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 Lung diseases constitute a significant source of morbidity and therefore require 

diagnostic frameworks that provide both high accuracy and operational efficiency. 

This study proposes the development of a Vision Transformer (ViT)-based 

classification model for lung X-ray images, employing transfer learning and fine-

tuning techniques to improve detection performance across five disease categories. 

Experimental results demonstrate stable and effective model convergence, as 

reflected by the consistent decrease in loss metrics throughout the learning process. 

Evaluation on an independent test dataset shows that the proposed approach achieves 

an accuracy of 0.958, indicating strong and balanced generalization performance. 

Further analysis using a confusion matrix reveals that the ViT model is capable of 
recognizing subtle and complex radiographic patterns with low misclassification 

rates, particularly achieving high recall for major pathological classes, which is 

critical for minimizing false negatives in clinical screening scenarios. Overall, this 

study demonstrates that the application of transfer learning with fine-tuning on a 

Vision Transformer architecture yields competitive performance for multi-class lung 

X-ray classification when trained on a balanced dataset. These findings are 

consistent with prior evidence highlighting the effectiveness of ViT in capturing 

global contextual information in medical imaging tasks. 
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I. INTRODUCTION  

Lung diseases represent one of the most urgent public 

health challenges in Indonesia, exerting a substantial impact 

on the population. Conditions such as tuberculosis, 

pneumonia, and lung cancer are major causes of morbidity 
and mortality, particularly in regions with limited healthcare 

infrastructure. The shortage of radiology specialists and the 

unequal distribution of medical technology further exacerbate 

this issue. Therefore, innovative solutions capable of 

supporting accurate early diagnosis are essential to reducing 

mortality rates [1], [2], [3], [4], [5], [6].  

During the COVID-19 pandemic, artificial intelligence 

(AI) gained prominence as a potential solution to the 

limitations of medical resources. AI-based methods, 

especially those applied to medical imaging modalities such 

as chest X-rays, demonstrate the ability to recognize complex 

patterns that are difficult for untrained observers to identify 

and typically require radiological expertise. With properly 

designed algorithms, AI can assist clinicians in detecting 

abnormalities more rapidly, accurately, and efficiently. This 

capability not only alleviates the workload of healthcare 
professionals but also accelerates clinical decision-making, 

ultimately improving patient outcomes [7], [8]. 

Modern approaches employing attention mechanisms, such 

as the Vision Transformer (ViT), have been extensively 

applied in medical image analysis and proven effective in 

extracting visual features. The ViT architecture employs self-

attention to capture global relationships among various 

regions within an image. For lung X-rays, where subtle 

differences often distinguish normal from abnormal images, 

global context is crucial because abnormalities frequently 

arise from structural relationships across regions rather than 

isolated local features [9], [10].  
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Previous studies have demonstrated that Vision 

Transformer (ViT) models deliver competitive and reliable 

performance in a broad range of image classification tasks, 

with growing adoption in medical imaging analysis 

applications that involve subtle visual variations. Compared 

with conventional convolutional neural networks (CNNs), 

ViT offers an advantage in modeling long-range 

dependencies, which is beneficial for analyzing complex lung 

X-ray images, where disease indicators may not be localized 
to specific regions [9], [10], [11], [12], [13], [14]. 

Despite these advantages, ViT models are inherently data-

intensive and, in most cases, demand large-scale training 

datasets to achieve optimal performance, which poses 

challenges when data availability is limited. Unlike CNNs, 

ViT architectures lack built-in inductive biases such as 

locality and translation invariance, which allow CNNs to 

learn efficiently from smaller datasets [15], [16], [17], [18]. 

As a result, ViT models trained from scratch on limited or 

medium-sized datasets are more susceptible to overfitting and 

may underperform compared to CNN-based approaches. 
Another major challenge in lung X-ray analysis lies in the 

subtle and difficult-to-recognize nature of disease features. 

Early indicators of pneumonia or tuberculosis may appear as 

minor structural changes that are difficult to observe in 

grayscale images. Additionally, class imbalance within many 

datasets increases the complexity of the classification task, as 

certain disease categories occur far less frequently than 

others, affecting model performance in detecting minority 

classes [19], [20], [21], [22], [23]. 

Transfer learning has emerged as a practical approach for 

mitigating these constraints. By leveraging models that were 

previously trained on extensive, generic datasets, transfer 
learning enables the transfer of prior knowledge into specific 

domains, such as medical X-ray analysis. Fine-tuning, in 

which selected model layers are re-optimized using the target 

dataset, has shown substantial benefits, particularly when 

training data are limited or imbalanced. This approach 

minimizes the requirement to train a model from the ground 

up and accelerates model development [19], [24], [25], [26], 

[27], [28].  

Recent research efforts have further demonstrated that the 

combination of ViT architectures with transfer learning can 

yield promising results in chest X-ray classification tasks. In 
parallel, data augmentation techniques—including image 

rotation, horizontal and vertical flipping, and contrast 

adjustment—are commonly employed to increase data 

diversity and enhance model robustness. When integrated 

with transfer learning, these strategies can help mitigate data 

limitations and improve classification performance [24], [29], 

[30], [31].  

Although Vision Transformer models with transfer 

learning have been widely investigated for chest X-ray 

classification, most existing studies primarily focus on large-

scale and well-curated datasets. Comparatively less attention 

has been given to systematic fine-tuning strategies and data 
preprocessing techniques, specifically aimed at addressing the 

challenges arising from limited and small-to-medium-sized 

datasets, which are commonly encountered in medical 

imaging research. 

To address this gap, this study presents an empirical 

investigation of a fine-tuned transfer learning Vision 

Transformer framework for lung X-ray classification, with an 

emphasis on methodological robustness rather than direct 

clinical deployment. The proposed approach systematically 

examines fine-tuning strategies for ViT when applied to 
small- to medium-sized lung X-ray datasets, aiming to 

improve feature representation and classification reliability 

under realistic data constraints. 

II. METHODS  

This study follows a systematic workflow to ensure that 

each stage of data processing and model development is 

conducted in a structured and measurable manner. The 

workflow begins with data collection, followed by the initial 

pre-processing step to standardize the images and prepare 

inputs suitable for the Vision Transformer (ViT) architecture, 

and concludes with the analysis of the model using the 
optimal hyperparameter configuration. The workflow is 

illustrated in Figure 1. 

 
Figure 1. Research Flow 

A. Data Collection 

In this study, the dataset employed consists of lung X-ray 
images categorized into four classes: COVID-19, Pneumonia, 

Pneumothorax, and Normal, comprising a total of 20.000 

images. The data were collected by downloading and curating 

images from several publicly available datasets hosted on 

Kaggle, namely Chest X-ray (Covid-19 & Pneumonia), Chest 

X-Ray (Pneumonia, Covid-19, Tuberculosis), and the NIH 

Chest X-rays dataset. The dataset exhibits a balanced 

distribution among four classes, each represented by 5,000 

images. 

B. Data Pre-processing 

For the purpose of assuring the accuracy and consistency 

of the inputs used during model training, a series of 

preprocessing procedures was applied. These procedures 

https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/jtiptj/chest-xray-pneumoniacovid19tuberculosis
https://www.kaggle.com/datasets/jtiptj/chest-xray-pneumoniacovid19tuberculosis
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://www.kaggle.com/datasets/nih-chest-xrays/data
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were designed to standardize image characteristics and 

reinforce the model’s capacity to handle diverse input 

variations in lung X-ray imagery through several simple 

augmentation techniques. The steps performed in this study 

are as follows: 

1) Resize (256 pixels): 

All images were resized to 256 pixels on their shortest side. 

This ensures consistent image dimensions, facilitating batch 

processing and reducing computational complexity without 

removing diagnostically important pulmonary information. 

2) Center Crop (224 x 224): 

After resizing, images were centrally cropped to 224 × 224 
pixels, which corresponds to the standard input dimensions 

required by Vision Transformer (ViT) models pretrained on 

ImageNet. This step preserves the most diagnostically 

relevant central lung region while reducing noise at the 

periphery, such as radiographic labels or background artifacts. 

3) Random Horizontal Flip: 

During training, the images were subjected to horizontal 

flipping with a predetermined probability. This augmentation 

enhances spatial invariance, enabling the model to learn 

abnormal patterns regardless of orientation. 

4) Random Rotation (±5 degrees): 

Images were subjected to small random rotations within the 

range of -5° to +5°, mimicking real-world variations in patient 

positioning. This improves the model’s robustness to slight 

misalignments that do not affect clinical interpretation. 

5) Color Jitter (Brightness and Contrast): 

Image brightness and contrast were randomly adjusted 

within ±20%. This augmentation helps the model adapt to 

differences in lighting conditions and contrast variations 
across X-ray machines or acquisition environments, 

improving cross-domain generalization. 

6) Convert to Tensor: 

Since the study utilizes the PyTorch framework, all images 

were converted into PyTorch tensors with pixel intensities 

rescaled to a 0–1 interval. This step is required for processing 

data within deep learning pipelines. 

7) Normalize: 

The images were normalized by applying a mean of [0.485, 

0.456, 0.406] and a standard deviation of [0.229, 0.224, 

0.225], ensuring that pixel intensities were standardized for 

consistent input to the model, by following the ImageNet 

statistical distribution. Normalization aligns the statistical 

distribution of the X-ray inputs with that learned during the 

pretraining phase of the ViT model, which promotes faster 

convergence and more stable training. 

C. ViT Architecture for Lung X-Ray 

The Vision Transformer (ViT) architecture used in this 

study is a transformer-based model fine-tuned to perform 

diagnostic classification of lung X-ray scans into four 

categories. In general, this architecture features two 

fundamental components: the X-ray ViT backbone and the 

multilayer perceptron (MLP) classifier, as shown in Figure 2. 

In the backbone, the process begins with patch embedding, 

where an input image with three color channels is divided into 

small patches of size 16 × 16 pixels. Each image patch is 

subsequently transformed into a 768-dimensional embedding 

vector through a 2D convolution operation employing a 16 × 

16 kernel and corresponding stride. Mathematically, the 

number of patches produced is (H/16 × W/16) for an image of 

size H × W × 3. This linear projection serves as a substitute 
for the spatial encoding produced by CNNs, embedding each 

patch into a latent representation. 

The integrated patches are subsequently processed by a 

transformer encoder with 12 stacked layers. Each transformer 

encoder layer is architecturally composed of two primary 

submodules: a feed-forward network (FFN) and a multi-head 

self-attention mechanism. 

. Within the self-attention mechanism, the input embedding 

𝑋 ∈ 𝑅𝑁×𝑑, where 𝑁Denotes the total number of patches plus 

a class token and 𝑑 corresponds to the embedding dimension 

(768), is linearly transformed into three matrices, referred to 

as Query (Q), Key (K), and Value (V). Based on these 
representations, the attention scores are then derived as 

expressed in Equation (1): 

 
Figure 2. ViT Architecture for Lung X-ray 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (1) 

The output is then linearly projected. By employing self-

attention, the model effectively encodes global relationships 

spanning across the image patches, offering an advantage 

over CNNs, which primarily capture local features. 
Meanwhile, the FFN applies non-linear transformations with 

an intermediate dimension of 3072, increasing the model’s 

representational capacity. 

In the classifier section, the ViT is connected to a fully 

connected multilayer perceptron (MLP) consisting of several 

linear layers. The first layer reduces the embedding dimension 
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from 768 to 512 units, followed by batch normalization for 

stabilization. A ReLU activation function introduces non-

linearity into the feature mapping. 

D. Fine-Tuning with Hyperparameter Settings 

As shown in Table I, the hyperparameter values were 

selected through a series of trial-and-error experiments aimed 

at achieving the most stable and consistent validation 

performance. In addition to tuning optimization parameters, 

the fine-tuning strategy also involved determining which 
components of the Vision Transformer architecture should be 

updated during training. The model employs a ViT-B/16 

backbone consisting of a patch embedding layer followed by 

12 transformer encoder layers and a task-specific 

classification head. 
TABLE I 

HYPERPARAMETER SETTINGS 

Hyperparameter  Value 
Learning rate 2e-4 

Train/eval batch size 16:16 
Epochs 12 

Ratio train/val/test 85:10:5 

 

During fine-tuning, all transformer encoder layers and the 

classification head were unfrozen, allowing the model to fully 

adapt pretrained representations to the lung X-ray domain. 

This full fine-tuning approach was empirically found to 

outperform partial layer freezing in preliminary experiments, 

particularly in capturing high-level contextual features 
relevant to medical image classification. The classification 

head was implemented as a multi-layer fully connected 

network with batch normalization, ReLU activation, and 

dropout regularization to enhance discriminative capability 

while mitigating overfitting. 

With respect to optimization, a learning rate of 2 × 10⁻⁴ 

achieved an optimal balance between convergence speed and 

gradient stability. Throughout the training phase, a batch size 

of 16 was used to ensure stable gradient updates, while a batch 

size of 16 was applied during evaluation to improve 

computational efficiency. Training was conducted for 12 

epochs, which was sufficient to reach convergence without 
observable overfitting on the validation set. Data splitting was 

performed using an 85:10:5 ratio for training, validation, and 

testing subsets, respectively, ensuring adequate data for 

model learning while maintaining objective performance 

evaluation. This combination of fine-tuning strategy and 

hyperparameter configuration yielded the highest validation 

performance compared to alternative settings explored during 

preliminary experiments. 

E. Model Evaluation 

The model was evaluated using a framework that examines 
multiple performance aspects. A confusion matrix served as 

the primary diagnostic tool, providing insights into model 
behavior, error patterns, and performance on real-world data. 
The evaluation process categorized model outputs into true 
positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN), each representing outcomes with 
distinct clinical implications. 

Accuracy represents a general indication of model 

performance. Nevertheless, in medical imaging applications 

such as lung X-ray classification, reliance on alone can be 

misleading when class frequencies are imbalanced. A model 

may appear highly accurate simply by predicting the majority 

class—such as “normal”—while failing to detect less frequent 
but clinically critical abnormalities. Precision provides a more 

clinically meaningful perspective by indicating how many of 

the model’s positive predictions truly correspond to 

pathological findings. 

Next recall, this metric is particularly crucial in healthcare 

and clinical decision-support systems, as a low recall 

indicates a higher likelihood of false negative predictions, 

where existing abnormalities are overlooked by the model. In 

the context of lung X-ray analysis, such missed detections 

may involve clinically significant conditions, including 

pneumonia, pneumothorax, or other pulmonary 
abnormalities, which require timely medical intervention. 

The F1-score integrates both precision and recall through 

their harmonic mean, producing a balanced metric that 

captures the trade-off between avoiding false alarms and 

minimizing missed diagnoses. In the context of lung X-ray 

analysis, the F1-score thus offers a more realistic and 

clinically aligned assessment of the model’s diagnostic 

capability, especially when both over-detection and under-

detection carry significant consequences for patient care. 

III. RESULTS AND DISCUSSION 

This section presents the evaluation results of the fine-

tuned Vision Transformer (ViT) model developed for multi-
class lung X-ray classification, using Accuracy, Precision, 

Recall, and F1-Score as the primary performance indicators. 

Before the fine-tuning process, all X-ray images underwent 

a preprocessing stage aimed at ensuring data consistency and 

accelerating model convergence. Examples of the images 

before preprocessing are illustrated in Figure 3(a), while the 

corresponding results after preprocessing are shown in Figure 

3(b).  

The overall training trajectory demonstrated stable and 

progressive learning, characterized by a consistent decrease 

in both training and validation loss, indicating that the model 
converged effectively without exhibiting signs of overfitting. 

As illustrated in Figure 4, this downward trend reflects the 

model’s increasing ability to generalize across samples, while 

Figure 5 highlights notable improvements across all evaluated 

metrics as training progressed. 
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(a) 

 
(b) 

Figure 3. Image (a) Before Preprocessing, (b) After Preprocessing

The reduction in training loss provides additional evidence 

of successful optimization. Starting at 0.1581 during the first 

epoch, the loss steadily declined to 0.0202 by the seventh 

epoch, slightly increased at the eighth epoch, but continued to 

decrease thereafter until reaching a minimum value at the 

twelfth epoch, demonstrating stable convergence behavior.  

The validation loss also exhibited a general downward 

trend, decreasing from 0.0462 to 0.0092, although minor 

fluctuations were observed at epoch 3 (0.0519). Such early 

fluctuations are commonly encountered during the 
optimization process as the model adjusts its parameters. 

After epoch 8, the validation loss stabilized below 0.1, 

indicating strong generalization capability and the absence of 

significant overfitting. 

The training performance across all evaluation metrics is 

presented in Figure 5, which shows that metric values began 

at 0.986 in the first epoch and gradually converged to 0.998, 

with a total training time of 37.13 minutes. These findings 

demonstrate that the fine-tuned model achieved near-optimal 

performance on the training dataset, as evidenced by its 

efficient convergence behavior and stable learning process. 
The strong results observed during training indicate that the 

selected fine-tuning strategy and hyperparameter 

configuration were effective in enabling the model to learn 

representative features from the data. 

Nevertheless, it should be emphasized that metrics derived 

exclusively from the training data provide only a partial 

representation of the model’s actual predictive capacity and 

cannot adequately characterize its behavior when exposed to 

unfamiliar inputs. Performance observed during training may 

be influenced by data memorization rather than genuine 

learning. To establish a more trustworthy and unbiased 

estimation of the model’s generalization capability, a separate 
evaluation was therefore performed using an independent 

dataset that remained entirely excluded from both the training 

and validation processes. The quantitative performance 

metrics obtained from this evaluation are presented in Table 

2. 

 

 
Figure 4. Training vs Validation Loss for ViT X-ray Classification  

Evaluation on the test dataset reveals a pattern of stable and 

reliable predictive behavior, with an overall accuracy of 

0.958, corresponding to 95.8% of the samples being assigned 

to their correct categories. The recorded precision of 0.959 

indicates a high level of confidence in the model’s positive 

predictions, suggesting that identified abnormal cases are 
largely trustworthy and unlikely to result in unwarranted 

clinical actions. 
TABLE II 

MODEL EVALUATION ON TEST DATA 

Test Metrics 

Accuracy Precision Recall F1 

0,958 0,959 0,958 0,9582 

 

Meanwhile, the recall value of 0.958 demonstrates strong 

sensitivity in capturing relevant cases across all classes, 

reducing the likelihood of overlooked pathological findings. 
The resulting F1-score of 0.9582 provides further evidence of 

consistent performance across complementary evaluation 
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perspectives, reinforcing the robustness of the model when 

applied to previously unseen data that were not included 

during either training or validation. 

 
TABLE III 

METRICS PERFORMANCE ON EACH CLASS 

 Precision Recall F1-

Score 

Support 

Covid-19 0,98 0,99 0,99 260 

Pneumonia 0,97 0,99 0,98 234 

Pneumothorax 0,93 0,96 0,94 249 

Normal 0,95 0,90 0,92 257 

 

To enable a more thorough interpretation of the evaluation 
results, the class-wise performance of the model on the test 

dataset was examined using the confusion matrix of the 

Vision Transformer (ViT), as shown in Figure 6, for the four-

class X-ray classification task comprising COVID-19, 

Pneumonia, Pneumothorax, and Normal. The corresponding 

class-specific performance metrics are summarized in Table 

3.  

In the first class category, namely Covid-19, out of 260 

images, only 257 were correctly classified, while only 2 

samples were incorrectly predicted as Normal, and 1 sample 

was misclassified as Pneumothorax. The resulting recall score 

of 0.99 reflects the model’s strong ability to detect Covid-19 

cases, indicating a minimal occurrence of false negative 

predictions. This minimizes the likelihood of infected patients 

being undetected, thereby supporting effective infection 

control and timely clinical decision-making. 
In the Pneumonia class, out of 234 images, 231 were 

correctly classified, while 2 images were misclassified as 

Normal and 1 image as COVID-19. The high recall value 

demonstrates the model’s reliable capability in detecting 

pneumonia, which is essential for preventing delayed 

diagnosis and subsequent clinical complications. 

For the Pneumothorax class, 239 out of 249 images were 

correctly classified. Most misclassifications occurred when 

pneumothorax cases were predicted as Normal. Although a 

small number of false negatives remain, this performance 

indicates the model’s potential as an effective early screening 
tool to assist radiologists in identifying critical cases.

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5. Performance of (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score

. In the Normal class, only 231 out of 260 images were 

correctly classified, indicating relatively lower performance 

compared to the pathological classes. Misclassifications 

predominantly occurred as Pneumothorax (18 cases) and, to a 

lesser extent, as Pneumonia. The lower recall value (0.90) 

suggests that some normal lung images were incorrectly 

identified as pathological, resulting in false positives. In 

clinical practice, this may lead to unnecessary follow-up 

examinations; however, from a patient safety perspective, 

such errors are generally more tolerable than false negatives. 
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The macro-averaged metrics (Precision, Recall, and F1-

score = 0.96) indicate that the model delivers balanced 

performance across all classes without significant bias toward 

any specific category. Additionally, the consistent weighted 

average metrics (0.96) confirm that the model maintains 

stable performance despite variations in sample size among 

classes. 

Overall, the confusion matrix and classification report 

results demonstrate that the Vision Transformer model for 

lung X-ray classification exhibits strong and balanced 

diagnostic capability. The high recall values achieved for 

major disease classes—COVID-19, pneumonia, and 

pneumothorax—are particularly relevant in clinical settings, 

as they minimize the risk of missing pathological cases.

 
Figure 6. Confusion Matrix of ViT Lung X-Ray Classification

Subsequently, a quantitative comparison between the 

proposed approach and several established baseline models is 

summarized in Table IV, enabling a clear assessment of 

relative performance. 
TABLE IV 

STUDY COMPARISON 

Study Methods Dataset Accuracy 

[32] VGG16 Kaggle’s 

pneumonia 

detection dataset 

(5.856 images) 

95,4% 

[33] EfficientNet + 

Noisy Student 

Combined 3 

datasets (25.966 

images) 

86,6% 

[9] VIT NIH ChestXray 

14 dataset 

(112.120 images) 

83,4% 

Our VIT 20.000 images 95,8% 
 

Table IV summarizes the performance comparison 

between the proposed model and prior studies that employ 

different deep learning architectures, varying dataset sizes, 

and heterogeneous data sources. Study [32] utilized the 

VGG16 architecture on the Kaggle pneumonia dataset, 

consisting of 5,856 images, and achieved an accuracy of 

95.4%, demonstrating that conventional CNN architectures 

can still deliver competitive performance on relatively small 

and focused datasets. In contrast, the study [33], which 

applied EfficientNet with a Noisy Student approach on a 

larger combined dataset of 25,966 images, achieved an 

accuracy of only 86.6%, suggesting that increased data 

complexity and source heterogeneity may negatively affect 
model stability. 

In Study [9], a Vision Transformer (ViT) model was 

evaluated using the NIH ChestXray14 dataset comprising 

more than 112,120 images, yet it achieved an accuracy of 

83.4%. Despite the large dataset size, the complex class 

distribution and diverse pathological labels are suspected to 

have contributed to the reduced overall classification 

performance. Conversely, the proposed Vision Transformer–

based model, trained and fine-tuned on 20,000 lung X-ray 

images, achieved the highest accuracy of 95.8%. These 

findings demonstrate that an appropriate transfer learning and 
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fine-tuning strategy, combined with effective data 

management, can yield superior performance even without 

extremely large-scale datasets. 

Overall, the results presented in Table IV indicate that the 

proposed Vision Transformer–based model achieves 

competitive, and in several cases superior, performance 

compared to existing baseline studies, despite being trained 

on a comparatively moderate-sized dataset. This suggests that 

the adopted fine-tuning strategy and data preprocessing 
pipeline play a crucial role in maximizing model 

effectiveness, particularly in medical imaging scenarios 

where data availability and class distribution are often 

constrained.  

Nonetheless, there remains room for further improvement. 

Future work may explore more efficient Vision Transformer 

variants, employ generative model–based data augmentation, 

evaluate cross-hospital generalization, and integrate the 

system into real-world clinical workflows to assess 

operational performance. These directions are expected to 

enhance model reliability and expand its applicability in 
modern radiological practice. 

 

IV. CONCLUSION 

This study demonstrates that the application of a transfer 

learning framework combined with systematic fine-tuning on 

the Vision Transformer (ViT) architecture results in strong 

and stable performance for multi-class lung X-ray 

classification. The presented configuration model attained an 

overall test accuracy of 95.8%, accompanied by consistently 

strong precision, recall, and F1-score values, indicating robust 

generalization to previously unseen data. Notably, the model 

exhibited particularly high recall for clinically critical classes, 
including COVID-19, pneumonia, and pneumothorax, 

highlighting its effectiveness in identifying pathological 

conditions that require timely clinical intervention. 

The class-wise analysis based on the confusion matrix 

further confirms the model’s capability to capture complex 

radiographic patterns across different lung conditions. The 

low rate of false negatives observed in disease classes is 

especially significant in a clinical context, as it reduces the 

risk of missed diagnoses. Although relatively higher 

misclassification rates were observed in the Normal class—

primarily due to confusion with pneumothorax and 
pneumonia—such errors predominantly result in false 

positives, which are generally more tolerable in medical 

screening scenarios than false negatives. Collectively, these 

findings imply that the proposed ViT model is well-suited as 

an early screening or decision-support tool to assist 

radiologists in clinical practice. 

When compared with existing baseline studies, the 

proposed model achieved competitive and, in several cases, 

superior performance despite being trained on a moderately 

sized dataset. This outcome underscores the importance of 

effective data preprocessing and fine-tuning strategies in 

maximizing the performance of Vision Transformer models, 

particularly in medical imaging tasks where data availability 

and class distribution are often constrained. 

Nevertheless, the findings of this study should be 

interpreted with caution. Although the model was evaluated 

using combined public datasets with a balanced class 

distribution, these datasets may not fully reflect real-world 

clinical imaging conditions. Variations in image acquisition 

protocols, equipment, and patient demographics across 

clinical settings may limit the generalizability of the proposed 
model when deployed in heterogeneous healthcare 

environments. Therefore, future investigations are 

encouraged to focus on validating the proposed approach 

using multi-center and cross-institutional datasets that better 

capture real clinical variability, as well as assessing model 

performance within operational clinical workflows. Such 

efforts are necessary to ensure the reliability, robustness, and 

practical applicability of Vision Transformer–based systems 

in modern radiological practice. 
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