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 Heart disease is a critical public health issue in Indonesia, contributing to 

approximately 1,5 million deaths annually. Although machine learning methods, 

particularly Extreme Gradient Boosting (XGBoost), have demonstrated strong 

performance in medical classification tasks, their optimization on large-scale and 
highly imbalanced health datasets remains underexplored. This study optimizes 

XGBoost for heart disease risk classification using the Behavioral Risk Factor 

Surveillance System (BRFSS) 2023 dataset, consisting of 290.156 samples after 

preprocessing. Two hyperparameter optimization approaches, Optuna and Random 

Search, are evaluated across three class imbalance handling techniques, namely class 

weighting, SMOTE, and Random Undersampling (RUS). Model evaluation focuses 

on AUC and recall to prioritize sensitivity in identifying individuals at risk. The 

results show that the OptunaRUS and RandomWeight models achieve the most 

stable performance, with OptunaRUS attaining an AUC of 83,06% and a recall of 

75,69% on the test dataset. Feature importance analysis indicates that age range and 

hypertension are the most influential predictors. These findings confirm that 

hyperparameter optimization on large-scale health data improves model 
discriminative capability and generalization, while selective sampling strategies such 

as RUS provide more stable performance than generative methods in high-

dimensional datasets. 
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I. PENDAHULUAN 

 Penyakit jantung merupakan salah satu penyebab 

kematian tertinggi di dunia maupun di Indonesia. Kondisi ini 

terjadi akibat adanya gangguan pada pembuluh darah, katup, 

atau otot jantung yang menyebabkan fungsi jantung tidak 
bekerja dengan normal [1]. Risiko terjadinya penyakit jantung 

dapat dipengaruhi oleh berbagai faktor, seperti usia, jenis 

kelamin, hipertensi, kolesterol tinggi, diabetes, kebiasaan 

merokok, kurangnya aktivitas fisik, hingga konsumsi alkohol 

[2]. Berdasarkan laporan Profil Kesehatan Indonesia 2023 [3], 

penyakit jantung merupakan penyebab kematian tertinggi 

kedua setelah stroke, dengan angka kematian penyakit 

jantung iskemik mencapai 95,68 per 100.000 penduduk. 

Secara keseluruhan, penyakit jantung dan stroke diperkirakan 

menyebabkan sekitar 1,5 juta kematian setiap tahunnya di 

Indonesia, sehingga diperlukan upaya deteksi risiko dan 

pencegahan yang lebih efektif. 

Namun, tingginya urgensi penanganan penyakit jantung di 

Indonesia belum diimbangi oleh ketersediaan data mikro 

(unit-level data) nasional di bidang kesehatan untuk 

mendukung analisis riset mendalam. Merujuk pada laporan 

Survei Kesehatan Indonesia (SKI) 2023 [4], informasi yang 

tersedia bagi publik masih terbatas pada ringkasan statistik di 

tingkat daerah. Selain itu, laman Badan Kebijakan 

Pembangunan Kesehatan (BKPK) Kementerian Kesehatan 

menyatakan bahwa akses terhadap data mikro SKI 
memerlukan mekanisme perizinan khusus dan tidak 

disediakan sebagai data open access bagi publik. Akibatnya, 

data mikro nasional level individu yang mengintegrasikan 

variabel demografis, fisiologis, dan gaya hidup dengan 

kondisi kesehatan responden belum dapat dimanfaatkan 

mailto:muh.dzaky1919@gmail.com
mailto:mail2@polibatam.ac.id
mailto:riyanto@amikompurwokerto.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


1016               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  1015 – 1029 

secara luas dalam penelitian berbasis data. Kondisi ini 

membatasi pemanfaatan data kesehatan nasional untuk 

pengembangan dan evaluasi model analitik berbasis data 

berskala besar. 

Meskipun terdapat tantangan dalam aksesibilitas data 

mikro nasional, pemanfaatan teknologi tetap menjadi langkah 

strategis yang perlu diambil untuk mendukung upaya deteksi 

dan pencegahan penyakit jantung secara dini. Menurut 

Pradana dkk. [5], pendekatan data mining berbasis algoritma 
machine learning dapat membantu menganalisis pola 

kesehatan yang kompleks untuk mendeteksi risiko penyakit 

secara akurat. Pernyataan tersebut sejalan dengan hasil 

penelitian oleh Nuraeni [6] yang menunjukkan bahwa model 

prediktif berbasis algoritma machine learning mampu 

memprediksi risiko penyakit jantung dengan tingkat akurasi 

yang tinggi. Secara umum, data mining diartikan sebagai 

proses penggalian pola atau informasi unik dari kumpulan 

data besar yang dapat digunakan sebagai dasar pengambilan 

keputusan. Salah satu tugas utama data mining, yaitu 

klasifikasi, sering kali dijadikan sebagai pendekatan utama 
dalam konteks medis karena mampu mengelompokkan data 

pasien berdasarkan kemiripan karakteristik tertentu, sehingga 

mendukung proses diagnosis dan prediksi penyakit [7]. 

Dalam konteks evaluasi kinerja algoritma machine 

learning untuk tugas klasifikasi, sejumlah penelitian 

terdahulu menunjukkan bahwa Extreme Gradient Boosting 

(XGBoost) merupakan algoritma yang efektif dan stabil di 

berbagai domain dan skala data. Penelitian oleh Dullah dkk. 

[8] menerapkan XGBoost untuk prediksi risiko penyakit 

jantung menggunakan 1.319 sampel pasien dengan sembilan 

fitur dan memperoleh akurasi sebesar 98,11%, yang 

meningkat menjadi 98,48% setelah menerapkan teknik 
resampling Synthetic Minority Oversampling Technique 

(SMOTE). Sementara itu, Velarde dkk. [9] menunjukkan 

keandalan XGBoost pada domain non-medis dalam tugas 

asesmen risiko pelanggan telekomunikasi dengan nilai F1-

score sebesar 84% pada 1.000 sampel, 87% pada 10.000 

sampel, dan 89% pada 100.000 sampel. Temuan-temuan 

tersebut menunjukkan bahwa XGBoost mampu memodelkan 

hubungan nonlinier antarfitur secara efektif serta 

mempertahankan kinerja yang konsisten ketika diterapkan 

pada dataset dengan ukuran dan karakteristik yang bervariasi. 

Di sisi lain, sejumlah penelitian menunjukkan bahwa 
penerapan metode optimasi hiperparameter mampu 

meningkatkan kinerja model klasifikasi berbasis machine 

learning. Yaqin dkk. [10] melaporkan bahwa optimasi 

hiperparameter menggunakan Optuna pada algoritma 

Random Forest meningkatkan akurasi model dari 95% 

menjadi 98,62% pada dataset medis untuk klasifikasi risiko 

kanker paru-paru yang terdiri dari 309 sampel. Sementara itu, 

Sitanggang dan Sitompul [11] menerapkan Random Search 

untuk mengoptimasi Random Forest dalam tugas deteksi 

kelangsungan hidup pasien gagal jantung pada dataset yang 

terdiri dari 299 sampel dan berhasil meningkatkan akurasi 

model dari 80% menjadi 83,33%. 

Optuna menerapkan pendekatan optimasi berbasis 

probabilistik yang secara adaptif mengeksplorasi ruang 

parameter dan memfokuskan pencarian pada kombinasi yang 

menjanjikan. Sebaliknya, Random Search melakukan 

eksplorasi parameter secara acak tanpa mekanisme adaptif, 

namun tetap lebih efisien dibandingkan pencarian 

menyeluruh karena tidak mengevaluasi seluruh kombinasi 

parameter. Oleh karena itu, kedua pendekatan tersebut 

umumnya dinilai lebih efisien secara komputasional 
dibandingkan metode konvensional seperti Grid Search, yang 

mengevaluasi seluruh kombinasi parameter secara sistematis 

sehingga memerlukan beban komputasi yang lebih besar. 

Berdasarkan kajian terhadap beberapa penelitian 

terdahulu, terdapat sejumlah celah penelitian yang belum 

terjawab. Pertama, sejauh penelusuran penulis, belum 

ditemukan kajian yang membandingkan penerapan Optuna 

dan Random Search pada XGBoost dalam tugas klasifikasi 

risiko penyakit jantung. Kedua, pengujian kinerja XGBoost 

yang telah dioptimasi tersebut belum mencakup perbandingan 

berbagai pendekatan penanganan ketidakseimbangan kelas 
yang merepresentasikan pembobotan kelas, penambahan 

sampel minoritas, dan pengurangan sampel mayoritas. 

Ketiga, kajian yang mengevaluasi performa XGBoost 

teroptimasi pada dataset klasifikasi risiko penyakit jantung 

berskala besar relatif terbatas. Sejalan dengan keterbatasan 

tersebut, terdapat kebutuhan untuk memahami perbedaan 

kinerja XGBoost yang dioptimasi menggunakan Optuna dan 

Random Search, menilai pengaruh berbagai strategi 

penanganan ketidakseimbangan kelas terhadap performa 

model, serta mengkaji keberlakuan hasil optimasi dan strategi 

penanganan ketidakseimbangan kelas pada dataset berskala 

besar dalam konteks data kesehatan populasi. 
Celah penelitian tersebut menjadi dasar perumusan tujuan 

penelitian ini, yaitu menganalisis dan membandingkan kinerja 

model XGBoost yang dioptimasi menggunakan Optuna dan 

Random Search dalam tugas klasifikasi risiko penyakit 

jantung berbasis dataset Behavioral Risk Factor Surveillance 

System (BRFSS) 2023. Selain itu, penelitian ini juga 

mengevaluasi pengaruh tiga pendekatan penanganan 

ketidakseimbangan kelas, yaitu pembobotan kelas (class 

weighting), penambahan sampel minoritas melalui Synthetic 

Minority Oversampling Technique (SMOTE), serta 

pengurangan sampel mayoritas melalui Random 
Undersampling (RUS), terhadap performa model. Dengan 

demikian, penelitian ini turut menguji konsistensi hasil 

optimasi hiperparameter dan strategi penanganan 

ketidakseimbangan kelas ketika diterapkan pada dataset 

BRFSS 2023. 

Sebagai respons terhadap keterbatasan akses data mikro 

kesehatan berskala individu di Indonesia, penelitian ini 

memanfaatkan dataset Behavioral Risk Factor Surveillance 

System (BRFSS) 2023 yang dikembangkan oleh Centers for 

Disease Control and Prevention (CDC) sebagai survei 

kesehatan populasi berskala besar di Amerika Serikat yang 

disediakan secara terbuka (open access) untuk keperluan riset 
publik. Dataset ini mencakup ratusan ribu entri responden 
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dengan ratusan variabel yang merepresentasikan faktor 

demografis, fisiologis, dan gaya hidup, termasuk variabel 

yang relevan terhadap risiko penyakit jantung seperti usia, 

hipertensi, diabetes, kebiasaan merokok, aktivitas fisik, dan 

konsumsi alkohol. Karakteristik dataset BRFSS yang besar 

dan variatif menjadikannya relevan jika digunakan sebagai 

dasar pengujian model klasifikasi machine learning serta 

evaluasi metode optimasi hiperparameter [12]. Dalam 
konteks tersebut, meskipun dataset ini tidak dikumpulkan dari 

populasi Indonesia, pemanfaatannya diposisikan sebagai 

pendekatan alternatif yang memungkinkan eksplorasi 

metodologis secara valid pada skala data medis yang besar. 

Penelitian ini berkontribusi pada pemahaman metodologis 

mengenai bagaimana optimasi hiperparameter dan strategi 

penanganan ketidakseimbangan kelas memengaruhi kinerja 

model machine learning pada data medis berskala besar. 

Hasil penelitian ini menunjukkan batasan dan potensi masing-

masing pendekatan optimasi dalam konteks klasifikasi risiko 

penyakit, sehingga dapat menjadi rujukan dalam pemilihan 
metode yang lebih tepat pada penelitian sejenis. Oleh karena 

itu, penelitian ini memberikan wawasan empiris mengenai 

pengembangan model prediksi risiko penyakit berbasis data 

besar dan membuka peluang bagi penelitian lanjutan di 

bidang kesehatan berbasis data. 

II. METODE  

Metode penelitian ini merujuk pada tahapan umum dalam 

proyek data mining yang disesuaikan dengan tujuan 

penelitian, meliputi pengumpulan data, prapemrosesan data, 

pembagian data, penanganan ketidakseimbangan kelas, 

pemodelan dan optimasi hiperparameter, serta evaluasi 

model. Urutan tahapan tersebut dirancang untuk memastikan 
bahwa setiap tahapan pengolahan dan analisis data dilakukan 

secara sistematis. Ilustrasi mengenai alur tahapan penelitian 

ditampilkan pada Gambar 1. 

 

 
Gambar 1. Alur tahapan penelitian 

A. Pengumpulan Data 

Penelitian ini menggunakan data sekunder dari survei 

Behavioral Risk Factor Surveillance System (BRFSS) tahun 

2023 yang diperoleh melalui laman resmi Centers for Disease 

Control and Prevention (CDC) dan tersedia secara terbuka 

untuk keperluan penelitian. Dataset BRFSS 2023 disediakan 

dalam format .xpt dan masih berupa data mentah karena 

belum melalui tahap prapemrosesan. Dataset ini mencakup 
sebanyak 433.233 entri responden dengan 350 variabel yang 

merepresentasikan karakteristik demografis, kondisi 

kesehatan, serta perilaku berisiko individu. Skala data yang 

besar dengan keragaman variabel yang luas menjadikan 

BRFSS memerlukan serangkaian penyesuaian sebelum 

digunakan sebagai dasar pengembangan model untuk 

klasifikasi risiko penyakit tertentu. 

B. Prapemrosesan Data 

Tahap prapemrosesan data pada penelitian ini difokuskan 

untuk menangani karakteristik data BRFSS 2023 yang 
memiliki ruang lingkup yang luas dan masih bersifat mentah. 

Tujuan dari tahap ini adalah untuk memastikan bahwa model 

klasifikasi risiko penyakit jantung yang dikembangkan 

mampu menangkap pola informasi secara optimal tanpa 

terpengaruh oleh anomali maupun redundansi fitur [13]. 

Tahapan tersebut mencakup seleksi variabel, pembersihan 

data, serta transformasi dan standarisasi fitur, sehingga 

diperoleh dataset yang relevan dan representatif terhadap 

kondisi penyakit jantung. 

1) Persiapan Data Awal: Tahap awal prapemrosesan 

dimulai dengan konversi dataset BRFSS 2023 dari format .xpt 

menjadi .csv untuk memudahkan proses identifikasi dan 
analisis data. Selanjutnya, dilakukan validasi tahun sampel 

data berdasarkan variabel IYEAR dengan merujuk pada 

codebook BRFSS 2023. Proses validasi ini bertujuan untuk 

memastikan bahwa seluruh data yang digunakan dalam proses 

analisis dan pengembangan model sepenuhnya berasal dari 

data tahun 2023. 

2) Pemilihan dan Pemetaan Nilai Variabel: Proses 

pemilihan dan pemetaan nilai variabel masih mengacu pada 

codebook BRFSS 2023 guna memastikan konsistensi definisi 

variabel beserta kesesuaian interpretasi nilainya. Variabel 

yang relevan terhadap kondisi penyakit jantung dipilih dan 
diubah namanya dari yang semula berbentuk kode menjadi 

nama yang lebih deskriptif agar lebih mudah 

diinterpretasikan. Terdapat dua belas variabel terpilih yang 

meliputi RentangUsia, JenisKelamin, BMI, 

TekananDarahTinggi, KolesterolTinggi, Diabetes, 

KesulitanBerjalan, KesehatanUmum, StatusMerokok, 

AktivitasFisik, KonsumsiAlkohol, dan PenyakitJantung. 

Seluruh variabel tersebut kemudian dipetakan label nilainya 

berdasarkan definisi kategori yang tersedia dalam codebook. 

Variabel PenyakitJantung ditetapkan sebagai variabel target 

dengan label 0 untuk responden tanpa risiko dan label 1 untuk 
responden dengan risiko penyakit jantung. 

3) Pembersihan Data: Tahap pembersihan data 
mencakup dua prosedur utama, yaitu eliminasi sampel dengan 

nilai hilang (missing values) serta penanganan data pencilan 

(outlier). Kedua prosedur tersebut diterapkan untuk 

memastikan dataset yang diperoleh setelah proses seleksi 

variabel sepenuhnya bebas dari anomali berupa 

ketidaklengkapan data maupun keberadaan nilai ekstrem 

yang berpotensi mengurangi kemampuan generalisasi model. 

Proses pembersihan data tidak mencakup identifikasi 

duplikasi sampel karena dataset BRFSS 2023 disusun pada 

tingkat individu responden, dengan setiap responden 
diidentifikasi berdasarkan nomor telepon, sehingga potensi 

keberadaan observasi ganda dianggap minimal. 
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Penanganan missing values dilakukan dengan menghapus 

baris data yang mengandung nilai hilang menggunakan fungsi 

df = df.dropna(). Langkah ini bertujuan agar seluruh 

observasi yang digunakan dalam pelatihan model memiliki 

informasi yang lengkap pada seluruh variabel yang dianalisis. 

Keberadaan nilai hilang dapat menyebabkan hilangnya 

informasi, memengaruhi representativitas data, serta 

berpotensi menimbulkan bias dalam analisis dan menurunkan 

kinerja model klasifikasi, sehingga penanganannya 
diperlukan untuk mengurangi dampak tersebut dalam tahap 

prapemrosesan data [1]. 

Selanjutnya, penanganan outlier diterapkan khusus pada 

variabel BMI yang merupakan satu-satunya variabel numerik 

berskala kontinu di antara dua belas variabel terpilih. Nilai 

BMI dibatasi pada rentang 12 hingga 60 kg/m² untuk 

mengurangi pengaruh nilai ekstrem yang jarang terjadi dan 

berpotensi mendistorsi struktur distribusi populasi dewasa 

sekaligus mempertahankan variasi biologis valid yang 

penting dalam konteks risiko penyakit jantung. Penanganan 

outlier memiliki peranan penting dalam tahap prapemrosesan 
data karena nilai ekstrem dapat mengganggu struktur 

distribusi data dan memengaruhi kemampuan model dalam 

mempelajari pola yang relevan [14]. Dengan demikian, 

pembatasan ini dimaksudkan untuk menjaga stabilitas 

distribusi data sehingga hubungan antara faktor risiko dan 

penyakit jantung dapat dipelajari secara lebih representatif 

oleh model. Meskipun secara statistik beberapa observasi di 

atas batas atas interquartile range (IQR) tetap terdeteksi 

sebagai outlier, nilai-nilai tersebut tetap dipertahankan karena 

relevansi klinisnya dalam merepresentasikan obesitas ekstrem 

sebagai faktor risiko penyakit jantung, sehingga 

representativitas data tetap dapat dijaga tanpa mengorbankan 
stabilitas distribusi. 

4) Penerapan One-Hot Encoding dan Standarisasi 

Data: One-hot encoding selanjutnya diterapkan setelah data 

melalui tahap pembersihan untuk mengonversi variabel 

kategorik ke dalam representasi numerik berbentuk fitur biner 

[15]. Proses ini diterapkan khusus pada variabel kategorik 

meliputi RentangUsia, KesehatanUmum, dan 

StatusMerokok, di mana StatusMerokok bersifat nominal, 

sedangkan RentangUsia dan KesehatanUmum memiliki sifat 

ordinal namun tetap dikodekan secara biner untuk 

meminimalkan asumsi hubungan linear antar tingkatan 
kategori dan memungkinkan setiap kategori dimanfaatkan 

secara independen oleh model klasifikasi risiko penyakit 

jantung. Pemecahan variabel kategorik menjadi beberapa fitur 

biner membuat setiap kategori direpresentasikan secara 

terpisah, sehingga meningkatkan kejelasan representasi data 

meskipun jumlah fitur dalam dataset bertambah. 

Setelah penerapan one-hot encoding, seluruh fitur yang 

tersedia dalam dataset distandarisasi menggunakan 

StandardScaler, termasuk fitur biner hasil pemecahan variabel 

kategorik serta fitur numerik kontinu seperti BMI. 

Standarisasi ini dilakukan untuk menyeragamkan skala nilai 

antar variabel sehingga perbedaan rentang numerik tidak 
diinterpretasikan oleh model sebagai perbedaan tingkat 

kepentingan fitur [16]. Pendekatan ini relevan mengingat fitur 

dalam dataset memiliki karakteristik yang bervariasi, 

sehingga tanpa standarisasi, fitur dengan rentang nilai yang 

lebih besar berpotensi memengaruhi proses pembelajaran 

secara tidak proporsional. Meskipun algoritma XGBoost 

relatif toleran terhadap variasi skala fitur, standarisasi tetap 

diterapkan untuk memastikan konsistensi representasi data 

dan stabilitas proses pelatihan. 

C. Pembagian Data 

Dataset BRFSS 2023 yang telah melalui seluruh tahap 

prapemrosesan dibagi menjadi data latih dan data uji untuk 

memisahkan proses pembelajaran dan evaluasi model. 

Pembagian data dilakukan dengan rasio 80% sebagai data 

latih dan 20% sebagai data uji yang secara umum digunakan 

dalam penelitian pengembangan model klasifikasi berbasis 

algoritma machine learning. Skema ini dirancang untuk 

menghasilkan evaluasi kinerja model yang objektif melalui 

pengujian pada data yang tidak terlibat dalam proses 
pelatihan. 

D. Penanganan Ketidakseimbangan Kelas 

Meskipun data telah melalui tahap prapemrosesan dan 

pembagian data, distribusi kelas pada variabel target masih 

menunjukkan ketidakseimbangan antara kelas mayoritas dan 

kelas minoritas. Berdasarkan identifikasi awal, sekitar 90,7% 

data berada pada kelas mayoritas (kelas 0), dengan 9,3% 

sisanya berada pada kelas minoritas (kelas 1). 
Ketidakseimbangan distribusi kelas ini berpotensi 

menyebabkan proses pembelajaran model menjadi bias 

terhadap kelas mayoritas, yang membuat model lebih 

dominan mempelajari pola dari kelas mayoritas dan kurang 

optimal dalam mengenali karakteristik kelas minoritas [13]. 

Oleh karena itu, diperlukan penerapan strategi penanganan 

ketidakseimbangan kelas sebelum tahap pemodelan. 

Penelitian ini menerapkan tiga pendekatan penanganan 

ketidakseimbangan kelas yang merepresentasikan mekanisme 

penanganan yang berbeda. Pendekatan tersebut meliputi class 

weighting yang bekerja melalui pemberian bobot berbeda 

antar kelas dalam proses pembelajaran, Synthetic Minority 
Oversampling Technique (SMOTE) yang bekerja dengan 

menambahkan sampel pada kelas minoritas, serta Random 

Undersampling (RUS) yang bekerja dengan mengurangi 

sampel pada kelas mayoritas [17], [18], [19]. Ketiga 

pendekatan ini digunakan sebagai skenario yang berbeda 

untuk mengeksplorasi dan membandingkan efektivitas 

masing-masing mekanisme pada dataset BRFSS 2023 yang 

berukuran besar dan heterogen. 

Penanganan ketidakseimbangan kelas hanya diterapkan 

pada data latih yang mencakup 80% dari data bersih, 

sementara itu data uji dibiarkan mempertahankan distribusi 
kelas aslinya. Pendekatan ini bertujuan untuk mencegah 

terjadinya data leakage, yaitu kondisi ketika informasi dari 

data uji secara tidak langsung memengaruhi proses pelatihan 

model dan menghasilkan estimasi kinerja yang terlalu 

optimistis [18]. Selain itu, mempertahankan distribusi kelas 
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asli pada data uji memungkinkan evaluasi dilakukan pada 

kondisi yang merepresentasikan situasi nyata, sehingga 

kinerja model yang diperoleh mencerminkan kemampuan 

generalisasi secara lebih objektif. 

E. Pemodelan dan Optimasi Hiperparameter 

Tahap pemodelan dilakukan dengan melatih algoritma 

Extreme Gradient Boosting (XGBoost) menggunakan data 

latih yang telah melalui seluruh tahapan prapemrosesan. 

Proses pemodelan dilakukan baik pada model dasar XGBoost 

maupun pada model yang dioptimasi menggunakan dua 

pendekatan optimasi hiperparameter, yaitu Optuna dan 

Random Search. Kedua pendekatan optimasi tersebut juga 

diterapkan pada tiga skenario penanganan ketidakseimbangan 

kelas, yang meliputi class weighting, Synthetic Minority 

Oversampling Technique (SMOTE), dan Random 

Undersampling (RUS), sehingga menghasilkan sembilan 

kombinasi pemodelan. Seluruh kombinasi ini digunakan 
untuk mengeksplorasi pengaruh strategi optimasi dan 

penanganan ketidakseimbangan kelas terhadap kinerja model 

klasifikasi risiko penyakit jantung secara menyeluruh dan 

representatif melalui mekanisme penanganan yang berbeda, 

dengan konfigurasi masing-masing skenario dirangkum pada 

Tabel 1. 

TABEL I 

SKENARIO PEMODELAN DAN KONFIGURASI MODEL XGBOOST 

Kode Skenario Konfigurasi Model 

BaseWeight XGBoost + Class Weighting 

OptunaWeight XGBoost + Optuna + Class Weighting 

RandomWeight XGBoost + Random Search + Class 
Weighting 

BaseSMOTE XGBoost + SMOTE 

OptunaSMOTE XGBoost + Optuna + SMOTE 

RandomSMOTE XGBoost + Random Search + SMOTE 

BaseRUS XGBoost + Random Undersampling 
(RUS) 

OptunaRUS XGBoost + Optuna + Random 
Undersampling (RUS) 

RandomRUS XGBoost + Random Search + Random 
Undersampling (RUS) 

 

Dalam seluruh skenario pemodelan, konfigurasi dasar 

XGBoost diterapkan secara konsisten, dengan nilai parameter 

yang meliputi random_state=42, eval_metric='logloss', dan 

tree_method='hist'. Pada skenario class weighting, nilai 

scale_pos_weight ditetapkan sesuai dengan rasio 

ketidakseimbangan kelas yang relevan pada data latih, 

sedangkan pada skenario SMOTE dan RUS, 
scale_pos_weight ditetapkan sebesar 1 untuk menghindari 

redundansi mekanisme penanganan ketidakseimbangan 

kelas. Pencarian parameter optimal dilakukan melalui Optuna 

dan Random Search yang masing-masing memiliki jumlah 

iterasi sebanyak 50 kali untuk menjamin perbandingan 

performa yang adil. Proses pelatihan dan optimasi dievaluasi 

menggunakan 5-fold stratified cross-validation dengan 

metrik Receiver Operating Characteristic-Area Under Curve 

(ROC-AUC). Rata-rata ROC-AUC dipilih sebagai acuan 

utama pemilihan konfigurasi terbaik karena bersifat 

threshold-independent, sehingga memberikan estimasi 

generalisasi model yang stabil sebelum evaluasi 

komprehensif dengan metrik klasifikasi lengkap pada data uji. 

1) Extreme Gradient Boosting (XGBoost): Extreme 

Gradient Boosting (XGBoost) merupakan algoritma machine 

learning berbasis gradient boosting yang menggunakan 

decision tree sebagai model dasarnya. Algoritma ini bekerja 
secara berurutan, di mana setiap pohon baru dibangun untuk 

memperbaiki kesalahan prediksi dari pohon sebelumnya 

sehingga model akhir yang dihasilkan merupakan gabungan 

dari seluruh pohon dalam proses ensemble. XGBoost dikenal 

memiliki efisiensi komputasi yang tinggi, kemampuan 

generalisasi yang baik, serta mekanisme regulasi untuk 

mencegah overfitting [20], [21]. Disebutkan pada penelitian 

oleh Zhang dkk. [22], algoritma XGBoost memiliki beberapa 

komponen utama dalam proses kerjanya yang dijabarkan 

melalui sejumlah persamaan sebagai berikut. 

Rumus prediksi (ensemble model) XGBoost ditunjukkan pada 
Rumus (1): 

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,  𝑓𝑘 ∈ ℱ (1) 

Keterangan Rumus (1): 

𝑦𝑖̂ = prediksi sampel ke − 𝑖. 
𝐾 = jumlah pohon dalam 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒. 
𝑓𝑘(⋅) = pohon keputusan ke − 𝑘. 
ℱ = ruang fungsi pohon keputusan. 

Fungsi objektif yang digunakan dalam proses pelatihan 

XGBoost ditunjukkan pada Rumus (2), dengan komponen 

regularisasi yang dirumuskan pada Rumus (3): 

ℒ = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1  (2) 

Ω(𝑓) = γ𝑇 +
1

2
λ||𝑤||

2
  (3) 

Keterangan Rumus (2) dan Rumus (3): 

ℒ = fungsi objektif total. 
𝑙(𝑦𝑖 , 𝑦𝑖̂) = 𝑙𝑜𝑠𝑠 antara aktual dan prediksi. 
Ω(𝑓𝑘) = regulasi pohon ke − 𝑘. 
𝑇 = jumlah daun pohon. 
𝑤 = bobot tiap daun. 
γ = penalti penambahan daun. 
λ = regulasi L2 bobot daun. 

Rumus (1) menjelaskan bahwa prediksi akhir pada model 

XGBoost diperoleh dari penjumlahan kontribusi seluruh 

pohon keputusan yang dibangun secara bertahap melalui 

proses boosting. Setiap pohon baru berfungsi untuk 

memperbaiki kesalahan prediksi dari pohon sebelumnya, 
sehingga model akhir merupakan hasil ensemble dari seluruh 

pohon yang telah dilatih. 

Sementara itu, Rumus (2) dan (3) menggambarkan tujuan 

pelatihan model XGBoost secara konseptual, yaitu 

meminimalkan kesalahan prediksi sekaligus mengendalikan 

kompleksitas model melalui komponen regularisasi. 

Komponen regularisasi berfungsi memberikan penalti 
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terhadap pertumbuhan struktur pohon, seperti penambahan 

jumlah daun, serta membatasi bobot pada setiap daun agar 

model tidak menjadi terlalu kompleks. Dengan 

menyeimbangkan antara pengurangan kesalahan dan 

pembatasan kompleksitas tersebut, XGBoost mampu 

menghasilkan model yang akurat namun tetap terkontrol 

sehingga mengurangi potensi overfitting. 

2) Optuna: Optuna merupakan framework optimasi 

hiperparameter yang mendukung pendekatan optimasi 
berbasis model, salah satunya melalui algoritma Tree-

structured Parzen Estimator (TPE). Framework ini bekerja 

dengan menganalisis hasil evaluasi sebelumnya untuk 

mempelajari hubungan antara konfigurasi parameter dan 

performa model, sehingga dapat menentukan arah pencarian 

parameter yang lebih potensial. Pendekatan adaptif ini 

menjadikan proses pencarian lebih efisien dibandingkan 

metode konvensional seperti Grid Search. Dengan 

memfokuskan pencarian pada wilayah ruang parameter yang 

menjanjikan, Optuna mampu meningkatkan efisiensi 

pencarian sekaligus menghasilkan konfigurasi yang lebih 
optimal [10]. 

Selain efisien, Optuna juga memiliki fleksibilitas yang 

tinggi karena mendukung konsep define-by-run, yang 

memungkinkan pengguna mendefinisikan ruang pencarian 

secara dinamis selama proses eksekusi. Selain itu, mekanisme 

pruning yang dimilikinya dapat menghentikan percobaan 

yang tidak menjanjikan sejak dini, sehingga sumber daya 

komputasi dapat digunakan dengan lebih optimal. Kombinasi 

metode TPE, define-by-run, dan pruning menjadikan Optuna 

efektif digunakan dalam berbagai penelitian, termasuk pada 

model machine learning maupun deep learning yang 

memerlukan penyesuaian hiperparameter secara optimal [23]. 

3) Random Search: Di sisi lain, Random Search 

merupakan metode optimasi hiperparameter yang bekerja 

dengan cara memilih kombinasi parameter secara acak dari 

ruang pencarian yang telah ditentukan. Berbeda dengan Grid 

Search yang mengevaluasi seluruh kemungkinan kombinasi, 

Random Search hanya menguji sebagian konfigurasi, 

sehingga proses pencarian menjadi lebih efisien dengan 

waktu komputasi lebih singkat. Pendekatan ini efektif 

diterapkan pada model dengan dataset berukuran besar dan 

fitur yang kompleks, karena eksplorasi acak memungkinkan 

pencarian solusi yang baik tanpa harus mengevaluasi seluruh 
kombinasi, sehingga beban komputasi dapat dikurangi secara 

signifikan [24]. 

4) Ruang Lingkup Optimasi Hiperparameter: Pada 
skenario pemodelan yang melibatkan optimasi 

hiperparameter menggunakan Optuna dan Random Search, 

proses optimasi difokuskan pada hiperparameter utama 

XGBoost yang memengaruhi kompleksitas dan kemampuan 

generalisasi model. Ruang lingkup nilai hiperparameter pada 

kedua pendekatan dikonfigurasikan secara identik untuk 

menjaga kesetaraan ruang pencarian. Perbedaan hanya 

terletak pada mekanisme eksplorasi, dengan Optuna 

melakukan pencarian adaptif pada ruang parameter kontinu 

yang lebih halus berdasarkan hasil evaluasi sebelumnya, 

sedangkan Random Search mengevaluasi kombinasi nilai 

diskret secara acak. Dengan demikian, variasi kinerja yang 

dihasilkan dapat dipandang sebagai konsekuensi langsung 

dari perbedaan strategi pencarian dalam ruang parameter yang 

setara. Rincian ruang lingkup hiperparameter ditunjukkan 

pada Tabel 2. 

TABEL II 

RUANG LINGKUP OPTIMASI HIPERPARAMETER XGBOOST 

Hiperparameter Optuna Random Search 

n_estimators 100–1000 {100, 300, 500, 1000} 

max_depth 2–20 {3, 6, 10, 15} 

learning_rate 0.001–0.3 {0.01, 0.05, 0.1, 0.2} 

subsample 0.3–1.0 {0.6, 0.8, 1.0} 

colsample_bytree 0.3–1.0 {0.6, 0.8, 1.0} 

F. Evaluasi Model 

Setelah proses pelatihan model selesai, evaluasi dilakukan 

dengan mengujikan seluruh skenario pemodelan 

menggunakan data uji untuk menilai kinerja model dalam 

tugas klasifikasi risiko penyakit jantung. Tahap evaluasi 

merupakan bagian penting dalam pengembangan model 

machine learning karena berfungsi untuk menilai efektivitas, 

reliabilitas, dan kemampuan generalisasi, sekaligus 

mengidentifikasi kekuatan dan kelemahan model. Penilaian 

dilakukan menggunakan metrik confusion matrix, akurasi, 
dan nilai macro average dari presisi, recall, serta F1-score, 

dilengkapi visualisasi kurva ROC-AUC untuk memberikan 

gambaran menyeluruh mengenai kualitas prediksi model [16], 

[25]. Selain itu, proses evaluasi mencakup analisis feature 

importance untuk menilai kontribusi relatif masing-masing 

fitur terhadap keputusan model. 

1) Confusion Matrix: Confusion matrix merupakan 

tabel evaluasi yang membandingkan hasil prediksi model 

dengan kondisi aktual data uji. Tabel ini terdiri atas empat 

komponen utama, yaitu True Positive (TP) dan True Negative 

(TN) yang merepresentasikan prediksi benar untuk kelas 

positif dan negatif, serta False Positive (FP) dan False 
Negative (FN) yang menunjukkan kesalahan klasifikasi, di 

mana FP terjadi ketika model memprediksi kelas positif pada 

data yang sebenarnya negatif, sedangkan FN terjadi ketika 

model memprediksi kelas negatif pada data yang sebenarnya 

positif [26]. Pada penelitian yang dilakukan oleh Hakim dkk. 

[26], evaluasi kinerja model machine learning menggunakan 

confusion matrix divisualisasikan pada Gambar 2 untuk 

menunjukkan kontribusi masing-masing komponen terhadap 

evaluasi model. 
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Gambar 2. Ilustrasi confusion matrix 

 

Berdasarkan visualisasi confusion matrix pada Gambar 2, 

komponen utama yang meliputi True Positive (TP), True 

Negative (TN), False Positive (FP), dan False Negative (FN) 

digunakan sebagai dasar dalam perhitungan berbagai metrik 

evaluasi. Berdasarkan komponen-komponen tersebut, metrik 

seperti akurasi, presisi, recall, dan F1-score dapat dihitung 

untuk menilai kualitas prediksi model. Uraian mengenai 

rumus masing-masing metrik disajikan pada bagian berikut. 

Rumus akurasi dijabarkan pada Rumus (4): 

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

Pada Rumus (4), akurasi merepresentasikan proporsi 

prediksi yang benar terhadap keseluruhan data uji. Semakin 
tinggi nilai akurasi, semakin baik kemampuan model dalam 

melakukan klasifikasi secara keseluruhan. Meskipun 

demikian, metrik ini belum tentu mampu merepresentasikan 

performa model secara seimbang antar kelas, khususnya 

ketika dataset memiliki distribusi kelas yang tidak seimbang. 

Rumus presisi dijabarkan pada Rumus (5): 

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5) 

Pada Rumus (5), presisi merepresentasikan tingkat 

ketepatan model dalam memprediksi kelas positif. Semakin 

tinggi nilai presisi, semakin besar proporsi prediksi positif 

yang benar-benar sesuai dengan fakta, sehingga kesalahan 

klasifikasi berupa False Positive (FP) dapat diminimalkan. 

Meskipun demikian, presisi yang tinggi tidak selalu 

menjamin bahwa model mampu menangkap seluruh data 

positif yang terdapat dalam dataset. 

Rumus recall dijabarkan pada Rumus (6): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (6) 

Pada Rumus (6), recall merepresentasikan kemampuan 

model dalam mengidentifikasi seluruh data positif yang 

terdapat dalam dataset. Nilai recall yang tinggi menunjukkan 
bahwa model mampu meminimalkan kesalahan prediksi 

False Negative (FN), sehingga data positif yang penting tidak 

terlewatkan. Meskipun demikian, nilai recall yang tinggi 

tetap perlu diimbangi dengan presisi agar performa prediksi 

model tetap stabil dan akurat. 

Rumus F1-score dijabarkan pada Rumus (7): 

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑠𝑖𝑠𝑖×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

Pada Rumus (7), F1-score merupakan rata-rata harmonis 

antara presisi dan recall yang digunakan untuk menilai 

keseimbangan performa model dalam proses klasifikasi. Nilai 

F1-score yang tinggi mengindikasikan bahwa model tidak 

hanya tepat dalam memprediksi kelas positif, tetapi juga 
konsisten dalam mendeteksi seluruh data positif yang relevan. 

Oleh karena itu, metrik ini sangat berguna pada kondisi ketika 

distribusi kelas tidak seimbang. 

2) Grafik ROC-AUC: Berbeda dengan confusion matrix 

yang menyajikan ringkasan kinerja model dalam bentuk nilai-

nilai klasifikasi, Receiver Operating Characteristic (ROC) 

merupakan grafik evaluasi yang digunakan untuk menilai 

kinerja model klasifikasi biner. Kurva ROC menggambarkan 

hubungan antara True Positive Rate (TPR) dan False Positive 

Rate (FPR) yang diturunkan dari komponen pada confusion 

matrix. Dengan memvisualisasikan perubahan nilai TPR dan 

FPR pada berbagai ambang keputusan (threshold), kurva 
ROC membantu menggambarkan keseimbangan antara 

kemampuan model dalam mendeteksi kelas positif dan 

tingkat kesalahan prediksi terhadap kelas negatif, sehingga 

memberikan pemahaman kinerja model yang lebih jelas dan 

informatif [27]. Disebutkan pada penelitian oleh Kristiawan 

dan Widjaja [28], visualisasi grafik ROC ditampilkan pada 

Gambar 3. 

 

 
Gambar 3. Ilustrasi grafik ROC-AUC 

 

Dilihat pada Gambar 3, grafik ROC tidak hanya 

menampilkan hubungan antara True Positive Rate (TPR) dan 

False Positive Rate (FPR), tetapi juga dilengkapi dengan 
komponen tambahan berupa Area Under Curve (AUC). Pada 

grafik ini, sumbu Y merepresentasikan TPR, sedangkan 

sumbu X merepresentasikan FPR. Luas area di bawah kurva 

ROC (AUC) digunakan untuk menilai kinerja model 

klasifikasi secara keseluruhan. Nilai AUC banyak digunakan 

sebagai metrik evaluasi karena mampu mencerminkan 

performa model pada berbagai ambang batas keputusan 

(threshold), sehingga memberikan gambaran kinerja yang 

lebih komprehensif dibandingkan metrik tunggal dari 

confusion matrix [28]. Adapun klasifikasi performa nilai 

AUC menurut Amrin dkk. [29] disajikan pada kategori 
berikut sebagai referensi penilaian model. 

Disebutkan pada penelitian oleh Amrin dkk. [29], nilai 

AUC dikategorikan ke dalam beberapa tingkatan, yang 

meliputi rentang nilai 0,90–1,00 sebagai klasifikasi sangat 
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baik, 0,80–0,90 sebagai klasifikasi baik, 0,70–0,80 sebagai 

klasifikasi cukup, 0,60–0,70 sebagai klasifikasi kurang, serta 

0,50–0,60 sebagai klasifikasi gagal. Kategori tersebut 

memberikan gambaran mengenai tingkat kualitas pemisahan 

kelas yang dihasilkan oleh model klasifikasi berdasarkan nilai 

AUC. Dengan demikian, nilai AUC dapat digunakan sebagai 

acuan evaluatif untuk menilai performa model secara umum 

dalam melakukan tugas klasifikasi. 

3) Feature Importance: Feature importance dalam 
model machine learning merupakan pendekatan yang 

digunakan untuk menjelaskan kontribusi relatif setiap fitur 

terhadap kinerja model dalam menghasilkan prediksi. Melalui 

analisis feature importance, dapat diketahui fitur-fitur yang 

memiliki pengaruh paling signifikan maupun yang 

memberikan kontribusi rendah dalam proses pengambilan 

keputusan model. Informasi yang dihasilkan dari feature 

importance membantu meningkatkan pemahaman terhadap 

cara kerja model serta mengidentifikasi faktor-faktor utama 

yang memengaruhi hasil prediksi [13]. 

III. HASIL DAN PEMBAHASAN 

Secara keseluruhan, semua tahapan dalam penelitian ini 

diimplementasikan menggunakan bahasa pemrograman 

Python. Tahap prapemrosesan data awal dilakukan 

menggunakan Visual Studio Code, yang meliputi proses 

konversi data, pemilihan dan pemetaan nilai variabel, serta 

pembersihan data. Selanjutnya, prapemrosesan lanjutan 

dilakukan pada platform Google Colaboratory yang 

mencakup one-hot encoding dan standarisasi data. Pada 

platform yang sama, proses dilanjutkan dengan pembagian 

data latih dan data uji, penanganan ketidakseimbangan kelas, 

pemodelan, hingga evaluasi model. Seluruh skenario 

pemodelan kemudian dievaluasi untuk menilai kemampuan 
masing-masing model dalam melakukan tugas klasifikasi 

risiko penyakit jantung. 

A. Dataset 

Pada kondisi awal setelah melalui proses konversi data, 

dataset BRFSS 2023 masih merepresentasikan kondisi data 

mentah sebagaimana yang ditunjukkan pada Gambar 4. 

Visualisasi tersebut memberikan gambaran awal mengenai 

struktur dan dimensi dataset sebelum dilakukan tahap 
prapemrosesan dan seleksi variabel, sehingga seluruh variabel 

dan sampel masih tersedia secara utuh serta belum secara 

spesifik disesuaikan dengan konteks klasifikasi risiko 

penyakit jantung. 

 

 
Gambar 4. Dimensi awal dataset BRFSS 2023 

 

Pada Gambar 4, ditunjukkan bahwa dataset terdiri dari 

total 433.323 sampel dengan 350 variabel. Meskipun 

mayoritas data berasal dari tahun 2023, terdapat sekitar 25 

ribu entri yang tercatat sebagai data tahun 2024 setelah 

diidentifikasi menggunakan variabel IYEAR. Berdasarkan 

codebook BRFSS 2023, variabel-variabel yang tersedia 

merepresentasikan indikator faktor demografis, kondisi 

medis, serta perilaku berisiko responden yang disurvei. 

B. Hasil Prapemrosesan Data 

Keseluruhan tahap prapemrosesan pada dataset BRFSS 

2023 menghasilkan data yang lebih bersih, relevan, dan siap 

digunakan untuk pembangunan model klasifikasi risiko 

penyakit jantung. Setelah dilakukan seleksi variabel relevan, 

pembersihan entri bermasalah, serta transformasi dan 

standarisasi fitur, struktur dataset menjadi lebih representatif 

terhadap kondisi penyakit jantung. Dengan demikian, dataset 

yang dihasilkan memiliki fitur yang lebih terfokus dengan 
sampel yang berkualitas, sehingga mendukung proses 

pemodelan secara efektif. 

1) Persiapan Data Awal: Sebagai upaya untuk 

memastikan akurasi representasi tahun dalam dataset, sampel 

BRFSS 2023 difilter berdasarkan variabel IYEAR sehingga 

hanya observasi tahun 2023 yang dilibatkan pada tahap 

prapemrosesan selanjutnya. Tahap ini dilakukan sebelum 

proses pemilihan variabel, penamaan ulang, dan pemetaan 

nilai. Perubahan jumlah sampel sebagai hasil dari seleksi ini 

disajikan pada Gambar 5. 

 

 
Gambar 5. Jumlah sampel sebelum dan setelah seleksi IYEAR 

 

Gambar 5 memvisualisasikan pengurangan jumlah sampel 

selama tahap seleksi awal. Berdasarkan total 433.233 entri 

yang tersedia, identifikasi melalui variabel IYEAR 

menunjukkan terdapat 25.221 entri yang berasal dari data 

tahun 2024. Seluruh entri tersebut kemudian dieliminasi guna 

menjaga homogenitas data, sehingga diperoleh dataset akhir 
sebanyak 408.012 sampel. Langkah ini memastikan bahwa 

analisis selanjutnya sepenuhnya merepresentasikan data 

BRFSS tahun 2023 sesuai dengan fokus penelitian. 

2) Pemilihan dan Pemetaan Nilai Variabel: Mengingat 

dataset awal memiliki total 350 variabel, proses seleksi 

dilakukan untuk menentukan variabel yang relevan dengan 

tujuan penelitian. Tahap ini mencakup seleksi variabel, 

penamaan ulang, serta pemetaan nilai yang berpedoman pada 

codebook BRFSS 2023. Rincian mengenai variabel terpilih, 
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beserta jenis, deskripsi, dan hasil pemetaan nilainya disajikan 

pada Tabel 3. 

TABEL III 

RINCIAN VARIABEL TERPILIH BESERTA JENIS, DESKRIPSI, DAN HASIL PEMETAAN NILAINYA 

Nama Variabel Jenis Deskripsi Pemetaan Nilai 

RentangUsia Kategorik Kelompok usia responden (tahun) 1=18–24, 2=25–34, 3=35–44, 4=45–54, 
5=55–64, 6≥65 

JenisKelamin Biner Jenis kelamin responden 0=Perempuan, 1=Laki-laki 

BMI Numerik Indeks massa tubuh responden (kg/m²) Rentang nilai numerik 

TekananDarahTinggi Biner Riwayat hipertensi responden 0=Tidak, 1=Ya 

KolesterolTinggi Biner Riwayat kolesterol tinggi responden 0=Tidak, 1=Ya 

Diabetes Biner Riwayat diabetes responden 0=Tidak, 1=Ya 

KesulitanBerjalan Biner Kesulitan berjalan pada responden 0=Tidak, 1=Ya 

KesehatanUmum Kategorik Persepsi responden terhadap kondisi kesehatannya 1–5 (sangat baik–buruk) 

StatusMerokok Kategorik Riwayat merokok responden 0–3 (tidak pernah, setiap hari, kadang, 
mantan) 

AktivitasFisik Biner Aktivitas fisik intens responden selama satu bulan 
terakhir 

0=Tidak, 1=Ya 

KonsumsiAlkohol Biner Riwayat konsumsi alkohol responden 0=Tidak, 1=Ya 

PenyakitJantung Biner Indikator risiko penyakit jantung pada responden 0=Tidak berisiko, 1=Berisiko 

Berdasarkan pemaparan pada Tabel 3, dua belas variabel 

terpilih terdiri atas tiga variabel kategorik (RentangUsia, 
KesehatanUmum, dan StatusMerokok), delapan variabel 

biner (JenisKelamin, TekananDarahTinggi, 

KolesterolTinggi, Diabetes, KesulitanBerjalan, 

AktivitasFisik, KonsumsiAlkohol, dan PenyakitJantung), 

serta satu variabel numerik, yaitu BMI. Variabel 

PenyakitJantung ditetapkan sebagai variabel target dengan 

dua kelas, yaitu berisiko dan tidak berisiko, sedangkan 

sebelas variabel lainnya berperan sebagai variabel prediktor. 

Pemilihan variabel dalam penelitian ini dilakukan melalui 

observasi terhadap studi oleh Firmansyah dan Yulianto [12] 

yang menggunakan dataset BRFSS 2015 sebagai dasar 

pengembangan model prediksi risiko penyakit jantung 
dengan 22 variabel. Berdasarkan hasil observasi tersebut, 

penelitian ini memilih dua belas variabel yang dinilai paling 

relevan dan representatif dalam menggambarkan karakteristik 

individu yang berkaitan dengan risiko penyakit jantung. 

3) Pembersihan Data: Setelah dataset mencakup dua 

belas variabel terpilih beserta pemetaan nilai yang ditetapkan, 

tahap pembersihan data dilakukan untuk memastikan 

kelengkapan dan kewajaran nilai pada setiap sampel. Pada 

tahap ini, seluruh sampel yang teridentifikasi memiliki nilai 

hilang (missing values) dieliminasi dari dataset. Selanjutnya, 

penanganan nilai ekstrem (outlier) diterapkan pada variabel 
BMI sebagai satu-satunya variabel numerik dengan 

membatasi nilai BMI pada rentang 12 hingga 60. Dengan 

demikian, sampel yang memiliki nilai BMI di luar rentang 

tersebut turut dieliminasi. Visualisasi distribusi nilai BMI 

sebelum dan setelah penanganan outlier disajikan pada 

Gambar 6 dan Gambar 7. 

 

 
Gambar 6. Distribusi nilai BMI sebelum penanganan outlier 

 

 
Gambar 7. Distribusi nilai BMI setelah penanganan outlier 

 

Gambar 6 memvisualisasikan sebaran nilai BMI sebelum 

dilakukan penanganan outlier, di mana terlihat adanya nilai-

nilai ekstrem yang memanjang secara signifikan hingga 

mendekati angka 100. Sementara itu pada Gambar 7, 

ditunjukkan hasil distribusi setelah dilakukan pembatasan 

nilai pada rentang 12 hingga 60, yang menyebabkan 

persebaran data menjadi lebih terkonsentrasi dan 

representatif, dengan sisa outlier yang hanya terdeteksi pada 
kisaran nilai di bawah 15 serta pada rentang 45 hingga 60. 

Meskipun nilai BMI telah dibatasi pada rentang 12–60, 

hasil deteksi outlier menggunakan pendekatan interquartile 

range (IQR) menunjukkan masih terdapat 9.275 observasi 

yang teridentifikasi sebagai outlier, dengan batas bawah 

sebesar 13,18 dan batas atas sebesar 42,75. Observasi-

observasi tersebut mayoritas berada pada kisaran BMI tinggi 

dan membentuk ekor distribusi, yang mencerminkan 

heterogenitas distribusi data, sehingga tetap dipertahankan 
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dalam analisis meskipun terdeteksi sebagai outlier secara 

statistik. Setelah melalui tahap pembersihan data yang 

meliputi eliminasi sampel dengan nilai hilang serta 

penanganan outlier, perbandingan jumlah sampel sebelum 

dan sesudah pembersihan ditampilkan pada Gambar 8. 

 

 
Gambar 8. Perbandingan jumlah sampel sebelum dan setelah pembersihan 

 

Gambar 8 menunjukkan perubahan jumlah sampel pada 

dataset, dari yang semula berjumlah 408.012 menjadi 290.156 

setelah melalui tahap pembersihan data. Pengurangan tersebut 

merupakan hasil dari eliminasi sebanyak 117.856 sampel 

yang teridentifikasi memiliki nilai hilang serta nilai ekstrem 

(outlier). Sebagai tahap akhir pembersihan, variabel biner dan 

kategorik dalam dataset ditetapkan dalam tipe int8, sedangkan 

BMI sebagai satu-satunya variabel numerik ditetapkan dalam 

tipe float32 untuk efisiensi penyimpanan dan komputasi. 

4) Penerapan One-hot Encoding: One-hot encoding 

kemudian diterapkan pada variabel kategorik setelah seluruh 

data melalui tahap pembersihan. Variabel yang dikodekan 

meliputi RentangUsia, KesehatanUmum, dan 

StatusMerokok, di mana setiap kategori diubah menjadi 

variabel biner yang berdiri sendiri. Sebagai ilustrasi hasil 

transformasi data setelah proses encoding, hasil penerapan 

one-hot encoding pada variabel StatusMerokok ditampilkan 

pada Gambar 9. 

 

 
Gambar 9. Hasil encoding pada variabel StatusMerokok 

 

Gambar 9 menunjukkan lima sampel pertama hasil 

encoding pada variabel StatusMerokok. Hasil pemecahan 

variabel ini menghasilkan kolom baru berupa 

StatusMerokok_0, StatusMerokok_1, StatusMerokok_2, dan 
StatusMerokok_3, di mana setiap kolom merepresentasikan 

masing-masing kategori menjadi format biner (True = benar, 

False = salah). Ilustrasi ini memperlihatkan bagaimana proses 

one-hot encoding mengubah data kategorik menjadi 

representasi numerik biner yang siap digunakan dalam 

analisis selanjutnya. Dikarenakan proses encoding bekerja 

dengan memecah variabel kategorik menjadi beberapa 

variabel baru, jumlah variabel dalam dataset turut bertambah, 

sebagaimana yang ditunjukkan pada Gambar 10. 

 

 
Gambar 10. Perbandingan jumlah variabel sebelum dan setelah encoding 

 

Gambar 10 menampilkan perbandingan jumlah variabel 

prediktor dalam dataset sebelum dan sesudah penerapan one-

hot encoding pada variabel kategorik. Sebelum proses 
encoding, dataset terdiri dari 11 variabel prediktor, yang 

meningkat menjadi 23 variabel setelah encoding. Pemecahan 

variabel kategorik menjadi beberapa fitur biner ini 

memperjelas representativitas masing-masing kategori, 

sehingga memudahkan model machine learning dalam 

mempelajari pola dari setiap kategori secara independen.  

5) Standarisasi Data: Standarisasi Data: Setelah semua 

variabel kategorik melalui tahap one-hot encoding, seluruh 

variabel yang tersedia dalam dataset distandarisasi 

menggunakan StandardScaler. Tabel 4 menampilkan contoh 

hasil standarisasi untuk lima variabel pertama, di mana nilai 

mean dan standar deviasi diperoleh setelah transformasi. 

TABEL IV 

HASIL STANDARISASI UNTUK LIMA VARIABEL PERTAMA 

Variabel Mean Standar Deviasi 

JenisKelamin 0,00 1,00 

TekananDarahTinggi 0,00 1,00 

KolesterolTinggi 0,00 1,00 

Diabetes 0,00 1,00 

KesulitanBerjalan 0,00 1,00 

 

Tabel 4 menampilkan hasil standarisasi lima variabel 

pertama dalam dataset, di mana setiap variabel yang 

ditunjukkan memiliki nilai mean 0,00 dengan standar deviasi 

1,00. Nilai ini menunjukkan bahwa seluruh fitur telah berhasil 

ditransformasi ke skala yang seragam. Standarisasi ini krusial 

karena memiliki peran untuk menghilangkan bias akibat 

perbedaan rentang nilai antar-variabel, sehingga tidak ada 

fitur yang dianggap lebih mendominasi dalam proses 

pembelajaran model. Dengan skala yang konsisten, model 

machine learning dapat mempelajari pola setiap fitur secara 
adil, mempercepat konvergensi, dan menghasilkan prediksi 

yang lebih stabil serta objektif. 

C. Hasil Pembagian Data 

Setelah data melalui seluruh tahapan prapemrosesan, 

diperoleh dataset akhir yang siap digunakan pada tahap 

pemodelan. Meskipun telah melalui proses prapemrosesan, 

distribusi kelas pada dataset masih menunjukkan proporsi 

yang belum seimbang, sebagaimana yang ditampilkan pada 
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Gambar 11. Selanjutnya, dataset tersebut dibagi menjadi data 

latih dan data uji, dengan distribusi pembagian data latih dan 

data uji ditampilkan pada Gambar 12. 

 

 
Gambar 11. Distribusi kelas target sebelum penyeimbangan data 

 

 
Gambar 12. Distribusi data latih dan data uji 

 

Berdasarkan Gambar 11, distribusi kelas pada dataset 
menunjukkan kondisi yang belum seimbang, dengan kelas 0 

sebanyak 263.203 entri (90,7%) dan kelas 1 sebanyak 26.953 

entri (9,3%), yang mencerminkan dominasi kelas 0 yang 

cukup besar. Ketimpangan ini berpotensi menimbulkan bias 

prediksi yang menyebabkan model cenderung 

mengklasifikasikan sampel ke kelas mayoritas, sehingga 

diperlukan proses penyeimbangan data sebelum tahap 

pemodelan dilakukan pada tugas klasifikasi risiko penyakit 

jantung. Selanjutnya, Gambar 12 menunjukkan pembagian 

dataset menjadi dua bagian, yaitu 232.124 sampel (80%) 

sebagai data latih dan 56.032 sampel (20%) sebagai data uji. 

D. Hasil Penanganan Ketidakseimbangan Kelas 

Sebagai ilustrasi upaya penanganan ketidakseimbangan 

kelas pada data latih, Gambar 13 dan Gambar 14 

menunjukkan perubahan proporsi kelas sebelum dan setelah 

penerapan teknik Synthetic Minority Oversampling 

Technique (SMOTE) dan Random Undersampling (RUS). 

Sementara itu, pada skenario yang menerapkan teknik class 

weighting, proporsi kelas pada data latih tetap tidak berubah, 

karena pendekatan ini hanya memberikan pembobotan yang 
berbeda antara kelas mayoritas dan kelas minoritas tanpa 

mengubah distribusi data. 

 

 
Gambar 13. Distribusi kelas data latih: sebelum dan setelah SMOTE 

 

 
Gambar 14. Distribusi kelas data latih: sebelum dan setelah RUS 

 

Teknik penanganan ketidakseimbangan kelas hanya 

diterapkan pada data latih untuk mencegah terjadinya data 
leakage, sehingga data uji tetap dipertahankan dengan 

distribusi kelas aslinya yang tidak seimbang (imbalanced). 

Pada Gambar 13, penerapan SMOTE menambahkan jumlah 

sampel minoritas yang semula berjumlah 21.562 sampel 

menjadi setara dengan kelas mayoritas, sehingga kedua kelas 

masing-masing berjumlah 210.562 sampel. Sementara itu, 

pada skenario Random Undersampling (RUS) pada Gambar 

14, jumlah sampel kelas mayoritas yang semula 210.562 

sampel dikurangi hingga setara dengan kelas minoritas, 

sehingga kedua kelas pada data latih masing-masing 

berjumlah 21.562 sampel.  

E. Evaluasi Model 

Proses evaluasi dilakukan secara menyeluruh pada semua 

skenario pemodelan untuk menilai kinerja model dalam tugas 

klasifikasi risiko penyakit jantung berbasis dataset BRFSS 

2023. Evaluasi diterapkan menggunakan berbagai metrik 

evaluasi yang meliputi akurasi, presisi, recall, F1-score, serta 

kurva ROC-AUC. Melalui berbagai metrik yang disebutkan, 

evaluasi memberikan gambaran kinerja yang komprehensif 

dari masing-masing skenario pemodelan, sekaligus 
mengidentifikasi kekuatan dan kelemahannya serta 

menentukan model dengan kemampuan generalisasi terbaik 

terhadap data uji. Selain itu, analisis feature importance 

dilakukan pada model dengan kinerja terbaik guna 

memperoleh pemahaman lebih lanjut mengenai kontribusi 

masing-masing fitur dalam proses prediksi risiko penyakit 

jantung, sehingga faktor-faktor kunci yang memengaruhi 

prediksi dapat diidentifikasi. 

1) Evaluasi Kinerja Seluruh Skenario Pemodelan: 

Gambaran mengenai evaluasi kinerja pada seluruh skenario 



1026               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  1015 – 1029 

pemodelan disajikan pada Tabel 5, dengan grafik ROC-AUC 

untuk masing-masing skenario ditampilkan pada Gambar 15.

TABEL V 

PERBANDINGAN NILAI METRIK EVALUASI PADA SELURUH SKENARIO PEMODELAN 

Model Akurasi Presisi Recall F1-Score AUC Runtime Best Trial 

BaseWeight 72,39% 59,59% 75,11% 58,53% 82,43% 14,03 (s)  - 

OptunaWeight 90,79% 73,25% 52,09% 51,78% 83,10% 4236,63 (s) Trial ke-32 

RandomWeight 71,41% 59,58% 75,62% 58,07% 83,07% 4152,97 (s) 50 Iterations 

BaseSMOTE 74,56% 59,54% 73,60% 59,40% 81,09% 23,60 (s) - 

OptunaSMOTE 79,50% 57,54% 64,11% 58,54% 75,86% 17305,08 (s) Trial ke-44 

RandomSMOTE 79,02% 57,65% 64,78% 58,60% 75,63% 6777,29 (s) 50 Iterations 

BaseRUS 71,01% 59,34% 75,07% 57,67% 82,16% 9,02 (s) - 

OptunaRUS 71,57% 59,63% 75,69% 58,19% 83,06% 1016,99 (s) Trial ke-37 

RandomRUS 71,73% 59,67% 75,73% 58,30% 83,05% 852,76 (s) 50 Iterations 

 

 
Gambar 15. Grafik ROC-AUC pada seluruh skenario pemodelan 

Evaluasi kinerja model dilakukan berdasarkan dataset 

BRFSS 2023 yang telah melalui tahap prapemrosesan, 

sehingga menghasilkan sekitar 290 ribu observasi yang siap 

digunakan. Dataset tersebut selanjutnya dibagi menjadi data 

latih dan data uji dengan proporsi 80% dan 20%. Seluruh 

strategi penanganan ketidakseimbangan kelas diterapkan 
secara eksklusif pada data latih, sementara data uji 

dipertahankan dalam kondisi distribusi asli untuk menguji 

kemampuan generalisasi model. Seluruh skenario pemodelan 

dibangun di atas algoritma dasar XGBoost yang 

dikombinasikan dengan class weighting, SMOTE, dan 

Random Undersampling (RUS), baik tanpa optimasi maupun 

dengan optimasi hiperparameter. Evaluasi difokuskan 

terutama pada nilai AUC dan recall, sebagaimana yang 

ditampilkan pada Tabel 5 dan kurva ROC-AUC pada Gambar 

15. Nilai AUC dipilih karena merepresentasikan kemampuan 

model dalam membedakan kelas secara global dan 

independen terhadap ambang klasifikasi, sedangkan recall 
mencerminkan kemampuan model dalam mengidentifikasi 

responden yang berisiko terhadap penyakit jantung. 

Sementara itu, nilai F1-score pada seluruh skenario 

cenderung lebih rendah dikarenakan distribusi kelas pada data 

uji tetap dipertahankan tidak seimbang sebagai bagian dari 

pengujian kemampuan generalisasi model, sehingga metrik 

ini menjadi salah satu yang paling terdampak oleh 

ketidakseimbangan kelas. 

Berdasarkan hasil pada Tabel 5 dan pola kurva ROC-AUC 

pada Gambar 15, penerapan optimasi hiperparameter pada 

model XGBoost menunjukkan peningkatan performa yang 

relatif terbatas pada sebagian besar skenario. Pada skenario 

yang menggunakan pendekatan class weighting, nilai AUC 

meningkat dari 82,43% pada BaseWeight menjadi 83,10% 

pada OptunaWeight, sementara pada RandomWeight nilai 

AUC tercatat sebesar 83,07%. Perbedaan yang relatif kecil ini 
menunjukkan bahwa kemampuan diskriminatif model telah 

terbentuk dengan baik pada konfigurasi dasar. Pola kurva 

ROC-AUC yang saling berhimpit antar skenario optimasi 

mengindikasikan bahwa pada dataset BRFSS 2023 yang 

berskala besar dan beragam, optimasi hiperparameter lebih 

berperan dalam menjaga konsistensi performa dibandingkan 

menghasilkan peningkatan metrik yang signifikan. 

Di sisi lain, pendekatan Random Undersampling 

menunjukkan karakteristik performa yang stabil pada seluruh 

skenario yang diuji. Berdasarkan pemaparan pada Tabel 5, 

BaseRUS menghasilkan nilai AUC sebesar 82,16% dengan 

recall 75,07%. Sementara itu, OptunaRUS dan RandomRUS 
menunjukkan peningkatan kinerja, yang ditunjukkan oleh 

nilai AUC masing-masing sebesar 83,06% dan 83,05%, 

dengan recall berada pada rentang 75,69–75,73%. 

Konsistensi performa ini mengindikasikan bahwa meskipun 

jumlah data latih berkurang secara signifikan setelah proses 

undersampling, model tetap mampu mempertahankan 

kemampuan diskriminatif dan sensitivitasnya. Temuan ini 

juga menunjukkan bahwa dataset BRFSS 2023 memiliki 

tingkat heterogenitas yang memadai, namun tetap memiliki 

pola informasi yang bersifat redundan, sehingga pengurangan 
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sampel terbukti tidak menyebabkan hilangnya informasi 

penting yang unik. 

Sebaliknya, pada skenario yang menggunakan pendekatan 

SMOTE, peningkatan jumlah data latih akibat oversampling 

berdampak signifikan terhadap waktu pelatihan model, 

khususnya pada skenario OptunaSMOTE yang memerlukan 

waktu lebih dari 17.000 detik. Meski begitu, berdasarkan 

pemaparan pada Tabel 5, peningkatan waktu dan biaya 
komputasi tersebut tidak diikuti oleh peningkatan performa 

yang sepadan. BaseSMOTE justru menghasilkan nilai AUC 

sebesar 81,09% dengan recall 73,60%, yang lebih baik 

dibandingkan OptunaSMOTE dengan AUC 75,86% dan 

recall 64,11%. Hal tersebut mengindikasikan bahwa pada 

dataset yang sudah besar dan beragam, penambahan data 

sintetis justru berpotensi memperbanyak noise daripada 

memperkaya representasi pola, sehingga berdampak negatif 

terhadap kemampuan generalisasi model. Dengan demikian, 

optimasi hiperparameter pada skenario SMOTE menjadi 

kurang efisien dan tidak memberikan keuntungan yang 
sebanding dengan sumber daya komputasi yang dikeluarkan. 

Secara keseluruhan, hasil evaluasi pada Tabel 5 dan 

Gambar 15 menunjukkan bahwa karakteristik dataset BRFSS 

2023 yang berskala besar dan beragam lebih selaras dengan 

pendekatan penanganan ketidakseimbangan kelas yang 

bersifat selektif dibandingkan generatif. Dari masing-masing 

pendekatan penanganan ketidakseimbangan kelas yang 

diterapkan, skenario RandomWeight pada pendekatan class 

weighting, BaseSMOTE pada pendekatan oversampling, dan 

OptunaRUS pada pendekatan undersampling muncul sebagai 

model dengan performa yang paling stabil dan robust. Ketiga 

skenario tersebut merepresentasikan konfigurasi pemodelan 

terbaik dari setiap pendekatan, karena mampu 

mempertahankan keseimbangan performa yang konsisten, 
khususnya pada metrik AUC dan recall, tanpa menunjukkan 

ketergantungan pada peningkatan kompleksitas komputasi 

yang berlebihan. Dengan karakteristik tersebut, ketiga model 

dianggap layak untuk dijadikan representasi utama pada 

analisis evaluasi lanjutan, sehingga mendukung proses 

pengkajian mendalam mengenai stabilitas generalisasi serta 

implikasi kesalahan klasifikasi pada konteks klasifikasi risiko 

penyakit jantung. 

2) Evaluasi Tiga Skenario Pemodelan Terbaik: Untuk 

memperdalam analisis evaluasi, kajian difokuskan pada tiga 

skenario pemodelan yang memiliki performa paling stabil 
guna menilai stabilitas generalisasi serta konsekuensi 

kesalahan klasifikasi. Perbandingan nilai metrik evaluasi 

antara data latih dan data uji disajikan pada Tabel 6. 

Sementara itu, confusion matrix dari masing-masing model 

ditampilkan pada Gambar 16. 

TABEL VI 

PERBANDINGAN NILAI METRIK EVALUASI PADA SELURUH SKENARIO PEMODELAN 

Model Recall (Train) Recall (Test) AUC (5-fold CV) AUC (Train) AUC (Test) 

RandomWeight 75,59% 75,62% 82,90% 83,20% 83,07% 

BaseSMOTE 79,37% 73,60% 87,47% 87,91% 81,09% 

OptunaRUS 75,63% 75,69% 82,75% 83,16% 83,06% 

 

 
Gambar 16. Hasil confusion matrix pada tiga skenario pemodelan terbaik 

Berdasarkan perbandingan metrik evaluasi yang disajikan 

pada Tabel 6, ketiga skenario pemodelan terpilih 

menunjukkan tingkat stabilitas generalisasi yang konsisten 

antara data latih dan data uji. Pada RandomWeight, nilai 

recall pada data latih sebesar 75,59% relatif seimbang dengan 

nilai recall pada data uji sebesar 75,62%, dengan nilai AUC 

yang juga konsisten, yakni 83,20% pada data latih dan 

83,07% pada data uji. Pola serupa ditunjukkan oleh 

OptunaRUS, dengan nilai recall sebesar 75,63% pada data 

latih dan 75,69% pada data uji, serta nilai AUC masing-

masing sebesar 83,16% dan 83,06%. Konsistensi ini 

mengindikasikan tidak adanya kecenderungan model 

mengalami overfitting, sekaligus menunjukkan bahwa 

performa model tetap terjaga dari indikasi underfitting. 

Berbeda dengan kedua skenario tersebut, BaseSMOTE 

memperlihatkan selisih yang lebih besar, khususnya pada 

nilai recall yang menurun dari 79,37% pada data latih menjadi 

73,60% pada data uji, serta penurunan nilai AUC dari 87,91% 

menjadi 81,09%. Meskipun demikian, performa BaseSMOTE 

pada data uji masih berada dalam batas yang dapat diterima, 
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sehingga tetap relevan sebagai representasi skenario 

pemodelan dengan pendekatan oversampling. Temuan ini 

menunjukkan bahwa mempertahankan distribusi kelas tidak 

seimbang pada data uji dan penerapan validasi silang lima 

lipatan juga turut menjaga stabilitas generalisasi ketiga 

model. 

Analisis lanjutan terhadap implikasi kesalahan klasifikasi 

ditunjukkan melalui confusion matrix pada Gambar 16. 

Dalam prediksi risiko penyakit jantung, False Negative 
merupakan kesalahan paling krusial karena individu yang 

sebenarnya berisiko diprediksi tidak berisiko, sehingga 

berpotensi kehilangan kesempatan deteksi dan penanganan 

dini. Pada skenario RandomWeight dan OptunaRUS, jumlah 

False Negative tercatat masing-masing 1.035 dan 1.038 dari 

total 58.032 data uji, lebih rendah dibanding BaseSMOTE 

yang menghasilkan 1.487 kasus. Pola ini sejalan dengan nilai 

recall pada data uji, yang menunjukkan RandomWeight dan 

OptunaRUS lebih sensitif dalam mengidentifikasi responden 

berisiko. Sebaliknya, pada skenario False Positive, meskipun 

dapat memicu pemeriksaan tambahan dan meningkatkan 
kecemasan pasien, umumnya masih dapat ditoleransi. 

RandomWeight dan OptunaRUS menghasilkan jumlah False 

Positive yang sedikit lebih tinggi dibanding BaseSMOTE, 

namun trade-off ini mencerminkan kecenderungan model 

untuk memprioritaskan penekanan False Negative, yang 

secara klinis lebih dianggap lebih penting. 

Ringkasan dari analisis stabilitas generalisasi dan 

distribusi kesalahan klasifikasi menunjukkan bahwa ketiga 

skenario pemodelan memiliki karakteristik yang saling 

melengkapi dan layak dijadikan sebagai dasar analisis 

evaluasi lanjutan. RandomWeight dan OptunaRUS terbukti 

unggul dalam menjaga keseimbangan antara performa 
statistik dan sensitivitas klinis, tercermin dari stabilitas AUC 

dan recall serta jumlah False Negative yang relatif lebih 

rendah. Meskipun performanya menurun pada data uji, 

BaseSMOTE tetap relevan karena mampu memberikan 

perspektif komparatif terhadap dampak oversampling sintetis 

pada dataset besar dan heterogen. Pemilihan ketiga model ini 

didasarkan pada keseimbangan kemampuan generalisasi, 

efisiensi komputasi, dan dampak kesalahan klasifikasi, 

sehingga ketiganya cocok digunakan sebagai acuan analisis 

lanjutan pada pembahasan mengenai overfitting, underfitting, 

serta implikasi praktis dalam prediksi risiko penyakit jantung. 

3) Analisis Feature Importance Model Terbaik: 

Analisis feature importance difokuskan pada skenario 

OptunaRUS sebagai model yang menunjukkan performa 

paling stabil dengan kemampuan generalisasi terbaik di antara 

tiga skenario unggulan. Kontribusi fitur divisualisasikan pada 

Gambar 17 untuk menyoroti variabel yang paling 

memengaruhi prediksi risiko penyakit jantung. 

 

 
Gambar 17. Feature importance pada skenario pemodelan OptunaRUS 

 

Berdasarkan visualisasi importance score pada Gambar 

17, RentangUsia_6 dan TekananDarahTinggi muncul sebagai 

prediktor paling dominan dalam klasifikasi risiko penyakit 
jantung. Variabel lain seperti KolesterolTinggi, Diabetes, 

KesulitanBerjalan, KesehatanUmum, dan StatusMerokok 

juga menempati peringkat signifikan, menunjukkan 

hubungan kuat antara kondisi klinis, mobilitas fisik, gaya 

hidup, dan persepsi kesehatan dengan risiko kardiovaskular. 

Secara keseluruhan, OptunaRUS tidak hanya unggul secara 

performa statistik, tetapi juga mampu menangkap pola 

kombinasi faktor demografi, komorbiditas, dan kualitas hidup 

fisik yang relevan secara klinis. 

IV. KESIMPULAN 

Penelitian ini berhasil mengoptimalkan model klasifikasi 

risiko penyakit jantung berbasis XGBoost melalui penerapan 
optimasi hiperparameter pada dataset BRFSS 2023 yang 

berskala besar dan memiliki distribusi kelas tidak seimbang. 

Hasil eksperimen menunjukkan bahwa penggunaan Optuna 

dan Random Search secara konsisten meningkatkan stabilitas 

performa model, terutama dalam menjaga keseimbangan 

antara kemampuan diskriminatif dan sensitivitas deteksi. 

Konfigurasi OptunaRUS teridentifikasi sebagai model 

dengan performa paling stabil, dengan capaian AUC sebesar 

83,06% dan recall sebesar 75,69% pada data uji. Konsistensi 

metrik evaluasi antara data latih dan data uji mengindikasikan 

kemampuan generalisasi model yang baik tanpa adanya 
indikasi overfitting. Hasil evaluasi pada distribusi kelas asli 

menegaskan bahwa performa model relevan dalam 

merepresentasikan kondisi data kesehatan dunia nyata. 

Dari sisi metodologis, temuan penelitian ini menegaskan 

bahwa pada dataset dengan tingkat heterogenitas tinggi, 

pendekatan penanganan ketidakseimbangan kelas secara 

selektif melalui Random Undersampling (RUS) lebih efektif 

dibandingkan metode generatif seperti SMOTE. Reduksi 

sampel mayoritas mampu menekan pengaruh noise sekaligus 

meningkatkan efisiensi komputasi, sebagaimana tercermin 

dari stabilitas metrik evaluasi pada data uji. Analisis feature 

importance pada model terbaik menunjukkan bahwa usia dan 
hipertensi merupakan fitur yang paling dominan dalam 

klasifikasi risiko penyakit jantung. Secara keseluruhan, 

penelitian ini menawarkan kerangka kerja prediktif yang 

stabil dan efisien untuk klasifikasi risiko penyakit jantung, 
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dengan potensi penerapan pada analisis data kesehatan 

populasi berskala besar. 
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