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Early and accurate classification of breast cancer is essential to support clinical
diagnostic processes and improve patient outcomes. This study proposes a
comprehensive machine learning pipeline based on Gradient Boosted Tree
algorithms to classify breast tumors into benign and malignant categories. The
proposed framework integrates several preprocessing stages, including outlier
handling using the Local Outlier Factor (LOF), feature normalization with
StandardScaler, class imbalance handling using SMOTE, and feature selection
through ANOVA-based SelectKBest. Five ensemble learning models—XGBoost,
LightGBM, CatBoost, HistGradientBoosting, and GradientBoosting—were trained
and evaluated using accuracy, precision, recall, F1-score, and ROC-AUC metrics.
The experimental results show that all models achieved strong and comparable
classification performance. Among them, CatBoost obtained the highest ROC-AUC
value of 0.9960, along with an accuracy of 0.9649, precision of 0.9750, recall of
0.9286, and F1-score of 0.9512. Statistical evaluation using the Delong test
indicated that the differences in ROC-AUC among the evaluated models were not
statistically significant (p > 0.05), suggesting similar discriminative capabilities
across models. To enhance model interpretability, SHAP (SHapley Additive
exPlanations) was applied to the CatBoost model as a representative classifier. The
results show that features related to nuclear size and shape, such as radius, area,
perimeter, and concavity, contributed most significantly to malignant predictions.
This study demonstrates that the integration of robust preprocessing techniques,
Gradient Boosted Tree models, and explainable machine learning provides an
accurate and interpretable approach for breast cancer classification. However, the
evaluation was conducted on a single public dataset without external validation, and
further studies using independent and real-world datasets are required before clinical
deployment.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN

Kanker payudara adalah keganasan yang terjadi pada
jaringan payudara dan dapat berkembang dari epitel duktus
maupun lobulus yang menjadi salah satu jenis kanker yang
paling banyak ditemukan di Indonesia [1]. Kanker payudara
adalah penyebab utama kematian akibat kanker pada
perempuan di Indonesia, selain itu menurut data dari
GLOBOCAN (Global Burden of Cancer) yang dirilis oleh
International Agency for Research on Cancer (IARC)

menunjukkan bahwa pada 2018 tercatat 18,1 juta kasus
kanker baru dan 9,6 juta kematian karena kanker secara
global [2], [3]. Pada tahun 2022 tercatat 66.271 kasus baru
dan 22.598 kematian atau sekitar 64 perempuan meninggal
setiap hari akibat kanker payudara [4]. Permasalahan kanker
payudara di Indonesia semakin memprihatinkan karena lebih
dari 60% pasien kanker payudara baru memeriksakan diri ke
dokter ketika penyakit sudah mencapai stadium lanjut [5].
Jika terdeteksi pada stadium dini, peluang bertahan hidup
hingga lima tahun dapat melampaui 97%, sedangkan pada
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stadium lanjut turun menjadi kurang dari 20%; sejalan
dengan itu, data BPJS Kesehatan menunjukkan angka
kelangsungan hidup lima tahun kanker payudara di Indonesia
sebesar 56,8% [4]. Tingkat deteksi dini yang rendah serta
keterlambatan penanganan kanker payudara tidak hanya
disebabkan kurangnya kesadaran pasien, tetapi juga oleh
keterbatasan metode diagnosis konvensional  seperti
mammografi dan biopsi yang bergantung pada interpretasi
manual tenaga medis sehingga rentan menghasilkan
diagnosis yang kurang akurat, terutama pada kasus dengan
karakteristik sel yang sulit dibedakan antara jinak dan ganas
[6], [7]. Perkembangan teknologi kecerdasan buatan
(Artificial Intelligence) dan pembelajaran mesin (Machine
Learning) telah membawa kemajuan besar di sektor
kesehatan, terutama dalam hal diagnosis dan prediksi
penyakit yang didasarkan pada data medis [8]. Dengan
adanya keterbatasan metode konvensional mendorong
perlunya pemanfaatan teknologi machine learning yang
mampu mengolah data medis dengan lebih cepat dan akurat
serta mengenali pola kompleks dalam data klinis untuk
meningkatkan ketepatan identifikasi kanker pada tahap awal
[9].

Salah satu pendekatan machine learning yang populer
adalah  ensemble learning, vaitu metode yang
menggabungkan beberapa model untuk meningkatkan
akurasi dan kestabilan hasil [10]. Berkembangnya metode
Gradient Boosted Trees (GBT) sebagai salah satu bentuk
ensemble yang lebih canggih dan efektif, dengan
menggabungkan banyak pohon keputusan secara berurutan,
di mana setiap pohon dilatih untuk mengoreksi error pohon
sebelumnya, sehingga mampu menangkap pola kompleks
secara lebih efektif dibandingkan metode tradisional [11].

Penelitian terdahulu, pada prediksi diabetes mellitus,
LightGBM dan XGBoost mampu mencapai akurasi di atas
97% menunjukkan superioritas boosting dalam menangkap
pola Klinis non-linear yang sulit ditangani model tradisional
[12]. XGBoost mencapai akurasi 93,83% pada Klasifikasi
kanker paru-paru dan tetap stabil pada berbagai skenario
pembagian data, menunjukkan konsistensinya pada dataset
besar [13]. Dengan kombinasi metode seleksi fitur mRMR
dengan LightGBM menghasilkan akurasi 98% untuk
prediksi kanker payudara [14]. LightGBM menunjukkan
performa tertinggi dengan akurasi 95,3%, recall 94,8%,
precision 955%, dan AUC 0.987, menegaskan
superioritasnya dalam Klasifikasi kanker payudara berbasis
boosting [15]. Penggunaan Gradient Boosting Classifier
dalam sistem pendukung keputusan klinis mampu
mengidentifikasi lebih dari 98% kasus high-alert drug
mismatch pada data uji dan 99% pada data evaluasi [16].
HistGradientBoosting terbukti memberikan hasil terbaik
dibanding model lain seperti Logistic Regression, Random
Forest, AdaBoost, dan Gradient Boosting konvensional,
terutama pada metrik AUC > 0.99 untuk dua dataset utama
dengan akurasi 96,25% dan 96,48% [17]. Model CatBoost
mencapai AUC 0.836 dan F1-Score 0.735 pada prediksi

rawat inap pasien gagal gantung lansia, sementara analisis
SHAP mengidentifikasi HGB, NT-proBNP, dan riwayat
merokok sebagai prediktor paling berpengaruh [18]. Pada
kerangka semi-supervised learning berbasis CT-radiomics
dan XGBoost yang mampu mencapai akurasi 0.90 pada
prediksi keselamatan hidup kanker paru, dengan SHAP yang
menunjukkan peningkatan separabilitas fitur tekstur akibat
pemanfaatan data tak berlabel [19]. Pengembangan pipeline
prediksi diabetes yang menggabungkan SMOTE, seleksi
fitur, dan interpretasi SHAP untuk menghasilkan model yang
akurat sekaligus transparan, di mana fitur seperti usia,
tekanan darah, dan BMI terbukti sebagai prediktor dominan
[20]. Penggunaan algoritma tree-ensemble seperti Random
Forest, XGBoost, dan LightGBM mampu mencapai akurasi
hingga 97,38% dalam Kklasifikasi risiko kanker paru,
sementara integrasi SHAP dan LIME memberikan
interpretasi visual yang transparan untuk mendukung tenaga
medis dalam  memahami  faktor risiko  utama
pada setiap prediksi [21]. XGBoost mencapai akurasi 87,4%
dengan AUC 0,949 dalam memprediksi risiko penyakit
kardiovaskular pada pasien diabetes berbasis asupan
antioksidan, sementara analisis SHAP mengidentifikasi
Daidzein, magnesium, dan EGCG sebagai fitur paling
berpengaruh dalam keputusan model [22].

Dengan demikian, penelitian ini diposisikan untuk
memperluas kajian komparatif terhadap lima varian algoritma
Gradient Boosted Trees dalam satu rancangan eksperimen
yang konsisten dan terstruktur. Berbeda dengan sebagian
besar penelitian sebelumnya yang umumnya berfokus pada
optimalisasi performa satu atau dua algoritma tertentu, studi
ini menyajikan perbandingan sistematis antar beberapa model
boosting dalam satu pipeline yang sama, sehingga
memungkinkan evaluasi yang lebih adil dan komprehensif.
Selain aspek  performa, penelitian ini juga
mempertimbangkan  interpretabilitas model  melalui
pendekatan Explainable Artificial Intelligence (XAl) berbasis
SHAP sebagai dasar analisis transparansi keputusan model.

Meskipun berbagai studi terdahulu telah menunjukkan
bahwa algoritma boosting mampu menghasilkan performa
tinggi pada klasifikasi data medis, ruang kajian yang
mengaitkan preprocessing, evaluasi multi-metrik, dan
interpretabilitas model dalam satu kerangka eksperimen yang
terintegrasi masih relatif terbatas. Padahal, dalam konteks
kesehatan, transparansi dan keterjelasan alasan di balik
keputusan model sama pentingnya dengan akurasi prediksi.
Oleh karena itu, diperlukan kajian komparatif yang tidak
hanya membandingkan performa numerik, tetapi juga mampu
menjelaskan kontribusi fitur terhadap keputusan model secara
global maupun lokal.

Berdasarkan kebutuhan tersebut, penelitian ini menyajikan
studi komparatif terhadap lima algoritma Gradient Boosted
Trees,  yaitu  XGBoost, LightGBM, CatBoost,
HistGradientBoosting, dan  GradientBoosting,  untuk
klasifikasi kanker payudara dalam satu rancangan eksperimen
yang konsisten. Penelitian ini mengintegrasikan pipeline
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preprocessing yang komprehensif, meliputi pembersihan
data, deteksi dan penghapusan outlier menggunakan Local
Outlier Factor (LOF), normalisasi fitur, penyeimbangan
kelas menggunakan SMOTE, serta seleksi fitur berbasis
ANOVA melalui SelectKBest untuk memperoleh fitur tumor
yang paling relevan. Evaluasi performa dilakukan
menggunakan pendekatan multi-metrik, yaitu accuracy,
precision, recall, F1-score, dan ROC-AUC, serta dilengkapi
dengan uji signifikansi statistik menggunakan DelLong test
untuk membandingkan perbedaan ROC-AUC antar model.
Hasil penelitian menunjukkan bahwa seluruh model
menghasilkan performa Kklasifikasi yang tinggi dan relatif
sebanding, di mana CatBoost memperoleh nilai ROC-AUC
tertinggi. Namun demikian, uji DeLong menunjukkan bahwa
perbedaan performa antar model tidak signifikan secara
statistik. Untuk meningkatkan transparansi dan kepercayaan
terhadap model, analisis SHAP diterapkan pada model
CatBoost sebagai model representatif guna
menginterpretasikan kontribusi fitur secara global dan lokal.
Analisis ini menunjukkan bahwa fitur-fitur yang berkaitan
dengan ukuran dan bentuk inti sel tumor, seperti area,
perimeter, dan concave points, memiliki pengaruh dominan
terhadap prediksi keganasan. Dengan demikian, kontribusi
utama penelitian ini terletak pada penyajian evaluasi yang
mengintegrasikan aspek performa dan interpretabilitas dalam
satu  pipeline terstruktur, sehingga tidak hanya
mengidentifikasi model dengan performa terbaik secara
numerik, tetapi juga menjelaskan dasar pengambilan
keputusan model secara transparan dan relevan secara klinis.
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Gambar 1 Alur Penelitian

A. Akuisisi Data

Data yang digunakan dalam penelitian ini diperoleh
melalui proses akuisisi data sekunder, yaitu pengambilan
dataset yang telah tersedia secara publik dari platform Kaggle

[23]. Dataset yang digunakan berjudul Breast Cancer Dataset
yang dikembangkan oleh YasserH. Dataset ini terdiri dari 569
sampel data sel payudara, yang dikategorikan menjadi dua
kelas, yaitu Malignant (ganas) sebanyak 212 sampel dan
Benign (jinak) sebanyak 357 sampel. Setiap sampel data
direpresentasikan dalam 32 kolom atribut, yang mencakup
satu atribut label diagnosis dan 31 fitur numerik hasil
ekstraksi karakteristik morfologi inti sel epitel payudara dari
citra digital. Proses akuisisi dilakukan dengan cara
mengunduh dataset dalam format CSV dari Kaggle,
kemudian memuatnya ke dalam lingkungan pemrograman
Python menggunakan pustaka pandas untuk keperluan
eksplorasi dan pemrosesan lebih lanjut.

B. Pra-Pemrosesan Data

Tahap pemrosesan data dilakukan untuk memastikan
dataset berada dalam kondisi yang konsisten, bersih, dan siap
digunakan pada tahap berikutnya. Langkah awal pada pra-
pemrosesan data adalah pembersihan data dengan
menyesuaikan penamaan atribut pada beberapa kolom,
seperti '‘concave points_mean' dan 'concave points_worst',
diubah menjadi ‘concave_points_mean' dan
‘concave_points_worst', proses ini dilakukan untuk
menghilangkan spasi yang dapat mengganggu proses
pemanggilan variabel, kolom id dihapus karena tidak
memiliki kontribusi terhadap proses klasifikasi. Selanjutnya,
kolom diagnosis yang semula bertipe kategorikal dikodekan
ke dalam bentuk numerik, dengan nilai O merepresentasikan
kelas jinak (Benign) dan nilai 1 merepresentasikan kelas
ganas (Malignant). Proses pengkodean ini bertujuan agar
label kelas dapat diproses oleh algoritma pembelajaran mesin.
Setelah itu, dataset dipisahkan ke dalam matriks fitur (X)
yang terdiri dari 30 fitur numerik dan vektor target (y) yang
berisi label kelas. Distribusi kelas menunjukkan 357 sampel
kelas jinak dan 212 sampel kelas ganas. Dataset yang telah
melalui tahap pra-pemrosesan ini selanjutnya digunakan pada
tahap eksplorasi data lanjutan, pembagian data, serta
pemodelan dan evaluasi kinerja model.

C. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) adalah pendekatan
sistematis dalam menganalisis data yang dirancang untuk
mengeksplorasi dan memahami struktur serta karakteristik
fundamental dari suatu dataset [24]. Pada tahap eksplorasi
data, dilakukan analisis menyeluruh terhadap Breast Cancer
Dataset untuk memahami struktur, Kkarakteristik, dan
distribusi data sebelum memasuki proses preprocessing dan
pemodelan selanjutnya. Analisis awal dilakukan dengan
meninjau struktur dataset menggunakan fungsi inspeksi data
untuk mengetahui jumlah sampel, jumlah atribut, tipe data,
serta keberadaan nilai hilang. Visualisasi distribusi kelas
dilakukan untuk melihat proporsi data Malignant dan Benign,
yang menunjukkan adanya ketidakseimbangan kelas dalam
dataset.  Selanjutnya, Untuk memahami perbedaan
karakteristik fitur antar kelas, dilakukan analisis statistik
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deskriptif dengan menghitung nilai rata-rata setiap fitur
berdasarkan kelas diagnosis. Analisis hubungan antar fitur
dilakukan  menggunakan  heatmap  korelasi  untuk
mengidentifikasi tingkat keterkaitan antar atribut. Heatmap
korelasi menunjukkan adanya korelasi tinggi antar beberapa
fitur yang berkaitan dengan ukuran dan bentuk inti sel,
seperti radius, perimeter, dan area. Temuan ini
mengindikasikan potensi redundansi fitur dan mendukung
penerapan seleksi fitur pada tahap pemodelan. Analisis
hubungan antar fitur dilakukan menggunakan heatmap
korelasi untuk mengidentifikasi keterkaitan antar atribut.
Hasil analisis menunjukkan adanya korelasi tinggi pada
beberapa fitur yang berkaitan dengan ukuran dan bentuk inti
sel, sehingga mengindikasikan potensi redundansi fitur dan
mendukung penerapan seleksi fitur. Selain itu, visualisasi
boxplot dan Kernel Density Estimation (KDE) digunakan
untuk menganalisis sebaran serta perbedaan distribusi fitur
antara kelas jinak dan ganas. Hasil visualisasi menunjukkan
perbedaan distribusi yang jelas pada sebagian besar fitur
utama, yang mengindikasikan potensi separabilitas kelas
sebelum proses pemodelan.

D. Split Data

Tahap split data dilakukan untuk membagi dataset
menjadi data latih (training set) dan data uji (testing set)
sebelum proses pemodelan. Pembagian ini bertujuan
memastikan bahwa model dievaluasi menggunakan data
yang tidak pernah dilihat sebelumnya sehingga hasil
pengujian lebih objektif dan tidak bias. Pada penelitian ini
digunakan fungsi train_test split dengan proporsi 80%
sebagai data latih dan 20% sebagai data uji.

E. Pipeline Preprocessing

Tahap preprocessing berperan penting dalam memastikan
bahwa data yang dimanfaatkan adalah data yang berkualitas
baik, lebih mudah dianalisis, dan mampu menghasilkan
kesimpulan yang lebih tepat dan bermakna [25]. Untuk
memastikan konsistensi proses serta mencegah terjadinya
data leakage, tahapan preprocessing lanjutan diintegrasikan
ke dalam sebuah pipeline yang diterapkan hanya pada data
pelatihan.  Pipeline  preprocessing dirancang untuk
menangani permasalahan perbedaan skala fitur, keberadaan
outlier, ketidakseimbangan kelas, serta redundansi fitur
secara terstruktur dan berurutan. Tahap pertama dalam
pipeline  adalah  feature  scaling menggunakan
StandardScaler, yang menstandarisasi setiap fitur agar
memiliki nilai rata-rata nol dan standar deviasi satu.
Normalisasi ini diperlukan untuk memastikan bahwa seluruh
fitur berada pada skala yang sebanding sehingga tidak
mendominasi proses pembelajaran model. Tahap berikutnya
adalah penanganan outlier menggunakan metode Local
Outlier Factor (LOF). Metode Local Outlier Factor (LOF)
diterapkan untuk mendeteksi dan menghapus outlier
sehingga distribusi data menjadi lebih stabil, karena metode
ini menilai anomali berdasarkan perbandingan kerapatan

lokal setiap titik data terhadap tetangganya sehingga
efektivitas deteksi tetap terjaga meskipun dataset memiliki
ukuran besar dan fitur yang kompleks [26]. Selanjutnya,
penyeimbangan kelas dilakukan menggunakan Synthetic
Minority Over-sampling Technique (SMOTE). Metode ini
digunakan untuk mengatasi ketidakseimbangan kelas dengan
menghasilkan sampel sintetis pada kelas minoritas, sehingga
distribusi kelas pada data pelatihan menjadi lebih seimbang
dan model dapat belajar secara lebih representatif. Tahap
terakhir dalam pipeline adalah seleksi fitur menggunakan
SelectKBest berbasis uji statistik ANOVA. Metode ini
digunakan untuk memilih sejumlah fitur dengan kontribusi
paling signifikan terhadap target Klasifikasi. Dengan
mengurangi jumlah fitur yang redundan atau kurang relevan,
proses ini bertujuan untuk meningkatkan efisiensi komputasi
serta kemampuan generalisasi model [27].

F. Pemodelan

Tahap pemodelan dilakukan dengan menerapkan lima
algoritma Gradient Boosted Trees untuk melakukan
klasifikasi kanker payudara, yaitu XGBoost, LightGBM,
CatBoost, HistGradientBoosting, dan GradientBoosting.
Kelima algoritma ini dipilih karena kemampuannya dalam
menangani data non-linear serta performanya yang baik pada
permasalahan klasifikasi berbasis data medis. Setiap model
dilatih menggunakan pipeline preprocessing yang sama untuk
memastikan  konsistensi dan keadilan dalam proses
perbandingan. Pipeline ini mencakup proses normalisasi
fitur, penanganan outlier, penyeimbangan kelas, serta seleksi
fitur, yang seluruhnya diterapkan hanya pada data pelatihan
untuk mencegah terjadinya data leakage. Proses pelatihan
model dilakukan dengan menyesuaikan parameter dasar
masing-masing algoritma dan menggunakan nilai random
state yang sama untuk memastikan reprodusibilitas hasil
eksperimen. Setelah model dilatih, kinerja model dievaluasi
menggunakan data pengujian yang tidak terlibat dalam proses
pelatihan.

G. Evaluasi Model

Tahap evaluasi dilakukan dengan mengukur performa
model pada data uji menggunakan metrik akurasi, presisi,
recall, dan F1-score melalui classification report untuk
menilai ketepatan serta keseimbangan kinerja klasifikasi.
Selain itu, confusion matrix divisualisasikan menggunakan
heatmap untuk melihat distribusi prediksi benar dan salah
pada tiap kelas, yang penting dalam konteks kesehatan untuk
mencegah salah diagnosis pada kasus Malignant. Evaluasi
juga mencakup analisis kurva ROC dan nilai AUC untuk
menilai kemampuan model membedakan kelas positif dan
negatif secara lebih komprehensif.

H. Uji Signifikan Statistik (DeLong Test)

Uji signifikansi statistik dilakukan untuk menilai apakah
perbedaan kinerja antar model klasifikasi bersifat signifikan
secara statistik. Dalam penelitian ini, uji DeLong digunakan
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untuk membandingkan nilai area under the receiver operating
characteristic curve (ROC-AUC) antar model, karena uji ini
secara khusus dirancang untuk membandingkan dua kurva
ROC yang dihasilkan dari dataset pengujian yang sama. Uji
DeLong diterapkan dengan menghitung nilai ROC-AUC dari
dua model yang dibandingkan, kemudian memperkirakan
kovarians dari perbedaan AUC menggunakan pendekatan
non-parametrik.  Perhitungan ini  mempertimbangkan
keterkaitan antar prediksi model terhadap sampel data yang
sama, sehingga memberikan estimasi varians yang lebih
akurat dibandingkan metode perbandingan sederhana. Dalam
implementasinya, probabilitas prediksi dari masing-masing
model diurutkan berdasarkan label kelas aktual, kemudian
digunakan untuk menghitung nilai mid-rank dan kovarians
AUC. Selanjutnya, nilai statistik z dihitung berdasarkan
selisih AUC dan variansnya, dan nilai p-value diperoleh dari
distribusi normal baku. Nilai p-value digunakan untuk
menentukan signifikansi perbedaan kinerja antar model,
dengan tingkat signifikansi yang ditetapkan sebesar 0,05.
Hasil uji DeLong disajikan dalam bentuk tabel perbandingan
yang memuat nilai AUC masing-masing model, selisih AUC,
serta p-value. Uji ini digunakan sebagai dasar untuk menilai
apakah model dengan performa numerik tertinggi benar-
benar unggul secara statistik, atau apakah perbedaan
performa antar model bersifat tidak signifikan.

I. Interpretabilitas Model

Interpretasi model pada penelitian ini dilakukan
menggunakan pendekatan Shapley Additive Explanations
(SHAP) untuk memperoleh pemahaman yang komprehensif
terhadap perilaku model CatBoost sebagai model
representatif dengan nilai ROC-AUC tertinggi. Analisis
interpretabilitas global dilakukan menggunakan summary
plot dan nilai rata-rata absolut SHAP (mean absolute SHAP
value) untuk mengidentifikasi fitur-fitur yang memberikan
kontribusi terbesar terhadap keputusan Klasifikasi. Hasil
analisis menunjukkan bahwa fitur-fitur yang berkaitan
dengan ukuran dan bentuk inti sel, seperti radius_mean,
area_mean, perimeter_mean, dan concave_ points_mean,
memiliki pengaruh dominan dalam membedakan antara
kelas Malignant dan Benign, sehingga memberikan
justifikasi statistik terhadap pentingnya fitur-fitur tersebut.
Selain itu, interpretasi lokal dilakukan untuk menilai
pengaruh individual setiap fitur terhadap prediksi pada
sampel data tertentu, sehingga memungkinkan penelusuran
faktor spesifik yang mendorong model menghasilkan
keputusan klasifikasi tertentu. Pendekatan interpretabilitas
secara global dan lokal ini meningkatkan transparansi model
serta memperkuat kepercayaan terhadap hasil prediksi,
sehingga model yang dihasilkan tidak hanya menunjukkan
performa yang tinggi, tetapi juga dapat
dipertanggungjawabkan dan relevan secara klinis dalam
mendukung pengambilan keputusan diagnosis kanker
payudara.

I11. HASIL DAN PEMBAHASAN

A. Akuisisi Data

Dataset yang digunakan dalam penelitian ini diperoleh
dari platform Kaggle dan merupakan dataset publik yang
banyak digunakan dalam penelitian klasifikasi kanker
payudara. Dataset ini berisi 569 sampel data tumor payudara
yang diklasifikasikan ke dalam dua kelas, yaitu Benign
(jinak) dan Malignant (ganas). Distribusi kelas terdiri dari
357 sampel Benign dan 212 sampel Malignant, yang
menunjukkan adanya ketidakseimbangan Kkelas dengan
dominasi sampel jinak. Setiap sampel data direpresentasikan
oleh 30 fitur numerik yang menggambarkan karakteristik
morfologi inti sel epitel payudara hasil ekstraksi dari citra
digital. Fitur-fitur tersebut mencakup karakteristik ukuran inti
sel, seperti radius, perimeter, dan area karakteristik bentuk
dan ketidakrataan kontur, seperti compactness, concavity,
dan concave points,serta karakteristik tekstur dan simetri,
seperti  texture, smoothness, symmetry, dan fractal
dimension. Secara struktural, fitur-fitur dalam dataset
dikelompokkan ke dalam tiga jenis pengukuran, yaitu nilai
rata-rata (mean), standar deviasi/galat (standard error, se),
dan nilai ekstrem (worst) dari masing-masing karakteristik
inti sel. Pembagian ini memungkinkan model untuk
menangkap informasi tidak hanya dari nilai tipikal suatu fitur,
tetapi juga dari variasi dan nilai ekstrem yang sering berkaitan
dengan tingkat keganasan sel tumor. Berdasarkan
karakteristik tersebut, dataset ini menyediakan informasi
yang kaya dan relevan untuk membedakan antara tumor jinak

dan ganas, serta sesuai digunakan sebagai dasar
pengembangan dan evaluasi model Klasifikasi kanker
payudara.

B. Pra-Pemrosesan Data

Tahap pemrosesan data dilakukan untuk memastikan
dataset berada dalam kondisi yang konsisten, bersih, dan siap
digunakan pada tahap berikutnya. Langkah awal pada pra-
pemrosesan data adalah pembersihnan data dengan
menyesuaikan penamaan atribut pada beberapa kolom,
seperti ‘concave points_mean' dan 'concave points_worst',
diubah menjadi ‘concave_points_mean' dan
‘concave_points_worst', proses ini dilakukan untuk
menghilangkan spasi yang dapat mengganggu proses
pemanggilan variabel, kolom id dihapus karena tidak
memiliki kontribusi terhadap proses klasifikasi. Selanjutnya,
kolom diagnosis yang semula bertipe kategorikal dikodekan
ke dalam bentuk numerik, dengan nilai 0 merepresentasikan
kelas jinak (Benign) dan nilai 1 merepresentasikan kelas
ganas (Malignant). Proses pengkodean ini bertujuan agar
label kelas dapat diproses oleh algoritma pembelajaran mesin.
Setelah itu, dataset dipisahkan ke dalam matriks fitur (X)
yang terdiri dari 30 fitur numerik dan vektor target (y) yang
berisi label kelas. Distribusi kelas menunjukkan bahwa
dataset bersifat tidak seimbang, dengan 357 sampel kelas
jinak dan 212 sampel kelas ganas. Dataset yang telah melalui
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tahap pra-pemrosesan ini selanjutnya digunakan pada tahap
eksplorasi data lanjutan, pembagian data, serta pemodelan
dan evaluasi kinerja model.

C. Exploratory Data Analysis (EDA)

Hasil Exploratory Data Analysis (EDA) memberikan
gambaran awal mengenai Kkarakteristik dataset kanker
payudara yang digunakan dalam penelitian ini. Dataset
terdiri dari 569 sampel dengan 30 fitur numerik dan satu label
kelas diagnosis, serta tidak ditemukan nilai hilang pada
seluruh atribut. Hal ini menunjukkan bahwa dataset berada
dalam kondisi yang baik dan layak untuk digunakan pada
tahap analisis dan pemodelan lanjutan.

Analisis distribusi kelas menunjukkan bahwa dataset
terdiri dari 357 sampel kelas jinak (Benign) dan 212 sampel
kelas ganas (Malignant). Distribusi ini mengindikasikan
adanya ketidakseimbangan kelas, di mana proporsi sampel
jinak lebih besar dibandingkan sampel ganas. Kondisi
ketidakseimbangan ini berpotensi memengaruhi proses
pembelajaran model, khususnya dalam mengenali kelas
minoritas, sehingga  diperlukan  penerapan  teknik
penyeimbangan kelas pada tahap preprocessing untuk
meningkatkan Kkinerja klasifikasi.

TABEL 1
CONTOH STATISTIK DESKRIPTIF 5 FITUR
i Diagnosis
Fitur
0 1
area_worst 558.899440 | 1422.286321
area_mean 462.790196 | 978.376415
perimeter_worst 87.005938 | 141.370330
perimeter_mean 78.075406 | 115.365377
area_se 21.135148 72.672406

Pada tabel 1 analisis statiktik deskriptif berdasarkan nilai
rata-rata fitur pada masing-masing kelas memperlihatkan
perbedaan karakteristik yang cukup jelas antara kelas jinak
(Benign) dan ganas (Malignant). Sebagian besar fitur
menunjukkan nilai rata-rata yang lebih tinggi pada kelas
ganas, khususnya fitur-fitur yang berkaitan dengan ukuran
inti sel seperti radius, perimeter, dan area. Hal ini
mengindikasikan bahwa sel ganas cenderung memiliki
ukuran inti yang lebih besar dan struktur yang lebih
kompleks dibandingkan sel jinak, yang sejalan dengan
karakteristik biologis kanker payudara.
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Gambar 2 Heatmap Korelasi

Dari gambar 3, Hasil visualisasi heatmap korelasi
memperlihatkan adanya korelasi yang sangat kuat antar
beberapa fitur, terutama fitur-fitur yang merepresentasikan
ukuran inti sel, seperti radius_mean, perimeter_mean, dan
area_mean, serta padanan fitur worst-nya. Tingginya korelasi
ini menunjukkan adanya redundansi informasi antar fitur,
yang berpotensi meningkatkan kompleksitas model tanpa
memberikan informasi tambahan yang signifikan. Oleh
karena itu, temuan ini mendukung penerapan seleksi fitur
pada tahap pemodelan untuk meningkatkan efisiensi dan
kemampuan generalisasi model.
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Gambar 4 visualisasi boxplot digunakan untuk
menganalisis sebaran nilai fitur pada masing-masing kelas
serta mengidentifikasi potensi outlier. Hasil boxplot
menunjukkan bahwa pada sebagian besar fitur utama, kelas
ganas memiliki median nilai yang lebih tinggi serta rentang
distribusi yang lebih lebar dibandingkan kelas jinak. Selain
itu, keberadaan nilai ekstrem pada beberapa fitur
mengindikasikan adanya sampel dengan karakteristik yang
menyimpang, Yyang berpotensi memengaruhi  proses
pembelajaran model apabila tidak ditangani dengan baik.

D. Split Data

Hasil pembagian data menunjukkan bahwa dataset dibagi
menjadi data latih (training set) dan data uji (testing set)
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dengan proporsi 80% : 20% menggunakan metode stratified
split. Pendekatan ini digunakan untuk memastikan bahwa
proporsi kelas jinak (Benign) dan ganas (Malignant) tetap
terjaga secara konsisten pada kedua subset data. Dari total
569 sampel, diperoleh 455 sampel sebagai data latih dan 114
sampel sebagai data uji. Distribusi kelas pada data latih
terdiri dari 285 sampel Benign dan 170 sampel Malignant,
sedangkan data uji terdiri dari 72 sampel Benign dan 42
sampel Malignant. Konsistensi distribusi kelas antara data
latih dan data uji menunjukkan bahwa proses pembagian data
dilakukan secara representatif. Pembagian data ini
memastikan bahwa model dilatih menggunakan data yang
cukup besar dan beragam, sekaligus diuji menggunakan data
yang benar-benar terpisah dari proses pelatihan.

E. Pipeline Preprocessing

Pada tahap preprocessing, data latih terlebih dahulu
dinormalisasi  menggunakan  StandardScaler  untuk
memastikan seluruh fitur numerik berada pada skala yang
sebanding. Normalisasi ini penting mengingat fitur dalam
dataset memiliki rentang nilai yang bervariasi, sehingga
dapat memengaruhi Kinerja algoritma deteksi outlier dan
seleksi fitur apabila tidak distandarisasi.

Deteksi outlier dilakukan menggunakan Local Outlier
Factor (LOF) pada data latih yang telah diskalakan. Hasil
deteksi menunjukkan bahwa dari total 455 sampel data latih,
teridentifikasi 23 sampel sebagai outlier dan 432 sampel
sebagai inlier, dengan persentase outlier sebesar 5,05%.
Jumlah ini relatif kecil dan menunjukkan bahwa mayoritas
data memiliki pola yang konsisten. Penghapusan outlier
dilakukan hanya pada data latih untuk mengurangi pengaruh
sampel ekstrem terhadap proses pembelajaran model,
sekaligus menjaga objektivitas evaluasi karena data uji tidak
dimodifikasi.

Class Distribution - After LOF (Train) Class Distribution - After SMOTE (Train)

Count

0 1 ] 1
Class (0=Benign, 1=Malignant) Class (0=Benign, 1=Malignant)

Gambar 4 Distribusi Kelas Sebelum dan Sesudah SMOTE

Setelah penghapusan outlier, distribusi kelas pada data
latih yang terlihat pada gambar 4 masih menunjukkan
ketidakseimbangan, di mana jumlah sampel kelas Benign
lebih besar dibandingkan kelas Malignant. Untuk mengatasi
permasalahan tersebut, diterapkan teknik Synthetic Minority
Over-sampling Technique (SMOTE) pada data latih setelah
LOF. Hasil visualisasi distribusi kelas menunjukkan bahwa
setelah penerapan SMOTE, jumlah sampel pada kedua kelas
menjadi seimbang. Penyeimbangan ini bertujuan untuk
mengurangi bias model terhadap kelas mayoritas dan

meningkatkan kemampuan model dalam mengenali kasus
kanker ganas sebagai kelas minoritas.

TABEL 2
HASIL PERINGKAT FITUR (10 FITUR)

Fitur F-Score P-Value
concave_points_worst | 1087.409091 3.256932e-132
perimeter_worst 910.318181 1.460672e-118
concave_points_mean | 880.128564 4.535272e-116
radius_worst 872.552110 1.951186e-115
perimeter_mean 720.615375 5.861753e-102
radius_mean 669.607332 4.554457¢-97
area_worst 648.429848 5.616536e-95
concavity_mean 602.157880 2.821556e-90
area_mean 583.902059 2.278223e-88
concavity worst 536.351327 2.976444e-83

Tahap selanjutnya adalah seleksi fitur menggunakan
metode ANOVA (f_classif) dengan pendekatan SelectKBest.
Uji ANOVA dilakukan pada data latih yang telah melalui
LOF dan SMOTE, sehingga perhitungan signifikansi fitur
tidak dipengaruhi oleh outlier maupun ketidakseimbangan
kelas. Hasil ANOVA pada tabel 2 menunjukkan bahwa
sejumlah fitur memiliki nilai F-score yang sangat tinggi
disertai p-value yang sangat kecil, yang mengindikasikan
adanya perbedaan yang signifikan secara statistik antara kelas
Benign dan Malignant. Berdasarkan hasil SelectkKBest
dengan nilai K = 10, diperoleh sepuluh fitur paling relevan,
yaitu radius_mean, perimeter_mean, area_mean,
concavity mean, concave_points_mean, radius_worst,
perimeter_worst,  area_worst,  concavity worst,  dan
concave_points_worst.  Fitur-fitur ini didominasi oleh
karakteristik yang berkaitan dengan ukuran inti sel (radius,
perimeter, area) serta ketidakrataan kontur dan kedalaman
lekukan inti sel (concavity dan concave points). Dominasi
fitur-fitur tersebut sejalan dengan karakteristik klinis kanker
payudara, di mana sel ganas cenderung memiliki ukuran inti
yang lebih besar, bentuk yang tidak teratur, serta kontur yang
lebih kompleks dibandingkan sel jinak.

Dengan demikian, hasil seleksi fitur ini tidak hanya
signifikan secara statistik, tetapi juga relevan secara biologis
dan klinis. Fitur-fitur terpilih selanjutnya digunakan sebagai
input utama pada tahap pemodelan menggunakan algoritma
Gradient Boosted Trees, sehingga diharapkan dapat
meningkatkan kinerja model sekaligus menjaga efisiensi dan
interpretabilitas.

F. Pemodelan

Tahap modeling dilakukan dengan membangun lima
algoritma Gradient Boosted Trees, vyaitu XGBoost,
LightGBM,  CatBoost, HistGradientBoosting,  dan
GradientBoosting. yang seluruhnya diintegrasikan dalam satu
pipeline preprocessing yang konsisten. Pipeline ini mencakup
normalisasi fitur, penghapusan outlier menggunakan LOF,
penyeimbangan kelas dengan SMOTE, serta seleksi fitur
berbasis ANOVA, yang seluruhnya diterapkan hanya pada
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data latih untuk mencegah terjadinya data leakage. Setiap
model kemudian dilatih menggunakan data latih dan
dievaluasi menggunakan data uji yang tidak mengalami
transformasi apapun selain scaling dan seleksi fitur yang
telah dipelajari dari data latih.

XGBoost digunakan dengan fungsi objektif logloss untuk
klasifikasi biner dan dikenal mampu menangani hubungan
non-linear secara efektif. LightGBM mengadopsi strategi
leaf-wise growth yang meningkatkan efisiensi pelatihan pada
data berdimensi tinggi. CatBoost menerapkan ordered
boosting yang meningkatkan stabilitas model dan
mengurangi overfitting tanpa banyak penyetelan parameter.
HistGradientBoosting memanfaatkan pendekatan histogram
untuk  mempercepat komputasi dan  mengurangi
kompleksitas  model, sedangkan  GradientBoosting
konvensional digunakan sebagai model pembanding dasar.

G. Evaluasi Model

Model Accuracy Precision Recall F1 ROC-AUC

2 CatBoost 0.9649 09750 09286 09512 0.9960
3 HistGradientBoosting 0.9561 09744 09048 09383 09957
1 LightGBHIM 0.9561 09744 09048 09383 09944
4 GradientBoosting 0.9561 0.9744 09048 09383 09940
0 XGBoost 0.9649 09750 09286 09512 0.9904

Gambar 5 Evaluasi Model
Pada gambar 5 evaluasi kinerja model dilakukan

menggunakan beberapa metrik Kklasifikasi yang umum
digunakan pada penelitian medis, yaitu accuracy, precision,
recall, F1-score, dan ROC-AUC, serta dianalisis lebih lanjut
melalui confusion matrix dan kurva ROC. Seluruh evaluasi
dilakukan pada data uji yang tidak terlibat dalam proses
pelatihan maupun preprocessing lanjutan, sehingga hasil
yang diperoleh merepresentasikan kemampuan generalisasi
model secara objektif.
Confusion Matrix - XGBoost
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Gambar 6 Confusion Matrix XGBoost

Pada gambar 6 model XGBoost berhasil
mengklasifikasikan 71 dari 72 sampel Benign dengan benar,
dengan hanya 1 kesalahan false positive. Pada kelas
Malignant, model mampu mengidentifikasi 39 dari 42 sampel
secara benar, dengan 3 kasus false negative. Pola ini
menunjukkan bahwa XGBoost memiliki kemampuan yang
baik dalam membedakan kedua kelas, meskipun masih
terdapat sejumlah kecil kasus kanker ganas yang salah
diklasifikasikan sebagai jinak.

Classification Report - XGBoost

precision recall fl-score support

a B.9595 @.9861 8.9726 72

1 B.9758 0.9286 8.9512 42

accuracy 8.9649 114
macro avg B8.9672 @.9573 8.9619 114
weighted avg 0.9652 8.9649 28.9647 114

Gambar 7 Classification Report XGBoost

Pada gambar 7 XGBoost mencapai akurasi 0.9649. Untuk
kelas Malignant, model menghasilkan precision 0.975, recall
0.9286, dan Fl-score 0.9512. Nilai precision yang tinggi
menunjukkan bahwa prediksi Malignant sangat akurat,
sementara recall yang tinggi menandakan bahwa sebagian
besar kasus kanker ganas berhasil terdeteksi, meskipun masih
terdapat beberapa kasus yang terlewat.

ROC Curve - XGBoost
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Gambar 8 ROC Curve XGBoost
Nilai ROC-AUC pada gambar 8 sebesar 0.9904
menunjukkan bahwa XGBoost memiliki kemampuan

diskriminatif yang sangat baik. Kurva ROC yang mendekati
sudut kiri atas menandakan keseimbangan yang baik antara
sensitivitas dan spesifisitas pada berbagai ambang klasifikasi.
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Confusion Matrix - LightGBM

70

True label

F20

r 10

0 1
Predicted label
Gambar 9 Confusion Matrix LightGBM

Pada gambar 9 LightGBM mampu mengklasifikasikan
71 dari 72 sampel Benign dengan benar, dengan 1 false
positive. Namun, pada kelas Malignant, terdapat 4 false
negative, sehingga 38 dari 42 sampel terklasifikasi dengan
benar. Hal ini menunjukkan bahwa LightGBM sedikit lebih
konservatif dalam mendeteksi kelas Malignant dibandingkan
XGBoost dan CatBoost.

Classification Report - LightGBM
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Gambar 11 ROC Curve LightGBM

Pada gambar 11 dengan nilai ROC-AUC sebesar 0.9944,
LightGBM menunjukkan kemampuan pemisahan kelas yang
sangat kuat. Kurva ROC yang tinggi mencerminkan bahwa
meskipun recall sedikit lebih rendah, model tetap konsisten
dalam membedakan kelas Benign dan Malignant secara
probabilistik.

Confusion Matrix - CatBoost
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Gambar 10 Classification Report LightGBM

Pada gambar 10 model LightGBM mencapai akurasi
0.9561. Untuk kelas Malignant, LightGBM menghasilkan
precision 0.9744, recall 0.9048, dan F1-score 0.9383. Nilai
recall yang sedikit lebih rendah mengindikasikan bahwa
sebagian kecil kasus kanker ganas masih belum terdeteksi,
meskipun secara keseluruhan performa model tetap sangat
haik.
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Gambar 12 Confusion Matrix CatBoost

Pada gambar 12 confusion matrix CatBoost menunjukkan
hasil yang sangat seimbang, dengan 71 sampel Benign dan 39
sampel Malignant yang diklasifikasikan dengan benar.
Jumlah kesalahan relatif kecil, yaitu 1 false positive dan 3
false negative, yang identik dengan pola kesalahan pada
XGBoost.
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Classification Report - CatBoost

precision recall fil-score  support

4] 8.9595 8.9861 8.9726 72

1 8.9758@ 8.0286 ©.0512 42

accuracy 8.9649 114
macro avg 8.9672 @.9573 8.9619 114
weighted avg 8.9652 8.9649 8.9647 114

Confusion Matrix - HistGradientBoosting
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Gambar 13 Classification Report CatBoost

Model CatBoost mencapai akurasi 0.9649 pada gambar
13. Untuk kelas Malignant, diperoleh precision 0.9750, recall
0.9286, dan F1-score 0.9512. Kombinasi precision dan recall
yang tinggi menunjukkan bahwa CatBoost mampu menjaga
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keseimbangan antara meminimalkan kesalahan positif palsu

dan mendeteksi sebagian besar kasus kanker ganas.
ROC Curve - CatBoost
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Gambar 15 Confusion Matrix HistGradientBoosting

Selanjutnya, HistGradientBoosting mengklasifikasikan
71 dari 72 sampel Benign dengan benar dan menghasilkan 1
false positive pada gambar 15. Pada kelas Malignant, terdapat
4 false negative, sehingga 38 sampel berhasil terdeteksi. Pola
kesalahan ini serupa dengan LightGBM.

Classification Report - HistaradientBoosting
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Gambar 14 ROC Curve CatBoost

Pada gambar 14 CatBoost memperolen ROC-AUC
tertinggi sebesar 0.9960. Kurva ROC yang sangat mendekati
sudut Kiri atas menandakan bahwa model ini memiliki
kemampuan diskriminatif terbaik di antara seluruh model
yang diuji, sehingga dipilih sebagai model utama pada tahap
analisis lanjutan.

precisicn recall fl-score support

=] 2.24E7 @.2361 B. 9668 72

1 B.9744 @, 9848 B.9383 42

aocuracy B.9551 114
macro avg 2.2:585 @,2454 B.9521 114
weighted avg @.9569 8.9551 B.9553 114

Gambar 16 Classification Report HistGradient Boosting

Model ini menghasilkan akurasi 0.9561, dengan precision
0.9744, recall 0.9048, dan F1-score 0.9383 pada kelas
Malignant yang bisa dilihat pada gambar 16. Nilai ini
menunjukkan performa yang stabil dan kompetitif, meskipun
sensitivitas terhadap kelas Malignant sedikit lebih rendah
dibandingkan XGBoost dan CatBoost.

JAIC Vol. 10, No. 1, February 2026: 605 — 618



JAIC

e-I1SSN: 2548-6861

615
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Gambar 17 ROC Curve HistGradientBoosting

Pada gambar 17 nilai ROC-AUC sebesar 0.9957
menempatkan HistGradientBoosting sebagai salah satu
model dengan kemampuan pemisahan kelas terbaik. Kurva
ROC menunjukkan konsistensi model dalam membedakan
kelas pada berbagai ambang keputusan.

Confusion Matrix - GradientBoosting
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Gambar 18 Confusion Matrix GradientBoosting

Terakhir, model GradientBoosting menunjukkan hasil
yang identik dengan HistGradientBoosting dan LightGBM,
dengan 1 false positive dan 4 false negative yang terlihat pada
gambar 18. Sebanyak 71 sampel Benign dan 38 sampel
Malignant berhasil diklasifikasikan dengan benar.

Classificaticn Report - GradientBocsting
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Gambar 19 Classification Report GradientBoosting

Pada gambar 19 model ini mencapai akurasi 0.9561.
Untuk kelas Malignant, diperoleh precision 0.9744, recall
0.9048, dan F1-score 0.9383. Performa ini menunjukkan
bahwa meskipun model lebih sederhana dibandingkan varian
boosting modern,  GradientBoosting tetap mampu
memberikan hasil yang sangat kompetitif.

ROC Curve - GradientBoosting
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Gambar 20 ROC Curve GradientBoosting

Dengan nilai ROC-AUC yang ada pada gambar 20
sebesar 0.9940, GradientBoosting masih menunjukkan
kemampuan diskriminatif yang sangat baik. Kurva ROC yang
tinggi mengindikasikan bahwa model ini efektif dalam
membedakan antara kelas jinak dan ganas, meskipun sedikit
berada di bawah CatBoost dan HistGradientBoosting.

H. Uji Signifikan Statistik (DeLong Test)

Model_a Model B AUC_A AUC_B AUC_Diff (A-B) p_value
0 CatBoost XGBoost 0996 0.9904 0.0056 0.1260
1 CatBoost LightGEM 0.995 0.9944 0.0017 03225
3 CatBoost GradientBoosting  0.996 0.9940 0.0020 0.3504
2 CatBoost HistGradientBoosting 0996 09957 0.0003 08786

Gambar 21 Hasil DeLong Test

Untuk menilai apakah perbedaan performa antar model
secara statistik benar-benar signifikan, dilakukan uji DeLong
terhadap nilai ROC-AUC yang dapat dilihat pada gambar 21.
Uji DeLong merupakan metode non-parametrik yang umum
digunakan untuk membandingkan dua kurva ROC yang
dihasilkan dari model yang dievaluasi pada dataset yang
sama. Pendekatan ini  dipilih  karena  mampu
mempertimbangkan korelasi antar prediksi model dan
memberikan pengujian yang lebih reliabel dibandingkan
perbandingan ROC-AUC secara deskriptif semata.

Berdasarkan hasil evaluasi sebelumnya, CatBoost
memperoleh nilai ROC-AUC tertinggi dan oleh karena itu
digunakan sebagai model acuan (Model_A) dalam pengujian
DeLong. Selanjutnya, ROC-AUC CatBoost dibandingkan
secara berpasangan dengan model lain, yaitu XGBoost,
LightGBM, HistGradientBoosting, dan GradientBoosting.
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Hasil uji DeLong menunjukkan bahwa perbedaan nilai
ROC-AUC antara CatBoost dan XGBoost sebesar 0.0056,
dengan nilai p-value 0.1260. Meskipun CatBoost memiliki
nilai ROC-AUC yang lebih tinggi, nilai p-value tersebut
lebih besar dari ambang signifikansi 0,05, sehingga
perbedaan performa antara kedua model tidak signifikan
secara statistik. Hal serupa juga ditemukan pada
perbandingan CatBoost dengan LightGBM, di mana selisih
ROC-AUC sebesar 0.0017 menghasilkan p-value 0.3225,
serta pada perbandingan dengan GradientBoosting yang
memiliki selisih ROC-AUC 0.0020 dan p-value 0.3504.

Perbandingan antara CatBoost dan HistGradientBoosting
menunjukkan selisih ROC-AUC yang sangat kecil, yaitu
0.0003, dengan p-value 0.8786, yang semakin menegaskan
bahwa kedua model memiliki kemampuan diskriminatif
yang hampir identik. Secara keseluruhan, seluruh nilai p-
value yang diperoleh berada di atas batas signifikansi statistik
(p > 0,05), sehingga tidak terdapat perbedaan ROC-AUC
yang signifikan secara statistik antara CatBoost dan model
boosting lainnya.

Temuan ini mengindikasikan bahwa meskipun CatBoost
menunjukkan nilai ROC-AUC tertinggi secara numerik,
keunggulan tersebut belum dapat diklaim signifikan secara
statistik. Dengan demikian, performa seluruh algoritma
Gradient Boosted Trees yang diuji dapat dikatakan relatif
sebanding dalam hal kemampuan diskriminatif. Pemilihan
CatBoost sebagai model utama dalam penelitian ini
didasarkan pada kombinasi performa numerik terbaik,
stabilitas prediksi, serta nilai ROC-AUC tertinggi, bukan
semata-mata pada perbedaan signifikan secara statistik.
Pendekatan ini relevan dalam konteks aplikasi medis, di
mana model dengan performa tinggi dan stabil tetap bernilai
penting meskipun perbedaannya dengan model lain tidak
signifikan secara statistik.

I. Interpretabilitas Model

Interpretabilitas model pada penelitian ini dianalisis
menggunakan pendekatan SHapley Additive exPlanations
(SHAP) untuk memahami kontribusi setiap fitur terhadap
keputusan klasifikasi kanker payudara. Analisis ini
difokuskan pada model CatBoost, yang dipilih sebagai model
terbaik karena menghasilkan nilai ROC-AUC tertinggi,
meskipun perbedaannya dengan model lain tidak signifikan
secara statistik berdasarkan uji DeLong.

concave_points_worst
concave_points_mean
area_worst
radius_worst
perimeter_worst
concavity_worst
concavity_mean
area_mean

radius_mean

perimeter_mean

0.0 02 04 06 08 10
mean(|SHAP value|) (average impact on model output magnitude

Gambar 22 SHAP Feature

Analisis global interpretability dilakukan melalui SHAP
summary plot (bar) pada gambar 22 menunjukkan peringkat
fitur berdasarkan nilai mean absolute SHAP. Hasil analisis
menunjukkan bahwa  fitur  concave_points_worst,
concave_points_mean, area_worst, radius_worst, dan
perimeter_worst merupakan fitur dengan kontribusi terbesar
terhadap prediksi kelas ganas. Dominasi fitur-fitur ini
mengindikasikan bahwa karakteristik morfologi inti sel yang
berkaitan dengan ketidakteraturan bentuk, ukuran, dan
kedalaman cekungan (concavity) memiliki peran penting
dalam membedakan tumor ganas dan jinak.

Secara Klinis, temuan ini sejalan dengan literatur medis
yang menyatakan bahwa kanker payudara ganas umumnya
menunjukkan inti sel yang lebih besar, variasi ukuran inti
yang tinggi, bentuk yang tidak beraturan, serta tingkat
concavity dan concave points yang lebih menonjol. Studi oleh
Li et al. (2021) dalam Analytical Cellular Pathology
melaporkan bahwa perbedaan ukuran inti (nuclear size
variation), pleomorfisme inti, serta karakteristik nukleoli
memiliki hubungan signifikan dengan subtipe molekuler
kanker payudara dan tingkat keganasan tumor. Sel kanker
dengan karakteristik tersebut cenderung memiliki perilaku
biologis yang lebih agresif dan tingkat proliferasi yang lebih
tinggi. Fitur radius, area, dan perimeter, baik pada nilai mean
maupun worst merepresentasikan ukuran dan ekspansi inti
sel. Dalam konteks histopatologi, ukuran inti yang lebih besar
dan tidak seragam merupakan indikator penting keganasan
jaringan payudara, karena mencerminkan peningkatan
aktivitas mitosis dan ketidakteraturan siklus sel. Hal ini
diperkuat oleh temuan klinis bahwa subtipe kanker payudara
dengan agresivitas tinggi, seperti HER2-positive, memiliki
inti sel yang lebih besar dan pleomorfik dibandingkan subtipe
dengan prognosis lebih baik. Selain itu, fitur concavity dan
concave points menggambarkan tingkat ketidakrataan dan
invaginasi pada batas inti sel. Nilai concavity yang tinggi
mengindikasikan bentuk inti yang tidak simetris dan tidak
teratur, yang secara patologis sering dikaitkan dengan
keganasan dan invasi tumor. Literatur medis menyebutkan
bahwa ketidakteraturan bentuk inti merupakan manifestasi
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morfologis dari perubahan molekuler yang mendasari
progresi kanker dan peningkatan potensi metastasis [28].
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concave_points_worst -4.... - cos e -
concave_points_mean P carot - e .»Q ves
area_worst  +ecvofpbaacon s ooenen
radius_worst a’ua— . Soeeoofiies .
=2
perimeter_worst -+»—- -t . - ]
)
g
concavity_worst oo +0- o esimen @ M9 %
&
concavity_mean - e
area_mean ’.—d-'
radius_mean "-l 4
perimeter_mean -*.- N ]

y Low
-15 -10 -05 00 05 10 g .3 2.0
SHAP value (impact on model output)

Gambar 23 SHAP Beeswarm Plot

Analisis lokal melalui beeswarm plot SHAP pada gambar
23 menunjukkan bahwa nilai fitur yang tinggi (ditandai
warna merah) pada fitur-fitur utama tersebut cenderung
mendorong prediksi ke arah kelas Malignant, sedangkan nilai
rendah (warna biru) berkontribusi pada prediksi Benign. Pola
ini konsisten dengan pemahaman klinis bahwa peningkatan
ukuran dan ketidakteraturan inti sel merupakan ciri khas
keganasan.

1V. KESIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan, dapat
disimpulkan bahwa penerapan pipeline machine learning
berbasis Gradient Boosted Trees yang terintegrasi dengan
tahapan preprocessing komprehensif mampu menghasilkan
performa klasifikasi kanker payudara yang sangat baik.
Seluruh model yang diuji, yaitu XGBoost, LightGBM,
CatBoost, HistGradientBoosting, dan GradientBoosting,
menunjukkan Kinerja yang tinggi dan relatif sebanding pada
berbagai metrik evaluasi, meliputi accuracy, precision,
recall, F1-score, dan ROC-AUC.

Di antara seluruh model, CatBoost menunjukkan performa
numerik terbaik dengan akurasi sebesar 0,9649, precision
0,9750, recall 0,9286, Fl-score 0,9512, serta ROC-AUC
tertinggi sebesar 0,9960. Nilai precision yang tinggi
mengindikasikan rendahnya tingkat kesalahan positif palsu
pada prediksi kasus ganas, sedangkan nilai recall yang tinggi
menunjukkan kemampuan model dalam mendeteksi
sebagian besar kasus kanker payudara ganas. Kombinasi
kedua metrik tersebut tercermin pada nilai F1-score yang
tinggi, yang menunjukkan keseimbangan kinerja model
dalam konteks Klasifikasi medis. Meskipun CatBoost
memiliki nilai ROC-AUC tertinggi secara numerik, hasil uji
DelLong menunjukkan bahwa perbedaan performa antar
model tidak signifikan secara statistik, sehingga seluruh
algoritma Gradient Boosted Trees yang diuji dapat dikatakan
memiliki kemampuan diskriminatif yang sebanding.

Selain performa, penelitian ini juga menekankan aspek
interpretabilitas model melalui penerapan SHAP pada model
CatBoost. Hasil analisis SHAP menunjukkan bahwa fitur-
fitur yang berkaitan dengan ukuran dan bentuk inti sel, seperti
radius, area, perimeter, concavity, dan concave points,
memberikan  kontribusi dominan terhadap prediksi
keganasan. Temuan ini sejalan dengan literatur histopatologi
kanker payudara, sehingga memperkuat bahwa model yang
dihasilkan tidak hanya akurat secara kuantitatif, tetapi juga
interpretable dan relevan secara klinis.

Meskipun demikian, penelitian ini memiliki beberapa
keterbatasan yang perlu diperhatikan. Pertama, proses seleksi
fitur yang digunakan berbasis ANOVA bersifat univariat,
sehingga hanya mempertimbangkan hubungan individual
antara setiap fitur dan label kelas tanpa memperhitungkan
interaksi antar fitur. Pada data medis yang kompleks,
interaksi antar Kkarakteristik sel berpotensi mengandung
informasi penting yang belum sepenuhnya tertangkap oleh
pendekatan ini. Oleh karena itu, penelitian selanjutnya dapat
mempertimbangkan penggunaan metode seleksi fitur
multivariat atau embedded feature selection untuk
memperoleh representasi fitur yang lebih komprehensif.

Kedua, evaluasi model dalam penelitian ini masih terbatas
pada satu dataset publik, dengan pembagian data latih dan
data uji yang berasal dari sumber yang sama, tanpa dilakukan
validasi eksternal menggunakan dataset independen. Kondisi
ini membatasi klaim keandalan model untuk penerapan Klinis
yang lebih luas. Oleh karena itu, diperlukan validasi lanjutan
pada data dunia nyata (real-world data) atau dataset dari
institusi dan populasi yang berbeda guna memastikan
kemampuan generalisasi serta kestabilan model dalam
konteks klinis yang sesungguhnya.

Penelitian ini menunjukkan bahwa kombinasi pipeline
preprocessing yang robust, algoritma Gradient Boosted
Trees, serta pendekatan Explainable Artificial Intelligence
mampu menghasilkan model Klasifikasi kanker payudara
yang akurat, reliable secara internal, dan interpretable.
Namun, pengembangan lanjutan melalui validasi eksternal,
eksplorasi interaksi fitur yang lebih kompleks, serta
pertimbangan aspek teknis dan etis tetap diperlukan sebelum
model dapat diadopsi sebagai sistem pendukung keputusan
klinis.
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