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Electronic Health Records (EHRs) have become central to modern healthcare. The
emergence of transformer-based models has profoundly influenced how EHRs are
used for modelling complex, longitudinal data. Integration with omics technologies
improves the precision of disease identification and risk assessment during
modelling. While several reviews have examined transformers in healthcare broadly,
a systematic synthesis focused on their architectural design, empirical performance
and integration of EHRs with omics data remains limited. This study presents a
systematic literature review of transformer-based models applied to electronic health
records (EHRs) and omics data, and of their integration into healthcare. Following
PRISMA guidelines, peer-reviewed studies were retrieved from IEEE Xplore, ACM
Digital Library, PubMed, and ScienceDirect, resulting in 14 eligible empirical
studies published between 2020 and 2025. The review analyses transformer
architectures, submodules, application domains, comparative performance,
interpretability mechanisms, and limitations. Findings indicate that architectural
design drives task-specific advantages in disease prediction, phenotyping,
medication recommendation, and omics analysis. The integration of self-attention
with deep learning, temporal modelling, and a pre-trained biomedical transformer
improves performance. However, most studies remain centred on EHR, with limited
empirical integration of omics data. Persistent challenges include limited
generalisability, high computational cost, data quality issues, and insufficient
interpretability for clinical deployment. The primary contribution of this review lies
in synthesising architectural trends and methodological gaps. By consolidating
current evidence, the study provides clear directions for the development of
explainable, generalisable, and multimodal transformer-based systems in precision
healthcare.

This is an open-access article under the CC-BY-SA license.

I. INTRODUCTION

Electronic Health Records (EHRs), introduced in
healthcare in 2009, are patient clinical records outside of a
particular healthcare provider [1], [2], [3], [4]. This
differentiates EHRs from Electronic Medical Records
(EMRs), which only contain patient information from a
healthcare provider [5], [6]. EHRs enhanced the
understanding of human biology and they bridge the gap to
precision medicine [7].

To complement EHRs, omics emerged [8]. Omics
studies genomics, proteomics, transcriptomics,
epigenomics and metabolomics [9], [10], [11]. The
technology-enhanced  understanding of  molecular
functions, pathways and interactions[10], [12]. Using
Machine Learning, researchers have advanced the level at
which this data is analysed to provide insights[13], [14].

Machine Learning (ML), a branch of Artificial
Intelligence(Al), learns patterns and generates insights
from analysing data [15], [16] . Its subfield, Deep Learning,
mimics human cognition using artificial neural networks
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[17]. It extends to transformer models, which use self-
attention as a mechanism to replace recurrence, allowing
global dependency modelling and parallelised training
[18]. BERT, BEHRT and Large Language models are
transformer models that allow integration of sequential and
multimodal data[17], [19]. With transformers, models learn
linguistic patterns that traditional Al cannot. Their self-
attention attribute enables analysis of sequence data in
parallel, considering relationships between attributes
irrespective of position in the sequence.

Despite the growing body of reviews on transformer
models in healthcare, important gaps remain. Existing
systematic reviews primarily focus on natural language
processing tasks, longitudinal EHR modelling, or general
multimodal applications, often treating omics data
peripherally or conceptually [20], [21], [23], [24].
Moreover, prior reviews seldom provide a detailed
architectural analysis linking transformer design choices
such as attention mechanisms, submodules, and hybrid
configurations to empirical performance, interpretability,
and clinical applicability. This review addresses these gaps
by systematically synthesising empirical evidence on
transformer architectures applied to EHRs and omics data,
critically comparing their competitive advantages and
limitations, and explicitly examining challenges related to
generalisability,  interpretability, —and  multimodal
integration in healthcare contexts.

Research Questions

1. How are transformer-based models designed,
including their core components and submodules?

2. How are recent transformers being applied in
different omics and EHRs analytical domains?

3. What are the competitive advantages of each
identified transformer model?

4. How can limitations of transformer architectures
be addressed in a healthcare context?

5. How do transformers perform compared to DL

techniques and traditional modelling techniques?

Il. METHODS

The study followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
guidelines for transparency and completeness [25]. The
guidelines included identification, screening and eligibility
criteria for the Literature Review.

B. Search Strategy

A comprehensive search was conducted on 13 October
2025 across the IEEE, PubMed, AMC Digital Library, and
ScienceDirect databases. A string of keywords and their
synonyms was used to filter for papers for this study.
("Machine Learning" OR "Transformer" OR "Deep

Learning™) AND (“Electronic Health Records" OR "EHR")
AND ("Omics" OR "Genomics" OR "Proteomics") was
used for Science Direct and "machine learning” OR "ML"
OR "deep learning” OR "transformer models”) AND
("electronic health records” OR "EHR" OR "electronic
medical records” OR "EMR™) AND ("omics" OR "multi-
omics" OR "genomics" OR "proteomics” OR
"transcriptomics” OR "metabolomics™) for the rest. The
search strategy was designed to maximise coverage while
keeping its relevance.

C. Inclusion and Exclusion Criteria

Studies were screened using an inclusion and exclusion
criterion, ensuring methodological rigour and relevance.
Only papers from 2020 to date are included. This was to
ensure the use of the latest research with major transformer
models adopted in healthcare research. Peer-reviewed
journal articles were selected from recognised databases to
avoid grey literature and preprints. The studies were further
screened based on title, abstracts and full text evaluation.
The inclusion and exclusion criteria are shown in Table I.

TABLE |
INCLUSION AND EXCLUSION CRITERIA
Criteria Inclusion Exclusion
Time 2020 to 2025 papers Al papers from
Frame 2019 and below
Language English All papers not in the
English language
Type of Journal Articles and Books, book
Paper Conference Papers chapters, Systematic
Literature Reviews,
Grey Literature
Research Studies focused on Studies that do not
area Transformer models or focus on the use of

self-attention in transformers in

precision medicine, healthcare
omics and EHRs,
healthcare

Study Type Papers with empirical Papers with

applications of theoretical
transformers on EHRS application of
or Omics transformers in
Omics studies,
EHRs, or both.

D. Screening

The initial search pulled 76 records from IEEE, 232 from
ACM Digital Library, 202 from PubMed and 1008 from
Science Direct. The search retrieved 1578 records, which
were imported into Mendeley. After the initial search, 2
duplicate papers and 1 Spanish paper were removed.
Journals were screened, removing 306 Systematic
Literature reviews. An additional n = 846 papers were
screened out based on their title. After title screening, the
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papers were evaluated based on their abstracts. 234 papers
were excluded, leaving 29 documents for the eligibility
check. These 29 journals underwent a full-text review. The
inclusion of 14 studies reflects the limited empirical
research applying transformer architectures to EHR and
omics data. It shows the emerging research jointly
considering both modalities.

E. Eligibility Criteria

The review examined empirical studies published
between 2020 and 2025. The studies under review were
peer-reviewed and focused on the use of transformer
models in healthcare, using either EHRS, omics, or both
modalities. Studies that used Al models other than
transformers, or that employed data types other than
images, were not eligible for review. Non-peer-reviewed
papers were also excluded from the study.

F. Included

During the full-text review, 15 additional papers were
excluded because they focused on images or were
conceptual or non-transformer-based. Only 14 studies met
the study's inclusion criteria. They were empirical studies
of transformer models developed for both EHRs and omics,
or for a single modality.

G. Quality Assessment

A structured quality assessment was carried out to
evaluate the strength, transparency, and scientific rigour of
the included studies. The goal was to ensure that only
high-quality, evidence-driven papers contributed to the
final analysis of transformer-based models applied to
EHRs and omics data.  The Weighted Technical
Methodology (WTM) framework, adopted from multi-
criteria decision analysis [26], [27], [28].

This approach measured each study’s methodological
soundness, data reliability, reproducibility, and
interpretability. Five key criteria (C1-C5) guided this
assessment, with each scored on a scale of 0-2 and
weighted according to its importance in determining the
overall quality: model description and reproducibility
problem, framing and study design, interpretability and
applicability, data quality and appropriateness and clinical
validation strategy. The studies were given a weighted
score (0-100). Each study was marked as high when equal
to or greater than 80, moderate when between 60 and 79,
or low quality when less than 60. Risk-of-quality
stratification was used to contextualise the synthesis.
Conclusions prioritise evidence from high-scoring studies
(>80) and interpret findings from moderate-quality studies
(60-79) cautiously, while low-quality evidence (<60) is
used only to indicate emerging directions.

I11. RESULTS AND DI1SCUSSION

Screening and eligibility results are presented in Figure
1. A 10-column table was constructed to explore research
questions and summarise studies eligible for review.

Table Il presents a comprehensive review of 10 studies
that met the inclusion criteria for this study. It summarises
studies by region of origin, dataset type, and primary
application areas in the health domain. The table also
presents the type of transformer used and its submodules.
It also explores the advantages and limitations of the
transformer's design, compares it with other models, and
outlines the evaluation metrics used in the study.

Total records identified on
search
n=1233
(EE=T76
PubMed = 202
ACM Digital Library = 232
Science Direct = 1008)

Papers removed
before screening
Duplicates =2
Other languages = 1

Records after duplicates and
text in other languages are Records excluded

removed n=1152

n=1575 Reason 1. Studies were

literature reviews
Reason 2. Papers were focused
on Al models, not aligning with
y required transformer type
models
Recordsscreened | | Reason 3. The studies did not
n=1575 use EHRs or omics data for

training of models

¥

Full text articles removed

Full-text records (n=15)
assessed for eligibility Reason 1. Papers were theoretical
n=29 studies on transformer models in

healthcare

¥

Papers included in
review
n=14

Figure 1. PRISMA screening results
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TABLE Il
CHARACTERISTICS OF INCLUDED STUDIES
Stud | Country | Dataset Type Primary Transformer Competitive Limitations Baselines
y Application Architecture (core + Advantages Compared
submodules)
[2] USA . EHR . Disease onset . Transformer . Enables . Data heterogeneity | e BEHRT
prediction encoder unsupervised . Missing modalities | e  Autoenco
e  Patient e  Sentence-BERT embedding of EHR . Limited to der
stratification architecture sequences diagnosis and
e Phenotype e  Longitudinal e Discovers new procedure codes
discovery embeddings comorbidity
patterns
. Improves
forecasting
[29] China . Event- . Sequence . Universal . Combines self- . Overcomes RNN . RMTPP
sequence modelling Transformer attention and vanishing gradient | e NHP
data . Event . Hawkes Process recurrence for long- | e Improves event . THP
(applied prediction e ACT mechanism term temporal modelling for
to EHR)) e  CNN-enhanced dependencies asynchronous data
feed-forward
layers
[30] Canada . Continous | e Extract . TimelyGPT . Recurrent retention . Permutation . AutoForm
timeseries contextualised e  xPosembedding for forecasting invariance of self- er
(bio- representation . Recurrent irregularly-sampled attention loses . TS2Vec
signals) from timeseries attention time series temporal
e EHRs e Learntemporal | e  Temporal e  Forecasts long information
classification convolution sequences of time . Unidirectional
modules series architecture
. Limited analysis
of EHRs
[31] USA . Biomedic | e Relation . BioBERT fine- . Improved precision . No EHR needed . TF-IDF
al extraction tuning for . Focuses on clustering
literature relation genomics e  Statistical
(gene- extraction knowledge ML
disease e KG construction curation baselines
mentions)
[32] China . Genomics | e Predict stroke . LNet . Improves cross- . EHR limited . CNN
. MRI recurrence Transformer modality fusion . Focus on multi- . SVM
. Proteomic layer . Improves omics signals . RF
s . Dynamic performance baselines
weighting fusion
[1] China . EHRs . Medication . Parallel CNN . Captures local . EHR-only scope . DMNC
. (MIMIC- recommendatio . Transformer (visit-level) and . Scalability . RETAIN
Il'and n encoder (CAT) long-term . LEAP
MIMIC- e  Minimisationof | ¢«  GAT over HER (sequential) patterns e GAMENe
v DDI . DDI graphs . Explicit DDI safety t,
e  Joint BCE+DDI . MICRON
loss . COGNet
. Trans-
GAHNEet
[33] United . Longitudi | e 10-year CVD . BEHRT-derived . Strong subgroup . Requires full . QRISK3
Kingdo nal EHR risk prediction encoder generalisation longitudinal EHRs | e DeepSurv
m e Ageand . Limited . Cox
encounter interpretability models
embedding
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Stud | Country Dataset Primary Transformer Competitive Limitations Baselines
y Type Application Architecture Advantage Compared
(core +
submodules)
[34] UK Linked Patient Transformer Learns disease Missing data TF-IDF
longitudinal subtyping encoder with trajectories Generalisabilit clustering
EHRs and contrastive Robust subtypes y issues Statistical
prognosis learning with prognostic ML
Clustering separation baselines
downstream
[35] USA EHRs Modelling RarePT Recapitalate rare Reliance on Rule based
phenotypic Masked diagnosis 1CD-10(noisy, models
concepts Language Weighting and inconsistent)
from Modelling masked modelling Uses phecodes
diagnosis for generalization which are for
codes common
diseases
[36] US+ Free-text Admission Bio-Clinical- Improves AUC over Generalisabilit BOW-LR-
Israel triage notes risk BERT fine- classic models y TFIDF
Tabular prediction tuning Pragmatic compute W2V-
EHR from triage Classification discussion BiLSTM
notes head XGBoost
[37] UK EHRs Predict 1-D Transformer Faster than Handles Traditional
Antibiotic antimicrobial Integrated genomics missing labels ML
administrati resistance Gradients Interpretable Real-time baselines
on time- explanation signatures EHR usage
series Multi-label support
[38] China Multi- SLE and Single-head Interpretable Small cohort SVM
omics Lupus Transformer biomarkers study LR
Nephritis attention Generalisation High KNN
diagnosis MLP encoder computational MOGONET
Tensor-based complexity TEMINET
bimodal fusion
[39] USA EHRs Chronic ClinicalBERT Interpretable No time-gap LR
Clinical cough encoder Multimodal EHR modelling SVM
Notes prediction Custom handling Relies on kNN
interpretability symptom BiLSTM-
attention layer extraction Attention
BERT
[40] Pakistan Gene Glioblastoma Hybrid CNN Captures spatial, High training CNN
and expression drug BIiLSTM sequential, complexity LSTM
Saudi Drug resistance Transformer contextual signals Limited Transformers
Arabia molecular prediction pathway interpretability Decision
descriptors Overfitting Trees
risk
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A. Study Origin
Figure 2 shows the adoption of research on transformer

models across continents.
Distribution of Studies by Continent (N=14)

Multi-continental

North America

21% Europe

Asia

== North America: 5 studies
Asia: 4 studies
Europe: 3 studies
Multi-continental: 2 studies

Figure 2. Study Origin

Figure 2 highlights North America as the leading
continent. 36% of the new models are being developed on
the continent. Asia comprises 29%, 4 out of 14, of the
empirical studies in the last 5 years. Europe contributes
21% to the research, and the last 2 new models were
developed as a multi-continental collaboration. This
indicates the importance and pursuit of generalizable
models within the field by using diverse datasets from
different continents. Africa reported zero publications or
contributions to the research, showing limited adoption of
the transformer trend towards personalised medical care.
These findings suggest a strong concentration of research

capacity in high-resource regions.

B. Dataset Type

Figure 3 illustrates the types of datasets used with
models in each of the studies included in this study.

g 2
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z 64
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EHRs Chinical Notes Omies

Figure 3. Dataset Type

Among the 14 reviewed studies, 10 used EHRs in model
training. This shows that EHRs are the most used and
accessible patient data within the research. Four studies
used text-based notes, displaying NLP tasks and their

importance in learning patterns and deriving insights from
EHRs.

However, omics data were used in four studies, which
highlights less research on the analysis of bio-mechanisms
and functions.

The dominance of EHR-centric datasets highlights a
structural  limitation in current transformer-based
healthcare research. While EHRs provide accessible
longitudinal data, their use in isolation constrains
biological interpretability and limits the ability of models
to capture molecular mechanisms underlying disease.
Studies incorporating omics data demonstrated improved
diagnostic specificity and biomarker relevance; however,
these benefits were offset by increased computational
complexity and smaller cohort sizes. This trade-off
suggests that current transformer architectures are not yet
optimally designed for scalable omics integration,
reinforcing the need for architectural innovations that
balance performance with feasibility.

Empirical integration of omics remains sparse and
methodologically challenging. The reviewed studies report
difficulties in synchronising longitudinal EHR events with
high-dimensional omics profiles, managing modality
heterogeneity (sparse codes vs. dense molecular features),
and controlling overfitting under extreme dimensionality.
These constraints explain the predominance of EHR-only
pipelines and underscore the need for representation
learning and alignment strategies tailored to multimodal
fusion.

C. Primary Application

Figure 4 presents the primary applications of the
transformers in this study.
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Figure 4. Primary Applications

Eight studies focus on disease prediction and risk
forecasting. They prove that transformers are most used for
prediction modelling. Two of the studies emphasise patient
subtyping or progression analysis. This shows the growing
use of embeddings to uncover disease direction and patient
groups. Two other papers target medication
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recommendation and therapy optimisation, reflecting
interest in safer and more interpretable clinical decision
support. Two studies apply transformers for phenotyping
and knowledge extraction, bridging biomedical NLP with
clinical informatics, while two explore sequence
modelling, highlighting temporal interpretability.

Overall, prediction-driven research dominates the field,
with interpretability and multi-dimensional integration
emerging as promising Yyet still underrepresented
directions.

D. Transformer Architecture and Submodules

Figure 5 shows the architectural designs used on the
14 transformers in the included studies.

Transformer + Graph Modules

Tempeoral / Event-driven Transformers

BERT-based architectures

Architecture Type

Standard Transformer Encoder Models

Hybrid CNN + Transformer Architectures

o 1 2 3 a
Number of Studies

5

6

Figure 5. Transformers Architecture and Submodules

Six of the models employ a combination of both CNN
and transformer architectures. This highlights a trend in
adopting DL and transformer methods. CNN have a single
layer, making it good at local dependencies for diverse
medical events, and transformers are better at global
dependencies and context learning.

Four studies wused BERT-based architectures,
underscoring the dominance of language models in
healthcare for tasks like medical text understanding and
clinical reasoning. This indicates the importance of
pretrained models in acquiring a holistic understanding of
data.

Two other models incorporated standard transformer
encoders, and two more employed temporal driven
transformers. This highlights how attention layers are
favoured in extracting features from input data and how the
prediction of health events using longitudinal and time
series data is rising in research. One model is based on a
transformer and knowledge graphs.

E. Limitations

Limitations of the included studies are summarised in
Figure 6.

Limited High
dataset scope computational
8 cost or model

complexity
a

Data
Dependence quality
on EHR-only a
or single-modality
data

&
Limited
interpretability
or transparency

3

Figure 6. Limitations

Across the 14 studies, eight mention limited
generalizability as their main challenge. Most rely on EHR
data from one hospital or a small region. Three of the
studies highlight the dependence on EHR-only or single-
modality data, meaning they do not yet combine genetic
and other complementary sources. Four studies highlight
the high computational cost of large transformer models,
especially when using BERT architectures. Four studies
underline noisy or incomplete data as a major drawback,
while three mention interpretability as a major limitation.
Overall, most papers show impressive results but still face
barriers to scaling and applying their models widely in real
clinical settings.

F. Competitive Advantage

Table 3 shows the competitive advantages of every
architectural design included in this study.

TABLE Il
COMPETITIVE ADVANTAGE

Advantage Studies
Highlighting the
Advantage
Captures long-term and sequential 5
patterns in EHR data

Improves disease prediction and patient 2
representation

Enhances interpretability and clinical 4

insight

Multi-modal Learning and 4
Generalisation

Improves text understanding and 2

extraction of clinical meaning
Provides robustness to noisy or missing 2
data
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Among the 14 studies reviewed, transformers' ability to
capture long-term and sequential patient patterns was
addressed in five studies. This helps researchers understand
disease progression over time. Two studies highlighted
their strength in disease prediction and patient
representation. This shows how transformer embeddings
provide more detailed and context-aware insights. Four
studies focused on interpretability, where attention layers
made predictions easier to explain using XAl modules in
their architectures. Four studies also showed that
transformers  handle multimodal data well and
demonstrated stronger performance in medical text
understanding. Two studies also mentioned robustness to
missing or noisy data, and two noted faster and more
efficient training.

Although transformer models demonstrate clear
advantages in sequential modelling and contextual
representation, these benefits are not uniform across
applications. Performance gains were most pronounced in
tasks involving irregular temporal patterns and multimodal
inputs, while improvements over deep learning baselines
were marginal for simpler tabular EHRs tasks. This
variability indicates that architectural suitability, rather
than the transformer paradigm itself, largely determines
performance outcomes.

G. Compared Baseline Models

Across the studies, researchers compared transformer
models to a wide range of baseline approaches. Figure 7
illustrates the compared models.

Baseline Models
Compared

{

Classical Machine

Learning Models 4
Deep Learning

Models (Autoencoder) a
BERT-based 3

Baselines

Traditional
Statistical or Rule- 3
Based Models

Figure 7. Compared Models

Seven papers evaluated their transformers against
classical machine learning methods such as logistic
regression, support vector machines, and random forests.
These traditional models performed well on structured
clinical data and achieved about 60-70% of the modelling
strength seen in transformers, highlighting their weakness
with temporal patterns and multimodal inputs.

Four studies used deep learning baselines like CNNs,
LSTMs, GRUs, and autoencoders, which are naturally

better at handling sequential features. They still faced
limitations in capturing long-range dependencies across
multiple patient visits.

Another set of three studies compared their transformer
architectures to earlier transformer-based models such as
BERT, BEHRT, or RoBERTa. These models showed that
recent models gain additional advantages from domain-
specific adaptation and improved sequence encoding.
Three studies also included rule-based or statistical
baselines such as simple heuristics or TF-IDF clustering.
These methods showed the lowest performance.

H. Discussions

This section integrates fourteen empirical studies. It
connects the findings from these studies to trends in clinical
machine learning. Architectures in the studies were
examined based on their advantages, application scope,
architectural evolution, comparative performance, and
limitations. [1] [2]

RQ1. Architectural Designs, Modules, and Submodules

The studies reveal that the architectural designs are
diverse, reflecting adaptation to a wide range of biomedical
data challenges. Semantic understanding enables encoder-
only models to dominate textual [21]. Hybrid CNN-
Transformer frameworks combine convolutional local
feature extraction with attention-based sequence reasoning,
as seen in CT-PASMR and LNet Transformer [1], [32].
Architectural competitiveness across transformer models is
influenced by design choices such as input representation,
attention formulation, and task-specific heads. Encoder-
only models are mostly used for textual and phenotyping
tasks, while hybrid CNN-Transformer and temporal
transformers are better suited for longitudinal and
multimodal data [23],[28]. These differences explain
performance variability across applications rather than
model superiority alone.

1)  Hybrid DL + Transformer Architectures

This architecture is a hybrid method of a DL method and
transformer-based methods. Studies [1], [29], [38], [40]
Demonstrate this hybrid architecture by utilising DL
methods and self-attention modules within the same model.
DL models are effective in capturing local relationships
and in enhancing the ability to fit events in short-term
dependencies [1], [29]. Attention mechanisms are effective
in capturing global dependencies within longitudinal data
[39]. The integration of these models enhances their
competitiveness, enabling them to capture both local and
long-term dependencies in sequential EHRs and reduce the
risk of overfitting.

[1], [29] in the UTHP and CT-PASMR model, they used an
RNN module, a CNN module, and a self-attention
mechanism. CNN was designed to improve local
perception in the position-wise feed-forward branch. At the
same time, RNN was used to constrain fitting in temporal
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data, and the attention heads were trained to learn global
contexts and dependencies. [30] identified a weakness of
losing temporal information associated with self-attention
heads due to their permutation-invariant nature. Therefore,
the TimelyGPT model employed RNN for the task.

2)  Pretrained Bio-MED transformers

Pretraining is the process of giving a model broad,
general knowledge before refining it for a specific task[10],
[41]. This makes pretrained transformers more effective
than models built from scratch, because they already
understand language structure and contextual cues [42].
BioBERT’s exposure to large biomedical text collections
enabled it to recognise gene names, disease mentions, and
specialised scientific expressions with little additional
training [31].

[33], [36] has a similar pattern, where Bio-Clinical-BERT
benefits from both general BERT pretraining and
additional clinical-domain  adaptation. This broad
foundation allows the model to interpret short and messy
triage notes more effectively than simpler models like
BOW-LR, W2V-BIiLSTM, or XGBoost.
Bio-Clinical-BERT showed that a model’s reliability and
understanding of real clinical language are increased by
pretraining [36]. This underlines that pretrained models
give a richer representation, stronger handling of complex
biomedical terminology, and better generalisability [36],
[39]. These marks pretraining as important to realise great
results in tasks ranging from gene-disease curation to
clinical risk prediction.

3)  Temporal / Event-Driven Transformers

Temporal data captures changes in health and offers

insights into disease progression and treatment [43]. It
incorporates EHRS' time-series data and longitudinal data.
Study [30] and [33] used masked language modelling and
survival modules technique to learn the meaning of
temporal data in the context they appear, and a cross-
reconstruction transformer to learn temporal classification.
Robustness with these techniques gives the models the
ability to predict time-series data.
[37] incorporated attention heads, to extract features from
input data, a classifier layer to make predictions and a loss
function designed to handle missing data. The robust
design made it effective for sequential data.

4)  Transformer + Graph Modules

A graph is a data structure. It models a set of objects and
their relationships, which gives it a great expressive power
in ML [44]. In the germline knowledge-graph study,
BioBERT’s domain-adapted pretraining allows it to
recognise complex gene and disease terminology across
thousands of abstracts with minimal fine-tuning [31]. This
gives the system a clear edge over ontology-only or
statistical approaches, enabling more accurate entity
extraction before the normalisation stage.

The medication-recommendation model shows a similar
benefit. By combining CNN layers with transformer
components, the model effectively interpreted a patient’s
longitudinal EHR history. Graph attention networks in a
model learn drug occurrences and different drug-drug
interactions, using a joint-loss function. Joint-loss function
enables the model to produce more personalised and
clinically safer medical predictions and recommendations.

RQ2. Applications of Transformer Architectures

Transformers are flexible, leading to their application
across various biomedical domains [21], [23]. They are
mainly used for disease prediction and patient
stratification. However, they are expanding into omics
integration, text mining, and phenotype discovery [20],
[22], [45]. Studies leveraging EHR sequences established
transformers’ ability to encode irregular temporal events,
which is necessary for learning disease trajectories [2],
[34]. This is a result of the non-Markovian nature of
attention, which allows learning dependencies across
longitudinal data [29].

From this research’s studies, the models were developed
with different focus areas.

1)  Disease Prediction

Disease prediction remains one of the most impactful

uses of DL models in healthcare [11], [46]. Transformer
models capture rich patterns across clinical notes, patient
histories, and other complex data [33], [39]. They can
identify early warning signals that traditional methods
often overlook [20], [21]. Utilising the self-attention, they
recognise small relationships between symptoms,
diagnoses, medications, and past events. With the
relationships, they gain a strong advantage in spotting
patients at risk [1], [36], [47].
Transformers work well when EHRS or omics data are
messy, incomplete, or longitudinal. It learns these
complexities to assist clinicians in making predictions
earlier and accurately [30], [35].

2)  Progression Analysis

Progression analysis monitors how diseases evolve,
changes in symptoms, how new conditions develop, and
how a patient’s overall condition changes [3], [5]. This
allows clinicians to perceive how one clinical state leads to
another, rather than treating each hospital visit as a separate
moment [6], [7].

Transformer-based patient embeddings  discovered
progression pathways within diseases like colorectal cancer
and lupus. Using patient vectors helps review how many
diseases in a single phenotype differ [7]. These pathways
showed differences in long-term comorbidity burdens and
mortality risks.

Transformer models identify early signs of patient
trajectories long before diagnosis [34]. They uncover
subtypes with distinct risk levels, hospitalisation patterns,
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and medication needs [6]. [34] uses contrastive learning to
maximise analysis, demonstrating how transformers
support a more dynamic and realistic view of disease
evolution.

3)  Medication Recommendation

Over the years, transformer models have been

increasingly used to improve precision medical care [17].
The models propose medications tailored specifically for a
patient’s condition and genetic variations. Models also
recommend safe and accurate prediction of medication
needed by a patient, after analysing the condition and drug-
drug interactions [1].
TransAMR is a strong example. It uses feature selection
algorithms and an 1D transformer for pattern recognition in
antibiotic use and improves prescription practices. The
features are integrated with gradient-based XAl pipelines
to interpret insights and recommendations [37].

4)  Phenotyping

Phenotyping detects clinical patterns, disease subgroups,
or patient characteristics from biomedical data [48]. Earlier
methods mostly relied on expert-written rules, but these
approaches struggled with incomplete data [49]. To handle
these  drawbacks,  transformer  systems  learn
high-dimensional representations from EHR sequences and
clinical notes [50].
[2] revealed clear phenotypic clusters in diseases such as
colorectal cancer and lupus. It highlights differences in
long-term comorbidity burdens and outcomes [2]. The
models can identify disease diversity far earlier than
classical approaches [34].
These results drive towards precision medicine, which
emphasises deep phenotyping [50]. Transformer-based
phenotyping models create more detailed, stable, and have
clinically useful representations. They record complex,
multi-variable relationships over time [50].

5)  Knowledge Extraction

Knowledge extraction converts unstructured biomedical
information into clear, structured knowledge [49]. In
practice, this step is important in creating a strong
predictive model [51]. Rule-based systems or simple
statistical techniques had challenges handling complex and
specialised language in biomedical text [52]. These
challenges were solved by self-attention in transformers
[1].

Transformers can understand context. The ability
allowed for distinguishing between ambiguous gene
symbols and detecting associations, even when they were
only implied [53]. This led to a more comprehensive and
clinically useful knowledge graph, demonstrating how
transformer-driven extraction directly enhances biomedical
knowledge curation.

TimelyGPT extends this finding beyond text by
extracting structured knowledge from continuous and
irregular clinical time-series data [30]. Through

extrapolatable xPos embeddings, recurrent attention, and
temporal convolutions, the model captures long-term
clinical trends and hidden diagnostic patterns that
traditional methods overlook.

6)  Sequence / Event Modelling

Sequence or event modelling helps comprehend how
clinical events unfold over time [37]. Modern transformers
perform better at sequence modelling. Their attention
mechanisms capture irregular short and long-range
patterns. The TransAMR model utilised this method to
learn the relationships within antibiotic prescribing
sequences [37]. The Universal Transformer Hawkes
Process can model the timing and effect of clinical events
better than RNN-based methods [29]. The models give a
clearer picture of complex clinical directions. They also
support more reliable forecasting and decision-making.
Despite this research emphasis on EHR—omics integration,
empirical evidence remains heavily skewed toward EHR-
only applications. Omics-focused studies were fewer,
relied on smaller cohorts, and often prioritised predictive
accuracy over biological interpretability. This imbalance
highlights a critical disconnect between the theoretical
promise of precision medicine and current implementation
practices, suggesting that multimodal transformer research
is still at an early, exploratory stage.

RQ3. Advantages of Using Transformer Models

Self-attention enables transformer systems to weigh

relationships in sequences [33]. This is important in
sequence patient data, which requires temporal
continuity[49], [54].
Transformers’ non-sequential tokenisation and parallel
processing make them ideal for heterogeneous data [23],
[46]. Their mathematical structure directly aligns with
healthcare data characteristics: high dimensionality,
contextual dependency, and multimodal complexity [37],
[50]. The following is an exploration into the advantages,
informed by collective evidence from this research’s
studies.

1)  Captures long-term and sequential patterns in
EHR data

Understanding and capturing longitudinal contexts
greatly improves the predictive performance of clinical.
Unlike traditional DL methods, the transformer's attention
mechanism does not suffer from the vanishing gradient
effect [1]. DL methods lose information the further they go
back in a sequence, making them less reliable for long-term
temporal modelling. [1] combines CNN and attention
mechanisms, giving the CT-PASMR the ability to record
both local and long-range patterns. Also, transformers' bi-
directional modelling and parallel processing allow them to
learn relationships between distant clinical events without
relying on recurrent memory [29]. The models
simultaneously draw context from earlier and later events
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[40]. This gives a richer and more complete representation
of a patient’s health.

With these capabilities, the models can monitor disease
progression accurately and improve clinical prediction
expertise, which are crucial in healthcare

2)  Enhances interpretability and clinical insight

Aside from accuracy, models need to be interpretable for
them to be implemented in healthcare [10]. They should
explain the reasons behind the predictions. Clinicians
require transparency to validate recommendations, assess
safety and ensure alignment with medical reasoning [39].
Interpretability approaches varied across studies, ranging
from attention-weight visualisation and gradient-based
attribution to integrated gradients and task-specific
explanation layers.Attention visualisation is the most
common mechanism, providing coarse temporal saliency
but limited causal insight. Models such as TransAMR and
CT-PASMR incorporated explicit XAl modules [38]. The
modules highlight influential clinical events, while
architectures use only attention mechanisms, which do not
always translate into clinically meaningful explanations
[39]. Post hoc methods (e.g., feature attribution over codes
and labs) improve local interpretability but are sensitive to
missingness and code sparsity. Targeted designs that
embed causal constraints or task-specific rationale layers
provide more clinically meaningful explanations but incur
higher computational costs. The evidence, therefore,
favours pairing temporal attention with task-aware
attribution for deployment-grade interpretability. This
underscores the absence of standard interpretability
practices in transformer-based healthcare models.

3)  Cross-domain learning or Generalisation

Generalisation of models is a limiting factor for models
in healthcare. It measures how well a model performs on
patient representations different from those on which the
models are trained [33], [38]. This can be data from a single
demographic profile or disease type, on which the model
will capture patterns too specific to that environment [39].
Transformer models can improve cross-domain learning
through richer representations, multimodal learning and
self-attention mechanisms, but they still inherit biases from
the data [32].

However, models such as RarePT have shown
generalizability enhanced by their masked language
modelling feature [35]. It is robust across races, ethnic
groups and hospitals.

4)  Improves text understanding and extraction of
clinical meaning

Clinical notes and biomedical literature contain
abbreviations, shifting terminology, and complex phrasing
that rule-based methods struggle to interpret [39]. With
contextual embeddings, transformers overcome this

challenge [38]. The feature enables the extraction of
symptoms, diagnoses, and relationships with high
accuracy. [31] highlights this strength. It demonstrated how
BioBERT identifies gene names, disease terms, and subtle
relational cues across more than 11,000 abstracts.

These advantages overlap into real clinical environments.
Bio-Clinical-BERT and [39] showed strong text
understanding, especially when analysing short and noisy
triage notes.

Transformers offer a deeper, more context-aware
interpretation of clinical language, making them far more
reliable in real healthcare [36].

RQ4. Addressing the Limitations of Transformer
Architectures

Research is gradually mitigating known transformer

limitations, such as primarily data dependency,
generalisability, computational overhead, and
interpretability. Transformers require large labelled
datasets, which are rare in healthcare due to privacy and
heterogeneity [52], [56].
Most reviewed studies prioritised EHR data, with limited
empirical fusion of omics modalities. Challenges such as
data synchronisation, heterogeneous feature spaces and
high dimensionality continue to constrain multimodal
transformer development, indicating a significant gap in
current research.

1)  Limited dataset scope

Healthcare models are trained on datasets with a limited

scope [57]. The data is often from a single hospital, region,
or demographic group, which ties patterns learnt to that
environment [1], [6]. When these models are applied to
new patients with different ethnicities or documentation
styles, their accuracy often drops[1].
The systems adopt biases found in their training data[1],
[30]. Datasets with diverse data can improve
generalizability [2]. Even so, limited dataset diversity
remains a major problem for deploying clinical Al in real-
world settings.

2)  Dependence on EHR-only or single-modality data

Most healthcare Al models rely on EHRs. However,
EHRSs are a small part of a patient’s overall health picture.
They are non-inclusive of images, omics, lab tests, or
physiological monitoring data. This narrows their patient
representations [58], [59].

Several of the reviewed transformer models show this
limitation. The CT-PASMR model depends entirely on
structured EHR and medication data, neglecting omics data
[1]. Transformer Patient Embedding model and the Bio-
Clinical-BERT research noted that the models relied on
patient histories or free-text alone, missing physiological or
imaging signals that could produce stronger predictions [2],
[36]. . The models overlook key elements, such as
understanding biomarkers and mechanisms needed for
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precision medicine [60]. Without diverse data integration,
Al systems risk remaining narrow, incomplete, and less
effective for real-world care.

3)  Data quality issues

EHRs often contain missing diagnoses, incomplete data,
unrecorded medications, and inconsistent visit histories.
Misspelt clinical terms, vague symptom descriptions, or
outdated information weaken model performance [58].
These issues distort learned patterns [24], [45].

[36] highlights how triage notes are often not consistent or
complete, making it difficult for models to extract reliable
features. [1], [2] also depend on the patient's records, where
key clinical events may be missing or underdocumented.
Poor data quality reduces accuracy and generalizability. It
increases the chances of unreliable or unsafe clinical
predictions [58]. Strategies such as imputation, data
cleaning, and multimodal integration can reduce noise in
EHRs.

4)  Limited interpretability or transparency

Interpretability remains a challenge in Al models.

Although transformer architectures have improved
predictive accuracy and contextual understanding of data,
they are referred to as black boxes [29]. Clinicians require
explanations of insights and recommendations given by the
model [37].
Many transformer models provide attention scores or
gradient-based attribution, but the models do not translate
into clinically meaningful explanations [34]. The insights
generated by the model remain opaque, limiting adoption
in practice. Until Al systems can offer reliable and
clinically grounded explanations, their use in decision-
making remains restricted.

RQ5. Comparative Performance with Baseline Models

Transformer models consistently outperform CNN,
RNN, and classical ML algorithms because they can
generalise beyond local patterns and exploit contextual
associations [45]. Their superiority across tasks in this
review [1], [2], [61] aligns with benchmarking studies
showing transformers’ scalability and expressive capacity
[49]. For instance, CT-PASMR achieved higher accuracy
and interpretability than recurrent networks by integrating
convolutional filters for local dependencies with self-
attention for global sequence modelling [1]. Bio-Clinical-
BERT improved hospital-admission prediction by 608% in
AUROC. The following sub-section will provide an in-
depth discussion on transformers and other models in
research.

1)  Classical Machine Learning Models

Classical ML models like Logistic Regression,
XGBoost, and SVM were commonly used as baselines in
several of the reviewed studies [38], [39]. Findings from
the Bio-Clinical-BERT show that LR-TF-IDF models

achieved AUC scores of 0.81-0.84, while transformer
models slightly outperformed them with AUC values of
0.82-0.85 [36]. In the Bio-Clinical-BERT triage-note
study, classical models such as Logistic Regression and
XGBoost achieved AUC values between 0.76 and 0.84,
performing reasonably well on structured or shallow text
features but still slightly below the transformer model’s
0.82-0.85 range [36].

However, the study also revealed that transformers
consistently outperform classical baselines as tasks become
more complex. For deeper contextual understanding or
long-range pattern modelling, transformers show a clear
performance gap of 20-30% [1], [32]. Classical ML relies
on fixed feature engineering and cannot capture semantic
relationships, which limits its predictive ability.

2)  Deep Learning Models

CNNs, LSTMs, and GRU networks appeared often as
baselines. In the TransAMR system, the 1D-CNN and
modified ResNet had challenges with complex datasets.
They fall about 10-20% behind of the TransAMR in
masked AUC and F1 performance [37]. This proves that
traditional deep models can miss longer-range relationships
in antibiotic use patterns.

CT-PASMR identified similar trends. Models like the
LSTM-based LEAP recorded short-term visit patterns but
scored lower on Jaccard, F1, and recall [1]. Adding
transformer attention improved performance by roughly 5-
10%, highlighting its ability to capture broader patient
history.

[2] argues that while the variational autoencoder baseline
produced useful embeddings, it could not model patient
trajectories over time. Transformer-based embeddings
performed about 8-12% better in downstream disease
forecasting. Overall, deep learning models provided solid
baselines, but transformers consistently delivered stronger
results, especially for tasks that require long-range
reasoning or richer clinical context.

3)  BERT-based Baselines

Domain-specific BERT models have shown clear
advantages over the general BERT model in biomedical
and clinical tasks [33], [39]. General BERT often struggles
with the specialised terms, abbreviations, and gene or
disease names that appear in scientific and clinical writing
[62]. As a result, models trained on biomedical text
consistently outperform standard BERT with named-entity
recognition and relation extraction [31], [36].

With BioBERT, domain knowledge helped it identify
genes, diseases, and relationships more accurately than
TF-IDF  and other statistical baselines  [31].
Bio-Clinical-BERT  also  demonstrated  stronger
performance than general BERT when analysing triage
notes and EHR narratives [36]. Domain-specific BERT
models provide deeper contextual understanding and more
reliable clinical results. This makes them stronger baselines
than the original BERT model for healthcare applications.
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4)  Traditional Statistical or Rule-Based Models

The TF-IDF and K-means approach produces very weak
clustering quality, with a Silhouette score of just 0.05 [34].
In contrast, the transformer-based model achieved a
Silhouette score of 0.36. This illustrates how statistical
methods struggle to capture the complex temporal and
multi-comorbidity patterns present in real patient data.
Also, TF-IDF clustering and statistical baselines cannot
manage synonym variation or the specialised structure of
biomedical text. As a result, the models cannot accurately
recognise biomedical entities or extract relationships [31].

Rule-based and statistical models are computationally

efficient and easy to interpret [63]. However, they have
limited flexibility, especially when dealing with large,
heterogeneous clinical datasets [64]. [34] highlights the
TF-IDF + K-means pipeline produced a low Calinski—
Harabasz score of 2,191, compared to the transformer's
23,371 score.
Traditional methods cannot differentiate ambiguities
within gene symbols[34]. These findings show that rule-
based and statistical approaches consistently underperform
compared to transformer-based architectures.

Across the 14 studies, transformer architectures that
combine longitudinal self-attention with biomedical pre-
training (e.g., BEHRT-family variants) consistently
outperform recurrent and classical baselines on disease
prediction and phenotyping, particularly where long-range
temporal dependencies dominate. However, gains are
attenuated on small or single-institution cohorts and in
settings with high missingness, indicating sensitivity to
data quality and cohort shift. Hybrid designs that integrate
temporal attention with task-specific heads (e.g.,
medication recommendation) show the most reliable
improvements, while purely generic encoders exhibit
greater variance across tasks.

H. Implications

1)  Theoretical Implications

Theoretically, transformers can capture long-range and
non-linear relationships in data. The relationships make the
models adaptive. The non-Markovian attention mechanism
leverages them to model complex and irregular
connections between molecular, clinical, and textual data
[54]. Older sequential models, such as RNNs fail to achieve
this ability. This strength reflects principles from systems
biology, which view disease as a network of interconnected
omics and clinical factors [46], [65]. This way, the
transformer's predictions of disease projections are
improved. It also offers a theoretical basis that pushes the
field toward truly integrated precision medicine.

2)  Practical Implications

Transformer-based models have revolutionised
healthcare with new applications of Al. Adding various
interpretability aids, such as attention heatmaps and

attribution methods, can accelerate their clinical adoption.
Interpretability increases the system’s transparency and
trustworthiness, which supports acceptance among
clinicians and regulators [34], [37].

Pretrained models like Bio-Clinical-BERT and task-
specific architectures like LNet can be fine-tuned
efficiently, lowering computational barriers for use in
smaller or data-scarce health systems.

However, high computational costs and unequal data
representation still threaten bias, accessibility and
reliability in real-world settings [50], [66].

I.  Limitations of Study

The study only reviewed papers in four databases, IEEE,
PubMed, ACM Digital Library and ScienceDirect. This
selection neglects other studies available in other databases
but not in the ones chosen for this study. Exclusion of
studies with models trained or papers written in languages
other than English introduces bias to the study. It misses
other architectural designs used for different linguistic data
and useful research in other languages. Also, the studies
included in the study focused on EHRs or omics data,
neglecting other modalities such as medical images and
radiology reports. This narrow data scope undermines the
full capabilities of transformer models emerging in
healthcare.

J.  Future Works

Future research should focus on bridging interpretability
and generalisation limitations within healthcare Al models.
Transformer frameworks should incorporate explainable
artificial intelligence. They should also integrate omics and
multi-omics data with EHRs. Omics and multi-omics
reveal the basic principles of biological functions.
Therefore, with EHRs classification and health predictions,
models can learn reasons for patient trajectories.
Explainability proves Al models’ reliability and
trustworthiness, which determines their adoption in
healthcare settings.

Moreover, the research should train models on diverse
modalities. This is to ensure ethnic groups' health and
biological patterns are recognised by models. Developing
models like RarePT, which can be applied to diverse health
care instances regardless of race, ethnicity or hospital, can
also increase generalisability.

1V. CONCLUSION

This systematic review demonstrates how transformer
architectures are enhancing biological insights through the
integration and interpretability of EHRs and omics. They
learn longitudinal temporal dependencies. Models such as
CT-PASMR, Bio-Clinical-BERT, and LNet Transformer
exemplify how self-attention mechanisms can optimise
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medication recommendations, improve hospitalisation
prediction, and integrate multi-omics signals for disease
manifestation.

Despite these advances, studies remain largely EHR-
centric. Omics integration remains limited, undermining
the understanding of biomarkers, functional pathways and
mechanisms. Limited generalisability due to single-
institution data or small cohorts, computational
inefficiency, missing data, or interpretability challenges
remain within models.

Overall, transformers are a game-changer for biomedical
data fusion. Their capacity for hierarchical learning with
contextual awareness has improved predictive accuracy,
interpretability and model trustworthiness.

For clinicians, transformer-based systems offer
enhanced risk stratification and decision support but
require transparent explanations to support trust and safety.
For researchers, findings highlight the need for multimodal
datasets, robust external validation, and standardised
interpretability evaluation. For developers of clinical
decision support systems, scalable architectures and
efficient training strategies are essential for real-world
deployment. Addressing these challenges will be critical to
translating transformer-based models from experimental
studies into routine clinical practice.
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