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 Early and accurate classification of breast cancer is essential to support clinical 

diagnostic processes and improve patient outcomes. This study proposes a 
comprehensive machine learning pipeline based on Gradient Boosted Tree 

algorithms to classify breast tumors into benign and malignant categories. The 

proposed framework integrates several preprocessing stages, including outlier 

handling using the Local Outlier Factor (LOF), feature normalization with 

StandardScaler, class imbalance handling using SMOTE, and feature selection 

through ANOVA-based SelectKBest. Five ensemble learning models—XGBoost, 

LightGBM, CatBoost, HistGradientBoosting, and GradientBoosting—were trained 

and evaluated using accuracy, precision, recall, F1-score, and ROC-AUC metrics. 

The experimental results show that all models achieved strong and comparable 

classification performance. Among them, CatBoost obtained the highest ROC-AUC 

value of 0.9960, along with an accuracy of 0.9649, precision of 0.9750, recall of 
0.9286, and F1-score of 0.9512. Statistical evaluation using the DeLong test 

indicated that the differences in ROC-AUC among the evaluated models were not 

statistically significant (p > 0.05), suggesting similar discriminative capabilities 

across models. To enhance model interpretability, SHAP (SHapley Additive 

exPlanations) was applied to the CatBoost model as a representative classifier. The 

results show that features related to nuclear size and shape, such as radius, area, 

perimeter, and concavity, contributed most significantly to malignant predictions. 

This study demonstrates that the integration of robust preprocessing techniques, 

Gradient Boosted Tree models, and explainable machine learning provides an 

accurate and interpretable approach for breast cancer classification. However, the 

evaluation was conducted on a single public dataset without external validation, and 

further studies using independent and real-world datasets are required before clinical 
deployment. 
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I. PENDAHULUAN 

Kanker payudara adalah keganasan yang terjadi pada 

jaringan payudara dan dapat berkembang dari epitel duktus 

maupun lobulus yang menjadi salah satu jenis kanker yang 

paling banyak ditemukan di Indonesia [1]. Kanker payudara 
adalah penyebab utama kematian akibat kanker pada 

perempuan di Indonesia, selain itu menurut data dari 

GLOBOCAN (Global Burden of Cancer) yang dirilis oleh 

International Agency for Research on Cancer (IARC) 

menunjukkan bahwa pada 2018 tercatat 18,1 juta kasus 

kanker baru dan 9,6 juta kematian karena kanker secara 

global [2], [3]. Pada tahun 2022 tercatat 66.271 kasus baru 

dan 22.598 kematian atau sekitar 64 perempuan meninggal 

setiap hari akibat kanker payudara [4]. Permasalahan kanker 

payudara di Indonesia semakin memprihatinkan karena lebih 

dari 60% pasien kanker payudara baru memeriksakan diri ke 

dokter ketika penyakit sudah mencapai stadium lanjut [5]. 

Jika terdeteksi pada stadium dini, peluang bertahan hidup 

hingga lima tahun dapat melampaui 97%, sedangkan pada 
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stadium lanjut turun menjadi kurang dari 20%; sejalan 

dengan itu, data BPJS Kesehatan menunjukkan angka 
kelangsungan hidup lima tahun kanker payudara di Indonesia 

sebesar 56,8% [4]. Tingkat deteksi dini yang rendah serta 

keterlambatan penanganan kanker payudara tidak hanya 

disebabkan kurangnya kesadaran pasien, tetapi juga oleh 

keterbatasan metode diagnosis konvensional seperti 

mammografi dan biopsi yang bergantung pada interpretasi 

manual tenaga medis sehingga rentan menghasilkan 

diagnosis yang kurang akurat, terutama pada kasus dengan 

karakteristik sel yang sulit dibedakan antara jinak dan ganas 

[6], [7]. Perkembangan teknologi kecerdasan buatan 

(Artificial Intelligence) dan pembelajaran mesin (Machine 

Learning) telah membawa kemajuan besar di sektor 
kesehatan, terutama dalam hal diagnosis dan prediksi 

penyakit yang didasarkan pada data medis [8]. Dengan 

adanya keterbatasan metode konvensional mendorong 

perlunya pemanfaatan teknologi machine learning yang 

mampu mengolah data medis dengan lebih cepat dan akurat 

serta mengenali pola kompleks dalam data klinis untuk 

meningkatkan ketepatan identifikasi kanker pada tahap awal 

[9]. 

Salah satu pendekatan machine learning yang populer 

adalah ensemble learning, yaitu metode yang 

menggabungkan beberapa model untuk meningkatkan 
akurasi dan kestabilan hasil [10]. Berkembangnya metode 

Gradient Boosted Trees (GBT) sebagai salah satu bentuk 

ensemble yang lebih canggih dan efektif, dengan 

menggabungkan banyak pohon keputusan secara berurutan, 

di mana setiap pohon dilatih untuk mengoreksi error pohon 

sebelumnya, sehingga mampu menangkap pola kompleks 

secara lebih efektif dibandingkan metode tradisional [11]. 

Penelitian terdahulu, pada prediksi diabetes mellitus, 

LightGBM dan XGBoost mampu mencapai akurasi di atas 

97% menunjukkan superioritas boosting dalam menangkap 

pola klinis non-linear yang sulit ditangani model tradisional 

[12]. XGBoost mencapai akurasi 93,83% pada klasifikasi 
kanker paru-paru dan tetap stabil pada berbagai skenario 

pembagian data, menunjukkan konsistensinya pada dataset 

besar [13]. Dengan kombinasi metode seleksi fitur mRMR 

dengan LightGBM menghasilkan akurasi 98% untuk 

prediksi kanker payudara [14]. LightGBM menunjukkan 

performa tertinggi dengan akurasi 95,3%, recall 94,8%, 

precision 95,5%, dan AUC 0.987, menegaskan 

superioritasnya dalam klasifikasi kanker payudara berbasis 

boosting [15]. Penggunaan Gradient Boosting Classifier 

dalam sistem pendukung keputusan klinis mampu 

mengidentifikasi lebih dari 98% kasus high-alert drug 
mismatch pada data uji dan 99% pada data evaluasi [16]. 

HistGradientBoosting terbukti memberikan hasil terbaik 

dibanding model lain seperti Logistic Regression, Random 

Forest, AdaBoost, dan Gradient Boosting konvensional, 

terutama pada metrik AUC > 0.99 untuk dua dataset utama 

dengan akurasi 96,25% dan 96,48% [17]. Model CatBoost 

mencapai AUC 0.836 dan F1-Score 0.735 pada prediksi 

rawat inap pasien gagal gantung lansia, sementara analisis 

SHAP mengidentifikasi HGB, NT-proBNP, dan riwayat 
merokok sebagai prediktor paling berpengaruh [18]. Pada 

kerangka semi-supervised learning berbasis CT-radiomics 

dan XGBoost yang mampu mencapai akurasi 0.90 pada 

prediksi keselamatan hidup kanker paru, dengan SHAP yang 

menunjukkan peningkatan separabilitas fitur tekstur akibat 

pemanfaatan data tak berlabel [19]. Pengembangan pipeline 

prediksi diabetes yang menggabungkan SMOTE, seleksi 

fitur, dan interpretasi SHAP untuk menghasilkan model yang 

akurat sekaligus transparan, di mana fitur seperti usia, 

tekanan darah, dan BMI terbukti sebagai prediktor dominan 

[20]. Penggunaan algoritma tree-ensemble seperti Random 

Forest, XGBoost, dan LightGBM mampu mencapai akurasi 
hingga 97,38% dalam klasifikasi risiko kanker paru, 

sementara integrasi SHAP dan LIME memberikan 

interpretasi visual yang transparan untuk mendukung tenaga 

medis dalam memahami faktor risiko utama 

pada setiap prediksi [21]. XGBoost mencapai akurasi 87,4% 

dengan AUC 0,949 dalam memprediksi risiko penyakit 

kardiovaskular pada pasien diabetes berbasis asupan 

antioksidan, sementara analisis SHAP mengidentifikasi 

Daidzein, magnesium, dan EGCG sebagai fitur paling 

berpengaruh dalam keputusan model [22]. 

Dengan demikian, penelitian ini diposisikan untuk 
memperluas kajian komparatif terhadap lima varian algoritma 

Gradient Boosted Trees dalam satu rancangan eksperimen 

yang konsisten dan terstruktur. Berbeda dengan sebagian 

besar penelitian sebelumnya yang umumnya berfokus pada 

optimalisasi performa satu atau dua algoritma tertentu, studi 

ini menyajikan perbandingan sistematis antar beberapa model 

boosting dalam satu pipeline yang sama, sehingga 

memungkinkan evaluasi yang lebih adil dan komprehensif. 

Selain aspek performa, penelitian ini juga 

mempertimbangkan interpretabilitas model melalui 

pendekatan Explainable Artificial Intelligence (XAI) berbasis 

SHAP sebagai dasar analisis transparansi keputusan model. 
Meskipun berbagai studi terdahulu telah menunjukkan 

bahwa algoritma boosting mampu menghasilkan performa 

tinggi pada klasifikasi data medis, ruang kajian yang 

mengaitkan preprocessing, evaluasi multi-metrik, dan 

interpretabilitas model dalam satu kerangka eksperimen yang 

terintegrasi masih relatif terbatas. Padahal, dalam konteks 

kesehatan, transparansi dan keterjelasan alasan di balik 

keputusan model sama pentingnya dengan akurasi prediksi. 

Oleh karena itu, diperlukan kajian komparatif yang tidak 

hanya membandingkan performa numerik, tetapi juga mampu 

menjelaskan kontribusi fitur terhadap keputusan model secara 
global maupun lokal. 

Berdasarkan kebutuhan tersebut, penelitian ini menyajikan 

studi komparatif terhadap lima algoritma Gradient Boosted 

Trees, yaitu XGBoost, LightGBM, CatBoost, 

HistGradientBoosting, dan GradientBoosting, untuk 

klasifikasi kanker payudara dalam satu rancangan eksperimen 

yang konsisten. Penelitian ini mengintegrasikan pipeline 
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preprocessing yang komprehensif, meliputi pembersihan 
data, deteksi dan penghapusan outlier menggunakan Local 

Outlier Factor (LOF), normalisasi fitur, penyeimbangan 

kelas menggunakan SMOTE, serta seleksi fitur berbasis 

ANOVA melalui SelectKBest untuk memperoleh fitur tumor 

yang paling relevan. Evaluasi performa dilakukan 

menggunakan pendekatan multi-metrik, yaitu accuracy, 

precision, recall, F1-score, dan ROC-AUC, serta dilengkapi 

dengan uji signifikansi statistik menggunakan DeLong test 

untuk membandingkan perbedaan ROC-AUC antar model. 

Hasil penelitian menunjukkan bahwa seluruh model 

menghasilkan performa klasifikasi yang tinggi dan relatif 

sebanding, di mana CatBoost memperoleh nilai ROC-AUC 
tertinggi. Namun demikian, uji DeLong menunjukkan bahwa 

perbedaan performa antar model tidak signifikan secara 

statistik. Untuk meningkatkan transparansi dan kepercayaan 

terhadap model, analisis SHAP diterapkan pada model 

CatBoost sebagai model representatif guna 

menginterpretasikan kontribusi fitur secara global dan lokal. 

Analisis ini menunjukkan bahwa fitur-fitur yang berkaitan 

dengan ukuran dan bentuk inti sel tumor, seperti area, 

perimeter, dan concave points, memiliki pengaruh dominan 

terhadap prediksi keganasan. Dengan demikian, kontribusi 

utama penelitian ini terletak pada penyajian evaluasi yang 
mengintegrasikan aspek performa dan interpretabilitas dalam 

satu pipeline terstruktur, sehingga tidak hanya 

mengidentifikasi model dengan performa terbaik secara 

numerik, tetapi juga menjelaskan dasar pengambilan 

keputusan model secara transparan dan relevan secara klinis. 

 

II. METODE  

 
Gambar 1 Alur Penelitian 

A. Akuisisi Data 

Data yang digunakan dalam penelitian ini diperoleh 

melalui proses akuisisi data sekunder, yaitu pengambilan 

dataset yang telah tersedia secara publik dari platform Kaggle 

[23]. Dataset yang digunakan berjudul Breast Cancer Dataset 
yang dikembangkan oleh YasserH. Dataset ini terdiri dari 569 

sampel data sel payudara, yang dikategorikan menjadi dua 

kelas, yaitu Malignant (ganas) sebanyak 212 sampel dan 

Benign (jinak) sebanyak 357 sampel. Setiap sampel data 

direpresentasikan dalam 32 kolom atribut, yang mencakup 

satu atribut label diagnosis dan 31 fitur numerik hasil 

ekstraksi karakteristik morfologi inti sel epitel payudara dari 

citra digital. Proses akuisisi dilakukan dengan cara 

mengunduh dataset dalam format CSV dari Kaggle, 

kemudian memuatnya ke dalam lingkungan pemrograman 

Python menggunakan pustaka pandas untuk keperluan 

eksplorasi dan pemrosesan lebih lanjut. 

B. Pra-Pemrosesan Data  

Tahap pemrosesan data dilakukan untuk memastikan 

dataset berada dalam kondisi yang konsisten, bersih, dan siap 

digunakan pada tahap berikutnya. Langkah awal pada pra-

pemrosesan data adalah pembersihan data dengan 

menyesuaikan penamaan atribut pada beberapa kolom, 

seperti 'concave points_mean' dan 'concave points_worst', 

diubah menjadi 'concave_points_mean' dan 
'concave_points_worst', proses ini dilakukan untuk 

menghilangkan spasi yang dapat mengganggu proses 

pemanggilan variabel, kolom id dihapus karena tidak 

memiliki kontribusi terhadap proses klasifikasi. Selanjutnya, 

kolom diagnosis yang semula bertipe kategorikal dikodekan 

ke dalam bentuk numerik, dengan nilai 0 merepresentasikan 

kelas jinak (Benign) dan nilai 1 merepresentasikan kelas 

ganas (Malignant). Proses pengkodean ini bertujuan agar 

label kelas dapat diproses oleh algoritma pembelajaran mesin. 

Setelah itu, dataset dipisahkan ke dalam matriks fitur (X) 

yang terdiri dari 30 fitur numerik dan vektor target (y) yang 

berisi label kelas. Distribusi kelas menunjukkan 357 sampel 
kelas jinak dan 212 sampel kelas ganas. Dataset yang telah 

melalui tahap pra-pemrosesan ini selanjutnya digunakan pada 

tahap eksplorasi data lanjutan, pembagian data, serta 

pemodelan dan evaluasi kinerja model. 

C. Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA) adalah pendekatan 

sistematis dalam menganalisis data yang dirancang untuk 

mengeksplorasi dan memahami struktur serta karakteristik 
fundamental dari suatu dataset [24]. Pada tahap eksplorasi 

data, dilakukan analisis menyeluruh terhadap Breast Cancer 

Dataset untuk memahami struktur, karakteristik, dan 

distribusi data sebelum memasuki proses preprocessing dan 

pemodelan selanjutnya. Analisis awal dilakukan dengan 

meninjau struktur dataset menggunakan fungsi inspeksi data 

untuk mengetahui jumlah sampel, jumlah atribut, tipe data, 

serta keberadaan nilai hilang. Visualisasi distribusi kelas 

dilakukan untuk melihat proporsi data Malignant dan Benign, 

yang menunjukkan adanya ketidakseimbangan kelas dalam 

dataset. Selanjutnya, Untuk memahami perbedaan 

karakteristik fitur antar kelas, dilakukan analisis statistik 
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deskriptif dengan menghitung nilai rata-rata setiap fitur 

berdasarkan kelas diagnosis. Analisis hubungan antar fitur 
dilakukan menggunakan heatmap korelasi untuk 

mengidentifikasi tingkat keterkaitan antar atribut. Heatmap 

korelasi menunjukkan adanya korelasi tinggi antar beberapa 

fitur yang berkaitan dengan ukuran dan bentuk inti sel, 

seperti radius, perimeter, dan area. Temuan ini 

mengindikasikan potensi redundansi fitur dan mendukung 

penerapan seleksi fitur pada tahap pemodelan. Analisis 

hubungan antar fitur dilakukan menggunakan heatmap 

korelasi untuk mengidentifikasi keterkaitan antar atribut. 

Hasil analisis menunjukkan adanya korelasi tinggi pada 

beberapa fitur yang berkaitan dengan ukuran dan bentuk inti 

sel, sehingga mengindikasikan potensi redundansi fitur dan 
mendukung penerapan seleksi fitur. Selain itu, visualisasi 

boxplot dan Kernel Density Estimation (KDE) digunakan 

untuk menganalisis sebaran serta perbedaan distribusi fitur 

antara kelas jinak dan ganas. Hasil visualisasi menunjukkan 

perbedaan distribusi yang jelas pada sebagian besar fitur 

utama, yang mengindikasikan potensi separabilitas kelas 

sebelum proses pemodelan. 

D. Split Data 

Tahap split data dilakukan untuk membagi dataset 

menjadi data latih (training set) dan data uji (testing set) 

sebelum proses pemodelan. Pembagian ini bertujuan 

memastikan bahwa model dievaluasi menggunakan data 

yang tidak pernah dilihat sebelumnya sehingga hasil 

pengujian lebih objektif dan tidak bias. Pada penelitian ini 

digunakan fungsi train_test_split dengan proporsi 80% 

sebagai data latih dan 20% sebagai data uji. 

E. Pipeline Preprocessing 

Tahap preprocessing berperan penting dalam memastikan 

bahwa data yang dimanfaatkan adalah data yang berkualitas 

baik, lebih mudah dianalisis, dan mampu menghasilkan 

kesimpulan yang lebih tepat dan bermakna [25]. Untuk 

memastikan konsistensi proses serta mencegah terjadinya 

data leakage, tahapan preprocessing lanjutan diintegrasikan 

ke dalam sebuah pipeline yang diterapkan hanya pada data 

pelatihan. Pipeline preprocessing dirancang untuk 

menangani permasalahan perbedaan skala fitur, keberadaan 

outlier, ketidakseimbangan kelas, serta redundansi fitur 

secara terstruktur dan berurutan. Tahap pertama dalam 
pipeline adalah feature scaling menggunakan 

StandardScaler, yang menstandarisasi setiap fitur agar 

memiliki nilai rata-rata nol dan standar deviasi satu. 

Normalisasi ini diperlukan untuk memastikan bahwa seluruh 

fitur berada pada skala yang sebanding sehingga tidak 

mendominasi proses pembelajaran model. Tahap berikutnya 

adalah penanganan outlier menggunakan metode Local 

Outlier Factor (LOF). Metode Local Outlier Factor (LOF) 

diterapkan untuk mendeteksi dan menghapus outlier 

sehingga distribusi data menjadi lebih stabil, karena metode 

ini menilai anomali berdasarkan perbandingan kerapatan 

lokal setiap titik data terhadap tetangganya sehingga 

efektivitas deteksi tetap terjaga meskipun dataset memiliki 
ukuran besar dan fitur yang kompleks [26]. Selanjutnya, 

penyeimbangan kelas dilakukan menggunakan Synthetic 

Minority Over-sampling Technique (SMOTE). Metode ini 

digunakan untuk mengatasi ketidakseimbangan kelas dengan 

menghasilkan sampel sintetis pada kelas minoritas, sehingga 

distribusi kelas pada data pelatihan menjadi lebih seimbang 

dan model dapat belajar secara lebih representatif. Tahap 

terakhir dalam pipeline adalah seleksi fitur menggunakan 

SelectKBest berbasis uji statistik ANOVA. Metode ini 

digunakan untuk memilih sejumlah fitur dengan kontribusi 

paling signifikan terhadap target klasifikasi. Dengan 

mengurangi jumlah fitur yang redundan atau kurang relevan, 
proses ini bertujuan untuk meningkatkan efisiensi komputasi 

serta kemampuan generalisasi model [27]. 

F. Pemodelan 

Tahap pemodelan dilakukan dengan menerapkan lima 

algoritma Gradient Boosted Trees untuk melakukan 

klasifikasi kanker payudara, yaitu XGBoost, LightGBM, 

CatBoost, HistGradientBoosting, dan GradientBoosting. 

Kelima algoritma ini dipilih karena kemampuannya dalam 
menangani data non-linear serta performanya yang baik pada 

permasalahan klasifikasi berbasis data medis. Setiap model 

dilatih menggunakan pipeline preprocessing yang sama untuk 

memastikan konsistensi dan keadilan dalam proses 

perbandingan. Pipeline ini mencakup proses normalisasi 

fitur, penanganan outlier, penyeimbangan kelas, serta seleksi 

fitur, yang seluruhnya diterapkan hanya pada data pelatihan 

untuk mencegah terjadinya data leakage. Proses pelatihan 

model dilakukan dengan menyesuaikan parameter dasar 

masing-masing algoritma dan menggunakan nilai random 

state yang sama untuk memastikan reprodusibilitas hasil 

eksperimen. Setelah model dilatih, kinerja model dievaluasi 
menggunakan data pengujian yang tidak terlibat dalam proses 

pelatihan. 

G. Evaluasi Model 

Tahap evaluasi dilakukan dengan mengukur performa 

model pada data uji menggunakan metrik akurasi, presisi, 

recall, dan F1-score melalui classification report untuk 

menilai ketepatan serta keseimbangan kinerja klasifikasi. 

Selain itu, confusion matrix divisualisasikan menggunakan 
heatmap untuk melihat distribusi prediksi benar dan salah 

pada tiap kelas, yang penting dalam konteks kesehatan untuk 

mencegah salah diagnosis pada kasus Malignant. Evaluasi 

juga mencakup analisis kurva ROC dan nilai AUC untuk 

menilai kemampuan model membedakan kelas positif dan 

negatif secara lebih komprehensif.  

H. Uji Signifikan Statistik (DeLong Test) 

Uji signifikansi statistik dilakukan untuk menilai apakah 

perbedaan kinerja antar model klasifikasi bersifat signifikan 
secara statistik. Dalam penelitian ini, uji DeLong digunakan 
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untuk membandingkan nilai area under the receiver operating 
characteristic curve (ROC-AUC) antar model, karena uji ini 

secara khusus dirancang untuk membandingkan dua kurva 

ROC yang dihasilkan dari dataset pengujian yang sama. Uji 

DeLong diterapkan dengan menghitung nilai ROC-AUC dari 

dua model yang dibandingkan, kemudian memperkirakan 

kovarians dari perbedaan AUC menggunakan pendekatan 

non-parametrik. Perhitungan ini mempertimbangkan 

keterkaitan antar prediksi model terhadap sampel data yang 

sama, sehingga memberikan estimasi varians yang lebih 

akurat dibandingkan metode perbandingan sederhana. Dalam 

implementasinya, probabilitas prediksi dari masing-masing 

model diurutkan berdasarkan label kelas aktual, kemudian 
digunakan untuk menghitung nilai mid-rank dan kovarians 

AUC. Selanjutnya, nilai statistik z dihitung berdasarkan 

selisih AUC dan variansnya, dan nilai p-value diperoleh dari 

distribusi normal baku. Nilai p-value digunakan untuk 

menentukan signifikansi perbedaan kinerja antar model, 

dengan tingkat signifikansi yang ditetapkan sebesar 0,05. 

Hasil uji DeLong disajikan dalam bentuk tabel perbandingan 

yang memuat nilai AUC masing-masing model, selisih AUC, 

serta p-value. Uji ini digunakan sebagai dasar untuk menilai 

apakah model dengan performa numerik tertinggi benar-

benar unggul secara statistik, atau apakah perbedaan 
performa antar model bersifat tidak signifikan. 

I. Interpretabilitas Model 

Interpretasi model pada penelitian ini dilakukan 

menggunakan pendekatan Shapley Additive Explanations 

(SHAP) untuk memperoleh pemahaman yang komprehensif 

terhadap perilaku model CatBoost sebagai model 

representatif dengan nilai ROC-AUC tertinggi. Analisis 

interpretabilitas global dilakukan menggunakan summary 

plot dan nilai rata-rata absolut SHAP (mean absolute SHAP 
value) untuk mengidentifikasi fitur-fitur yang memberikan 

kontribusi terbesar terhadap keputusan klasifikasi. Hasil 

analisis menunjukkan bahwa fitur-fitur yang berkaitan 

dengan ukuran dan bentuk inti sel, seperti radius_mean, 

area_mean, perimeter_mean, dan concave_points_mean, 

memiliki pengaruh dominan dalam membedakan antara 

kelas Malignant dan Benign, sehingga memberikan 

justifikasi statistik terhadap pentingnya fitur-fitur tersebut. 

Selain itu, interpretasi lokal dilakukan untuk menilai 

pengaruh individual setiap fitur terhadap prediksi pada 

sampel data tertentu, sehingga memungkinkan penelusuran 
faktor spesifik yang mendorong model menghasilkan 

keputusan klasifikasi tertentu. Pendekatan interpretabilitas 

secara global dan lokal ini meningkatkan transparansi model 

serta memperkuat kepercayaan terhadap hasil prediksi, 

sehingga model yang dihasilkan tidak hanya menunjukkan 

performa yang tinggi, tetapi juga dapat 

dipertanggungjawabkan dan relevan secara klinis dalam 

mendukung pengambilan keputusan diagnosis kanker 

payudara. 

III. HASIL DAN PEMBAHASAN 

A. Akuisisi Data 

Dataset yang digunakan dalam penelitian ini diperoleh 

dari platform Kaggle dan merupakan dataset publik yang 

banyak digunakan dalam penelitian klasifikasi kanker 

payudara. Dataset ini berisi 569 sampel data tumor payudara 

yang diklasifikasikan ke dalam dua kelas, yaitu Benign 

(jinak) dan Malignant (ganas). Distribusi kelas terdiri dari 

357 sampel Benign dan 212 sampel Malignant, yang 

menunjukkan adanya ketidakseimbangan kelas dengan 
dominasi sampel jinak. Setiap sampel data direpresentasikan 

oleh 30 fitur numerik yang menggambarkan karakteristik 

morfologi inti sel epitel payudara hasil ekstraksi dari citra 

digital. Fitur-fitur tersebut mencakup karakteristik ukuran inti 

sel, seperti radius, perimeter, dan area karakteristik bentuk 

dan ketidakrataan kontur, seperti compactness, concavity, 

dan concave points,serta karakteristik tekstur dan simetri, 

seperti texture, smoothness, symmetry, dan fractal 

dimension. Secara struktural, fitur-fitur dalam dataset 

dikelompokkan ke dalam tiga jenis pengukuran, yaitu nilai 

rata-rata (mean), standar deviasi/galat (standard error, se), 
dan nilai ekstrem (worst) dari masing-masing karakteristik 

inti sel. Pembagian ini memungkinkan model untuk 

menangkap informasi tidak hanya dari nilai tipikal suatu fitur, 

tetapi juga dari variasi dan nilai ekstrem yang sering berkaitan 

dengan tingkat keganasan sel tumor. Berdasarkan 

karakteristik tersebut, dataset ini menyediakan informasi 

yang kaya dan relevan untuk membedakan antara tumor jinak 

dan ganas, serta sesuai digunakan sebagai dasar 

pengembangan dan evaluasi model klasifikasi kanker 

payudara. 

B. Pra-Pemrosesan Data 

Tahap pemrosesan data dilakukan untuk memastikan 

dataset berada dalam kondisi yang konsisten, bersih, dan siap 

digunakan pada tahap berikutnya. Langkah awal pada pra-

pemrosesan data adalah pembersihan data dengan 

menyesuaikan penamaan atribut pada beberapa kolom, 

seperti 'concave points_mean' dan 'concave points_worst', 

diubah menjadi 'concave_points_mean' dan 

'concave_points_worst', proses ini dilakukan untuk 

menghilangkan spasi yang dapat mengganggu proses 
pemanggilan variabel, kolom id dihapus karena tidak 

memiliki kontribusi terhadap proses klasifikasi. Selanjutnya, 

kolom diagnosis yang semula bertipe kategorikal dikodekan 

ke dalam bentuk numerik, dengan nilai 0 merepresentasikan 

kelas jinak (Benign) dan nilai 1 merepresentasikan kelas 

ganas (Malignant). Proses pengkodean ini bertujuan agar 

label kelas dapat diproses oleh algoritma pembelajaran mesin. 

Setelah itu, dataset dipisahkan ke dalam matriks fitur (X) 

yang terdiri dari 30 fitur numerik dan vektor target (y) yang 

berisi label kelas. Distribusi kelas menunjukkan bahwa 

dataset bersifat tidak seimbang, dengan 357 sampel kelas 

jinak dan 212 sampel kelas ganas. Dataset yang telah melalui 
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tahap pra-pemrosesan ini selanjutnya digunakan pada tahap 

eksplorasi data lanjutan, pembagian data, serta pemodelan 
dan evaluasi kinerja model. 

C. Exploratory Data Analysis (EDA) 

Hasil Exploratory Data Analysis (EDA) memberikan 

gambaran awal mengenai karakteristik dataset kanker 

payudara yang digunakan dalam penelitian ini. Dataset 

terdiri dari 569 sampel dengan 30 fitur numerik dan satu label 

kelas diagnosis, serta tidak ditemukan nilai hilang pada 

seluruh atribut. Hal ini menunjukkan bahwa dataset berada 

dalam kondisi yang baik dan layak untuk digunakan pada 
tahap analisis dan pemodelan lanjutan.  

Analisis distribusi kelas menunjukkan bahwa dataset 

terdiri dari 357 sampel kelas jinak (Benign) dan 212 sampel 

kelas ganas (Malignant). Distribusi ini mengindikasikan 

adanya ketidakseimbangan kelas, di mana proporsi sampel 

jinak lebih besar dibandingkan sampel ganas. Kondisi 
ketidakseimbangan ini berpotensi memengaruhi proses 

pembelajaran model, khususnya dalam mengenali kelas 

minoritas, sehingga diperlukan penerapan teknik 

penyeimbangan kelas pada tahap preprocessing untuk 

meningkatkan kinerja klasifikasi.  

 

TABEL 1  

CONTOH STATISTIK DESKRIPTIF 5 FITUR 

Fitur 
Diagnosis 

0 1 

area_worst 558.899440 1422.286321 

area_mean 462.790196 978.376415 

perimeter_worst 87.005938 141.370330 

perimeter_mean 78.075406 115.365377 

area_se 21.135148 72.672406 

Pada tabel 1 analisis statiktik deskriptif berdasarkan nilai 

rata-rata fitur pada masing-masing kelas memperlihatkan 

perbedaan karakteristik yang cukup jelas antara kelas jinak 

(Benign) dan ganas (Malignant). Sebagian besar fitur 

menunjukkan nilai rata-rata yang lebih tinggi pada kelas 

ganas, khususnya fitur-fitur yang berkaitan dengan ukuran 

inti sel seperti radius, perimeter, dan area. Hal ini 

mengindikasikan bahwa sel ganas cenderung memiliki 
ukuran inti yang lebih besar dan struktur yang lebih 

kompleks dibandingkan sel jinak, yang sejalan dengan 

karakteristik biologis kanker payudara.  

 
Gambar 2 Heatmap Korelasi 

Dari gambar 3, Hasil visualisasi heatmap korelasi 

memperlihatkan adanya korelasi yang sangat kuat antar 

beberapa fitur, terutama fitur-fitur yang merepresentasikan 

ukuran inti sel, seperti radius_mean, perimeter_mean, dan 

area_mean, serta padanan fitur worst-nya. Tingginya korelasi 

ini menunjukkan adanya redundansi informasi antar fitur, 

yang berpotensi meningkatkan kompleksitas model tanpa 

memberikan informasi tambahan yang signifikan. Oleh 
karena itu, temuan ini mendukung penerapan seleksi fitur 

pada tahap pemodelan untuk meningkatkan efisiensi dan 

kemampuan generalisasi model. 

 

 
Gambar 3 Contoh Visualisasi Boxplot Analsis Outlier Awal 5 Fitur 

Gambar 4 visualisasi boxplot digunakan untuk 
menganalisis sebaran nilai fitur pada masing-masing kelas 

serta mengidentifikasi potensi outlier. Hasil boxplot 

menunjukkan bahwa pada sebagian besar fitur utama, kelas 

ganas memiliki median nilai yang lebih tinggi serta rentang 

distribusi yang lebih lebar dibandingkan kelas jinak. Selain 

itu, keberadaan nilai ekstrem pada beberapa fitur 

mengindikasikan adanya sampel dengan karakteristik yang 

menyimpang, yang berpotensi memengaruhi proses 

pembelajaran model apabila tidak ditangani dengan baik. 

D. Split Data 

Hasil pembagian data menunjukkan bahwa dataset dibagi 

menjadi data latih (training set) dan data uji (testing set) 
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dengan proporsi 80% : 20% menggunakan metode stratified 
split. Pendekatan ini digunakan untuk memastikan bahwa 

proporsi kelas jinak (Benign) dan ganas (Malignant) tetap 

terjaga secara konsisten pada kedua subset data. Dari total 

569 sampel, diperoleh 455 sampel sebagai data latih dan 114 

sampel sebagai data uji. Distribusi kelas pada data latih 

terdiri dari 285 sampel Benign dan 170 sampel Malignant, 

sedangkan data uji terdiri dari 72 sampel Benign dan 42 

sampel Malignant. Konsistensi distribusi kelas antara data 

latih dan data uji menunjukkan bahwa proses pembagian data 

dilakukan secara representatif. Pembagian data ini 

memastikan bahwa model dilatih menggunakan data yang 

cukup besar dan beragam, sekaligus diuji menggunakan data 
yang benar-benar terpisah dari proses pelatihan.  

E. Pipeline Preprocessing 

Pada tahap preprocessing, data latih terlebih dahulu 

dinormalisasi menggunakan StandardScaler untuk 

memastikan seluruh fitur numerik berada pada skala yang 

sebanding. Normalisasi ini penting mengingat fitur dalam 

dataset memiliki rentang nilai yang bervariasi, sehingga 

dapat memengaruhi kinerja algoritma deteksi outlier dan 
seleksi fitur apabila tidak distandarisasi. 

Deteksi outlier dilakukan menggunakan Local Outlier 

Factor (LOF) pada data latih yang telah diskalakan. Hasil 

deteksi menunjukkan bahwa dari total 455 sampel data latih, 

teridentifikasi 23 sampel sebagai outlier dan 432 sampel 

sebagai inlier, dengan persentase outlier sebesar 5,05%. 
Jumlah ini relatif kecil dan menunjukkan bahwa mayoritas 

data memiliki pola yang konsisten. Penghapusan outlier 

dilakukan hanya pada data latih untuk mengurangi pengaruh 

sampel ekstrem terhadap proses pembelajaran model, 

sekaligus menjaga objektivitas evaluasi karena data uji tidak 

dimodifikasi. 

 
Gambar 4 Distribusi Kelas Sebelum dan Sesudah SMOTE 

Setelah penghapusan outlier, distribusi kelas pada data 

latih yang terlihat pada gambar 4 masih menunjukkan 
ketidakseimbangan, di mana jumlah sampel kelas Benign 

lebih besar dibandingkan kelas Malignant. Untuk mengatasi 

permasalahan tersebut, diterapkan teknik Synthetic Minority 

Over-sampling Technique (SMOTE) pada data latih setelah 

LOF. Hasil visualisasi distribusi kelas menunjukkan bahwa 

setelah penerapan SMOTE, jumlah sampel pada kedua kelas 

menjadi seimbang. Penyeimbangan ini bertujuan untuk 

mengurangi bias model terhadap kelas mayoritas dan 

meningkatkan kemampuan model dalam mengenali kasus 
kanker ganas sebagai kelas minoritas. 

 

TABEL 2  

HASIL PERINGKAT FITUR (10 FITUR) 

Fitur F-Score P-Value 

concave_points_worst 1087.409091 3.256932e-132 

perimeter_worst 910.318181 1.460672e-118 

concave_points_mean 880.128564 4.535272e-116 

radius_worst 872.552110 1.951186e-115 

perimeter_mean 720.615375 5.861753e-102 

radius_mean 669.607332 4.554457e-97 

area_worst 648.429848 5.616536e-95 

concavity_mean 602.157880 2.821556e-90 

area_mean 583.902059 2.278223e-88 

concavity_worst 536.351327 2.976444e-83 

Tahap selanjutnya adalah seleksi fitur menggunakan 

metode ANOVA (f_classif) dengan pendekatan SelectKBest. 

Uji ANOVA dilakukan pada data latih yang telah melalui 

LOF dan SMOTE, sehingga perhitungan signifikansi fitur 

tidak dipengaruhi oleh outlier maupun ketidakseimbangan 

kelas. Hasil ANOVA pada tabel 2 menunjukkan bahwa 

sejumlah fitur memiliki nilai F-score yang sangat tinggi 

disertai p-value yang sangat kecil, yang mengindikasikan 

adanya perbedaan yang signifikan secara statistik antara kelas 
Benign dan Malignant. Berdasarkan hasil SelectKBest 

dengan nilai K = 10, diperoleh sepuluh fitur paling relevan, 

yaitu radius_mean, perimeter_mean, area_mean, 

concavity_mean, concave_points_mean, radius_worst, 

perimeter_worst, area_worst, concavity_worst, dan 

concave_points_worst. Fitur-fitur ini didominasi oleh 

karakteristik yang berkaitan dengan ukuran inti sel (radius, 

perimeter, area) serta ketidakrataan kontur dan kedalaman 

lekukan inti sel (concavity dan concave points). Dominasi 

fitur-fitur tersebut sejalan dengan karakteristik klinis kanker 

payudara, di mana sel ganas cenderung memiliki ukuran inti 
yang lebih besar, bentuk yang tidak teratur, serta kontur yang 

lebih kompleks dibandingkan sel jinak.  

Dengan demikian, hasil seleksi fitur ini tidak hanya 

signifikan secara statistik, tetapi juga relevan secara biologis 

dan klinis. Fitur-fitur terpilih selanjutnya digunakan sebagai 

input utama pada tahap pemodelan menggunakan algoritma 
Gradient Boosted Trees, sehingga diharapkan dapat 

meningkatkan kinerja model sekaligus menjaga efisiensi dan 

interpretabilitas. 

F. Pemodelan 

Tahap modeling dilakukan dengan membangun lima 

algoritma Gradient Boosted Trees, yaitu XGBoost, 

LightGBM, CatBoost, HistGradientBoosting, dan 

GradientBoosting. yang seluruhnya diintegrasikan dalam satu 

pipeline preprocessing yang konsisten. Pipeline ini mencakup 
normalisasi fitur, penghapusan outlier menggunakan LOF, 

penyeimbangan kelas dengan SMOTE, serta seleksi fitur 

berbasis ANOVA, yang seluruhnya diterapkan hanya pada 
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data latih untuk mencegah terjadinya data leakage. Setiap 

model kemudian dilatih menggunakan data latih dan 
dievaluasi menggunakan data uji yang tidak mengalami 

transformasi apapun selain scaling dan seleksi fitur yang 

telah dipelajari dari data latih. 

XGBoost digunakan dengan fungsi objektif logloss untuk 

klasifikasi biner dan dikenal mampu menangani hubungan 

non-linear secara efektif. LightGBM mengadopsi strategi 
leaf-wise growth yang meningkatkan efisiensi pelatihan pada 

data berdimensi tinggi. CatBoost menerapkan ordered 

boosting yang meningkatkan stabilitas model dan 

mengurangi overfitting tanpa banyak penyetelan parameter. 

HistGradientBoosting memanfaatkan pendekatan histogram 

untuk mempercepat komputasi dan mengurangi 

kompleksitas model, sedangkan GradientBoosting 

konvensional digunakan sebagai model pembanding dasar. 

G. Evaluasi Model 

 
Gambar 5 Evaluasi Model 

. Pada gambar 5 evaluasi kinerja model dilakukan 
menggunakan beberapa metrik klasifikasi yang umum 

digunakan pada penelitian medis, yaitu accuracy, precision, 

recall, F1-score, dan ROC-AUC, serta dianalisis lebih lanjut 

melalui confusion matrix dan kurva ROC. Seluruh evaluasi 

dilakukan pada data uji yang tidak terlibat dalam proses 

pelatihan maupun preprocessing lanjutan, sehingga hasil 

yang diperoleh merepresentasikan kemampuan generalisasi 

model secara objektif. 

 
Gambar 6 Confusion Matrix XGBoost 

Pada gambar 6 model XGBoost berhasil 

mengklasifikasikan 71 dari 72 sampel Benign dengan benar, 
dengan hanya 1 kesalahan false positive. Pada kelas 

Malignant, model mampu mengidentifikasi 39 dari 42 sampel 

secara benar, dengan 3 kasus false negative. Pola ini 

menunjukkan bahwa XGBoost memiliki kemampuan yang 

baik dalam membedakan kedua kelas, meskipun masih 

terdapat sejumlah kecil kasus kanker ganas yang salah 

diklasifikasikan sebagai jinak. 

 
Gambar 7 Classification Report XGBoost 

Pada gambar 7 XGBoost mencapai akurasi 0.9649. Untuk 

kelas Malignant, model menghasilkan precision 0.975, recall 

0.9286, dan F1-score 0.9512. Nilai precision yang tinggi 

menunjukkan bahwa prediksi Malignant sangat akurat, 

sementara recall yang tinggi menandakan bahwa sebagian 

besar kasus kanker ganas berhasil terdeteksi, meskipun masih 

terdapat beberapa kasus yang terlewat. 

 
Gambar 8 ROC Curve XGBoost 

Nilai ROC-AUC pada gambar 8 sebesar 0.9904 
menunjukkan bahwa XGBoost memiliki kemampuan 

diskriminatif yang sangat baik. Kurva ROC yang mendekati 

sudut kiri atas menandakan keseimbangan yang baik antara 

sensitivitas dan spesifisitas pada berbagai ambang klasifikasi. 
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Gambar 9 Confusion Matrix LightGBM 

Pada gambar 9 LightGBM mampu mengklasifikasikan 

71 dari 72 sampel Benign dengan benar, dengan 1 false 

positive. Namun, pada kelas Malignant, terdapat 4 false 

negative, sehingga 38 dari 42 sampel terklasifikasi dengan 

benar. Hal ini menunjukkan bahwa LightGBM sedikit lebih 

konservatif dalam mendeteksi kelas Malignant dibandingkan 

XGBoost dan CatBoost. 

 
Gambar 10 Classification Report LightGBM 

Pada gambar 10 model LightGBM mencapai akurasi 
0.9561. Untuk kelas Malignant, LightGBM menghasilkan 

precision 0.9744, recall 0.9048, dan F1-score 0.9383. Nilai 

recall yang sedikit lebih rendah mengindikasikan bahwa 

sebagian kecil kasus kanker ganas masih belum terdeteksi, 

meskipun secara keseluruhan performa model tetap sangat 

baik. 

 
Gambar 11 ROC Curve LightGBM 

Pada gambar 11 dengan nilai ROC-AUC sebesar 0.9944, 

LightGBM menunjukkan kemampuan pemisahan kelas yang 

sangat kuat. Kurva ROC yang tinggi mencerminkan bahwa 

meskipun recall sedikit lebih rendah, model tetap konsisten 

dalam membedakan kelas Benign dan Malignant secara 

probabilistik. 

 
Gambar 12 Confusion Matrix CatBoost 

Pada gambar 12 confusion matrix CatBoost menunjukkan 

hasil yang sangat seimbang, dengan 71 sampel Benign dan 39 

sampel Malignant yang diklasifikasikan dengan benar. 

Jumlah kesalahan relatif kecil, yaitu 1 false positive dan 3 

false negative, yang identik dengan pola kesalahan pada 
XGBoost. 
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Gambar 13 Classification Report CatBoost 

Model CatBoost mencapai akurasi 0.9649 pada gambar 

13. Untuk kelas Malignant, diperoleh precision 0.9750, recall 

0.9286, dan F1-score 0.9512. Kombinasi precision dan recall 

yang tinggi menunjukkan bahwa CatBoost mampu menjaga 

keseimbangan antara meminimalkan kesalahan positif palsu 

dan mendeteksi sebagian besar kasus kanker ganas. 

 
Gambar 14 ROC Curve CatBoost 

Pada gambar 14 CatBoost memperoleh ROC-AUC 

tertinggi sebesar 0.9960. Kurva ROC yang sangat mendekati 

sudut kiri atas menandakan bahwa model ini memiliki 
kemampuan diskriminatif terbaik di antara seluruh model 

yang diuji, sehingga dipilih sebagai model utama pada tahap 

analisis lanjutan. 

 
Gambar 15 Confusion Matrix HistGradientBoosting 

Selanjutnya, HistGradientBoosting mengklasifikasikan 
71 dari 72 sampel Benign dengan benar dan menghasilkan 1 

false positive pada gambar 15. Pada kelas Malignant, terdapat 

4 false negative, sehingga 38 sampel berhasil terdeteksi. Pola 

kesalahan ini serupa dengan LightGBM. 

 
Gambar 16 Classification Report HistGradient Boosting 

Model ini menghasilkan akurasi 0.9561, dengan precision 

0.9744, recall 0.9048, dan F1-score 0.9383 pada kelas 

Malignant yang bisa dilihat pada gambar 16. Nilai ini 

menunjukkan performa yang stabil dan kompetitif, meskipun 
sensitivitas terhadap kelas Malignant sedikit lebih rendah 

dibandingkan XGBoost dan CatBoost. 
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Gambar 17 ROC Curve HistGradientBoosting 

Pada gambar 17 nilai ROC-AUC sebesar 0.9957 

menempatkan HistGradientBoosting sebagai salah satu 

model dengan kemampuan pemisahan kelas terbaik. Kurva 

ROC menunjukkan konsistensi model dalam membedakan 

kelas pada berbagai ambang keputusan. 

 
Gambar 18 Confusion Matrix GradientBoosting 

Terakhir, model GradientBoosting menunjukkan hasil 

yang identik dengan HistGradientBoosting dan LightGBM, 

dengan 1 false positive dan 4 false negative yang terlihat pada 

gambar 18. Sebanyak 71 sampel Benign dan 38 sampel 

Malignant berhasil diklasifikasikan dengan benar. 

 
Gambar 19 Classification Report GradientBoosting 

Pada gambar 19 model ini mencapai akurasi 0.9561. 
Untuk kelas Malignant, diperoleh precision 0.9744, recall 

0.9048, dan F1-score 0.9383. Performa ini menunjukkan 

bahwa meskipun model lebih sederhana dibandingkan varian 

boosting modern, GradientBoosting tetap mampu 

memberikan hasil yang sangat kompetitif. 

 
Gambar 20 ROC Curve GradientBoosting 

Dengan nilai ROC-AUC yang ada pada gambar 20 

sebesar 0.9940, GradientBoosting masih menunjukkan 

kemampuan diskriminatif yang sangat baik. Kurva ROC yang 

tinggi mengindikasikan bahwa model ini efektif dalam 

membedakan antara kelas jinak dan ganas, meskipun sedikit 

berada di bawah CatBoost dan HistGradientBoosting. 

H. Uji Signifikan Statistik (DeLong Test) 

 
Gambar 21 Hasil DeLong Test 

Untuk menilai apakah perbedaan performa antar model 

secara statistik benar-benar signifikan, dilakukan uji DeLong 

terhadap nilai ROC-AUC yang dapat dilihat pada gambar 21. 
Uji DeLong merupakan metode non-parametrik yang umum 

digunakan untuk membandingkan dua kurva ROC yang 

dihasilkan dari model yang dievaluasi pada dataset yang 

sama. Pendekatan ini dipilih karena mampu 

mempertimbangkan korelasi antar prediksi model dan 

memberikan pengujian yang lebih reliabel dibandingkan 

perbandingan ROC-AUC secara deskriptif semata. 

Berdasarkan hasil evaluasi sebelumnya, CatBoost 

memperoleh nilai ROC-AUC tertinggi dan oleh karena itu 

digunakan sebagai model acuan (Model_A) dalam pengujian 

DeLong. Selanjutnya, ROC-AUC CatBoost dibandingkan 

secara berpasangan dengan model lain, yaitu XGBoost, 
LightGBM, HistGradientBoosting, dan GradientBoosting. 
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Hasil uji DeLong menunjukkan bahwa perbedaan nilai 

ROC-AUC antara CatBoost dan XGBoost sebesar 0.0056, 
dengan nilai p-value 0.1260. Meskipun CatBoost memiliki 

nilai ROC-AUC yang lebih tinggi, nilai p-value tersebut 

lebih besar dari ambang signifikansi 0,05, sehingga 

perbedaan performa antara kedua model tidak signifikan 

secara statistik. Hal serupa juga ditemukan pada 

perbandingan CatBoost dengan LightGBM, di mana selisih 

ROC-AUC sebesar 0.0017 menghasilkan p-value 0.3225, 

serta pada perbandingan dengan GradientBoosting yang 

memiliki selisih ROC-AUC 0.0020 dan p-value 0.3504. 

Perbandingan antara CatBoost dan HistGradientBoosting 

menunjukkan selisih ROC-AUC yang sangat kecil, yaitu 

0.0003, dengan p-value 0.8786, yang semakin menegaskan 
bahwa kedua model memiliki kemampuan diskriminatif 

yang hampir identik. Secara keseluruhan, seluruh nilai p-

value yang diperoleh berada di atas batas signifikansi statistik 

(p > 0,05), sehingga tidak terdapat perbedaan ROC-AUC 

yang signifikan secara statistik antara CatBoost dan model 

boosting lainnya. 

Temuan ini mengindikasikan bahwa meskipun CatBoost 

menunjukkan nilai ROC-AUC tertinggi secara numerik, 

keunggulan tersebut belum dapat diklaim signifikan secara 

statistik. Dengan demikian, performa seluruh algoritma 

Gradient Boosted Trees yang diuji dapat dikatakan relatif 
sebanding dalam hal kemampuan diskriminatif. Pemilihan 

CatBoost sebagai model utama dalam penelitian ini 

didasarkan pada kombinasi performa numerik terbaik, 

stabilitas prediksi, serta nilai ROC-AUC tertinggi, bukan 

semata-mata pada perbedaan signifikan secara statistik. 

Pendekatan ini relevan dalam konteks aplikasi medis, di 

mana model dengan performa tinggi dan stabil tetap bernilai 

penting meskipun perbedaannya dengan model lain tidak 

signifikan secara statistik. 

I. Interpretabilitas Model 

Interpretabilitas model pada penelitian ini dianalisis 

menggunakan pendekatan SHapley Additive exPlanations 

(SHAP) untuk memahami kontribusi setiap fitur terhadap 

keputusan klasifikasi kanker payudara. Analisis ini 

difokuskan pada model CatBoost, yang dipilih sebagai model 

terbaik karena menghasilkan nilai ROC-AUC tertinggi, 

meskipun perbedaannya dengan model lain tidak signifikan 

secara statistik berdasarkan uji DeLong. 

 
Gambar 22 SHAP Feature 

Analisis global interpretability dilakukan melalui SHAP 
summary plot (bar) pada gambar 22 menunjukkan peringkat 

fitur berdasarkan nilai mean absolute SHAP. Hasil analisis 

menunjukkan bahwa fitur concave_points_worst, 

concave_points_mean, area_worst, radius_worst, dan 

perimeter_worst merupakan fitur dengan kontribusi terbesar 

terhadap prediksi kelas ganas. Dominasi fitur-fitur ini 

mengindikasikan bahwa karakteristik morfologi inti sel yang 

berkaitan dengan ketidakteraturan bentuk, ukuran, dan 

kedalaman cekungan (concavity) memiliki peran penting 

dalam membedakan tumor ganas dan jinak. 

Secara klinis, temuan ini sejalan dengan literatur medis 

yang menyatakan bahwa kanker payudara ganas umumnya 
menunjukkan inti sel yang lebih besar, variasi ukuran inti 

yang tinggi, bentuk yang tidak beraturan, serta tingkat 

concavity dan concave points yang lebih menonjol. Studi oleh 

Li et al. (2021) dalam Analytical Cellular Pathology 

melaporkan bahwa perbedaan ukuran inti (nuclear size 

variation), pleomorfisme inti, serta karakteristik nukleoli 

memiliki hubungan signifikan dengan subtipe molekuler 

kanker payudara dan tingkat keganasan tumor. Sel kanker 

dengan karakteristik tersebut cenderung memiliki perilaku 

biologis yang lebih agresif dan tingkat proliferasi yang lebih 

tinggi. Fitur radius, area, dan perimeter, baik pada nilai mean 
maupun worst merepresentasikan ukuran dan ekspansi inti 

sel. Dalam konteks histopatologi, ukuran inti yang lebih besar 

dan tidak seragam merupakan indikator penting keganasan 

jaringan payudara, karena mencerminkan peningkatan 

aktivitas mitosis dan ketidakteraturan siklus sel. Hal ini 

diperkuat oleh temuan klinis bahwa subtipe kanker payudara 

dengan agresivitas tinggi, seperti HER2-positive, memiliki 

inti sel yang lebih besar dan pleomorfik dibandingkan subtipe 

dengan prognosis lebih baik. Selain itu, fitur concavity dan 

concave points menggambarkan tingkat ketidakrataan dan 

invaginasi pada batas inti sel. Nilai concavity yang tinggi 

mengindikasikan bentuk inti yang tidak simetris dan tidak 
teratur, yang secara patologis sering dikaitkan dengan 

keganasan dan invasi tumor. Literatur medis menyebutkan 

bahwa ketidakteraturan bentuk inti merupakan manifestasi 
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morfologis dari perubahan molekuler yang mendasari 
progresi kanker dan peningkatan potensi metastasis [28]. 

 
Gambar 23 SHAP Beeswarm Plot 

Analisis lokal melalui beeswarm plot SHAP pada gambar 

23 menunjukkan bahwa nilai fitur yang tinggi (ditandai 

warna merah) pada fitur-fitur utama tersebut cenderung 

mendorong prediksi ke arah kelas Malignant, sedangkan nilai 

rendah (warna biru) berkontribusi pada prediksi Benign. Pola 

ini konsisten dengan pemahaman klinis bahwa peningkatan 
ukuran dan ketidakteraturan inti sel merupakan ciri khas 

keganasan. 

 

IV. KESIMPULAN 

Berdasarkan hasil penelitian yang telah dilakukan, dapat 

disimpulkan bahwa penerapan pipeline machine learning 

berbasis Gradient Boosted Trees yang terintegrasi dengan 

tahapan preprocessing komprehensif mampu menghasilkan 

performa klasifikasi kanker payudara yang sangat baik. 

Seluruh model yang diuji, yaitu XGBoost, LightGBM, 

CatBoost, HistGradientBoosting, dan GradientBoosting, 
menunjukkan kinerja yang tinggi dan relatif sebanding pada 

berbagai metrik evaluasi, meliputi accuracy, precision, 

recall, F1-score, dan ROC-AUC. 

Di antara seluruh model, CatBoost menunjukkan performa 

numerik terbaik dengan akurasi sebesar 0,9649, precision 

0,9750, recall 0,9286, F1-score 0,9512, serta ROC-AUC 

tertinggi sebesar 0,9960. Nilai precision yang tinggi 

mengindikasikan rendahnya tingkat kesalahan positif palsu 

pada prediksi kasus ganas, sedangkan nilai recall yang tinggi 

menunjukkan kemampuan model dalam mendeteksi 

sebagian besar kasus kanker payudara ganas. Kombinasi 

kedua metrik tersebut tercermin pada nilai F1-score yang 
tinggi, yang menunjukkan keseimbangan kinerja model 

dalam konteks klasifikasi medis. Meskipun CatBoost 

memiliki nilai ROC-AUC tertinggi secara numerik, hasil uji 

DeLong menunjukkan bahwa perbedaan performa antar 

model tidak signifikan secara statistik, sehingga seluruh 

algoritma Gradient Boosted Trees yang diuji dapat dikatakan 

memiliki kemampuan diskriminatif yang sebanding. 

Selain performa, penelitian ini juga menekankan aspek 
interpretabilitas model melalui penerapan SHAP pada model 

CatBoost. Hasil analisis SHAP menunjukkan bahwa fitur-

fitur yang berkaitan dengan ukuran dan bentuk inti sel, seperti 

radius, area, perimeter, concavity, dan concave points, 

memberikan kontribusi dominan terhadap prediksi 

keganasan. Temuan ini sejalan dengan literatur histopatologi 

kanker payudara, sehingga memperkuat bahwa model yang 

dihasilkan tidak hanya akurat secara kuantitatif, tetapi juga 

interpretable dan relevan secara klinis. 

Meskipun demikian, penelitian ini memiliki beberapa 

keterbatasan yang perlu diperhatikan. Pertama, proses seleksi 

fitur yang digunakan berbasis ANOVA bersifat univariat, 
sehingga hanya mempertimbangkan hubungan individual 

antara setiap fitur dan label kelas tanpa memperhitungkan 

interaksi antar fitur. Pada data medis yang kompleks, 

interaksi antar karakteristik sel berpotensi mengandung 

informasi penting yang belum sepenuhnya tertangkap oleh 

pendekatan ini. Oleh karena itu, penelitian selanjutnya dapat 

mempertimbangkan penggunaan metode seleksi fitur 

multivariat atau embedded feature selection untuk 

memperoleh representasi fitur yang lebih komprehensif. 

Kedua, evaluasi model dalam penelitian ini masih terbatas 

pada satu dataset publik, dengan pembagian data latih dan 
data uji yang berasal dari sumber yang sama, tanpa dilakukan 

validasi eksternal menggunakan dataset independen. Kondisi 

ini membatasi klaim keandalan model untuk penerapan klinis 

yang lebih luas. Oleh karena itu, diperlukan validasi lanjutan 

pada data dunia nyata (real-world data) atau dataset dari 

institusi dan populasi yang berbeda guna memastikan 

kemampuan generalisasi serta kestabilan model dalam 

konteks klinis yang sesungguhnya. 

Penelitian ini menunjukkan bahwa kombinasi pipeline 

preprocessing yang robust, algoritma Gradient Boosted 

Trees, serta pendekatan Explainable Artificial Intelligence 

mampu menghasilkan model klasifikasi kanker payudara 
yang akurat, reliable secara internal, dan interpretable. 

Namun, pengembangan lanjutan melalui validasi eksternal, 

eksplorasi interaksi fitur yang lebih kompleks, serta 

pertimbangan aspek teknis dan etis tetap diperlukan sebelum 

model dapat diadopsi sebagai sistem pendukung keputusan 

klinis. 
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