applied in 7 

studies most used (BEHRT, CORE-BEHRT, Hi-BEHRT, 

Federated BEHRT and TRisk)  [25],[20],[14]. In 2 studies 

Hybrid approach highlighted the interest in integrating 

models for temporal reasoning. 
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Figure5. Performance and distribution of model type 

 

The reported AUC values ranged from 0.84 to 0.93; however, 

these variations should be interpreted in light of difference in 

study design and data characteristics. Higher AUCs were 

generally observed in studies using curated datasets with 

limited population diversity, whereas studies relying on real-

world EHR data demonstrated a greater performance 

variability. Differences in longitudinal depth, feature 

engineering strategies and validation approaches further 

contributed to the observed performance spread. 

 

Notably, higher AUC values were predominantly observed 
in studies using curated or single-institution datasets with 

limited population heterogeneity, whereas studies relying on 

real-world, longitudinal EHRs exhibited greater performance 

variability, underscoring the influence of study design and 

data characteristics on reported discrimination. 

 

E. Model usage and best performance frequency 

 

  Figure 6 presents a clustered comparison of model usage 

across studies and the frequency with which each model 

achieved the best performance. Transformer-based model 
demonstrates stronger performance relative to their adoption 

compared with traditional and deep learning approaches. 

Among transformers, BEHRT shows the best performance in 

two studies, being evaluated in three studies. 

 

 
Figure 6. Model Usage 

 

  CORE-BEHRT was also used in three studies, but it 

achieved the best performance in only one, while Hi-BEHRT 

achieved top performance in its single evaluation. Targeted-

BEHRT did not outperform baseline models. These results 

show BEHRT’s effectiveness for longitudinal EHR-based 

CVD prediction. Traditional machine learning models were 

frequently used but less consistently dominant. Random 

forest was a commonly applied ML model that appeared in 
four studies and performed best in two, which reflected its 

strength on tabular data but shows limited modelling 

capacity. XGBoost showed competitive performance but did 

not exceed the transformer-based models. Deep learning 

models like LSTM, CNN, RNN and DNN were evaluated in 

one to two studies each and achieved moderate performance. 

Lastly, the hybrid ML-Transformer model demonstrated 

promising results in limited evaluations (1). Figure 6 

indicates that transformer-based, particularly BEHRT, 

achieves superior performance, which supports their growing 

adoption for CVD prediction from longitudinal EHRs. 
 

F. Cardiovascular Disease Outcomes 
 

The CVD outcomes are presented in Table V. 

 
TABLE V 

CARDIOVASCULAR DISEASE OUTCOME 

 

CVD Task Number of Studies 

Stroke 3 

CVD outcome 10 

Heart Failure 3 

Chronic Kidney Disease 1 

Drug 1 

Coronary Artery Disease 1 

Angina 1 

Next visit 1 
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Table V shows that the general Cardiovascular disease 

(CVD) outcome was mentioned in 10 studies, which is the 

largest category. This indicates that researchers aimed to 

build broad CVD risk prediction models using EHRs. Three 

studies evaluated the use of predictive models in Stroke, 

which indicates a significant interest in using EHRs for real-

time detection of stroke. Similarly, 3 studies evaluated Heart 

failures using transformer models because HF involves long-

term clinical histories where the transformer can model well, 

whereas specific CVD types like Chronic Kidney Disease 

(CKD), Drug effects, Coronary Artery Disease (C, Angina, 

and next visit predictions were done in 1 study, showing that 

they are not frequently addressed. Studies like [14] evaluated 

3 CVD outcomes like HF, Stroke and CKD simultaneously 

using Hi-BEHRT, which is a transformer-based model which 

leverages multimodal data(unstructured and structured data) 

to make predictions. Another study evaluated Heart failure 

[16] only on CEHR-BERT. 

 

G. Challenges and Opportunities of Transformer Models

                                                                                                                                                TABLE VI 

OPPORTUNITIES AND CHALLENGES OF TRANSFORMER MODELS 

Transformer Model Opportunities Challenges 

[18]  Captures long-term dependencies in 

EHRs 

 Interpretability enhanced through 

attention mechanisms 

 High computational cost. 

 Limited external validation. 

[13]  Improves calibration and stability for 

clinical adoption. 

 Enhance interpretability and readiness of 

BEHRT outputs. 

 Limited transparency in Hyperparameter 

tuning. 

 Limited external validation. 

[14]  Supports multimodal learning to enhance 

efficiency in long-term CVD prediction. 

 Computational cost. 

 Challenges in integrating multimodal data for 
deployment. 

[25]  Privacy is preserved due to local training 

across institutions. 

 Decentralised data storage. 

 High communication and simulation cost. 

 Limited external validation across 
heterogeneous systems. 

[20]  Integrated causal inferences to enhance 

drug effect estimation 

 Computationally intensive for large datasets. 

 Limited validation across different 
populations. 

[15]  Employs attention visualisations for 

clinical interpretability to improve 
individualised risk stratification and 
treatment selection. 

 Limited validation in diverse and larger 

cohorts. 

 Limited interpretability 

[33]  Incorporates age and time embedding for 

temporal reasoning in prediction. 

 Dataset restricted to the US. 

 Moderate interpretability. 

 Limited external validation. 

[17]  Enables disease prediction across multiple 

domains. 

 Provides a foundation for structured 

medical data. 

 Excludes temporal embeddings (used in 

BEHRT) 

 Limited temporal precision. 

[19]  Integrate textual clinical notes and tabular 

data. 

 Enables cross-modal learning for 

improved disease prediction. 

 Increased risk of overfitting. 

 High architectural complexity. 

 Lacks specific validation for CVD outcomes. 

   Table VI shows most common challenge (6 counts) is the 
computational cost or complexity [18],[14], [19], [25],[15], 

[25], followed by the limited validation, which enhances 

generalisation of the model for clinical adoption. Models like 

multimodal [19] had challenges in integrating data (structured 

and unstructured), overfitting risk was noted, and 

communication or simulation cost was identified as a 

challenge in [25], where local training is done on patient 
EHRs. Lastly,[13]demonstrated a limited transparency in 

Hyperparameter tuning. 

The most noted opportunities are improved predictive 

performance in 5 models [16]–[18],[14], [19] and enhanced 

interpretability through attention visualisation techniques.3 

models demonstrated their ability to capture long-term or 



84               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  75 – 89 

temporal dependencies [16]–[18] that enhanced model 

predictions. The preservation of privacy and causal inference 

capabilities are not common as they appear in 1 model 

each[20], [25]. Multimodal learning[19] is a growing 

opportunity, but it is still used in a few studies. 

 

H. Explainable AI 

 

  All studies (16) included feature importance or Explainable 

AI or attention techniques to help interpret the outputs, 

making models more understandable. Figure 7 shows the XAI 

used in a number of studies. 

Attention weights(AW)-1, Temporal embedding-1, Feature 

importance (1), SHAP (5), Attention visualisation (6) and 

Bootstrap Your Own Latent(BYOL) -1 studies.  
 

 
 

Figure 7. Explainable AI 

 

The chart highlights AV being the most used XAI in the 

included studies for interpretability. The bar plot (Figure 7) 

shows that researchers are trying to bridge the gap of the 

“black box” by demonstrating how the model predicted any 

CVD task to enhance clinician trust; however, the models are 

still not deployed in clinical settings. 
Across the 16 reviewed studies, three dominant patterns 

arose, such as: a) the transformer model outperformed 

DL/ML in capturing the temporal dependencies, even though 

the model remained inconsistent in external validation and 

calibration. b) XGBoost was noted to be the highest ML 

model, which achieved high accuracy on small curated 

datasets, which highlights inflation in performance. 

Transformer models were shown to rely on post-hoc attention 

visualisation, not clinically grounded explanatory 

mechanisms, so these patterns demonstrated the 

fragmentation of methodological strategies and lack of 
evaluation protocols across the reviewed papers. 

Overall, the evidence suggests that performance gains alone 

are insufficient to justify clinical adoption; instead, 

interpretability, robustness under data shift, and workflow 

integration emerge as equally critical determinants of real-

world utility. 

 

I. Discussion 

 

   A critical synthesis of the reviewed papers demonstrates 

that, despite the discriminative performance of transformer 

models, they still lack external validations. This section 

answers the four research questions and is numbered as 

follows. 

 

1) RQ1 What are the most common algorithms and 

transformer models that have been applied to 

Cardiovascular disease prediction leveraging EHRS? 
 

Among the conventional algorithms, XGBoost and Random 

Forest remain the most used machine learning baselines for 

benchmarking, which is due to their robustness on tabular 

EHRs[34], [35]. They are not suitable for longitudinal EHRs 

due to their limitations in temporal reasoning and lack of 

contextual embedding [32] 

 The random forest algorithm is a powerful machine learning 

algorithm that uses multiple decision trees for classification 

and regression tasks, and it operates under supervised learning 

[31],[7], [36]. It is constructed using decision trees, which are 
generated from random samples of data and the final output 

is determined by the majority voting among the trees [34]. 

The RF algorithm was used [30] within an ensemble for 

Binary CVD detection, utilising the Kaggle dataset with 

feature importance to analyse the output. Similarly, [31] 

compared RF with other ML models using the same dataset 

as [27], highlighting RF as outperforming the ML 

models.[29] Integrated RF to predict CVD outcomes with 

biomarker data, and feature importance was used to interpret 

the predictions.RF is also used in other fields besides 

healthcare, like in banking, where RF predicts 

creditworthiness or detects fraud, and in e-commerce, it is 
utilised to predict customer preferences based on their past 

behaviour [34]. 

The strengths of RF are that it performs well with 

heterogeneous and structured inputs, and the models that use 

RF are explainable via feature importance or SHAP. RF have 

a versatility ability for regression and classification, and has 

reduced overfitting [34]. The challenges with it are that RF 

involve longer training times due to the number of trees, 

which slows down real-time predictions [34]. There is no 

temporal sequencing, which is a limitation for progressive 

diseases. The author [30] reported RF accuracy to be 88.7% 
with an AUC ranging from 0.92 to 0.94 for curated 

datasets.[29] evaluated RF to be the top model with an AUC 

ranging from 0.90 to 0.96 in cases where biomarkers are 

integrated. 

XGBoost is an optimised gradient boosted tree algorithm that 

builds trees sequentially, where each tree corrects the errors 

of the previous ensemble on tabular data. The process is 

adding trees that model the residuals through tree pruning 

[35]. The model was a top-performing baseline in studies like 

[31],[28] for binary CVD classifications with a high AUC 

(0.98) for curated data. [27], [32] used XGBoost for a 
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longitudinal-oriented task, where they integrated SHAP to 

visualise the interpretation of feature contributions. 

The strengths of  XGBoost are effective in distinguishing 

between classes [35] and showed superiority in discrimination 

on tabular sets, for example [31], XGBoost achieved the best 

among other ML baselines with AUC =0.98, and its accuracy 

was 97% and can be integrated with SHAP or other 

techniques to provide feature importance. 

The challenge is the limited temporal embedding and 

overfitting on the curated data [35].  

Transformers represent a state-of-the-art deep learning 

architecture that supports NLP tasks such as word/sentence 

predictions[37]. They have become one of the most influential 

architectures in artificial intelligence, where computers have 

achieved great success not only in NLP but also in vision and 

speech processing [38]. The transformer models adopted by 

the studies under review are BEHRT[18], which adapts 

transformer models originating from Natural Language 

Processing, tokenises diagnoses/medications, and procedures 

in a patient timeline. BEHRT uses self-attention to allow the 

model to weigh the importance of past events to predict future 
outcomes. The original paper [18] introduced BEHRT to 

predict 301 diseases, CVD included, from CPRD and MIMIC 

datasets, when compared against LSTM, CNN and other ML 

baselines.BEHRT improved discrimination and provided 

understandable explanations. BEHRT was reported [16]to 

outperform RNN approaches and prior BERT-based models 

for multi-disease tasks. The strengths reported in BEHRT are 

gains in precision of 8-13% over DL baselines, enhanced 

understandability of the model output, and BEHRT is a base 

for variants, capturing longitudinal trajectories in EHRs 

[16].BEHRT challenges are the need for large longitudinal 

datasets, limited deployment in resource-constrained settings, 
and the need for external validation across 

institutions.BEHRT reported 0.84-0.93 for the CVDs task, 

compared to LSTM/CNN. 

BEHRT variants (Hi-BEHRT, Federated-BEHRT, Targeted-

BEHRT) 

Hi-BEHRT [14] introduces multimodal inputs, CORE-

BEHRT [13] is an evaluated BEHRT that focuses on 

calibration for clinical use, while Targeted-BEHRT [20] uses 

causal inference for treatment effect on the individual, and 

Federated-BEHRT [25] trains the BEHRT model locally on 

the participating institute’s dataset. 

 CORE-BEHRT improved calibration [13] to make 

BEHRT clinically adoptable. 

 Hi-BEHRT [14] used multimodal data to predict HF, 

Stroke and CKD. 

 Targeted-BEHRT [20] extended the BEHRT and used 

causal inference to estimate drug effects within EHRs. 

 Federated-BEHRT,[25]trained the BEHRT model on 

local datasets or devices to maintain data privacy. 

Despite promising predictive performance, the clinical 

implementation of transformer based model for 

cardiovascular disease prediction remains limited. Most 

studies have not evaluated integration within routine clinical 

workflows, real-time inference feasibility or any clinician 

interactions with the model outputs. Furthermore, the absence 

of prospective validation and impact assessment restricts the 

translational readiness of these models, underscoring the need 

for deployment-oriented evaluation beyond retrospective 

performance metrics.  

 

2) RQ2 How do the transformer models perform 
compared to traditional, deep learning and machine 

learning approaches based on evaluation metrics 

such as AUC:  

 

The Area under Curve(AUC) is a common metric for 

assessing the discriminative ability of prediction models [39]. 

In this study, AUC was commonly used as a performance 

metric, followed by accuracy [32],[28], F1-Score, Precision, 

calibration, Concordance-index, Precision-Recall AUC, and 

Average Precision. Across 16 included papers, transformers 

(BEHRT, CORE-BEHRT, Hi-BEHRT) achieved AUC (0.84 
to 0.93), which shows a higher discrimination and calibration 

compared to Deep Learning AUC (0.83 to 0.90) and Machine 

Learning AUC (0.80 to 0.98), which depend on dataset 

quality[13], [14], [16], [18]. The TRisk model utilised the 

CPRD dataset, which refined patient stratifications and 

enhanced treatment allocation, improving by 0.1 over 

QRISK3 in concordance index[15]. 

CORE-BEHRT enhanced calibration, which was a bedrock of 

clinicians' translation [13], while Hi-BEHRT reported 

improved discrimination (AUCROC = 0.91) among the 

multimodal datasets [14]. The Targeted-BEHRT[20] reduced 

the standard error by integrating causal inference for 
estimating drug effects. Another transformer-based study 

achieved an AUC of 0.957 for CVD classification by 

combining with statistical feature filtering [40]. Despite the 

performance gain in transformers, there is still a 

generalisation concern; for instance, there is a study that 

assessed deep learning models under data shifts [41], reported 

that models like BEHRT capture trajectories, and 

performance lowered when no stationary data was used 

[42].In comparison, traditional ML achieved high AUC (0.98) 

[28] on small curated datasets but had poor generalisation on 

longitudinal EHRs [30],[31]. 
While transformer-based architectures offer advantages in 

modelling long-term temporal dependencies and 

heterogeneous EHR data, conventional machine learning 

models such as Random Forest, Gradient Boosting, and 

Logistic Regression remain competitive for structured tabular 

datasets. Several reviewed studies reported comparable 

performance between transformers and non-transformer 

models when temporal complexity was limited, suggesting 

that model selection should be guided by data characteristics 

rather than architectural novelty alone. 
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3) RQ3 What explainable artificial intelligence (XAI) 

techniques have been integrated into Transformer 

models to improve clinical interpretability? 

 

 Interpretability is vital in clinical modelling [43] to 

understand how systems make decisions, as it remains a 

critical issue for clinicians or stakeholders who are involved 

in the process and affected by the prediction result [44]. 

Explainable Artificial Intelligence enhances models to be 

understandable and transparent in diagnostic tasks [45], [46], 

[47],[48]. Among transformer-based studies, attention 
weights have been used to show relevant temporal events. 

Hybrid models integrate SHAP or Feature importance. For 

example, [49] explored code-level interpretability of the 

transformer models. Fifteen out of sixteen studies integrated 

a type of Explainable AI (XAI) tool to enhance model 

understandability. The frequently used techniques were 

SHAP and Attention visualisation [25], [29],[28]. The 

dominance of attention-based methods indicates that 

interpretability is central to transformer-based modelling, 

though clinical explainability remains limited [11], [15], 

[18]. An example is the TRisk model that used attention 
mechanisms to visualise the risk driving events that are in a 

patient timeline [13], and BEHRT used bidirectional 

attention weights for the interpretation of diagnosis 

[10].SHAP was noted to be used most by ML models to rank 

the significance of biochemical predictors and their 

demographic characteristics[28],[28].Hi-BERHT deployed 

Bootstrap your own Latent(BYOL) for multimodal feature 

interpretation [14]. 

However, while attention maps provide some insight, many 

studies still rely on post-hoc XAI rather than inherently 

interpretable model structures[3], [8]. Moreover, only a 

minority of studies translate XAI outputs into actionable 
clinical insights. A key gap is the translation of model 

interpretation into clinician-friendly decision support by 

aligning the clinical interpretability and technical 

frameworks. Despite the great opportunity demonstrated by 

the XAI tools, there was limited proof that the interpretability 

outputs were evaluated in the clinical workflow and from the 

XAI tools, attention maps dominated in transformer-based 

studies, offering partial interpretability. The maps may 

produce misleading explanations when the attention does not 

correlate with casual drivers. This gap demonstrates a 

disconnection between clinical explainability and technical 
interpretability. 

 

4)     RQ4 What limitations and opportunities are presented 

by transformer models for future empirical investigation?  

 

Transformer-based models have achieved state-of-the-art 

results in predicting CVD [3]. However, they face key 

limitations that hinder their adoption in the clinical sector, 

including data privacy concerns, as EHRs contain sensitive 

patient information [6], challenges in integrating multimodal 

data, even though its modelling has emerged as a powerful 

approach in clinical research[50], high computational costs, 

and a lack of external validations[51], [52] across diverse 

settings [6], [25]. As shown in the summary table IV, studies 

are concentrated in different countries, often using databases 

like CPRD, a US-based dataset, which means other 

populations are underrepresented, and models are not trained 

on diverse datasets to improve generalisation [29], [9], [11], 

[12],[53]. Leveraging longitudinal EHRs restricts model 

adoption or applicability in low-resource settings with 

inconsistent data [9], [11]. While attention visualisations [9], 

[10], [12], [15], [25], [26] offer insights into model outputs, 
interpretability remains a concern due to the lack of 

transparency required for clinical adoption. Another 

limitation is the absence of fairness[54] or bias analysis; from 

the reviewed studies, performance disparities related to 

socioeconomic groups, sex, and age were not evaluated, 

despite CVD risk varying across populations[16]. Without 

fairness assessments, transformer models risk exacerbating 

existing health inequalities. 

Despite the limitations noted, some opportunities for 

transformer-based models emerged, like multimodal 

transformers (HI-BEHRT) [14], [55]. The model 
demonstrated the use of different EHR structures to predict 

the onset of Heart failure, thereby improving efficacy. 

Multimodal data analysis is a great emerging opportunity in 

the healthcare setting as many modalities are considered in 

the analysis or prediction of a certain risk, which makes 

models more accurate as all aspects are investigated, such as 

data from wearable devices, clinical notes and imaging[55]. 

Another opportunity emerging is federated learning, which 

stands as a pathway to enable multi-institutional collaboration 

with centralised storage of data [25]. The ability of 

transformer-based models to capture long-term dependences 

in EHRs [18] makes the models outperform ML techniques. 
The transformer-based model, such as BEHRT, can identify 

relationships in patient data over time to understand the 

evolution of the disease under study. The transformers 

reviewed in studies [15], [16], [25] enhanced interpretability 

through attention mechanisms where weight is given to each 

past event, like the medication the patient is subscribed to, 

which promotes transparency since the clinicians will see the 

events the model predicted on, and how much weight they 

each carried. The study [13] demonstrated how transformers 

improved calibration with their estimation probability more 

likely to be the same as the real-world events, making it stable 
for clinical adoption. Privacy of patient EHRs improved by 

the introduction of federated learning [25], where there was 

local training across institutions, aimed at decentralising data 

storage through simulation of the system to enable clinicians 

to make informed decisions for their patients. 

 

From a clinical implementation perspective, the reviewed 

evidence suggests that transformer-based models are not yet 

ready for routine deployment. Most studies remain 

retrospective, lack prospective evaluation, and do not assess 

the feasibility of real-time inference or clinician interaction 
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with model outputs. Furthermore, issues related to 

computational cost, calibration monitoring, and integration 

into existing clinical workflows remain largely unaddressed, 

particularly in resource-constrained healthcare settings. These 

gaps highlight the need for implementation-focused studies 

that move beyond algorithmic performance toward clinical 

utility. 

 

 J. Limitations of the study  

Generalisation across populations remains a significant 
challenge. Most studies were conducted using data from 

single institutions or healthcare systems, thereby increasing 

the risk of population-specific biases and data shift. 

Variations in demographic composition, clinical coding 

practices, and healthcare delivery models may substantially 

reduce model performance when applied to external settings, 

underscoring the need for multi-centre validation and 

robustness testing. The concentration of studies in a small 

number of countries and healthcare systems further amplifies 

concerns about population generalisability, as models trained 

on homogeneous cohorts may fail to perform reliably when 
exposed to demographic, clinical, and institutional shifts. 

 

K. Future work 

Future research should focus on four key priorities such as: 

1) systematic evaluation of robustness under temporal and 

distributed data shifts; 2) large-scale external validation 

across geographically and demographically diverse 

populations; 3) integration of intrinsic interpretability 

mechanisms within transformer architectures to support 

clinical decision making; and 4) simulation-based studies 

assessing clinical impact and workflow integration. 

Together, these priorities constitute a focused research agenda 
for advancing transformer-based CVD prediction models 

from experimental success toward clinically deployable 

decision support systems. 

 

L. Implication of the study  

1)     Practical implications: Healthcare organisations seeking 

to implement transformer-based models for the prediction of 

CVD may consider the model as a state-of-the-art option 

using longitudinal EHRs, but there should be a plan for 

computational cost and a strategic way to integrate the models 

into the clinical workflow. Healthcare providers must account 
for external validation and calibration monitoring when 

deploying models in the healthcare sector. Finally, 

policymakers and funders in healthcare should support 

federated learning or the standardisation of EHRs to facilitate 

the adoption of transformer models across all settings. 

 

2)      Theoretical implications: The results represent a 

learning theory by demonstrating how transformer-based 

models like BEHRT or BEHRT’s variants capture temporal 

dependencies in EHR data, which outperform traditional 

CNNs and RNNS in modelling longitudinal patient 

trajectories. The study extends explainable AI by identifying 

attention mechanisms and SHAP visualisation for model 

understandability. This reinforces trust in AI systems by 

demonstrating how the features contributed to the model's 

output to enhance clinical adoption. Lastly, the review 

demonstrated the theory of information integration by 

highlighting multimodal transformers such as Hi-BEHRT that 

support precision medicine. The present SLR advances theory 

by demonstrating that sequential attention-based architectures 

offer a novel approach to modeling the disease progression 

task. This revealed their weakness in situations marked by 
irregular sampling, differences across institutions, and 

missing data. 

 

IV. CONCLUSION 

 

    The SLR highlights the growing potential of transformer-

based models for cardiovascular disease prediction from 

electronic health records. While these models demonstrate 

strong performance in handling longitudinal and 

heterogeneous data, current evidence remains largely 

experimental. Widespread clinical adoption will depend on 
rigorous external validation, careful consideration of 

generalisability, and meaningful integration of interpretability 

and deployment constraints. Consequently, transformer-

based approaches should be viewed as promising but not yet 

ready for deployment in routine cardiovascular risk 

prediction. 
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