Journal of Applied Informatics and Computing (JAIC)
Vol.10, No.1, February 2026, pp. 1015~1029
e-ISSN: 2548-6861

1015

Optimizing XGBoost for Heart Disease Risk Classification Using Optuna
and Random Search on the Behavioral Risk Factor Surveillance System
(BRFSS) 2023 Dataset

Muhammad Dzaky **, Adam Prayogo Kuncoro ?*, Riyanto **
* Informatika, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto

muh.dzaky1919@gmail.com *, adam@amikompurwokerto.ac.id 2, riyanto@amikompurwokerto.ac.id 3

Article Info

ABSTRACT

Article history:

Received 2025-11-30
Revised 2026-01-19
Accepted 2026-01-30

Keyword:

Heart Disease,
XGBoost,
Optuna,
Random Search,
BRFSS 2023.

Heart disease is a critical public health issue in Indonesia, contributing to
approximately 1,5 million deaths annually. Although machine learning methods,
particularly Extreme Gradient Boosting (XGBoost), have demonstrated strong
performance in medical classification tasks, their optimization on large-scale and
highly imbalanced health datasets remains underexplored. This study optimizes
XGBoost for heart disease risk classification using the Behavioral Risk Factor
Surveillance System (BRFSS) 2023 dataset, consisting of 290.156 samples after
preprocessing. Two hyperparameter optimization approaches, Optuna and Random
Search, are evaluated across three class imbalance handling techniques, namely class
weighting, SMOTE, and Random Undersampling (RUS). Model evaluation focuses
on AUC and recall to prioritize sensitivity in identifying individuals at risk. The
results show that the OptunaRUS and RandomWeight models achieve the most
stable performance, with OptunaRUS attaining an AUC of 83,06% and a recall of
75,69% on the test dataset. Feature importance analysis indicates that age range and
hypertension are the most influential predictors. These findings confirm that
hyperparameter optimization on large-scale health data improves model
discriminative capability and generalization, while selective sampling strategies such
as RUS provide more stable performance than generative methods in high-

dimensional datasets.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN

Penyakit jantung merupakan salah satu penyebab
kematian tertinggi di dunia maupun di Indonesia. Kondisi ini
terjadi akibat adanya gangguan pada pembuluh darah, katup,
atau otot jantung yang menyebabkan fungsi jantung tidak
bekerja dengan normal [1]. Risiko terjadinya penyakit jantung
dapat dipengaruhi oleh berbagai faktor, seperti usia, jenis
kelamin, hipertensi, kolesterol tinggi, diabetes, kebiasaan
merokok, kurangnya aktivitas fisik, hingga konsumsi alkohol
[2]. Berdasarkan laporan Profil Kesehatan Indonesia 2023 [3],
penyakit jantung merupakan penyebab kematian tertinggi
kedua setelah stroke, dengan angka kematian penyakit
jantung iskemik mencapai 95,68 per 100.000 penduduk.
Secara keseluruhan, penyakit jantung dan stroke diperkirakan
menyebabkan sekitar 1,5 juta kematian setiap tahunnya di

Indonesia, sehingga diperlukan upaya deteksi risiko dan
pencegahan yang lebih efektif.

Namun, tingginya urgensi penanganan penyakit jantung di
Indonesia belum diimbangi oleh ketersediaan data mikro
(unit-level data) nasional di bidang kesehatan untuk
mendukung analisis riset mendalam. Merujuk pada laporan
Survei Kesehatan Indonesia (SKI) 2023 [4], informasi yang
tersedia bagi publik masih terbatas pada ringkasan statistik di
tingkat daerah. Selain itu, laman Badan Kebijakan
Pembangunan Kesehatan (BKPK) Kementerian Kesehatan
menyatakan bahwa akses terhadap data mikro SKI
memerlukan mekanisme perizinan khusus dan tidak
disediakan sebagai data open access bagi publik. Akibatnya,
data mikro nasional level individu yang mengintegrasikan
variabel demografis, fisiologis, dan gaya hidup dengan
kondisi kesehatan responden belum dapat dimanfaatkan
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secara luas dalam penelitian berbasis data. Kondisi ini
membatasi pemanfaatan data kesehatan nasional untuk
pengembangan dan evaluasi model analitik berbasis data
berskala besar.

Meskipun terdapat tantangan dalam aksesibilitas data
mikro nasional, pemanfaatan teknologi tetap menjadi langkah
strategis yang perlu diambil untuk mendukung upaya deteksi
dan pencegahan penyakit jantung secara dini. Menurut
Pradana dkk. [5], pendekatan data mining berbasis algoritma
machine learning dapat membantu menganalisis pola
kesehatan yang kompleks untuk mendeteksi risiko penyakit
secara akurat. Pernyataan tersebut sejalan dengan hasil
penelitian oleh Nuraeni [6] yang menunjukkan bahwa model
prediktif berbasis algoritma machine learning mampu
memprediksi risiko penyakit jantung dengan tingkat akurasi
yang tinggi. Secara umum, data mining diartikan sebagai
proses penggalian pola atau informasi unik dari kumpulan
data besar yang dapat digunakan sebagai dasar pengambilan
keputusan. Salah satu tugas utama data mining, yaitu
klasifikasi, sering kali dijadikan sebagai pendekatan utama
dalam konteks medis karena mampu mengelompokkan data
pasien berdasarkan kemiripan karakteristik tertentu, sehingga
mendukung proses diagnosis dan prediksi penyakit [7].

Dalam konteks evaluasi kinerja algoritma machine
learning untuk tugas Klasifikasi, sejumlah penelitian
terdahulu menunjukkan bahwa Extreme Gradient Boosting
(XGBoost) merupakan algoritma yang efektif dan stabil di
berbagai domain dan skala data. Penelitian oleh Dullah dkk.
[8] menerapkan XGBoost untuk prediksi risiko penyakit
jantung menggunakan 1.319 sampel pasien dengan sembilan
fitur dan memperoleh akurasi sebesar 98,11%, yang
meningkat menjadi 98,48% setelah menerapkan teknik
resampling Synthetic Minority Oversampling Technique
(SMOTE). Sementara itu, Velarde dkk. [9] menunjukkan
keandalan XGBoost pada domain non-medis dalam tugas
asesmen risiko pelanggan telekomunikasi dengan nilai F1-
score sebesar 84% pada 1.000 sampel, 87% pada 10.000
sampel, dan 89% pada 100.000 sampel. Temuan-temuan
tersebut menunjukkan bahwa XGBoost mampu memodelkan
hubungan nonlinier antarfitur secara efektif serta
mempertahankan kinerja yang konsisten ketika diterapkan
pada dataset dengan ukuran dan karakteristik yang bervariasi.

Di sisi lain, sejumlah penelitian menunjukkan bahwa
penerapan metode optimasi hiperparameter mampu
meningkatkan kinerja model klasifikasi berbasis machine
learning. Yagin dkk. [10] melaporkan bahwa optimasi
hiperparameter menggunakan Optuna pada algoritma
Random Forest meningkatkan akurasi model dari 95%
menjadi 98,62% pada dataset medis untuk klasifikasi risiko
kanker paru-paru yang terdiri dari 309 sampel. Sementara itu,
Sitanggang dan Sitompul [11] menerapkan Random Search
untuk mengoptimasi Random Forest dalam tugas deteksi
kelangsungan hidup pasien gagal jantung pada dataset yang
terdiri dari 299 sampel dan berhasil meningkatkan akurasi
model dari 80% menjadi 83,33%.

Optuna menerapkan pendekatan optimasi berbasis
probabilistik yang secara adaptif mengeksplorasi ruang
parameter dan memfokuskan pencarian pada kombinasi yang
menjanjikan. Sebaliknya, Random Search melakukan
eksplorasi parameter secara acak tanpa mekanisme adaptif,
namun tetap lebih efisien dibandingkan pencarian
menyeluruh karena tidak mengevaluasi seluruh kombinasi
parameter. Oleh karena itu, kedua pendekatan tersebut
umumnya dinilai lebih efisien secara komputasional
dibandingkan metode konvensional seperti Grid Search, yang
mengevaluasi seluruh kombinasi parameter secara sistematis
sehingga memerlukan beban komputasi yang lebih besar.

Berdasarkan kajian terhadap beberapa penelitian
terdahulu, terdapat sejumlah celah penelitian yang belum
terjawab. Pertama, sejauh penelusuran penulis, belum
ditemukan kajian yang membandingkan penerapan Optuna
dan Random Search pada XGBoost dalam tugas klasifikasi
risiko penyakit jantung. Kedua, pengujian kinerja XGBoost
yang telah dioptimasi tersebut belum mencakup perbandingan
berbagai pendekatan penanganan ketidakseimbangan kelas
yang merepresentasikan pembobotan kelas, penambahan
sampel minoritas, dan pengurangan sampel mayoritas.
Ketiga, kajian yang mengevaluasi performa XGBoost
teroptimasi pada dataset klasifikasi risiko penyakit jantung
berskala besar relatif terbatas. Sejalan dengan keterbatasan
tersebut, terdapat kebutuhan untuk memahami perbedaan
kinerja XGBoost yang dioptimasi menggunakan Optuna dan
Random Search, menilai pengaruh berbagai strategi
penanganan ketidakseimbangan kelas terhadap performa
model, serta mengkaji keberlakuan hasil optimasi dan strategi
penanganan ketidakseimbangan kelas pada dataset berskala
besar dalam konteks data kesehatan populasi.

Celah penelitian tersebut menjadi dasar perumusan tujuan
penelitian ini, yaitu menganalisis dan membandingkan kinerja
model XGBoost yang dioptimasi menggunakan Optuna dan
Random Search dalam tugas Klasifikasi risiko penyakit
jantung berbasis dataset Behavioral Risk Factor Surveillance
System (BRFSS) 2023. Selain itu, penelitian ini juga
mengevaluasi pengaruh tiga pendekatan penanganan
ketidakseimbangan kelas, yaitu pembobotan kelas (class
weighting), penambahan sampel minoritas melalui Synthetic
Minority  Oversampling Technique (SMOTE), serta
pengurangan  sampel  mayoritas melalui  Random
Undersampling (RUS), terhadap performa model. Dengan
demikian, penelitian ini turut menguji konsistensi hasil
optimasi  hiperparameter dan strategi  penhanganan
ketidakseimbangan kelas ketika diterapkan pada dataset
BRFSS 2023.

Sebagai respons terhadap keterbatasan akses data mikro
kesehatan berskala individu di Indonesia, penelitian ini
memanfaatkan dataset Behavioral Risk Factor Surveillance
System (BRFSS) 2023 yang dikembangkan oleh Centers for
Disease Control and Prevention (CDC) sebagai survei
kesehatan populasi berskala besar di Amerika Serikat yang
disediakan secara terbuka (open access) untuk keperluan riset
publik. Dataset ini mencakup ratusan ribu entri responden
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dengan ratusan variabel yang merepresentasikan faktor
demografis, fisiologis, dan gaya hidup, termasuk variabel
yang relevan terhadap risiko penyakit jantung seperti usia,
hipertensi, diabetes, kebiasaan merokok, aktivitas fisik, dan
konsumsi alkohol. Karakteristik dataset BRFSS yang besar
dan variatif menjadikannya relevan jika digunakan sebagai
dasar pengujian model klasifikasi machine learning serta
evaluasi metode optimasi hiperparameter [12]. Dalam
konteks tersebut, meskipun dataset ini tidak dikumpulkan dari
populasi Indonesia, pemanfaatannya diposisikan sebagai
pendekatan alternatif yang memungkinkan eksplorasi
metodologis secara valid pada skala data medis yang besar.

Penelitian ini berkontribusi pada pemahaman metodologis
mengenai bagaimana optimasi hiperparameter dan strategi
penanganan ketidakseimbangan kelas memengaruhi kinerja
model machine learning pada data medis berskala besar.
Hasil penelitian ini menunjukkan batasan dan potensi masing-
masing pendekatan optimasi dalam konteks klasifikasi risiko
penyakit, sehingga dapat menjadi rujukan dalam pemilihan
metode yang lebih tepat pada penelitian sejenis. Oleh karena
itu, penelitian ini memberikan wawasan empiris mengenai
pengembangan model prediksi risiko penyakit berbasis data
besar dan membuka peluang bagi penelitian lanjutan di
bidang kesehatan berbasis data.

I1. METODE

Metode penelitian ini merujuk pada tahapan umum dalam
proyek data mining yang disesuaikan dengan tujuan
penelitian, meliputi pengumpulan data, prapemrosesan data,
pembagian data, penanganan ketidakseimbangan kelas,
pemodelan dan optimasi hiperparameter, serta evaluasi
model. Urutan tahapan tersebut dirancang untuk memastikan
bahwa setiap tahapan pengolahan dan analisis data dilakukan
secara sistematis. llustrasi mengenai alur tahapan penelitian
ditampilkan pada Gambar 1.

Prapemrosesan

Data

—
< Mulai >—> Pengumpulan Data

—_—

o]
\‘\—¥

—

Pembagian Data

l

Penanganan

Pemodelan dan
Optimasi
Hiperparameter

Evaluasi Model [«—

Kelas

Gambar 1. Alur tahapan penelitian

A. Pengumpulan Data

Penelitian ini menggunakan data sekunder dari survei
Behavioral Risk Factor Surveillance System (BRFSS) tahun
2023 yang diperoleh melalui laman resmi Centers for Disease
Control and Prevention (CDC) dan tersedia secara terbuka
untuk keperluan penelitian. Dataset BRFSS 2023 disediakan
dalam format .xpt dan masih berupa data mentah karena
belum melalui tahap prapemrosesan. Dataset ini mencakup
sebanyak 433.233 entri responden dengan 350 variabel yang
merepresentasikan  karakteristik ~ demografis,  kondisi
kesehatan, serta perilaku berisiko individu. Skala data yang
besar dengan keragaman variabel yang luas menjadikan
BRFSS memerlukan serangkaian penyesuaian sebelum

digunakan sebagai dasar pengembangan model untuk

klasifikasi risiko penyakit tertentu.

B. Prapemrosesan Data

Tahap prapemrosesan data pada penelitian ini difokuskan
untuk menangani karakteristik data BRFSS 2023 yang
memiliki ruang lingkup yang luas dan masih bersifat mentah.
Tujuan dari tahap ini adalah untuk memastikan bahwa model
klasifikasi risiko penyakit jantung yang dikembangkan
mampu menangkap pola informasi secara optimal tanpa
terpengaruh oleh anomali maupun redundansi fitur [13].
Tahapan tersebut mencakup seleksi variabel, pembersihan
data, serta transformasi dan standarisasi fitur, sehingga
diperoleh dataset yang relevan dan representatif terhadap
kondisi penyakit jantung.

1) Persiapan Data Awal: Tahap awal prapemrosesan
dimulai dengan konversi dataset BRFSS 2023 dari format .xpt
menjadi .csv untuk memudahkan proses identifikasi dan
analisis data. Selanjutnya, dilakukan validasi tahun sampel
data berdasarkan variabel I'YEAR dengan merujuk pada
codebook BRFSS 2023. Proses validasi ini bertujuan untuk
memastikan bahwa seluruh data yang digunakan dalam proses
analisis dan pengembangan model sepenuhnya berasal dari
data tahun 2023.

2) Pemilihan dan Pemetaan Nilai Variabel: Proses
pemilihan dan pemetaan nilai variabel masih mengacu pada
codebook BRFSS 2023 guna memastikan konsistensi definisi
variabel beserta kesesuaian interpretasi nilainya. Variabel
yang relevan terhadap kondisi penyakit jantung dipilih dan
diubah namanya dari yang semula berbentuk kode menjadi
nama yang lebih  deskriptif agar lebih  mudah
diinterpretasikan. Terdapat dua belas variabel terpilih yang
meliputi RentangUsia, JenisKelamin, BMI,
TekananDarahTinggi, KolesterolTinggi, Diabetes,
KesulitanBerjalan, KesehatanUmum, StatusMerokok,
AktivitasFisik, KonsumsiAlkohol, dan PenyakitJantung.
Seluruh variabel tersebut kemudian dipetakan label nilainya
berdasarkan definisi kategori yang tersedia dalam codebook.
Variabel PenyakitJantung ditetapkan sebagai variabel target
dengan label 0 untuk responden tanpa risiko dan label 1 untuk
responden dengan risiko penyakit jantung.

3) Pembersihan Data: Tahap pembersihan data
mencakup dua prosedur utama, yaitu eliminasi sampel dengan
nilai hilang (missing values) serta penanganan data pencilan
(outlier). Kedua prosedur tersebut diterapkan untuk
memastikan dataset yang diperoleh setelah proses seleksi
variabel sepenuhnya bebas dari anomali  berupa
ketidaklengkapan data maupun keberadaan nilai ekstrem
yang berpotensi mengurangi kemampuan generalisasi model.
Proses pembersihan data tidak mencakup identifikasi
duplikasi sampel karena dataset BRFSS 2023 disusun pada
tingkat individu responden, dengan setiap responden
diidentifikasi berdasarkan nomor telepon, sehingga potensi
keberadaan observasi ganda dianggap minimal.
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Penanganan missing values dilakukan dengan menghapus
baris data yang mengandung nilai hilang menggunakan fungsi
df = df.dropna(). Langkah ini bertujuan agar seluruh
observasi yang digunakan dalam pelatinan model memiliki
informasi yang lengkap pada seluruh variabel yang dianalisis.
Keberadaan nilai hilang dapat menyebabkan hilangnya
informasi, memengaruhi representativitas data, serta
berpotensi menimbulkan bias dalam analisis dan menurunkan
kinerja model klasifikasi, sehingga penanganannya
diperlukan untuk mengurangi dampak tersebut dalam tahap
prapemrosesan data [1].

Selanjutnya, penanganan outlier diterapkan khusus pada
variabel BMI yang merupakan satu-satunya variabel numerik
berskala kontinu di antara dua belas variabel terpilih. Nilai
BMI dibatasi pada rentang 12 hingga 60 kg/m2 untuk
mengurangi pengaruh nilai ekstrem yang jarang terjadi dan
berpotensi mendistorsi struktur distribusi populasi dewasa
sekaligus mempertahankan variasi biologis valid yang
penting dalam konteks risiko penyakit jantung. Penanganan
outlier memiliki peranan penting dalam tahap prapemrosesan
data karena nilai ekstrem dapat mengganggu struktur
distribusi data dan memengaruhi kemampuan model dalam
mempelajari pola yang relevan [14]. Dengan demikian,
pembatasan ini dimaksudkan untuk menjaga stabilitas
distribusi data sehingga hubungan antara faktor risiko dan
penyakit jantung dapat dipelajari secara lebih representatif
oleh model. Meskipun secara statistik beberapa observasi di
atas batas atas interquartile range (IQR) tetap terdeteksi
sebagai outlier, nilai-nilai tersebut tetap dipertahankan karena
relevansi klinisnya dalam merepresentasikan obesitas ekstrem
sebagai faktor risiko penyakit jantung, sehingga
representativitas data tetap dapat dijaga tanpa mengorbankan
stabilitas distribusi.

4) Penerapan One-Hot Encoding dan Standarisasi
Data: One-hot encoding selanjutnya diterapkan setelah data
melalui tahap pembersihan untuk mengonversi variabel
kategorik ke dalam representasi numerik berbentuk fitur biner
[15]. Proses ini diterapkan khusus pada variabel kategorik
meliputi RentangUsia, KesehatanUmum, dan
StatusMerokok, di mana StatusMerokok bersifat nominal,
sedangkan RentangUsia dan KesehatanUmum memiliki sifat
ordinal namun tetap dikodekan secara biner untuk
meminimalkan asumsi hubungan linear antar tingkatan
kategori dan memungkinkan setiap kategori dimanfaatkan
secara independen oleh model Klasifikasi risiko penyakit
jantung. Pemecahan variabel kategorik menjadi beberapa fitur
biner membuat setiap kategori direpresentasikan secara
terpisah, sehingga meningkatkan kejelasan representasi data
meskipun jumlah fitur dalam dataset bertambah.

Setelah penerapan one-hot encoding, seluruh fitur yang
tersedia dalam dataset distandarisasi menggunakan
StandardScaler, termasuk fitur biner hasil pemecahan variabel
kategorik serta fitur numerik kontinu seperti BMI.
Standarisasi ini dilakukan untuk menyeragamkan skala nilai
antar variabel sehingga perbedaan rentang numerik tidak
diinterpretasikan oleh model sebagai perbedaan tingkat

kepentingan fitur [16]. Pendekatan ini relevan mengingat fitur
dalam dataset memiliki Kkarakteristik yang bervariasi,
sehingga tanpa standarisasi, fitur dengan rentang nilai yang
lebih besar berpotensi memengaruhi proses pembelajaran
secara tidak proporsional. Meskipun algoritma XGBoost
relatif toleran terhadap variasi skala fitur, standarisasi tetap
diterapkan untuk memastikan konsistensi representasi data
dan stabilitas proses pelatihan.

C. Pembagian Data

Dataset BRFSS 2023 yang telah melalui seluruh tahap
prapemrosesan dibagi menjadi data latih dan data uji untuk
memisahkan proses pembelajaran dan evaluasi model.
Pembagian data dilakukan dengan rasio 80% sebagai data
latih dan 20% sebagai data uji yang secara umum digunakan
dalam penelitian pengembangan model klasifikasi berbasis
algoritma machine learning. Skema ini dirancang untuk
menghasilkan evaluasi kinerja model yang objektif melalui
pengujian pada data yang tidak terlibat dalam proses
pelatihan.

D. Penanganan Ketidakseimbangan Kelas

Meskipun data telah melalui tahap prapemrosesan dan
pembagian data, distribusi kelas pada variabel target masih
menunjukkan ketidakseimbangan antara kelas mayoritas dan
kelas minoritas. Berdasarkan identifikasi awal, sekitar 90,7%
data berada pada kelas mayoritas (kelas 0), dengan 9,3%
sisanya berada pada kelas minoritas (kelas 1).
Ketidakseimbangan  distribusi  kelas ini  berpotensi
menyebabkan proses pembelajaran model menjadi bias
terhadap kelas mayoritas, yang membuat model lebih
dominan mempelajari pola dari kelas mayoritas dan kurang
optimal dalam mengenali karakteristik kelas minoritas [13].
Oleh karena itu, diperlukan penerapan strategi penanganan
ketidakseimbangan kelas sebelum tahap pemodelan.

Penelitian ini menerapkan tiga pendekatan penanganan
ketidakseimbangan kelas yang merepresentasikan mekanisme
penanganan yang berbeda. Pendekatan tersebut meliputi class
weighting yang bekerja melalui pemberian bobot berbeda
antar kelas dalam proses pembelajaran, Synthetic Minority
Oversampling Technique (SMOTE) yang bekerja dengan
menambahkan sampel pada kelas minoritas, serta Random
Undersampling (RUS) yang bekerja dengan mengurangi
sampel pada kelas mayoritas [17], [18], [19]. Ketiga
pendekatan ini digunakan sebagai skenario yang berbeda
untuk mengeksplorasi dan membandingkan efektivitas
masing-masing mekanisme pada dataset BRFSS 2023 yang
berukuran besar dan heterogen.

Penanganan ketidakseimbangan kelas hanya diterapkan
pada data latih yang mencakup 80% dari data bersih,
sementara itu data uji dibiarkan mempertahankan distribusi
kelas aslinya. Pendekatan ini bertujuan untuk mencegah
terjadinya data leakage, yaitu kondisi ketika informasi dari
data uji secara tidak langsung memengaruhi proses pelatihan
model dan menghasilkan estimasi Kinerja yang terlalu
optimistis [18]. Selain itu, mempertahankan distribusi kelas
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asli pada data uji memungkinkan evaluasi dilakukan pada
kondisi yang merepresentasikan situasi nyata, sehingga
kinerja model yang diperoleh mencerminkan kemampuan
generalisasi secara lebih objektif.

E. Pemodelan dan Optimasi Hiperparameter

Tahap pemodelan dilakukan dengan melatih algoritma
Extreme Gradient Boosting (XGBoost) menggunakan data
latih yang telah melalui seluruh tahapan prapemrosesan.
Proses pemodelan dilakukan baik pada model dasar XGBoost
maupun pada model yang dioptimasi menggunakan dua
pendekatan optimasi hiperparameter, yaitu Optuna dan
Random Search. Kedua pendekatan optimasi tersebut juga
diterapkan pada tiga skenario penanganan ketidakseimbangan
kelas, yang meliputi class weighting, Synthetic Minority
Oversampling  Technique (SMOTE), dan Random
Undersampling (RUS), sehingga menghasilkan sembilan
kombinasi pemodelan. Seluruh kombinasi ini digunakan
untuk mengeksplorasi pengaruh strategi optimasi dan
penanganan ketidakseimbangan kelas terhadap kinerja model
klasifikasi risiko penyakit jantung secara menyeluruh dan
representatif melalui mekanisme penanganan yang berbeda,
dengan konfigurasi masing-masing skenario dirangkum pada
Tabel 1.

TABEL |
SKENARIO PEMODELAN DAN KONFIGURASI MODEL XGBOOST

Kode Skenario Konfigurasi Model

BaseWeight XGBoost + Class Weighting

OptunaWeight XGBoost + Optuna + Class Weighting

RandomWeight XGBoost + Random Search + Class
Weighting

BaseSMOTE XGBoost + SMOTE

OptunaSMOTE XGBoost + Optuna + SMOTE

RandomSMOTE XGBoost + Random Search + SMOTE

BaseRUS XGBoost + Random Undersampling
(RUS)

OptunaRUS XGBoost + Optuna + Random
Undersampling (RUS)

RandomRUS XGBoost + Random Search + Random
Undersampling (RUS)

Dalam seluruh skenario pemodelan, konfigurasi dasar
XGBoost diterapkan secara konsisten, dengan nilai parameter
yang meliputi random_state=42, eval_metric="logloss’, dan
tree_method="hist'. Pada skenario class weighting, nilai
scale_pos weight ditetapkan  sesuai dengan  rasio
ketidakseimbangan kelas yang relevan pada data latih,
sedangkan  pada  skenario SMOTE dan RUS,
scale_pos_weight ditetapkan sebesar 1 untuk menghindari
redundansi mekanisme penanganan ketidakseimbangan
kelas. Pencarian parameter optimal dilakukan melalui Optuna
dan Random Search yang masing-masing memiliki jumlah
iterasi sebanyak 50 kali untuk menjamin perbandingan
performa yang adil. Proses pelatihan dan optimasi dievaluasi
menggunakan 5-fold stratified cross-validation dengan
metrik Receiver Operating Characteristic-Area Under Curve
(ROC-AUC). Rata-rata ROC-AUC dipilih sebagai acuan

utama pemilihan konfigurasi terbaik karena bersifat
threshold-independent, sehingga memberikan estimasi
generalisasi model yang stabil sebelum evaluasi
komprehensif dengan metrik klasifikasi lengkap pada data uji.

1) Extreme Gradient Boosting (XGBoost): Extreme
Gradient Boosting (XGBoost) merupakan algoritma machine
learning berbasis gradient boosting yang menggunakan
decision tree sebagai model dasarnya. Algoritma ini bekerja
secara berurutan, di mana setiap pohon baru dibangun untuk
memperbaiki Kkesalahan prediksi dari pohon sebelumnya
sehingga model akhir yang dihasilkan merupakan gabungan
dari seluruh pohon dalam proses ensemble. XGBoost dikenal
memiliki efisiensi komputasi yang tinggi, kemampuan
generalisasi yang baik, serta mekanisme regulasi untuk
mencegah overfitting [20], [21]. Disebutkan pada penelitian
oleh Zhang dkk. [22], algoritma XGBoost memiliki beberapa
komponen utama dalam proses kerjanya yang dijabarkan
melalui sejumlah persamaan sebagai berikut.

Rumus prediksi (ensemble model) XGBoost ditunjukkan pada
Rumus (1):

V.= 2115:1 fie(x:),

Keterangan Rumus (1):

¥, = prediksi sampel ke — i.

K = jumlah pohon dalam ensemble.
fi(-) = pohon keputusan ke — k.

F = ruang fungsi pohon keputusan.

fk€F )

Fungsi objektif yang digunakan dalam proses pelatihan
XGBoost ditunjukkan pada Rumus (2), dengan komponen
regularisasi yang dirumuskan pada Rumus (3):

L= 10u5) + 2 0(f) (2
() =T + 22| lwl|* ©)

Keterangan Rumus (2) dan Rumus (3):

L = fungsi objektif total.

l(y;, %) = loss antara aktual dan prediksi.
Q(f,) = regulasi pohon ke — k.

T = jumlah daun pohon.

w = bobot tiap daun.

Y = penalti penambahan daun.

A = regulasi L2 bobot daun.

Rumus (1) menjelaskan bahwa prediksi akhir pada model
XGBoost diperoleh dari penjumlahan kontribusi seluruh
pohon keputusan yang dibangun secara bertahap melalui
proses boosting. Setiap pohon baru berfungsi untuk
memperbaiki kesalahan prediksi dari pohon sebelumnya,
sehingga model akhir merupakan hasil ensemble dari seluruh
pohon yang telah dilatih.

Sementara itu, Rumus (2) dan (3) menggambarkan tujuan
pelatihan model XGBoost secara konseptual, vaitu
meminimalkan kesalahan prediksi sekaligus mengendalikan
kompleksitas model melalui  komponen regularisasi.
Komponen regularisasi berfungsi memberikan penalti
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terhadap pertumbuhan struktur pohon, seperti penambahan
jumlah daun, serta membatasi bobot pada setiap daun agar

model tidak menjadi terlalu  kompleks. Dengan
menyeimbangkan antara pengurangan kesalahan dan
pembatasan kompleksitas tersebut, XGBoost mampu

menghasilkan model yang akurat namun tetap terkontrol
sehingga mengurangi potensi overfitting.

2) Optuna: Optuna merupakan framework optimasi
hiperparameter yang mendukung pendekatan optimasi
berbasis model, salah satunya melalui algoritma Tree-
structured Parzen Estimator (TPE). Framework ini bekerja
dengan menganalisis hasil evaluasi sebelumnya untuk
mempelajari hubungan antara konfigurasi parameter dan
performa model, sehingga dapat menentukan arah pencarian
parameter yang lebih potensial. Pendekatan adaptif ini
menjadikan proses pencarian lebih efisien dibandingkan
metode konvensional seperti Grid Search. Dengan
memfokuskan pencarian pada wilayah ruang parameter yang
menjanjikan, Optuna mampu meningkatkan efisiensi
pencarian sekaligus menghasilkan konfigurasi yang lebih
optimal [10].

Selain efisien, Optuna juga memiliki fleksibilitas yang
tinggi karena mendukung konsep define-by-run, yang
memungkinkan pengguna mendefinisikan ruang pencarian
secara dinamis selama proses eksekusi. Selain itu, mekanisme
pruning yang dimilikinya dapat menghentikan percobaan
yang tidak menjanjikan sejak dini, sehingga sumber daya
komputasi dapat digunakan dengan lebih optimal. Kombinasi
metode TPE, define-by-run, dan pruning menjadikan Optuna
efektif digunakan dalam berbagai penelitian, termasuk pada
model machine learning maupun deep learning yang
memerlukan penyesuaian hiperparameter secara optimal [23].

3) Random Search: Di sisi lain, Random Search
merupakan metode optimasi hiperparameter yang bekerja
dengan cara memilih kombinasi parameter secara acak dari
ruang pencarian yang telah ditentukan. Berbeda dengan Grid
Search yang mengevaluasi seluruh kemungkinan kombinasi,
Random Search hanya menguji sebagian konfigurasi,
sehingga proses pencarian menjadi lebih efisien dengan
waktu komputasi lebih singkat. Pendekatan ini efektif
diterapkan pada model dengan dataset berukuran besar dan
fitur yang kompleks, karena eksplorasi acak memungkinkan
pencarian solusi yang baik tanpa harus mengevaluasi seluruh
kombinasi, sehingga beban komputasi dapat dikurangi secara
signifikan [24].

4) Ruang Lingkup Optimasi Hiperparameter: Pada
skenario  pemodelan yang  melibatkan  optimasi
hiperparameter menggunakan Optuna dan Random Search,
proses optimasi difokuskan pada hiperparameter utama
XGBoost yang memengaruhi kompleksitas dan kemampuan
generalisasi model. Ruang lingkup nilai hiperparameter pada
kedua pendekatan dikonfigurasikan secara identik untuk
menjaga kesetaraan ruang pencarian. Perbedaan hanya
terletak pada mekanisme eksplorasi, dengan Optuna
melakukan pencarian adaptif pada ruang parameter kontinu

yang lebih halus berdasarkan hasil evaluasi sebelumnya,
sedangkan Random Search mengevaluasi kombinasi nilai
diskret secara acak. Dengan demikian, variasi kinerja yang
dihasilkan dapat dipandang sebagai konsekuensi langsung
dari perbedaan strategi pencarian dalam ruang parameter yang
setara. Rincian ruang lingkup hiperparameter ditunjukkan
pada Tabel 2.

TABEL Il

RUANG LINGKUP OPTIMASI HIPERPARAMETER XGBOOST
Hiperparameter | Optuna Random Search
n_estimators 100-1000 | {100, 300, 500, 1000}
max_depth 2-20 {3, 6, 10, 15}
learning_rate 0.001-0.3 | {0.01, 0.05, 0.1, 0.2}
subsample 0.3-1.0 {0.6,0.8, 1.0}
colsample_bytree | 0.3-1.0 {0.6, 0.8, 1.0}

F. Evaluasi Model

Setelah proses pelatihan model selesai, evaluasi dilakukan
dengan  mengujikan  seluruh  skenario  pemodelan
menggunakan data uji untuk menilai kinerja model dalam
tugas Klasifikasi risiko penyakit jantung. Tahap evaluasi
merupakan bagian penting dalam pengembangan model
machine learning karena berfungsi untuk menilai efektivitas,
reliabilitas, dan kemampuan generalisasi, sekaligus
mengidentifikasi kekuatan dan kelemahan model. Penilaian
dilakukan menggunakan metrik confusion matrix, akurasi,
dan nilai macro average dari presisi, recall, serta F1-score,
dilengkapi visualisasi kurva ROC-AUC untuk memberikan
gambaran menyeluruh mengenai kualitas prediksi model [16],
[25]. Selain itu, proses evaluasi mencakup analisis feature
importance untuk menilai kontribusi relatif masing-masing
fitur terhadap keputusan model.

1) Confusion Matrix: Confusion matrix merupakan
tabel evaluasi yang membandingkan hasil prediksi model
dengan kondisi aktual data uji. Tabel ini terdiri atas empat
komponen utama, yaitu True Positive (TP) dan True Negative
(TN) yang merepresentasikan prediksi benar untuk kelas
positif dan negatif, serta False Positive (FP) dan False
Negative (FN) yang menunjukkan kesalahan klasifikasi, di
mana FP terjadi ketika model memprediksi kelas positif pada
data yang sebenarnya negatif, sedangkan FN terjadi ketika
model memprediksi kelas negatif pada data yang sebenarnya
positif [26]. Pada penelitian yang dilakukan oleh Hakim dkk.
[26], evaluasi kinerja model machine learning menggunakan
confusion matrix divisualisasikan pada Gambar 2 untuk
menunjukkan kontribusi masing-masing komponen terhadap
evaluasi model.
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Gambar 2. llustrasi confusion matrix

Berdasarkan visualisasi confusion matrix pada Gambar 2,
komponen utama yang meliputi True Positive (TP), True
Negative (TN), False Positive (FP), dan False Negative (FN)
digunakan sebagai dasar dalam perhitungan berbagai metrik
evaluasi. Berdasarkan komponen-komponen tersebut, metrik
seperti akurasi, presisi, recall, dan F1-score dapat dihitung
untuk menilai kualitas prediksi model. Uraian mengenai
rumus masing-masing metrik disajikan pada bagian berikut.

Rumus akurasi dijabarkan pada Rumus (4):

TP+TN

Akurasi = ———
TP+TN+FP+FN

)

Pada Rumus (4), akurasi merepresentasikan proporsi
prediksi yang benar terhadap keseluruhan data uji. Semakin
tinggi nilai akurasi, semakin baik kemampuan model dalam
melakukan Klasifikasi secara keseluruhan. Meskipun
demikian, metrik ini belum tentu mampu merepresentasikan
performa model secara seimbang antar kelas, khusushya
ketika dataset memiliki distribusi kelas yang tidak seimbang.

Rumus presisi dijabarkan pada Rumus (5):

®)

Pada Rumus (5), presisi merepresentasikan tingkat
ketepatan model dalam memprediksi kelas positif. Semakin
tinggi nilai presisi, semakin besar proporsi prediksi positif
yang benar-benar sesuai dengan fakta, sehingga kesalahan
klasifikasi berupa False Positive (FP) dapat diminimalkan.
Meskipun demikian, presisi yang tinggi tidak selalu
menjamin bahwa model mampu menangkap seluruh data
positif yang terdapat dalam dataset.

Presisi =
TP+FP

Rumus recall dijabarkan pada Rumus (6):

TP
TP+FN

(6)

Pada Rumus (6), recall merepresentasikan kemampuan
model dalam mengidentifikasi seluruh data positif yang
terdapat dalam dataset. Nilai recall yang tinggi menunjukkan
bahwa model mampu meminimalkan kesalahan prediksi
False Negative (FN), sehingga data positif yang penting tidak
terlewatkan. Meskipun demikian, nilai recall yang tinggi
tetap perlu diimbangi dengan presisi agar performa prediksi
model tetap stabil dan akurat.

Recall =

Rumus F1-score dijabarkan pada Rumus (7):

PresisixRecall
Fl-score =2 X ———

()

Pada Rumus (7), F1-score merupakan rata-rata harmonis
antara presisi dan recall yang digunakan untuk menilai
keseimbangan performa model dalam proses klasifikasi. Nilai
F1-score yang tinggi mengindikasikan bahwa model tidak
hanya tepat dalam memprediksi kelas positif, tetapi juga
konsisten dalam mendeteksi seluruh data positif yang relevan.
Oleh karena itu, metrik ini sangat berguna pada kondisi ketika
distribusi kelas tidak seimbang.

2) Grafik ROC-AUC: Berbeda dengan confusion matrix
yang menyajikan ringkasan kinerja model dalam bentuk nilai-
nilai klasifikasi, Receiver Operating Characteristic (ROC)
merupakan grafik evaluasi yang digunakan untuk menilai
kinerja model klasifikasi biner. Kurva ROC menggambarkan
hubungan antara True Positive Rate (TPR) dan False Positive
Rate (FPR) yang diturunkan dari komponen pada confusion
matrix. Dengan memvisualisasikan perubahan nilai TPR dan
FPR pada berbagai ambang keputusan (threshold), kurva
ROC membantu menggambarkan keseimbangan antara
kemampuan model dalam mendeteksi kelas positif dan
tingkat kesalahan prediksi terhadap kelas negatif, sehingga
memberikan pemahaman kinerja model yang lebih jelas dan
informatif [27]. Disebutkan pada penelitian oleh Kristiawan
dan Widjaja [28], visualisasi grafik ROC ditampilkan pada
Gambar 3.

Presisi+Recall

Kurva Area Under Curve

Receiver Operator Characteristic

Gambar 3. llustrasi grafik ROC-AUC

Dilihat pada Gambar 3, grafik ROC tidak hanya
menampilkan hubungan antara True Positive Rate (TPR) dan
False Positive Rate (FPR), tetapi juga dilengkapi dengan
komponen tambahan berupa Area Under Curve (AUC). Pada
grafik ini, sumbu Y merepresentasikan TPR, sedangkan
sumbu X merepresentasikan FPR. Luas area di bawah kurva
ROC (AUC) digunakan untuk menilai kinerja model
klasifikasi secara keseluruhan. Nilai AUC banyak digunakan
sebagai metrik evaluasi karena mampu mencerminkan
performa model pada berbagai ambang batas keputusan
(threshold), sehingga memberikan gambaran Kinerja yang
lebih  komprehensif dibandingkan metrik tunggal dari
confusion matrix [28]. Adapun klasifikasi performa nilai
AUC menurut Amrin dkk. [29] disajikan pada kategori
berikut sebagai referensi penilaian model.

Disebutkan pada penelitian oleh Amrin dkk. [29], nilai
AUC dikategorikan ke dalam beberapa tingkatan, yang
meliputi rentang nilai 0,90-1,00 sebagai klasifikasi sangat
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baik, 0,80-0,90 sebagai klasifikasi baik, 0,70-0,80 sebagai
klasifikasi cukup, 0,60-0,70 sebagai Klasifikasi kurang, serta
0,50-0,60 sebagai klasifikasi gagal. Kategori tersebut
memberikan gambaran mengenai tingkat kualitas pemisahan
kelas yang dihasilkan oleh model klasifikasi berdasarkan nilai
AUC. Dengan demikian, nilai AUC dapat digunakan sebagai
acuan evaluatif untuk menilai performa model secara umum
dalam melakukan tugas klasifikasi.

3) Feature Importance: Feature importance dalam
model machine learning merupakan pendekatan yang
digunakan untuk menjelaskan kontribusi relatif setiap fitur
terhadap kinerja model dalam menghasilkan prediksi. Melalui
analisis feature importance, dapat diketahui fitur-fitur yang
memiliki pengaruh paling signifikan maupun yang
memberikan kontribusi rendah dalam proses pengambilan
keputusan model. Informasi yang dihasilkan dari feature
importance membantu meningkatkan pemahaman terhadap
cara kerja model serta mengidentifikasi faktor-faktor utama
yang memengaruhi hasil prediksi [13].

I11. HASIL DAN PEMBAHASAN

Secara keseluruhan, semua tahapan dalam penelitian ini
diimplementasikan menggunakan bahasa pemrograman
Python. Tahap prapemrosesan data awal dilakukan
menggunakan Visual Studio Code, yang meliputi proses
konversi data, pemilihan dan pemetaan nilai variabel, serta
pembersihan data. Selanjutnya, prapemrosesan lanjutan
dilakukan pada platform Google Colaboratory yang
mencakup one-hot encoding dan standarisasi data. Pada
platform yang sama, proses dilanjutkan dengan pembagian
data latih dan data uji, penanganan ketidakseimbangan kelas,
pemodelan, hingga evaluasi model. Seluruh skenario
pemodelan kemudian dievaluasi untuk menilai kemampuan
masing-masing model dalam melakukan tugas Klasifikasi
risiko penyakit jantung.

A. Dataset

Pada kondisi awal setelah melalui proses konversi data,
dataset BRFSS 2023 masih merepresentasikan kondisi data
mentah sebagaimana yang ditunjukkan pada Gambar 4.
Visualisasi tersebut memberikan gambaran awal mengenai
struktur dan dimensi dataset sebelum dilakukan tahap
prapemrosesan dan seleksi variabel, sehingga seluruh variabel
dan sampel masih tersedia secara utuh serta belum secara
spesifik disesuaikan dengan konteks klasifikasi risiko
penyakit jantung.

Jumiah Sampel Dataset Mentah Jumlah Variabel Dataset Mentah
433323 350

300000

miah

3 200000 3.
]

Gambar 4. Dimensi awal dataset BRFSS 2023

Pada Gambar 4, ditunjukkan bahwa dataset terdiri dari
total 433.323 sampel dengan 350 variabel. Meskipun
mayoritas data berasal dari tahun 2023, terdapat sekitar 25
ribu entri yang tercatat sebagai data tahun 2024 setelah
diidentifikasi menggunakan variabel I'YEAR. Berdasarkan
codebook BRFSS 2023, variabel-variabel yang tersedia
merepresentasikan indikator faktor demografis, kondisi
medis, serta perilaku berisiko responden yang disurvei.

B. Hasil Prapemrosesan Data

Keseluruhan tahap prapemrosesan pada dataset BRFSS
2023 menghasilkan data yang lebih bersih, relevan, dan siap
digunakan untuk pembangunan model klasifikasi risiko
penyakit jantung. Setelah dilakukan seleksi variabel relevan,
pembersihan entri bermasalah, serta transformasi dan
standarisasi fitur, struktur dataset menjadi lebih representatif
terhadap kondisi penyakit jantung. Dengan demikian, dataset
yang dihasilkan memiliki fitur yang lebih terfokus dengan
sampel yang berkualitas, sehingga mendukung proses
pemodelan secara efektif.

1) Persiapan Data Awal: Sebagai upaya untuk
memastikan akurasi representasi tahun dalam dataset, sampel
BRFSS 2023 difilter berdasarkan variabel I'YEAR sehingga
hanya observasi tahun 2023 yang dilibatkan pada tahap
prapemrosesan selanjutnya. Tahap ini dilakukan sebelum
proses pemilihan variabel, penamaan ulang, dan pemetaan
nilai. Perubahan jumlah sampel sebagai hasil dari seleksi ini
disajikan pada Gambar 5.

Jumlah Sampel Sebelum Trim Jumlah Sampel Sesudah Trim (2023)
433323 408,012

400000

400000
350000
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300000
5 5000
5 20000 § 200000
150000
100000 100000
0000

[ [
Sebelum Sesudah

Gambar 5. Jumlah sampel sebelum dan setelah seleksi I'YEAR

Gambar 5 memvisualisasikan pengurangan jumlah sampel
selama tahap seleksi awal. Berdasarkan total 433.233 entri
yang tersedia, identifikasi melalui variabel IYEAR
menunjukkan terdapat 25.221 entri yang berasal dari data
tahun 2024. Seluruh entri tersebut kemudian dieliminasi guna
menjaga homogenitas data, sehingga diperoleh dataset akhir
sebanyak 408.012 sampel. Langkah ini memastikan bahwa
analisis selanjutnya sepenuhnya merepresentasikan data
BRFSS tahun 2023 sesuai dengan fokus penelitian.

2) Pemilihan dan Pemetaan Nilai Variabel: Mengingat
dataset awal memiliki total 350 variabel, proses seleksi
dilakukan untuk menentukan variabel yang relevan dengan
tujuan penelitian. Tahap ini mencakup seleksi variabel,
penamaan ulang, serta pemetaan nilai yang berpedoman pada
codebook BRFSS 2023. Rincian mengenai variabel terpilih,
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beserta jenis, deskripsi, dan hasil pemetaan nilainya disajikan
pada Tabel 3.

TABEL III
RINCIAN VARIABEL TERPILIH BESERTA JENIS, DESKRIPSI, DAN HASIL PEMETAAN NILAINYA

Nama Variabel Jenis Deskripsi Pemetaan Nilai

RentangUsia Kategorik Kelompok usia responden (tahun) 1=18-24, 2=25-34, 3=35-44, 4=45-54,
5=55-64, 665

JenisKelamin Biner Jenis kelamin responden 0=Perempuan, 1=Laki-laki

BMI Numerik Indeks massa tubuh responden (kg/m?) Rentang nilai numerik

TekananDarahTinggi | Biner Riwayat hipertensi responden 0=Tidak, 1=Ya

Kolesterol Tinggi Biner Riwayat kolesterol tinggi responden 0=Tidak, 1=Ya

Diabetes Biner Riwayat diabetes responden 0=Tidak, 1=Ya

KesulitanBerjalan Biner Kesulitan berjalan pada responden 0=Tidak, 1=Ya

KesehatanUmum Kategorik Persepsi responden terhadap kondisi kesehatannya | 1-5 (sangat baik—buruk)

StatusMerokok Kategorik Riwayat merokok responden 0-3 (tidak pernah, setiap hari, kadang,
mantan)

AktivitasFisik Biner Aktivitas fisik intens responden selama satu bulan 0=Tidak, 1=Ya

terakhir
KonsumsiAlkohol Biner Riwayat konsumsi alkohol responden 0=Tidak, 1=Ya
PenyakitJantung Biner Indikator risiko penyakit jantung pada responden 0=Tidak berisiko, 1=Berisiko

Berdasarkan pemaparan pada Tabel 3, dua belas variabel
terpilih terdiri atas tiga variabel kategorik (RentangUsia,
KesehatanUmum, dan StatusMerokok), delapan variabel
biner (JenisKelamin, TekananDarahTinggi,
KolesterolTinggi, Diabetes, KesulitanBerjalan,
AktivitasFisik, KonsumsiAlkohol, dan PenyakitJantung),
serta satu variabel numerik, vyaitu BMI. Variabel
PenyakitJantung ditetapkan sebagai variabel target dengan
dua kelas, yaitu berisiko dan tidak berisiko, sedangkan
sebelas variabel lainnya berperan sebagai variabel prediktor.

Pemilihan variabel dalam penelitian ini dilakukan melalui
observasi terhadap studi oleh Firmansyah dan Yulianto [12]
yang menggunakan dataset BRFSS 2015 sebagai dasar
pengembangan model prediksi risiko penyakit jantung
dengan 22 variabel. Berdasarkan hasil observasi tersebut,
penelitian ini memilih dua belas variabel yang dinilai paling
relevan dan representatif dalam menggambarkan karakteristik
individu yang berkaitan dengan risiko penyakit jantung.

3) Pembersihan Data: Setelah dataset mencakup dua
belas variabel terpilih beserta pemetaan nilai yang ditetapkan,
tahap pembersihan data dilakukan untuk memastikan
kelengkapan dan kewajaran nilai pada setiap sampel. Pada
tahap ini, seluruh sampel yang teridentifikasi memiliki nilai
hilang (missing values) dieliminasi dari dataset. Selanjutnya,
penanganan nilai ekstrem (outlier) diterapkan pada variabel
BMI sebagai satu-satunya variabel numerik dengan
membatasi nilai BMI pada rentang 12 hingga 60. Dengan
demikian, sampel yang memiliki nilai BMI di luar rentang
tersebut turut dieliminasi. Visualisasi distribusi nilai BMI
sebelum dan setelah penanganan outlier disajikan pada
Gambar 6 dan Gambar 7.

Distribusi BMI Sebelum Penanganan Outlier

20 40 60 80 100
BMI

Gambar 6. Distribusi nilai BMI sebelum penanganan outlier

Distribusi BMI Selelah Penanganan Outlier

.’7

10 20 30 40 50 60
BMI

Gambar 7. Distribusi nilai BMI setelah penanganan outlier

Gambar 6 memvisualisasikan sebaran nilai BMI sebelum
dilakukan penanganan outlier, di mana terlihat adanya nilai-
nilai ekstrem yang memanjang secara signifikan hingga
mendekati angka 100. Sementara itu pada Gambar 7,
ditunjukkan hasil distribusi setelah dilakukan pembatasan
nilai pada rentang 12 hingga 60, yang menyebabkan
persebaran data menjadi lebih terkonsentrasi dan
representatif, dengan sisa outlier yang hanya terdeteksi pada
kisaran nilai di bawah 15 serta pada rentang 45 hingga 60.

Meskipun nilai BMI telah dibatasi pada rentang 12-60,
hasil deteksi outlier menggunakan pendekatan interquartile
range (IQR) menunjukkan masih terdapat 9.275 observasi
yang teridentifikasi sebagai outlier, dengan batas bawah
sebesar 13,18 dan batas atas sebesar 42,75. Observasi-
observasi tersebut mayoritas berada pada kisaran BMI tinggi
dan membentuk ekor distribusi, yang mencerminkan
heterogenitas distribusi data, sehingga tetap dipertahankan
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dalam analisis meskipun terdeteksi sebagai outlier secara
statistik. Setelah melalui tahap pembersihan data yang
meliputi eliminasi sampel dengan nilai hilang serta
penanganan outlier, perbandingan jumlah sampel sebelum
dan sesudah pembersihan ditampilkan pada Gambar 8.

Perbandingan Jumlah Sampel Sebelum & Sesudah Pembersihan
00 408,012
350000
300000 290,156
250000

200000

umlah Baris

= 150000
100000
50000

]

Sebelum Sesudah

Gambar 8. Perbandingan jumlah sampel sebelum dan setelah pembersihan

Gambar 8 menunjukkan perubahan jumlah sampel pada
dataset, dari yang semula berjumlah 408.012 menjadi 290.156
setelah melalui tahap pembersihan data. Pengurangan tersebut
merupakan hasil dari eliminasi sebanyak 117.856 sampel
yang teridentifikasi memiliki nilai hilang serta nilai ekstrem
(outlier). Sebagai tahap akhir pembersihan, variabel biner dan
kategorik dalam dataset ditetapkan dalam tipe int8, sedangkan
BMI sebagai satu-satunya variabel numerik ditetapkan dalam
tipe float32 untuk efisiensi penyimpanan dan komputasi.

4) Penerapan One-hot Encoding: One-hot encoding
kemudian diterapkan pada variabel kategorik setelah seluruh
data melalui tahap pembersihan. Variabel yang dikodekan
meliputi RentangUsia, KesehatanUmum, dan
StatusMerokok, di mana setiap kategori diubah menjadi
variabel biner yang berdiri sendiri. Sebagai ilustrasi hasil
transformasi data setelah proses encoding, hasil penerapan
one-hot encoding pada variabel StatusMerokok ditampilkan
pada Gambar 9.

5 baris pertama hasil encoding StatusMerokok:
StatusMerokok @ StatusMerokok 1 StatusMerokok 2 StatusMerokok 3
False True False False
False False False True
True False False False
True False False False

False False True False

Gambar 9. Hasil encoding pada variabel StatusMerokok

Gambar 9 menunjukkan lima sampel pertama hasil
encoding pada variabel StatusMerokok. Hasil pemecahan
variabel ini  menghasilkan  kolom  baru  berupa
StatusMerokok 0, StatusMerokok_1, StatusMerokok 2, dan
StatusMerokok 3, di mana setiap kolom merepresentasikan
masing-masing kategori menjadi format biner (True = benar,
False = salah). llustrasi ini memperlihatkan bagaimana proses
one-hot encoding mengubah data kategorik menjadi
representasi numerik biner yang siap digunakan dalam
analisis selanjutnya. Dikarenakan proses encoding bekerja
dengan memecah variabel kategorik menjadi beberapa
variabel baru, jumlah variabel dalam dataset turut bertambah,
sebagaimana yang ditunjukkan pada Gambar 10.

Perbandingan Jumlah Variabel Sebelum dan Sesudah One-Hot Encoding

1

Sebelum Encoding Sesudah Encoding

Gambar 10. Perbandingan jumlah variabel sebelum dan setelah encoding

Gambar 10 menampilkan perbandingan jumlah variabel
prediktor dalam dataset sebelum dan sesudah penerapan one-
hot encoding pada variabel kategorik. Sebelum proses
encoding, dataset terdiri dari 11 variabel prediktor, yang
meningkat menjadi 23 variabel setelah encoding. Pemecahan
variabel kategorik menjadi beberapa fitur biner ini
memperjelas representativitas masing-masing kategori,
sehingga memudahkan model machine learning dalam
mempelajari pola dari setiap kategori secara independen.

5) Standarisasi Data: Standarisasi Data: Setelah semua
variabel kategorik melalui tahap one-hot encoding, seluruh
variabel yang tersedia dalam dataset distandarisasi
menggunakan StandardScaler. Tabel 4 menampilkan contoh
hasil standarisasi untuk lima variabel pertama, di mana nilai
mean dan standar deviasi diperoleh setelah transformasi.

TABEL IV
HASIL STANDARISASI UNTUK LIMA VARIABEL PERTAMA

Variabel Mean Standar Deviasi
JenisKelamin 0,00 1,00
TekananDarahTinggi | 0,00 1,00
Kolesterol Tinggi 0,00 1,00
Diabetes 0,00 1,00
KesulitanBerjalan 0,00 1,00

Tabel 4 menampilkan hasil standarisasi lima variabel
pertama dalam dataset, di mana setiap variabel yang
ditunjukkan memiliki nilai mean 0,00 dengan standar deviasi
1,00. Nilai ini menunjukkan bahwa seluruh fitur telah berhasil
ditransformasi ke skala yang seragam. Standarisasi ini krusial
karena memiliki peran untuk menghilangkan bias akibat
perbedaan rentang nilai antar-variabel, sehingga tidak ada
fitur yang dianggap lebih mendominasi dalam proses
pembelajaran model. Dengan skala yang konsisten, model
machine learning dapat mempelajari pola setiap fitur secara
adil, mempercepat konvergensi, dan menghasilkan prediksi
yang lebih stabil serta objektif.

C. Hasil Pembagian Data

Setelah data melalui seluruh tahapan prapemrosesan,
diperoleh dataset akhir yang siap digunakan pada tahap
pemodelan. Meskipun telah melalui proses prapemrosesan,
distribusi kelas pada dataset masih menunjukkan proporsi
yang belum seimbang, sebagaimana yang ditampilkan pada
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Gambar 11. Selanjutnya, dataset tersebut dibagi menjadi data
latih dan data uji, dengan distribusi pembagian data latih dan
data uji ditampilkan pada Gambar 12.

Distribusi Target Sebelum Resampling
263,203

250000

200000

F 150000
E
g

100000

50000

, nii—
0 1

Label

Gambar 11. Distribusi kelas target sebelum penyeimbangan data

Perbandingan Jumiah Data Latih dan Data Uji
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Gambar 12. Distribusi data latih dan data uji

Jumlah Sampel

Berdasarkan Gambar 11, distribusi kelas pada dataset
menunjukkan kondisi yang belum seimbang, dengan kelas 0
sebanyak 263.203 entri (90,7%) dan kelas 1 sebanyak 26.953
entri (9,3%), yang mencerminkan dominasi kelas 0 yang
cukup besar. Ketimpangan ini berpotensi menimbulkan bias
prediksi  yang  menyebabkan model cenderung
mengklasifikasikan sampel ke kelas mayoritas, sehingga
diperlukan proses penyeimbangan data sebelum tahap
pemodelan dilakukan pada tugas klasifikasi risiko penyakit
jantung. Selanjutnya, Gambar 12 menunjukkan pembagian
dataset menjadi dua bagian, yaitu 232.124 sampel (80%)
sebagai data latih dan 56.032 sampel (20%) sebagai data uji.

D. Hasil Penanganan Ketidakseimbangan Kelas

Sebagai ilustrasi upaya penanganan ketidakseimbangan
kelas pada data latih, Gambar 13 dan Gambar 14
menunjukkan perubahan proporsi kelas sebelum dan setelah
penerapan teknik  Synthetic Minority = Oversampling
Technique (SMOTE) dan Random Undersampling (RUS).
Sementara itu, pada skenario yang menerapkan teknik class
weighting, proporsi kelas pada data latih tetap tidak berubah,
karena pendekatan ini hanya memberikan pembobotan yang
berbeda antara kelas mayoritas dan kelas minoritas tanpa
mengubah distribusi data.

Distribusi Data Training {80%) Sebelum & Sesudah SMOTE

210562

Sebeium Sesudah
Tohap

Gambar 13. Distribusi kelas data latih: sebelum dan setelah SMOTE

Distribusi Data Training (80%) Sebelum & Sesudah Random Undersampling
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= schat (0]
- sakit (1)
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sebetum Sesudah
Tahap.

Gambar 14. Distribusi kelas data latih: sebelum dan setelah RUS

Teknik penanganan ketidakseimbangan kelas hanya
diterapkan pada data latih untuk mencegah terjadinya data
leakage, sehingga data uji tetap dipertahankan dengan
distribusi kelas aslinya yang tidak seimbang (imbalanced).
Pada Gambar 13, penerapan SMOTE menambahkan jumlah
sampel minoritas yang semula berjumlah 21.562 sampel
menjadi setara dengan kelas mayoritas, sehingga kedua kelas
masing-masing berjumlah 210.562 sampel. Sementara itu,
pada skenario Random Undersampling (RUS) pada Gambar
14, jumlah sampel kelas mayoritas yang semula 210.562
sampel dikurangi hingga setara dengan kelas minoritas,
sehingga kedua kelas pada data latih masing-masing
berjumlah 21.562 sampel.

E. Evaluasi Model

Proses evaluasi dilakukan secara menyeluruh pada semua
skenario pemodelan untuk menilai kinerja model dalam tugas
klasifikasi risiko penyakit jantung berbasis dataset BRFSS
2023. Evaluasi diterapkan menggunakan berbagai metrik
evaluasi yang meliputi akurasi, presisi, recall, F1-score, serta
kurva ROC-AUC. Melalui berbagai metrik yang disebutkan,
evaluasi memberikan gambaran kinerja yang komprehensif
dari  masing-masing skenario pemodelan, sekaligus
mengidentifikasi  kekuatan dan kelemahannya serta
menentukan model dengan kemampuan generalisasi terbaik
terhadap data uji. Selain itu, analisis feature importance
dilakukan pada model dengan kinerja terbaik guna
memperoleh pemahaman lebih lanjut mengenai kontribusi
masing-masing fitur dalam proses prediksi risiko penyakit
jantung, sehingga faktor-faktor kunci yang memengaruhi
prediksi dapat diidentifikasi.

1) Evaluasi Kinerja Seluruh Skenario Pemodelan:
Gambaran mengenai evaluasi kinerja pada seluruh skenario
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pemodelan disajikan pada Tabel 5, dengan grafik ROC-AUC
untuk masing-masing skenario ditampilkan pada Gambar 15.

TABEL V
PERBANDINGAN NILAI METRIK EVALUASI PADA SELURUH SKENARIO PEMODELAN

Model Akurasi Presisi Recall F1-Score AUC Runtime Best Trial
BaseWeight 72,39% 59,59% 75,11% 58,53% 82,43% 14,03 (s) -
OptunaWeight 90,79% 73,25% 52,09% 51,78% 83,10% 4236,63 (s) Trial ke-32
RandomWeight 71,41% 59,58% 75,62% 58,07% 83,07% 4152,97 (s) 50 lterations
BaseSMOTE 74,56% 59,54% 73,60% 59,40% 81,09% 23,60 (s) -
OptunaSMOTE 79,50% 57,54% 64,11% 58,54% 75,86% 17305,08 (s) | Trial ke-44
RandomSMOTE 79,02% 57,65% 64,78% 58,60% 75,63% 6777,29 (s) 50 lterations
BaseRUS 71,01% 59,34% 75,071% 57,67% 82,16% 9,02 (s) -
OptunaRUS 71,57T% 59,63% 75,69% 58,19% 83,06% 1016,99 (s) Trial ke-37
RandomRUS 71,73% 59,67% 75,73% 58,30% 83,05% 852,76 (s) 50 lterations

uji ktivif pti i pada: Class Weighti Uji Efektivitas Optimasi pada: SMOTE Uji Efektivitas Optimasi pada: Random Undersampling (RUS)

—— Base (AUC = 0.8243)
P RandomSearch (AUC = 0.8307)
ooy ¥ —— Optuna (AUC = 0.8310) ooq ¥

—— Base (AUC = 0.8216)
RandomsSearch (AUC = 0.8305)
—— Optuna (AUC = 0.8306)

—— Base (AUC = 0.8109)
Randomsearch (AUC = 0.7563)
—— Optuna (AUC = 0.7588) ooy ¥
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Gambar 15. Grafik ROC-AUC pada seluruh skenario pemodelan

Evaluasi kinerja model dilakukan berdasarkan dataset
BRFSS 2023 yang telah melalui tahap prapemrosesan,
sehingga menghasilkan sekitar 290 ribu observasi yang siap
digunakan. Dataset tersebut selanjutnya dibagi menjadi data
latih dan data uji dengan proporsi 80% dan 20%. Seluruh
strategi penanganan ketidakseimbangan kelas diterapkan
secara eksklusif pada data latih, sementara data uji
dipertahankan dalam kondisi distribusi asli untuk menguji
kemampuan generalisasi model. Seluruh skenario pemodelan
dibangun di atas algoritma dasar XGBoost yang
dikombinasikan dengan class weighting, SMOTE, dan
Random Undersampling (RUS), baik tanpa optimasi maupun
dengan optimasi hiperparameter. Evaluasi difokuskan
terutama pada nilai AUC dan recall, sebagaimana yang
ditampilkan pada Tabel 5 dan kurva ROC-AUC pada Gambar
15. Nilai AUC dipilih karena merepresentasikan kemampuan
model dalam membedakan kelas secara global dan
independen terhadap ambang klasifikasi, sedangkan recall
mencerminkan kemampuan model dalam mengidentifikasi
responden vyang berisiko terhadap penyakit jantung.
Sementara itu, nilai F1-score pada seluruh skenario
cenderung lebih rendah dikarenakan distribusi kelas pada data
uji tetap dipertahankan tidak seimbang sebagai bagian dari
pengujian kemampuan generalisasi model, sehingga metrik
ini menjadi salah satu yang paling terdampak oleh
ketidakseimbangan kelas.

Berdasarkan hasil pada Tabel 5 dan pola kurva ROC-AUC
pada Gambar 15, penerapan optimasi hiperparameter pada

model XGBoost menunjukkan peningkatan performa yang
relatif terbatas pada sebagian besar skenario. Pada skenario
yang menggunakan pendekatan class weighting, nilai AUC
meningkat dari 82,43% pada BaseWeight menjadi 83,10%
pada OptunaWeight, sementara pada RandomWeight nilai
AUC tercatat sebesar 83,07%. Perbedaan yang relatif kecil ini
menunjukkan bahwa kemampuan diskriminatif model telah
terbentuk dengan baik pada konfigurasi dasar. Pola kurva
ROC-AUC yang saling berhimpit antar skenario optimasi
mengindikasikan bahwa pada dataset BRFSS 2023 yang
berskala besar dan beragam, optimasi hiperparameter lebih
berperan dalam menjaga konsistensi performa dibandingkan
menghasilkan peningkatan metrik yang signifikan.

Di sisi lain, pendekatan Random Undersampling
menunjukkan karakteristik performa yang stabil pada seluruh
skenario yang diuji. Berdasarkan pemaparan pada Tabel 5,
BaseRUS menghasilkan nilai AUC sebesar 82,16% dengan
recall 75,07%. Sementara itu, OptunaRUS dan RandomRUS
menunjukkan peningkatan kinerja, yang ditunjukkan oleh
nilai AUC masing-masing sebesar 83,06% dan 83,05%,
dengan recall berada pada rentang 75,69-75,73%.
Konsistensi performa ini mengindikasikan bahwa meskipun
jumlah data latih berkurang secara signifikan setelah proses
undersampling, model tetap mampu mempertahankan
kemampuan diskriminatif dan sensitivitasnya. Temuan ini
juga menunjukkan bahwa dataset BRFSS 2023 memiliki
tingkat heterogenitas yang memadai, namun tetap memiliki
pola informasi yang bersifat redundan, sehingga pengurangan
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sampel terbukti tidak menyebabkan hilangnya informasi
penting yang unik.

Sebaliknya, pada skenario yang menggunakan pendekatan
SMOTE, peningkatan jumlah data latih akibat oversampling
berdampak signifikan terhadap waktu pelatihnan model,
khususnya pada skenario OptunaSMOTE yang memerlukan
waktu lebih dari 17.000 detik. Meski begitu, berdasarkan
pemaparan pada Tabel 5, peningkatan waktu dan biaya
komputasi tersebut tidak diikuti oleh peningkatan performa
yang sepadan. BaseSMOTE justru menghasilkan nilai AUC
sebesar 81,09% dengan recall 73,60%, yang lebih baik
dibandingkan OptunaSMOTE dengan AUC 75,86% dan
recall 64,11%. Hal tersebut mengindikasikan bahwa pada
dataset yang sudah besar dan beragam, penambahan data
sintetis justru berpotensi memperbanyak noise daripada
memperkaya representasi pola, sehingga berdampak negatif
terhadap kemampuan generalisasi model. Dengan demikian,
optimasi hiperparameter pada skenario SMOTE menjadi
kurang efisien dan tidak memberikan keuntungan yang
sebanding dengan sumber daya komputasi yang dikeluarkan.

Secara keseluruhan, hasil evaluasi pada Tabel 5 dan
Gambar 15 menunjukkan bahwa karakteristik dataset BRFSS
2023 yang berskala besar dan beragam lebih selaras dengan
pendekatan penanganan ketidakseimbangan kelas yang
bersifat selektif dibandingkan generatif. Dari masing-masing

pendekatan penanganan ketidakseimbangan kelas yang
diterapkan, skenario RandomWeight pada pendekatan class
weighting, BaseSMOTE pada pendekatan oversampling, dan
OptunaRUS pada pendekatan undersampling muncul sebagai
model dengan performa yang paling stabil dan robust. Ketiga
skenario tersebut merepresentasikan konfigurasi pemodelan
terbaik dari setiap pendekatan, karena  mampu
mempertahankan keseimbangan performa yang konsisten,
khususnya pada metrik AUC dan recall, tanpa menunjukkan
ketergantungan pada peningkatan kompleksitas komputasi
yang berlebihan. Dengan karakteristik tersebut, ketiga model
dianggap layak untuk dijadikan representasi utama pada
analisis evaluasi lanjutan, sehingga mendukung proses
pengkajian mendalam mengenai stabilitas generalisasi serta
implikasi kesalahan klasifikasi pada konteks klasifikasi risiko
penyakit jantung.

2) Evaluasi Tiga Skenario Pemodelan Terbaik: Untuk
memperdalam analisis evaluasi, kajian difokuskan pada tiga
skenario pemodelan yang memiliki performa paling stabil
guna menilai stabilitas generalisasi serta konsekuensi
kesalahan Klasifikasi. Perbandingan nilai metrik evaluasi
antara data latih dan data uji disajikan pada Tabel 6.
Sementara itu, confusion matrix dari masing-masing model
ditampilkan pada Gambar 16.

TABEL VI
PERBANDINGAN NILAI METRIK EVALUASI PADA SELURUH SKENARIO PEMODELAN
Model Recall (Train) Recall (Test) AUC (5-fold CV) AUC (Train) AUC (Test)
RandomWeight | 75,59% 75,62% 82,90% 83,20% 83,07%
BaseSMOTE 79,37% 73,60% 87,47% 87,91% 81,09%
OptunaRUS 75,63% 75,69% 82,75% 83,16% 83,06%
Confusion Matrix: | ch_cl ight Confusion Matrix: Base_SMOTE Confusion Matrix: Optuna_RUS
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Gambar 16. Hasil confusion matrix pada tiga skenario pemodelan terbaik

Berdasarkan perbandingan metrik evaluasi yang disajikan
pada Tabel 6, ketiga skenario pemodelan terpilih
menunjukkan tingkat stabilitas generalisasi yang konsisten
antara data latih dan data uji. Pada RandomWeight, nilai
recall pada data latih sebesar 75,59% relatif seimbang dengan
nilai recall pada data uji sebesar 75,62%, dengan nilai AUC
yang juga konsisten, yakni 83,20% pada data latih dan
83,07% pada data uji. Pola serupa ditunjukkan oleh
OptunaRUS, dengan nilai recall sebesar 75,63% pada data
latih dan 75,69% pada data uji, serta nilai AUC masing-

masing sebesar 83,16% dan 83,06%. Konsistensi ini
mengindikasikan tidak adanya kecenderungan model
mengalami overfitting, sekaligus menunjukkan bahwa
performa model tetap terjaga dari indikasi underfitting.
Berbeda dengan kedua skenario tersebut, BaseSMOTE
memperlihatkan selisih yang lebih besar, khususnya pada
nilai recall yang menurun dari 79,37% pada data latih menjadi
73,60% pada data uji, serta penurunan nilai AUC dari 87,91%
menjadi 81,09%. Meskipun demikian, performa BaseSMOTE
pada data uji masih berada dalam batas yang dapat diterima,
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sehingga tetap relevan sebagai representasi skenario
pemodelan dengan pendekatan oversampling. Temuan ini
menunjukkan bahwa mempertahankan distribusi kelas tidak
seimbang pada data uji dan penerapan validasi silang lima
lipatan juga turut menjaga stabilitas generalisasi ketiga
model.

Analisis lanjutan terhadap implikasi kesalahan klasifikasi
ditunjukkan melalui confusion matrix pada Gambar 16.
Dalam prediksi risiko penyakit jantung, False Negative
merupakan kesalahan paling krusial karena individu yang
sebenarnya berisiko diprediksi tidak berisiko, sehingga
berpotensi kehilangan kesempatan deteksi dan penanganan
dini. Pada skenario RandomWeight dan OptunaRUS, jumlah
False Negative tercatat masing-masing 1.035 dan 1.038 dari
total 58.032 data uji, lebih rendah dibanding BaseSMOTE
yang menghasilkan 1.487 kasus. Pola ini sejalan dengan nilai
recall pada data uji, yang menunjukkan RandomWeight dan
OptunaRUS lebih sensitif dalam mengidentifikasi responden
berisiko. Sebaliknya, pada skenario False Positive, meskipun
dapat memicu pemeriksaan tambahan dan meningkatkan
kecemasan pasien, umumnya masih dapat ditoleransi.
RandomWeight dan OptunaRUS menghasilkan jumlah False
Positive yang sedikit lebih tinggi dibanding BaseSMOTE,
namun trade-off ini mencerminkan kecenderungan model
untuk memprioritaskan penekanan False Negative, yang
secara klinis lebih dianggap lebih penting.

Ringkasan dari analisis stabilitas generalisasi dan
distribusi kesalahan klasifikasi menunjukkan bahwa ketiga
skenario pemodelan memiliki karakteristik yang saling
melengkapi dan layak dijadikan sebagai dasar analisis
evaluasi lanjutan. RandomWeight dan OptunaRUS terbukti
unggul dalam menjaga keseimbangan antara performa
statistik dan sensitivitas klinis, tercermin dari stabilitas AUC
dan recall serta jumlah False Negative yang relatif lebih
rendah. Meskipun performanya menurun pada data uji,
BaseSMOTE tetap relevan karena mampu memberikan
perspektif komparatif terhadap dampak oversampling sintetis
pada dataset besar dan heterogen. Pemilihan ketiga model ini
didasarkan pada keseimbangan kemampuan generalisasi,
efisiensi komputasi, dan dampak kesalahan Klasifikasi,
sehingga ketiganya cocok digunakan sebagai acuan analisis
lanjutan pada pembahasan mengenai overfitting, underfitting,
serta implikasi praktis dalam prediksi risiko penyakit jantung.

3) Analisis Feature Importance Model Terbaik:
Analisis feature importance difokuskan pada skenario
OptunaRUS sebagai model yang menunjukkan performa
paling stabil dengan kemampuan generalisasi terbaik di antara
tiga skenario unggulan. Kontribusi fitur divisualisasikan pada
Gambar 17 untuk menyoroti variabel yang paling
memengaruhi prediksi risiko penyakit jantung.

Top 15 Feature Importance
Model: Optuna_RUS (Best of Random Undersampling (RUS))

Keses

importans

Gambar 17. Feature importance pada skenario pemodelan OptunaRUS

Berdasarkan visualisasi importance score pada Gambar
17, RentangUsia_6 dan TekananDarahTinggi muncul sebagai
prediktor paling dominan dalam Kklasifikasi risiko penyakit
jantung. Variabel lain seperti KolesterolTinggi, Diabetes,
KesulitanBerjalan, KesehatanUmum, dan StatusMerokok
juga menempati peringkat signifikan, menunjukkan
hubungan kuat antara kondisi Kklinis, mobilitas fisik, gaya
hidup, dan persepsi kesehatan dengan risiko kardiovaskular.
Secara keseluruhan, OptunaRUS tidak hanya unggul secara
performa statistik, tetapi juga mampu menangkap pola
kombinasi faktor demografi, komorbiditas, dan kualitas hidup
fisik yang relevan secara Klinis.

V. KESIMPULAN

Penelitian ini berhasil mengoptimalkan model klasifikasi
risiko penyakit jantung berbasis XGBoost melalui penerapan
optimasi hiperparameter pada dataset BRFSS 2023 yang
berskala besar dan memiliki distribusi kelas tidak seimbang.
Hasil eksperimen menunjukkan bahwa penggunaan Optuna
dan Random Search secara konsisten meningkatkan stabilitas
performa model, terutama dalam menjaga keseimbangan
antara kemampuan diskriminatif dan sensitivitas deteksi.
Konfigurasi OptunaRUS teridentifikasi sebagai model
dengan performa paling stabil, dengan capaian AUC sebesar
83,06% dan recall sebesar 75,69% pada data uji. Konsistensi
metrik evaluasi antara data latih dan data uji mengindikasikan
kemampuan generalisasi model yang baik tanpa adanya
indikasi overfitting. Hasil evaluasi pada distribusi kelas asli
menegaskan bahwa performa model relevan dalam
merepresentasikan kondisi data kesehatan dunia nyata.

Dari sisi metodologis, temuan penelitian ini menegaskan
bahwa pada dataset dengan tingkat heterogenitas tinggi,
pendekatan penanganan ketidakseimbangan kelas secara
selektif melalui Random Undersampling (RUS) lebih efektif
dibandingkan metode generatif seperti SMOTE. Reduksi
sampel mayoritas mampu menekan pengaruh noise sekaligus
meningkatkan efisiensi komputasi, sebagaimana tercermin
dari stabilitas metrik evaluasi pada data uji. Analisis feature
importance pada model terbaik menunjukkan bahwa usia dan
hipertensi merupakan fitur yang paling dominan dalam
klasifikasi risiko penyakit jantung. Secara keseluruhan,
penelitian ini menawarkan kerangka kerja prediktif yang
stabil dan efisien untuk klasifikasi risiko penyakit jantung,
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dengan potensi penerapan pada analisis data kesehatan
populasi berskala besar.
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