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 Electronic Health Records (EHRs) have become central to modern healthcare. The 

emergence of transformer-based models has profoundly influenced how EHRs are 

used for modelling complex, longitudinal data. Integration with omics technologies 

improves the precision of disease identification and risk assessment during 

modelling. While several reviews have examined transformers in healthcare broadly, 

a systematic synthesis focused on their architectural design, empirical performance 

and integration of EHRs with omics data remains limited. This study presents a 

systematic literature review of transformer-based models applied to electronic health 
records (EHRs) and omics data, and of their integration into healthcare. Following 

PRISMA guidelines, peer-reviewed studies were retrieved from IEEE Xplore, ACM 

Digital Library, PubMed, and ScienceDirect, resulting in 14 eligible empirical 

studies published between 2020 and 2025. The review analyses transformer 

architectures, submodules, application domains, comparative performance, 

interpretability mechanisms, and limitations. Findings indicate that architectural 

design drives task-specific advantages in disease prediction, phenotyping, 

medication recommendation, and omics analysis. The integration of self-attention 

with deep learning, temporal modelling, and a pre-trained biomedical transformer 

improves performance. However, most studies remain centred on EHR, with limited 

empirical integration of omics data. Persistent challenges include limited 

generalisability, high computational cost, data quality issues, and insufficient 
interpretability for clinical deployment. The primary contribution of this review lies 

in synthesising architectural trends and methodological gaps. By consolidating 

current evidence, the study provides clear directions for the development of 

explainable, generalisable, and multimodal transformer-based systems in precision 

healthcare. 
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I. INTRODUCTION 

Electronic Health Records (EHRs), introduced in 

healthcare in 2009, are patient clinical records outside of a 
particular healthcare provider [1], [2], [3], [4]. This 

differentiates EHRs from Electronic Medical Records 

(EMRs), which only contain patient information from a  

healthcare provider [5], [6]. EHRs enhanced the 

understanding of human biology and they bridge the gap to 

precision medicine [7].  

To complement EHRs, omics emerged [8]. Omics 

studies genomics, proteomics, transcriptomics, 

epigenomics and metabolomics [9], [10], [11]. The 

technology-enhanced understanding of molecular 

functions, pathways and interactions[10], [12]. Using 

Machine Learning, researchers have advanced the level at 

which this data is analysed to provide insights[13], [14]. 

Machine Learning (ML), a branch of Artificial 

Intelligence(AI),  learns patterns and generates insights 
from analysing data [15], [16] . Its subfield, Deep Learning, 

mimics human cognition using artificial neural networks 
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[17]. It extends to transformer models, which use self-

attention as a mechanism to replace recurrence, allowing 

global dependency modelling and parallelised training 

[18]. BERT, BEHRT and Large Language models are 

transformer models that allow integration of sequential and 

multimodal data[17], [19]. With transformers, models learn 

linguistic patterns that traditional AI cannot. Their self-

attention attribute enables analysis of sequence data in 

parallel, considering relationships between attributes 

irrespective of position in the sequence.  
Despite the growing body of reviews on transformer 

models in healthcare, important gaps remain. Existing 

systematic reviews primarily focus on natural language 

processing tasks, longitudinal EHR modelling, or general 

multimodal applications, often treating omics data 

peripherally or conceptually [20], [21], [23], [24]. 

Moreover, prior reviews seldom provide a detailed 

architectural analysis linking transformer design choices 

such as attention mechanisms, submodules, and hybrid 

configurations to empirical performance, interpretability, 

and clinical applicability. This review addresses these gaps 
by systematically synthesising empirical evidence on 

transformer architectures applied to EHRs and omics data, 

critically comparing their competitive advantages and 

limitations, and explicitly examining challenges related to 

generalisability, interpretability, and multimodal 

integration in healthcare contexts.  

 

Research Questions 

1. How are transformer-based models designed, 

including their core components and submodules? 

2. How are recent transformers being applied in 

different omics and EHRs analytical domains? 

3. What are the competitive advantages of each 

identified transformer model? 

4. How can limitations of transformer architectures 

be addressed in a healthcare context? 

5. How do transformers perform compared to DL 

techniques and traditional modelling techniques? 

 

II. METHODS 

The study followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines for  transparency and completeness [25].  The 

guidelines included identification, screening and eligibility 

criteria for the Literature Review. 

B. Search Strategy 

A comprehensive search was conducted on 13 October 
2025 across the IEEE, PubMed, AMC Digital Library, and 

ScienceDirect databases. A string of keywords and their 

synonyms was used to filter for papers for this study. 

("Machine Learning" OR "Transformer" OR "Deep 

Learning") AND ("Electronic Health Records" OR "EHR") 

AND ("Omics" OR "Genomics" OR "Proteomics") was 

used for Science Direct and "machine learning" OR "ML" 

OR "deep learning" OR "transformer models") AND 

("electronic health records" OR "EHR" OR "electronic 

medical records" OR "EMR") AND ("omics" OR "multi-

omics" OR "genomics" OR "proteomics" OR 

"transcriptomics" OR "metabolomics") for the rest. The 

search strategy was designed to maximise coverage while 

keeping its relevance.  

C. Inclusion and Exclusion Criteria 

Studies were screened using an inclusion and exclusion 

criterion, ensuring methodological rigour and relevance. 

Only papers from 2020 to date are included. This was to 

ensure the use of the latest research with major transformer 

models adopted in healthcare research. Peer-reviewed 

journal articles were selected from recognised databases to 

avoid grey literature and preprints. The studies were further 

screened based on title, abstracts and full text evaluation. 
The inclusion and exclusion criteria are shown in Table I. 

 
TABLE I 

INCLUSION AND EXCLUSION CRITERIA 

Criteria Inclusion Exclusion 

Time 

Frame 

2020 to 2025 papers All papers from 
2019 and below 

Language English All papers not in the 
English language 

Type of 

Paper 

Journal Articles and 

Conference Papers 

Books, book 

chapters, Systematic 
Literature Reviews, 

Grey Literature 

Research 

area 

Studies focused on 
Transformer models or 

self-attention in 
precision medicine, 
omics and EHRs, 

healthcare 

Studies that do not 
focus on the use of 

transformers in 
healthcare 

Study Type Papers with empirical 
applications of 

transformers on EHRs 
or Omics 

Papers with 
theoretical 

application of 
transformers in 
Omics studies, 
EHRs, or both. 

 

 

D. Screening 

The initial search pulled 76 records from IEEE, 232 from 

ACM Digital Library, 202 from PubMed and 1008 from 

Science Direct. The search retrieved 1578 records, which 

were imported into Mendeley. After the initial search, 2 

duplicate papers and 1 Spanish paper were removed. 

Journals were screened, removing 306 Systematic 

Literature reviews. An additional n = 846 papers were 

screened out based on their title.  After title screening, the 
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papers were evaluated based on their abstracts. 234 papers 

were excluded, leaving 29 documents for the eligibility 

check. These 29 journals underwent a full-text review. The 

inclusion of 14 studies reflects the limited empirical 

research applying transformer architectures to EHR and 

omics data. It shows the emerging research jointly 

considering both modalities. 

 

E. Eligibility Criteria 

The review examined empirical studies published 

between 2020 and 2025. The studies under review were 

peer-reviewed and focused on the use of transformer 

models in healthcare, using either EHRs, omics, or both 

modalities. Studies that used AI models other than 

transformers, or that employed data types other than 

images, were not eligible for review. Non-peer-reviewed 

papers were also excluded from the study. 

 

F. Included 

During the full-text review, 15 additional papers were 

excluded because they focused on images or were 

conceptual or non-transformer-based.  Only 14 studies met 

the study's inclusion criteria. They were empirical studies 

of transformer models developed for both EHRs and omics, 

or for a single modality. 

 

G. Quality Assessment 

A structured quality assessment was carried out to 

evaluate the strength, transparency, and scientific rigour of 

the included studies. The goal was to ensure that only 

high‑quality, evidence‑driven papers contributed to the 
final analysis of transformer‑based models applied to 

EHRs and omics data.  The Weighted Technical 

Methodology (WTM) framework, adopted from multi-

criteria decision analysis [26], [27], [28].  

This approach measured each study’s methodological 

soundness, data reliability, reproducibility, and 

interpretability. Five key criteria (C1-C5) guided this 

assessment, with each scored on a scale of 0-2 and 

weighted according to its importance in determining the 

overall quality: model description and reproducibility 

problem, framing and study design, interpretability and 
applicability, data quality and appropriateness and clinical 

validation strategy. The studies were given a weighted 

score (0–100). Each study was marked as high when equal 

to or greater than 80, moderate when between 60 and 79, 

or low quality when less than 60. Risk-of-quality 

stratification was used to contextualise the synthesis. 

Conclusions prioritise evidence from high-scoring studies 

(≥80) and interpret findings from moderate-quality studies 

(60–79) cautiously, while low-quality evidence (<60) is 

used only to indicate emerging directions. 

 

III. RESULTS AND DISCUSSION 

 

Screening and eligibility results are presented in Figure 

1. A 10-column table was constructed to explore research 

questions and summarise studies eligible for review.   

Table II presents a comprehensive review of 10 studies 

that met the inclusion criteria for this study.  It summarises 

studies by region of origin, dataset type, and primary 

application areas in the health domain. The table also 

presents the type of transformer used and its submodules. 
It also explores the advantages and limitations of the 

transformer's design, compares it with other models, and 

outlines the evaluation metrics used in the study.  

 
 

 
Figure 1. PRISMA screening results 
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TABLE II 

CHARACTERISTICS OF INCLUDED STUDIES

Stud

y 

Country Dataset Type Primary 

Application 

Transformer 

Architecture (core + 

submodules) 

Competitive 

Advantages 

Limitations Baselines 

Compared 

[2] USA  EHR  Disease onset 

prediction 

 Patient 

stratification 

 Phenotype 

discovery 

 Transformer 

encoder 

 Sentence-BERT 

architecture 

 Longitudinal 

embeddings 

 Enables 

unsupervised 

embedding of EHR 

sequences 

 Discovers new 

comorbidity 

patterns 

 Improves 

forecasting 

 Data heterogeneity 

 Missing modalities 

 Limited to 

diagnosis and 

procedure codes 

 BEHRT 

 Autoenco

der 

[29] China  Event-

sequence 

data 

(applied 

to EHR,) 

 Sequence 

modelling 

 Event 

prediction 

 Universal 

Transformer 

 Hawkes Process 

 ACT mechanism 

 CNN-enhanced 

feed-forward 

layers 

 Combines self-

attention and 

recurrence for long-

term temporal 

dependencies 

 Overcomes RNN 

vanishing gradient 

 Improves event 

modelling for 

asynchronous data 

 RMTPP 

 NHP 

 THP 

[30] Canada  Continous 

timeseries

(bio-

signals) 

 EHRs 

 Extract 

contextualised 

representation 

from timeseries 

 Learn temporal 

classification 

 TimelyGPT 

 xPos embedding 

 Recurrent 

attention 

 Temporal 

convolution 

modules 

 Recurrent retention 

for forecasting 

irregularly-sampled 

time series 

 Forecasts long 

sequences of time 

series 

 Permutation 

invariance of self-

attention loses 

temporal 

information 

 Unidirectional 

architecture 

 Limited analysis 

of EHRs 

 AutoForm

er 

 TS2Vec 

[31] 

 

USA  Biomedic

al 

literature 

(gene-

disease 

mentions) 

 Relation 

extraction 

 BioBERT fine-

tuning for 

relation 

extraction 

 KG construction 

 Improved precision  No EHR needed 

 Focuses on 

genomics 

knowledge 

curation 

 TF-IDF 

clustering 

 Statistical 

ML 

baselines 

[32] China  Genomics 

 MRI 

 Proteomic

s 

 Predict stroke 

recurrence 

 LNet 

Transformer 

layer 

 Dynamic 

weighting fusion 

 Improves cross-

modality fusion 

 Improves 

performance 

 EHR limited 

 Focus on multi-

omics signals 

 CNN 

 SVM 

 RF 

baselines 

[1] China  EHRs 

 (MIMIC-

III and 

MIMIC-

IV 

 Medication 

recommendatio

n 

 Minimisation of 

DDI 

 Parallel CNN 

 Transformer 

encoder (CAT) 

 GAT over HER 

 DDI graphs 

 Joint BCE+DDI 

loss 

 Captures local 

(visit-level) and 

long-term 

(sequential) patterns 

 Explicit DDI safety 

 EHR-only scope 

 Scalability 

 DMNC 

 RETAIN 

 LEAP 

 GAMENe

t, 

 MICRON 

 COGNet 

 Trans-

GAHNet 

[33] United 

Kingdo

m 

 Longitudi

nal EHR 

 10-year CVD 

risk prediction 

 BEHRT-derived 

encoder 

 Age and 

encounter 

embedding 

 Survival layer 

 Strong subgroup 

generalisation 

 Requires full 

longitudinal EHRs 

 Limited 

interpretability 

 QRISK3 

 DeepSurv 

 Cox 

models 
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Stud

y 

Country Dataset 

Type 

Primary 

Application 

Transformer 

Architecture 

(core + 

submodules) 

Competitive 

Advantage 

Limitations Baselines 

Compared 

[34] UK  Linked 

longitudinal 

EHRs 

 Patient 

subtyping 

and 

prognosis 

 Transformer 

encoder with 

contrastive 

learning 

 Clustering 

downstream 

 Learns disease 

trajectories 

 Robust subtypes 

with prognostic 

separation 

 Missing data 

 Generalisabilit

y issues 

 TF-IDF 

clustering 

 Statistical 

ML 

baselines 

[35] USA  EHRs  Modelling 

phenotypic 

concepts 

from 

diagnosis 

codes 

 RarePT 

 Masked 

Language 

Modelling 

 Recapitalate rare 

diagnosis 

 Weighting and 

masked modelling 

for generalization 

 Reliance on 

ICD-10(noisy, 

inconsistent) 

 Uses phecodes 

which are for 

common 

diseases 

 Rule based 

models 

  

[36] US + 

Israel 

 Free-text 

triage notes 

 Tabular 

EHR 

 Admission 

risk 

prediction 

from triage 

notes 

 Bio-Clinical-

BERT fine-

tuning 

 Classification 

head 

 Improves AUC over 

classic models 

 Pragmatic compute 

discussion 

 Generalisabilit

y 

 BOW-LR-

TFIDF 

 W2V-

BiLSTM 

 XGBoost 

[37] UK  EHRs 

 Antibiotic 

administrati

on time-

series 

 Predict 

antimicrobial 

resistance 

 1-D Transformer 

 Integrated 

Gradients 

explanation 

 Faster than 

genomics 

 Interpretable 

signatures 

 Multi-label support 

 Handles 

missing labels 

 Real-time 

EHR usage 

 Traditional 

ML 

baselines 

[38] China  Multi-

omics 

 SLE and 

Lupus 

Nephritis 

diagnosis 

 Single-head 

Transformer 

attention 

 MLP encoder 

 Tensor-based 

bimodal fusion 

 Interpretable 

biomarkers 

 Generalisation 

 Small cohort 

study 

 High 

computational 

complexity 

 SVM 

 LR 

 KNN 

 MOGONET 

 TEMINET 

[39] USA  EHRs 

 Clinical 

Notes 

 Chronic 

cough 

prediction 

 ClinicalBERT 

encoder 

 Custom 

interpretability 

attention layer 

 Interpretable 

 Multimodal EHR 

handling 

 No time-gap 

modelling 

 Relies on 

symptom 

extraction 

 LR 

 SVM 

 kNN 

 BiLSTM-

Attention 

 BERT 

[40] Pakistan 

and 

Saudi 

Arabia 

 Gene 

expression 

 Drug 

molecular 

descriptors 

 Glioblastoma 

drug 

resistance 

prediction 

 Hybrid CNN 

 BiLSTM 

 Transformer 

pathway 

 Captures spatial, 

sequential, 

contextual signals 

 High training 

complexity 

 Limited 

interpretability 

 Overfitting 

risk 

 CNN 

 LSTM 

 Transformers 

 Decision 

Trees 
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A. Study Origin 

Figure 2 shows the adoption of research on transformer 

models across continents.   

 
 

Figure 2. Study Origin 

 

Figure 2 highlights North America as the leading 

continent. 36% of the new models are being developed on 
the continent. Asia comprises 29%, 4 out of 14, of the 

empirical studies in the last 5 years. Europe contributes 

21% to the research, and the last 2 new models were 

developed as a multi-continental collaboration. This 

indicates the importance and pursuit of generalizable 

models within the field by using diverse datasets from 

different continents. Africa reported zero publications or 

contributions to the research, showing limited adoption of 

the transformer trend towards personalised medical care. 

These findings suggest a strong concentration of research 

capacity in high-resource regions. 

B. Dataset Type 

Figure 3 illustrates the types of datasets used with 
models in each of the studies included in this study. 

 
 

Figure 3. Dataset Type 

Among the 14 reviewed studies, 10 used EHRs in model 

training. This shows that EHRs are the most used and 

accessible patient data within the research. Four studies 

used text-based notes, displaying NLP tasks and their 

importance in learning patterns and deriving insights from 

EHRs. 

However, omics data were used in four studies, which 

highlights less research on the analysis of bio-mechanisms 

and functions. 

The dominance of EHR-centric datasets highlights a 

structural limitation in current transformer-based 

healthcare research. While EHRs provide accessible 

longitudinal data, their use in isolation constrains 

biological interpretability and limits the ability of models 
to capture molecular mechanisms underlying disease. 

Studies incorporating omics data demonstrated improved 

diagnostic specificity and biomarker relevance; however, 

these benefits were offset by increased computational 

complexity and smaller cohort sizes. This trade-off 

suggests that current transformer architectures are not yet 

optimally designed for scalable omics integration, 

reinforcing the need for architectural innovations that 

balance performance with feasibility. 

Empirical integration of omics remains sparse and 

methodologically challenging. The reviewed studies report 
difficulties in synchronising longitudinal EHR events with 

high-dimensional omics profiles, managing modality 

heterogeneity (sparse codes vs. dense molecular features), 

and controlling overfitting under extreme dimensionality. 

These constraints explain the predominance of EHR-only 

pipelines and underscore the need for representation 

learning and alignment strategies tailored to multimodal 

fusion. 

C. Primary Application 

Figure 4 presents the primary applications of the 

transformers in this study.  

 

 
 

Figure 4. Primary Applications 

Eight studies focus on disease prediction and risk 

forecasting. They prove that transformers are most used for 

prediction modelling. Two of the studies emphasise patient 

subtyping or progression analysis. This shows the growing 

use of embeddings to uncover disease direction and patient 
groups. Two other papers target medication 
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recommendation and therapy optimisation, reflecting 

interest in safer and more interpretable clinical decision 

support. Two studies apply transformers for phenotyping 

and knowledge extraction, bridging biomedical NLP with 

clinical informatics, while two explore sequence 

modelling, highlighting temporal interpretability.  

Overall, prediction-driven research dominates the field, 

with interpretability and multi-dimensional integration 

emerging as promising yet still underrepresented 

directions. 

D. Transformer Architecture and Submodules 

Figure 5 shows the architectural designs used on the 

14 transformers in the included studies.  
 

 
 

Figure 5. Transformers Architecture and Submodules 

 

Six of the models employ a combination of both CNN 

and transformer architectures. This highlights a trend in 

adopting DL and transformer methods. CNN have a single 

layer, making it good at local dependencies for diverse 

medical events, and transformers are better at global 

dependencies and context learning.  

Four studies used BERT-based architectures, 

underscoring the dominance of language models in 

healthcare for tasks like medical text understanding and 
clinical reasoning. This indicates the importance of 

pretrained models in acquiring a holistic understanding of 

data. 

Two other models incorporated standard transformer 

encoders, and two more employed temporal driven 

transformers. This highlights how attention layers are 

favoured in extracting features from input data and how the 

prediction of health events using longitudinal and time 

series data is rising in research.  One model is based on a 

transformer and knowledge graphs. 

E. Limitations 

Limitations of the included studies are summarised in 

Figure 6. 

 
 

Figure 6. Limitations 

 

Across the 14 studies, eight mention limited 

generalizability as their main challenge. Most rely on EHR 
data from one hospital or a small region. Three of the 

studies highlight the dependence on EHR-only or single-

modality data, meaning they do not yet combine genetic 

and other complementary sources. Four studies highlight 

the high computational cost of large transformer models, 

especially when using BERT architectures. Four studies 

underline noisy or incomplete data as a major drawback, 

while three mention interpretability as a major limitation. 

Overall, most papers show impressive results but still face 

barriers to scaling and applying their models widely in real 

clinical settings. 

F. Competitive Advantage 

Table 3 shows the competitive advantages of every 

architectural design included in this study. 

 
 

TABLE III.  

COMPETITIVE ADVANTAGE 

 

 

 

Advantage Studies 

Highlighting the 

Advantage 

Captures long-term and sequential 

patterns in EHR data 

5 

Improves disease prediction and patient 
representation 

2 

Enhances interpretability and clinical 
insight 

4 

Multi-modal Learning and 
Generalisation 

4 

Improves text understanding and 
extraction of clinical meaning 

2 

Provides robustness to noisy or missing 
data 

2 
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Among the 14 studies reviewed, transformers' ability to 

capture long-term and sequential patient patterns was 

addressed in five studies. This helps researchers understand 

disease progression over time. Two studies highlighted 

their strength in disease prediction and patient 

representation. This shows how transformer embeddings 

provide more detailed and context-aware insights. Four 

studies focused on interpretability, where attention layers 

made predictions easier to explain using XAI modules in 

their architectures. Four studies also showed that 
transformers handle multimodal data well and 

demonstrated stronger performance in medical text 

understanding. Two studies also mentioned robustness to 

missing or noisy data, and two noted faster and more 

efficient training.  

Although transformer models demonstrate clear 

advantages in sequential modelling and contextual 

representation, these benefits are not uniform across 

applications. Performance gains were most pronounced in 

tasks involving irregular temporal patterns and multimodal 

inputs, while improvements over deep learning baselines 
were marginal for simpler tabular EHRs tasks. This 

variability indicates that architectural suitability, rather 

than the transformer paradigm itself, largely determines 

performance outcomes. 

G. Compared Baseline Models 

Across the studies, researchers compared transformer 

models to a wide range of baseline approaches. Figure 7 

illustrates the compared models. 

 
 

Figure 7. Compared Models 

 

Seven papers evaluated their transformers against 
classical machine learning methods such as logistic 

regression, support vector machines, and random forests. 

These traditional models performed well on structured 

clinical data and achieved about 60-70% of the modelling 

strength seen in transformers, highlighting their weakness 

with temporal patterns and multimodal inputs. 

Four studies used deep learning baselines like CNNs, 

LSTMs, GRUs, and autoencoders, which are naturally 

better at handling sequential features. They still faced 

limitations in capturing long-range dependencies across 

multiple patient visits. 

Another set of three studies compared their transformer 

architectures to earlier transformer-based models such as 

BERT, BEHRT, or RoBERTa. These models showed that 

recent models gain additional advantages from domain-

specific adaptation and improved sequence encoding. 

Three studies also included rule-based or statistical 

baselines such as simple heuristics or TF-IDF clustering. 
These methods showed the lowest performance. 

H. Discussions 

This section integrates fourteen empirical studies. It 

connects the findings from these studies to trends in clinical 

machine learning. Architectures in the studies were 

examined based on their advantages, application scope, 

architectural evolution, comparative performance, and 

limitations. [1] [2] 
 

RQ1. Architectural Designs, Modules, and Submodules 

 
The studies reveal that the architectural designs are 

diverse, reflecting adaptation to a wide range of biomedical 

data challenges. Semantic understanding enables encoder-

only models to dominate textual [21]. Hybrid CNN–

Transformer frameworks combine convolutional local 

feature extraction with attention-based sequence reasoning, 

as seen in CT-PASMR and LNet Transformer [1], [32]. 

Architectural competitiveness across transformer models is 
influenced by design choices such as input representation, 

attention formulation, and task-specific heads. Encoder-

only models are mostly used for textual and phenotyping 

tasks, while hybrid CNN-Transformer and temporal 

transformers are better suited for longitudinal and 

multimodal data [23],[28]. These differences explain 

performance variability across applications rather than 

model superiority alone. 

1) Hybrid DL + Transformer Architectures 

This architecture is a hybrid method of a DL method and 

transformer-based methods. Studies [1], [29], [38], [40] 

Demonstrate this hybrid architecture by utilising DL 

methods and self-attention modules within the same model. 

DL models are effective in capturing local relationships 

and in enhancing the ability to fit events in short-term 

dependencies [1], [29]. Attention mechanisms are effective 

in capturing global dependencies within longitudinal data 
[39]. The integration of these models enhances their 

competitiveness, enabling them to capture both local and 

long-term dependencies in sequential EHRs and reduce the 

risk of overfitting.  

[1], [29] in the UTHP and CT-PASMR model, they used an 

RNN module, a CNN module, and a self-attention 

mechanism. CNN was designed to improve local 

perception in the position-wise feed-forward branch. At the 

same time, RNN was used to constrain fitting in temporal 
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data, and the attention heads were trained to learn global 

contexts and dependencies. [30] identified a weakness of 

losing temporal information associated with self-attention 

heads due to their permutation-invariant nature. Therefore, 

the TimelyGPT model employed RNN for the task. 

2) Pretrained Bio-MED transformers 

Pretraining is the process of giving a model broad, 

general knowledge before refining it for a specific task[10], 

[41]. This makes pretrained transformers more effective 

than models built from scratch, because they already 

understand language structure and contextual cues [42]. 

BioBERT’s exposure to large biomedical text collections 

enabled it to recognise gene names, disease mentions, and 

specialised scientific expressions with little additional 

training [31]. 

[33], [36] has a similar pattern, where Bio-Clinical-BERT 

benefits from both general BERT pretraining and 
additional clinical-domain adaptation. This broad 

foundation allows the model to interpret short and messy 

triage notes more effectively than simpler models like 

BOW‑LR, W2V‑BiLSTM, or XGBoost. 

Bio-Clinical-BERT showed that a model’s reliability and 

understanding of real clinical language are increased by 

pretraining [36]. This underlines that pretrained models 

give a richer representation, stronger handling of complex 

biomedical terminology, and better generalisability [36], 

[39]. These marks pretraining as important to realise great 

results in tasks ranging from gene-disease curation to 
clinical risk prediction. 

3) Temporal / Event-Driven Transformers 

Temporal data captures changes in health and offers 

insights into disease progression and treatment [43]. It 

incorporates EHRs' time-series data and longitudinal data.  

Study [30] and [33] used masked language modelling and 
survival modules technique to learn the meaning of 

temporal data in the context they appear, and a cross-

reconstruction transformer to learn temporal classification. 

Robustness with these techniques gives the models the 

ability to predict time-series data.   

[37] incorporated attention heads, to extract features from 

input data, a classifier layer to make predictions and a loss 

function designed to handle missing data. The robust 

design made it effective for sequential data.  

4) Transformer + Graph Modules  

A graph is a data structure. It models a set of objects and 

their relationships, which gives it a great expressive power 

in ML [44]. In the germline knowledge-graph study, 

BioBERT’s domain-adapted pretraining allows it to 

recognise complex gene and disease terminology across 

thousands of abstracts with minimal fine-tuning [31]. This 

gives the system a clear edge over ontology-only or 
statistical approaches, enabling more accurate entity 

extraction before the normalisation stage.  

The medication-recommendation model shows a similar 

benefit. By combining CNN layers with transformer 

components, the model effectively interpreted a patient’s 

longitudinal EHR history. Graph attention networks in a 

model learn drug occurrences and different drug-drug 

interactions, using a joint-loss function. Joint-loss function 

enables the model to produce more personalised and 

clinically safer medical predictions and recommendations. 

 

RQ2. Applications of Transformer Architectures 

 
Transformers are flexible, leading to their application 

across various biomedical domains [21], [23]. They are 

mainly used for disease prediction and patient 

stratification. However, they are expanding into omics 

integration, text mining, and phenotype discovery [20], 

[22], [45]. Studies leveraging EHR sequences established 

transformers’ ability to encode irregular temporal events, 

which is necessary for learning disease trajectories [2], 

[34]. This is a result of the non-Markovian nature of 

attention, which allows learning dependencies across 

longitudinal data [29]. 
From this research’s studies, the models were developed 

with different focus areas. 

1) Disease Prediction 

Disease prediction remains one of the most impactful 

uses of DL models in healthcare [11], [46]. Transformer 

models capture rich patterns across clinical notes, patient 
histories, and other complex data [33], [39]. They can 

identify early warning signals that traditional methods 

often overlook [20], [21]. Utilising the self-attention, they 

recognise small relationships between symptoms, 

diagnoses, medications, and past events. With the 

relationships, they gain a strong advantage in spotting 

patients at risk [1], [36], [47]. 

Transformers work well when EHRs or omics data are 

messy, incomplete, or longitudinal. It learns these 

complexities to assist clinicians in making predictions 

earlier and accurately [30], [35]. 

2) Progression Analysis 

Progression analysis monitors how diseases evolve, 

changes in symptoms, how new conditions develop, and 

how a patient’s overall condition changes [3], [5]. This 

allows clinicians to perceive how one clinical state leads to 

another, rather than treating each hospital visit as a separate 
moment [6], [7]. 

Transformer-based patient embeddings discovered 

progression pathways within diseases like colorectal cancer 

and lupus. Using patient vectors helps review how many 

diseases in a single phenotype differ [7]. These pathways 

showed differences in long-term comorbidity burdens and 

mortality risks. 

Transformer models identify early signs of patient 

trajectories long before diagnosis [34]. They uncover 

subtypes with distinct risk levels, hospitalisation patterns, 
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and medication needs [6]. [34] uses contrastive learning to 

maximise analysis, demonstrating how transformers 

support a more dynamic and realistic view of disease 

evolution. 

3) Medication Recommendation 

Over the years, transformer models have been 

increasingly used to improve precision medical care [17]. 

The models propose medications tailored specifically for a 

patient’s condition and genetic variations.  Models also 

recommend safe and accurate prediction of medication 

needed by a patient, after analysing the condition and drug-

drug interactions [1].  

TransAMR is a strong example. It uses feature selection 

algorithms and an ID transformer for pattern recognition in 

antibiotic use and improves prescription practices. The 

features are integrated with gradient-based XAI pipelines 
to interpret insights and recommendations [37]. 

4) Phenotyping  

Phenotyping detects clinical patterns, disease subgroups, 

or  patient characteristics from biomedical data [48]. Earlier 

methods mostly relied on expert-written rules, but these 
approaches struggled with incomplete data [49]. To handle 

these drawbacks, transformer systems learn 

high‑dimensional representations from EHR sequences and 

clinical notes [50].  

[2] revealed clear phenotypic clusters in diseases such as 

colorectal cancer and lupus. It highlights differences in 

long‑term comorbidity burdens and outcomes [2]. The 

models can identify disease diversity far earlier than 

classical approaches [34]. 

These results drive towards precision medicine, which 

emphasises deep phenotyping [50]. Transformer‑based 

phenotyping models create more detailed, stable, and have 
clinically useful representations. They record complex, 

multi‑variable relationships over time [50]. 

5) Knowledge Extraction  

Knowledge extraction converts unstructured biomedical 

information into clear, structured knowledge [49]. In 

practice, this step is important in creating a strong 
predictive model [51]. Rule‑based systems or simple 

statistical techniques had challenges handling complex and 

specialised language in biomedical text [52]. These 

challenges were solved by self-attention in transformers 

[1]. 

Transformers can understand context. The ability 

allowed for distinguishing between ambiguous gene 

symbols and detecting associations, even when they were 

only implied [53]. This led to a more comprehensive and 

clinically useful knowledge graph, demonstrating how 

transformer-driven extraction directly enhances biomedical 
knowledge curation. 

TimelyGPT extends this finding beyond text by 

extracting structured knowledge from continuous and 

irregular clinical time‑series data [30]. Through 

extrapolatable xPos embeddings, recurrent attention, and 

temporal convolutions, the model captures long-term 

clinical trends and hidden diagnostic patterns that 

traditional methods overlook. 

6) Sequence / Event Modelling 

Sequence or event modelling helps  comprehend how 

clinical events unfold over time [37]. Modern transformers 

perform better at sequence modelling. Their attention 

mechanisms capture irregular short and long-range 

patterns. The TransAMR model utilised this method to 

learn the relationships within antibiotic prescribing 

sequences [37]. The Universal Transformer Hawkes 

Process can model the timing and effect of clinical events 

better than RNN‑based methods [29]. The models give a 

clearer picture of complex clinical directions. They also 

support more reliable forecasting and decision‑making.  

Despite this research emphasis on EHR–omics integration, 

empirical evidence remains heavily skewed toward EHR-

only applications. Omics-focused studies were fewer, 

relied on smaller cohorts, and often prioritised predictive 

accuracy over biological interpretability. This imbalance 

highlights a critical disconnect between the theoretical 

promise of precision medicine and current implementation 

practices, suggesting that multimodal transformer research 

is still at an early, exploratory stage. 

 
RQ3. Advantages of Using Transformer Models 

 
Self-attention enables transformer systems to weigh 

relationships in sequences [33]. This is important in 

sequence patient data, which requires temporal 

continuity[49], [54]. 

Transformers’ non-sequential tokenisation and parallel 

processing make them ideal for heterogeneous data [23], 

[46]. Their mathematical structure directly aligns with 

healthcare data characteristics: high dimensionality, 

contextual dependency, and multimodal complexity [37], 
[50]. The following is an exploration into the advantages, 

informed by collective evidence from this research’s 

studies. 

1) Captures long-term and sequential patterns in 

EHR data 

Understanding and capturing longitudinal contexts 

greatly improves the predictive performance of clinical. 

Unlike traditional DL methods, the transformer's attention 

mechanism does not suffer from the vanishing gradient 

effect [1]. DL methods lose information the further they go 

back in a sequence, making them less reliable for long-term 

temporal modelling. [1] combines CNN and attention 

mechanisms, giving the CT-PASMR the ability to record 

both local and long-range patterns. Also, transformers' bi-

directional modelling and parallel processing allow them to 

learn relationships between distant clinical events without 

relying on recurrent memory [29]. The models 
simultaneously draw context from earlier and later events 
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[40]. This gives a richer and more complete representation 

of a patient’s health.  

With these capabilities, the models can monitor disease 

progression accurately and improve clinical prediction 

expertise, which are crucial in healthcare  

2) Enhances interpretability and clinical insight 

Aside from accuracy, models need to be interpretable for 

them to be implemented in healthcare [10].  They should 

explain the reasons behind the predictions. Clinicians 

require transparency to validate recommendations, assess 

safety and ensure alignment with medical reasoning [39].  

Interpretability approaches varied across studies, ranging 

from attention-weight visualisation and gradient-based 

attribution to integrated gradients and task-specific 

explanation layers.Attention visualisation is the most 

common mechanism, providing coarse temporal saliency 

but limited causal insight.  Models such as TransAMR and 
CT-PASMR incorporated explicit XAI modules [38].  The 

modules highlight influential clinical events, while 

architectures use only attention mechanisms, which do not 

always translate into clinically meaningful explanations 

[39]. Post hoc methods (e.g., feature attribution over codes 

and labs) improve local interpretability but are sensitive to 

missingness and code sparsity. Targeted designs that 

embed causal constraints or task-specific rationale layers 

provide more clinically meaningful explanations but incur 

higher computational costs. The evidence, therefore, 

favours pairing temporal attention with task-aware 
attribution for deployment-grade interpretability. This 

underscores the absence of standard interpretability 

practices in transformer-based healthcare models. 

 

3) Cross-domain learning or Generalisation 

Generalisation of models is a limiting factor for models 
in healthcare. It measures how well a model performs on 

patient representations different from those on which the 

models are trained [33], [38]. This can be data from a single 

demographic profile or disease type, on which the model 

will capture patterns too specific to that environment [39].  

Transformer models can improve cross-domain learning 

through richer representations, multimodal learning and 

self-attention mechanisms, but they still inherit biases from 

the data [32]. 

However, models such as RarePT have shown 

generalizability enhanced by their masked language 
modelling feature [35]. It is robust across races, ethnic 

groups and hospitals. 

 

4) Improves text understanding and extraction of 

clinical meaning 

Clinical notes and biomedical literature contain 
abbreviations, shifting terminology, and complex phrasing 

that rule‑based methods struggle to interpret [39]. With 

contextual embeddings, transformers overcome this 

challenge [38]. The feature enables the extraction of 

symptoms, diagnoses, and relationships with high 

accuracy. [31] highlights this strength. It demonstrated how 

BioBERT identifies gene names, disease terms, and subtle 

relational cues across more than 11,000 abstracts. 

These advantages overlap into real clinical environments. 

Bio-Clinical-BERT and [39] showed strong text 

understanding, especially when analysing short and noisy 

triage notes.  

Transformers offer a deeper, more context‑aware 

interpretation of clinical language, making them far more 
reliable in real healthcare [36]. 

 

RQ4. Addressing the Limitations of Transformer 

Architectures 

 
Research is gradually mitigating known transformer 

limitations, such as primarily data dependency, 

generalisability, computational overhead, and 

interpretability. Transformers require large labelled 

datasets, which are rare in healthcare due to privacy and 

heterogeneity [52], [56]. 
Most reviewed studies prioritised EHR data, with limited 

empirical fusion of omics modalities. Challenges such as 

data synchronisation, heterogeneous feature spaces and 

high dimensionality continue to constrain multimodal 

transformer development, indicating a significant gap in 

current research. 

1) Limited dataset scope 

Healthcare models are trained on datasets with a limited 

scope  [57]. The data is often from a single hospital, region, 

or demographic group, which ties patterns learnt to that 

environment [1], [6]. When these models are applied to 

new patients with different ethnicities or documentation 

styles, their accuracy often drops[1]. 

The systems adopt biases found in their training data[1], 

[30].  Datasets with diverse data can improve 

generalizability [2]. Even so, limited dataset diversity 

remains a major problem for deploying clinical AI in real-
world settings. 

2) Dependence on EHR-only or single-modality data 

Most healthcare AI models rely on EHRs. However, 

EHRs are a small part of a patient’s overall health picture. 

They are non-inclusive of images, omics, lab tests, or 

physiological monitoring data. This narrows their patient 
representations [58], [59]. 

Several of the reviewed transformer models show this 

limitation. The CT-PASMR model depends entirely on 

structured EHR and medication data, neglecting omics data 

[1]. Transformer Patient Embedding model and the Bio-

Clinical-BERT research noted that the models relied on 

patient histories or free-text alone, missing physiological or 

imaging signals that could produce stronger predictions [2], 

[36]. . The models overlook key elements, such as 

understanding biomarkers and mechanisms needed for 
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precision medicine [60]. Without diverse data integration, 

AI systems risk remaining narrow, incomplete, and less 

effective for real-world care. 

3) Data quality issues 

EHRs often contain missing diagnoses, incomplete data, 

unrecorded medications, and inconsistent visit histories. 

Misspelt clinical terms, vague symptom descriptions, or 

outdated information weaken model performance [58]. 

These issues distort learned patterns [24], [45]. 

[36] highlights how triage notes are often not consistent or 

complete, making it difficult for models to extract reliable 

features. [1], [2] also depend on the patient's records, where 

key clinical events may be missing or underdocumented. 

Poor data quality reduces accuracy and generalizability. It 

increases the chances of unreliable or unsafe clinical 

predictions [58]. Strategies such as imputation, data 
cleaning, and multimodal integration can reduce noise in 

EHRs. 

4) Limited interpretability or transparency 

Interpretability remains a challenge in AI models. 

Although transformer architectures have improved 
predictive accuracy and contextual understanding of data, 

they are referred to as black boxes [29]. Clinicians require 

explanations of insights and recommendations given by the 

model [37].  

Many transformer models provide attention scores or 

gradient-based attribution, but the models do not translate 

into clinically meaningful explanations [34]. The insights 

generated by the model remain opaque, limiting adoption 

in practice. Until AI systems can offer reliable and 

clinically grounded explanations, their use in decision-

making remains restricted. 
 
RQ5. Comparative Performance with Baseline Models 

 
Transformer models consistently outperform CNN, 

RNN, and classical ML algorithms because they can 

generalise beyond local patterns and exploit contextual 

associations [45]. Their superiority across tasks in this 

review [1], [2], [61] aligns with benchmarking studies 

showing transformers’ scalability and expressive capacity 

[49]. For instance, CT-PASMR achieved higher accuracy 

and interpretability than recurrent networks by integrating 
convolutional filters for local dependencies with self-

attention for global sequence modelling [1]. Bio-Clinical-

BERT improved hospital-admission prediction by 608% in 

AUROC. The following sub-section will provide an in-

depth discussion on transformers and other models in 

research. 

1) Classical Machine Learning Models 

Classical ML models like Logistic Regression, 

XGBoost, and SVM were commonly used as baselines in 

several of the reviewed studies [38], [39]. Findings from 

the Bio-Clinical-BERT show that LR-TF-IDF models 

achieved AUC scores of 0.81-0.84, while transformer 

models slightly outperformed them with AUC values of 

0.82-0.85 [36]. In the Bio-Clinical-BERT triage-note 

study, classical models such as Logistic Regression and 

XGBoost achieved AUC values between 0.76 and 0.84, 

performing reasonably well on structured or shallow text 

features but still slightly below the transformer model’s 

0.82-0.85 range [36]. 

However, the study also revealed that transformers 

consistently outperform classical baselines as tasks become 
more complex. For deeper contextual understanding or 

long-range pattern modelling, transformers show a clear 

performance gap  of 20-30% [1], [32]. Classical ML relies 

on fixed feature engineering and cannot capture semantic 

relationships, which limits its predictive ability. 

2) Deep Learning Models 

CNNs, LSTMs, and GRU networks appeared often as 

baselines. In the TransAMR system, the 1D-CNN and 

modified ResNet had challenges with complex datasets. 

They fall about 10-20% behind of the TransAMR in 

masked AUC and F1 performance [37]. This proves that 

traditional deep models can miss longer-range relationships 

in antibiotic use patterns. 

CT-PASMR identified similar trends. Models like the 

LSTM-based LEAP recorded short-term visit patterns but 

scored lower on Jaccard, F1, and recall [1]. Adding 

transformer attention improved performance by roughly 5-
10%, highlighting its ability to capture broader patient 

history. 

[2] argues that while the variational autoencoder baseline 

produced useful embeddings, it could not model patient 

trajectories over time. Transformer-based embeddings 

performed about 8-12% better in downstream disease 

forecasting. Overall, deep learning models provided solid 

baselines, but transformers consistently delivered stronger 

results, especially for tasks that require long-range 

reasoning or richer clinical context. 

3) BERT-based Baselines 

Domain-specific BERT models have shown clear 

advantages over the general BERT model in biomedical 

and clinical tasks [33], [39]. General BERT often struggles 

with the specialised terms, abbreviations, and gene or 

disease names that appear in scientific and clinical writing 

[62]. As a result, models trained on biomedical text 
consistently outperform standard BERT with named‑entity 

recognition and relation extraction [31], [36]. 

With BioBERT, domain knowledge helped it identify 

genes, diseases, and relationships more accurately than 

TF‑IDF and other statistical baselines [31]. 

Bio‑Clinical‑BERT also demonstrated stronger 

performance than general BERT when analysing triage 

notes and EHR narratives [36]. Domain‑specific BERT 

models provide deeper contextual understanding and more 

reliable clinical results. This makes them stronger baselines 

than the original BERT model for healthcare applications. 
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4) Traditional Statistical or Rule-Based Models 

The TF-IDF and K-means approach produces very weak 

clustering quality, with a Silhouette score of just 0.05 [34]. 

In contrast, the transformer-based model achieved a 

Silhouette score of 0.36. This illustrates how statistical 
methods struggle to capture the complex temporal and 

multi-comorbidity patterns present in real patient data. 

Also, TF-IDF clustering and statistical baselines cannot 

manage synonym variation or the specialised structure of 

biomedical text. As a result, the models cannot accurately 

recognise biomedical entities or extract relationships [31]. 

Rule-based and statistical models are computationally 

efficient and easy to interpret [63]. However, they have 

limited flexibility, especially when dealing with large, 

heterogeneous clinical datasets [64]. [34] highlights the 

TF-IDF + K-means pipeline produced a low Calinski–

Harabasz score of 2,191, compared to the transformer's 
23,371 score.  

Traditional methods cannot differentiate ambiguities 

within gene symbols[34]. These findings show that rule-

based and statistical approaches consistently underperform 

compared to transformer-based architectures. 

Across the 14 studies, transformer architectures that 

combine longitudinal self-attention with biomedical pre-

training (e.g., BEHRT-family variants) consistently 

outperform recurrent and classical baselines on disease 

prediction and phenotyping, particularly where long-range 

temporal dependencies dominate. However, gains are 
attenuated on small or single-institution cohorts and in 

settings with high missingness, indicating sensitivity to 

data quality and cohort shift. Hybrid designs that integrate 

temporal attention with task-specific heads (e.g., 

medication recommendation) show the most reliable 

improvements, while purely generic encoders exhibit 

greater variance across tasks. 

 
H. Implications 

1) Theoretical Implications 

Theoretically, transformers can capture long-range and 

non-linear relationships in data. The relationships make the 

models adaptive. The non-Markovian attention mechanism 

leverages them to model complex and irregular 

connections between molecular, clinical, and textual data 

[54]. Older sequential models, such as RNNs fail to achieve 

this ability. This strength reflects principles from systems 

biology, which view disease as a network of interconnected 

omics and clinical factors [46], [65]. This way, the 
transformer's predictions of disease projections are 

improved. It also offers a theoretical basis that pushes the 

field toward truly integrated precision medicine. 

2) Practical Implications 

Transformer-based models have revolutionised 

healthcare with new applications of AI. Adding various 
interpretability aids, such as attention heatmaps and 

attribution methods, can accelerate their clinical adoption. 

Interpretability increases the system’s transparency and 

trustworthiness, which supports acceptance among 

clinicians and regulators [34], [37]. 

Pretrained models like Bio-Clinical-BERT and task-

specific architectures like LNet can be fine-tuned 

efficiently, lowering computational barriers for use in 

smaller or data-scarce health systems.  

However, high computational costs and unequal data 

representation still threaten bias, accessibility and 

reliability in real-world settings [50], [66]. 

 

I. Limitations of Study 

The study only reviewed papers in four databases, IEEE, 

PubMed, ACM Digital Library and ScienceDirect. This 

selection neglects other studies available in other databases 

but not in the ones chosen for this study. Exclusion of 

studies with models trained or papers written in languages 

other than English introduces bias to the study. It misses 

other architectural designs used for different linguistic data 

and useful research in other languages. Also, the studies 

included in the study focused on EHRs or omics data, 

neglecting other modalities such as medical images and 

radiology reports. This narrow data scope undermines the 

full capabilities of transformer models emerging in 
healthcare. 

 

J. Future Works 

Future research should focus on bridging interpretability 

and generalisation limitations within healthcare AI models. 

Transformer frameworks should incorporate explainable 

artificial intelligence. They should also integrate omics and 

multi-omics data with EHRs. Omics and multi-omics 

reveal the basic principles of biological functions. 

Therefore, with EHRs classification and health predictions, 

models can learn reasons for patient trajectories. 

Explainability proves AI models’ reliability and 

trustworthiness, which determines their adoption in 
healthcare settings. 

Moreover, the research should train models on diverse 

modalities. This is to ensure ethnic groups' health and 

biological patterns are recognised by models. Developing 

models like RarePT, which can be applied to diverse health 

care instances regardless of race, ethnicity or hospital, can 

also increase generalisability.  

 

IV. CONCLUSION 

This systematic review demonstrates how transformer 

architectures are enhancing biological insights through the 

integration and interpretability of EHRs and omics. They 
learn longitudinal temporal dependencies. Models such as 

CT-PASMR, Bio-Clinical-BERT, and LNet Transformer 

exemplify how self-attention mechanisms can optimise 
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medication recommendations, improve hospitalisation 

prediction, and integrate multi-omics signals for disease 

manifestation. 

Despite these advances, studies remain largely EHR-

centric. Omics integration remains limited, undermining 

the understanding of biomarkers, functional pathways and 

mechanisms. Limited generalisability due to single-

institution data or small cohorts, computational 

inefficiency, missing data, or interpretability challenges 

remain within models. 
Overall, transformers are a game-changer for biomedical 

data fusion. Their capacity for hierarchical learning with 

contextual awareness has improved predictive accuracy, 

interpretability and model trustworthiness.  

For clinicians, transformer-based systems offer 

enhanced risk stratification and decision support but 

require transparent explanations to support trust and safety. 

For researchers, findings highlight the need for multimodal 

datasets, robust external validation, and standardised 

interpretability evaluation. For developers of clinical 

decision support systems, scalable architectures and 
efficient training strategies are essential for real-world 

deployment. Addressing these challenges will be critical to 

translating transformer-based models from experimental 

studies into routine clinical practice. 
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