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Lung diseases constitute a significant source of morbidity and therefore require
diagnostic frameworks that provide both high accuracy and operational efficiency.
This study proposes the development of a Vision Transformer (ViT)-based
classification model for lung X-ray images, employing transfer learning and fine-
tuning techniques to improve detection performance across five disease categories.
Experimental results demonstrate stable and effective model convergence, as
reflected by the consistent decrease in loss metrics throughout the learning process.
Evaluation on an independent test dataset shows that the proposed approach achieves
an accuracy of 0.958, indicating strong and balanced generalization performance.
Further analysis using a confusion matrix reveals that the ViT model is capable of
recognizing subtle and complex radiographic patterns with low misclassification
rates, particularly achieving high recall for major pathological classes, which is
critical for minimizing false negatives in clinical screening scenarios. Overall, this
study demonstrates that the application of transfer learning with fine-tuning on a
Vision Transformer architecture yields competitive performance for multi-class lung
X-ray classification when trained on a balanced dataset. These findings are
consistent with prior evidence highlighting the effectiveness of ViT in capturing
global contextual information in medical imaging tasks.

This is an open-access article under the CC-BY-SA license.

l. INTRODUCTION

Lung diseases represent one of the most urgent public
health challenges in Indonesia, exerting a substantial impact
on the population. Conditions such as tuberculosis,
pneumonia, and lung cancer are major causes of morbidity
and mortality, particularly in regions with limited healthcare
infrastructure. The shortage of radiology specialists and the
unequal distribution of medical technology further exacerbate
this issue. Therefore, innovative solutions capable of
supporting accurate early diagnosis are essential to reducing
mortality rates [1], [2], [3]. [4], [5]. [6].

During the COVID-19 pandemic, artificial intelligence
(Al) gained prominence as a potential solution to the
limitations of medical resources. Al-based methods,
especially those applied to medical imaging modalities such
as chest X-rays, demonstrate the ability to recognize complex

patterns that are difficult for untrained observers to identify
and typically require radiological expertise. With properly
designed algorithms, Al can assist clinicians in detecting
abnormalities more rapidly, accurately, and efficiently. This
capability not only alleviates the workload of healthcare
professionals but also accelerates clinical decision-making,
ultimately improving patient outcomes [7], [8].

Modern approaches employing attention mechanisms, such
as the Vision Transformer (ViT), have been extensively
applied in medical image analysis and proven effective in
extracting visual features. The VIT architecture employs self-
attention to capture global relationships among various
regions within an image. For lung X-rays, where subtle
differences often distinguish normal from abnormal images,
global context is crucial because abnormalities frequently
arise from structural relationships across regions rather than
isolated local features [9], [10].
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Previous studies have demonstrated that Vision
Transformer (ViT) models deliver competitive and reliable
performance in a broad range of image classification tasks,
with growing adoption in medical imaging analysis
applications that involve subtle visual variations. Compared
with conventional convolutional neural networks (CNNSs),
VIiT offers an advantage in modeling long-range
dependencies, which is beneficial for analyzing complex lung
X-ray images, where disease indicators may not be localized
to specific regions [9], [10], [11], [12], [13], [14].

Despite these advantages, ViT models are inherently data-
intensive and, in most cases, demand large-scale training
datasets to achieve optimal performance, which poses
challenges when data availability is limited. Unlike CNNs,
ViT architectures lack built-in inductive biases such as
locality and translation invariance, which allow CNNs to
learn efficiently from smaller datasets [15], [16], [17], [18].
As a result, ViT models trained from scratch on limited or
medium-sized datasets are more susceptible to overfitting and
may underperform compared to CNN-based approaches.

Another major challenge in lung X-ray analysis lies in the
subtle and difficult-to-recognize nature of disease features.
Early indicators of pneumonia or tuberculosis may appear as
minor structural changes that are difficult to observe in
grayscale images. Additionally, class imbalance within many
datasets increases the complexity of the classification task, as
certain disease categories occur far less frequently than
others, affecting model performance in detecting minority
classes [19], [20], [21], [22], [23].

Transfer learning has emerged as a practical approach for
mitigating these constraints. By leveraging models that were
previously trained on extensive, generic datasets, transfer
learning enables the transfer of prior knowledge into specific
domains, such as medical X-ray analysis. Fine-tuning, in
which selected model layers are re-optimized using the target
dataset, has shown substantial benefits, particularly when
training data are limited or imbalanced. This approach
minimizes the requirement to train a model from the ground
up and accelerates model development [19], [24], [25], [26],
[27], [28].

Recent research efforts have further demonstrated that the
combination of VIiT architectures with transfer learning can
yield promising results in chest X-ray classification tasks. In
parallel, data augmentation techniques—including image
rotation, horizontal and vertical flipping, and contrast
adjustment—are commonly employed to increase data
diversity and enhance model robustness. When integrated
with transfer learning, these strategies can help mitigate data
limitations and improve classification performance [24], [29],
[30], [31].

Although Vision Transformer models with transfer
learning have been widely investigated for chest X-ray
classification, most existing studies primarily focus on large-
scale and well-curated datasets. Comparatively less attention
has been given to systematic fine-tuning strategies and data
preprocessing techniques, specifically aimed at addressing the

challenges arising from limited and small-to-medium-sized
datasets, which are commonly encountered in medical
imaging research.

To address this gap, this study presents an empirical
investigation of a fine-tuned transfer learning Vision
Transformer framework for lung X-ray classification, with an
emphasis on methodological robustness rather than direct
clinical deployment. The proposed approach systematically
examines fine-tuning strategies for ViT when applied to
small- to medium-sized lung X-ray datasets, aiming to
improve feature representation and classification reliability
under realistic data constraints.

Il. METHODS

This study follows a systematic workflow to ensure that
each stage of data processing and model development is
conducted in a structured and measurable manner. The
workflow begins with data collection, followed by the initial
pre-processing step to standardize the images and prepare
inputs suitable for the Vision Transformer (ViT) architecture,
and concludes with the analysis of the model using the
optimal hyperparameter configuration. The workflow is
illustrated in Figure 1.

Data Collection »| Data Preprocessing

A

Fine-tuning with
Hyperparameter
Settings

VIT Architecture for
Classification

Data Splitiing

A

Maodel Evaluation and
Analysis

Figure 1. Research Flow

A. Data Collection

In this study, the dataset employed consists of lung X-ray
images categorized into four classes: COVID-19, Pneumonia,
Pneumothorax, and Normal, comprising a total of 20.000
images. The data were collected by downloading and curating
images from several publicly available datasets hosted on
Kaggle, namely Chest X-ray (Covid-19 & Pneumonia), Chest
X-Ray (Pneumonia, Covid-19, Tuberculosis), and the NIH
Chest X-rays dataset. The dataset exhibits a balanced
distribution among four classes, each represented by 5,000
images.

B. Data Pre-processing

For the purpose of assuring the accuracy and consistency
of the inputs used during model training, a series of
preprocessing procedures was applied. These procedures
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were designed to standardize image characteristics and
reinforce the model’s capacity to handle diverse input
variations in lung X-ray imagery through several simple
augmentation techniques. The steps performed in this study
are as follows:

1) Resize (256 pixels):

All images were resized to 256 pixels on their shortest side.
This ensures consistent image dimensions, facilitating batch
processing and reducing computational complexity without
removing diagnostically important pulmonary information.
2) Center Crop (224 x 224):

After resizing, images were centrally cropped to 224 x 224
pixels, which corresponds to the standard input dimensions
required by Vision Transformer (ViT) models pretrained on
ImageNet. This step preserves the most diagnostically
relevant central lung region while reducing noise at the
periphery, such as radiographic labels or background artifacts.
3) Random Horizontal Flip:

During training, the images were subjected to horizontal
flipping with a predetermined probability. This augmentation
enhances spatial invariance, enabling the model to learn
abnormal patterns regardless of orientation.

4) Random Rotation (+5 degrees):

Images were subjected to small random rotations within the
range of -5° to +5°, mimicking real-world variations in patient
positioning. This improves the model’s robustness to slight
misalignments that do not affect clinical interpretation.

5) Color Jitter (Brightness and Contrast):

Image brightness and contrast were randomly adjusted
within +20%. This augmentation helps the model adapt to
differences in lighting conditions and contrast variations
across X-ray machines or acquisition environments,
improving cross-domain generalization.

6) Convertto Tensor:

Since the study utilizes the PyTorch framework, all images
were converted into PyTorch tensors with pixel intensities
rescaled to a 0-1 interval. This step is required for processing
data within deep learning pipelines.

7) Normalize:

The images were normalized by applying a mean of [0.485,
0.456, 0.406] and a standard deviation of [0.229, 0.224,
0.225], ensuring that pixel intensities were standardized for
consistent input to the model, by following the ImageNet
statistical distribution. Normalization aligns the statistical
distribution of the X-ray inputs with that learned during the
pretraining phase of the ViT model, which promotes faster
convergence and more stable training.

C. VIT Architecture for Lung X-Ray

The Vision Transformer (ViT) architecture used in this
study is a transformer-based model fine-tuned to perform
diagnostic classification of lung X-ray scans into four
categories. In general, this architecture features two
fundamental components: the X-ray ViT backbone and the
multilayer perceptron (MLP) classifier, as shown in Figure 2.

In the backbone, the process begins with patch embedding,
where an input image with three color channels is divided into
small patches of size 16 x 16 pixels. Each image patch is
subsequently transformed into a 768-dimensional embedding
vector through a 2D convolution operation employing a 16 x
16 kernel and corresponding stride. Mathematically, the
number of patches produced is (H/16 x W/16) for an image of
size H x W x 3. This linear projection serves as a substitute
for the spatial encoding produced by CNNs, embedding each
patch into a latent representation.

The integrated patches are subsequently processed by a
transformer encoder with 12 stacked layers. Each transformer
encoder layer is architecturally composed of two primary
submodules: a feed-forward network (FFN) and a multi-head
self-attention mechanism.

. Within the self-attention mechanism, the input embedding
X € RV*2 where NDenotes the total number of patches plus
a class token and d corresponds to the embedding dimension
(768), is linearly transformed into three matrices, referred to
as Query (Q), Key (K), and Value (V). Based on these
representations, the attention scores are then derived as
expressed in Equation (1):

Vision Transformer Architecture for
5-Class Lung X-ray Classification
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Figure 2. VIT Architecture for Lung X-ray
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The output is then linearly projected. By employing self-
attention, the model effectively encodes global relationships
spanning across the image patches, offering an advantage
over CNNs, which primarily capture local features.
Meanwhile, the FFN applies non-linear transformations with
an intermediate dimension of 3072, increasing the model’s
representational capacity.

In the classifier section, the ViT is connected to a fully
connected multilayer perceptron (MLP) consisting of several
linear layers. The first layer reduces the embedding dimension

Attention (Q,K,V) = softmax (
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from 768 to 512 units, followed by batch normalization for
stabilization. A ReLU activation function introduces non-
linearity into the feature mapping.

D. Fine-Tuning with Hyperparameter Settings

As shown in Table I, the hyperparameter values were
selected through a series of trial-and-error experiments aimed
at achieving the most stable and consistent validation
performance. In addition to tuning optimization parameters,
the fine-tuning strategy also involved determining which
components of the Vision Transformer architecture should be
updated during training. The model employs a ViT-B/16
backbone consisting of a patch embedding layer followed by
12 transformer encoder layers and a task-specific

classification head.
TABLE |
HYPERPARAMETER SETTINGS

Hyperparameter Value
Learning rate 2e-4
Train/eval batch size 16:16
Epochs 12
Ratio train/val/test 85:10:5

During fine-tuning, all transformer encoder layers and the
classification head were unfrozen, allowing the model to fully
adapt pretrained representations to the lung X-ray domain.
This full fine-tuning approach was empirically found to
outperform partial layer freezing in preliminary experiments,
particularly in capturing high-level contextual features
relevant to medical image classification. The classification
head was implemented as a multi-layer fully connected
network with batch normalization, ReLU activation, and
dropout regularization to enhance discriminative capability
while mitigating overfitting.

With respect to optimization, a learning rate of 2 x 10~
achieved an optimal balance between convergence speed and
gradient stability. Throughout the training phase, a batch size
of 16 was used to ensure stable gradient updates, while a batch
size of 16 was applied during evaluation to improve
computational efficiency. Training was conducted for 12
epochs, which was sufficient to reach convergence without
observable overfitting on the validation set. Data splitting was
performed using an 85:10:5 ratio for training, validation, and
testing subsets, respectively, ensuring adequate data for
model learning while maintaining objective performance
evaluation. This combination of fine-tuning strategy and
hyperparameter configuration yielded the highest validation
performance compared to alternative settings explored during
preliminary experiments.

E. Model Evaluation

The model was evaluated using a framework that examines
multiple performance aspects. A confusion matrix served as

the primary diagnostic tool, providing insights into model
behavior, error patterns, and performance on real-world data.
The evaluation process categorized model outputs into true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), each representing outcomes with
distinct clinical implications.

Accuracy represents a general indication of model
performance. Nevertheless, in medical imaging applications
such as lung X-ray classification, reliance on alone can be
misleading when class frequencies are imbalanced. A model
may appear highly accurate simply by predicting the majority
class—such as “normal”—while failing to detect less frequent
but clinically critical abnormalities. Precision provides a more
clinically meaningful perspective by indicating how many of
the model’s positive predictions truly correspond to
pathological findings.

Next recall, this metric is particularly crucial in healthcare
and clinical decision-support systems, as a low recall
indicates a higher likelihood of false negative predictions,
where existing abnormalities are overlooked by the model. In
the context of lung X-ray analysis, such missed detections
may involve clinically significant conditions, including
pneumonia,  pneumothorax, or  other  pulmonary
abnormalities, which require timely medical intervention.

The F1-score integrates both precision and recall through
their harmonic mean, producing a balanced metric that
captures the trade-off between avoiding false alarms and
minimizing missed diagnoses. In the context of lung X-ray
analysis, the Fl-score thus offers a more realistic and
clinically aligned assessment of the model’s diagnostic
capability, especially when both over-detection and under-
detection carry significant consequences for patient care.

I11. RESULTS AND DISCUSSION

This section presents the evaluation results of the fine-
tuned Vision Transformer (ViT) model developed for multi-
class lung X-ray classification, using Accuracy, Precision,
Recall, and F1-Score as the primary performance indicators.

Before the fine-tuning process, all X-ray images underwent
a preprocessing stage aimed at ensuring data consistency and
accelerating model convergence. Examples of the images
before preprocessing are illustrated in Figure 3(a), while the
corresponding results after preprocessing are shown in Figure
3(b).

The overall training trajectory demonstrated stable and
progressive learning, characterized by a consistent decrease
in both training and validation loss, indicating that the model
converged effectively without exhibiting signs of overfitting.
As illustrated in Figure 4, this downward trend reflects the
model’s increasing ability to generalize across samples, while
Figure 5 highlights notable improvements across all evaluated
metrics as training progressed.
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Figure 3. Image (a) Before Preprocessing, (b) After Preprocessing

The reduction in training loss provides additional evidence
of successful optimization. Starting at 0.1581 during the first
epoch, the loss steadily declined to 0.0202 by the seventh
epoch, slightly increased at the eighth epoch, but continued to
decrease thereafter until reaching a minimum value at the
twelfth epoch, demonstrating stable convergence behavior.

The validation loss also exhibited a general downward
trend, decreasing from 0.0462 to 0.0092, although minor
fluctuations were observed at epoch 3 (0.0519). Such early
fluctuations are commonly encountered during the
optimization process as the model adjusts its parameters.
After epoch 8, the validation loss stabilized below 0.1,
indicating strong generalization capability and the absence of
significant overfitting.

The training performance across all evaluation metrics is
presented in Figure 5, which shows that metric values began
at 0.986 in the first epoch and gradually converged to 0.998,
with a total training time of 37.13 minutes. These findings
demonstrate that the fine-tuned model achieved near-optimal
performance on the training dataset, as evidenced by its
efficient convergence behavior and stable learning process.
The strong results observed during training indicate that the
selected  fine-tuning  strategy and  hyperparameter
configuration were effective in enabling the model to learn
representative features from the data.

Nevertheless, it should be emphasized that metrics derived
exclusively from the training data provide only a partial
representation of the model’s actual predictive capacity and
cannot adequately characterize its behavior when exposed to
unfamiliar inputs. Performance observed during training may
be influenced by data memorization rather than genuine
learning. To establish a more trustworthy and unbiased
estimation of the model’s generalization capability, a separate
evaluation was therefore performed using an independent
dataset that remained entirely excluded from both the training
and validation processes. The quantitative performance

metrics obtained from this evaluation are presented in Table
2.

Training and Validation Loss

—e— Training Loss
Validation Loss

Loss
o
o
&

W——\N

1 2 3 2 s 6 7 8 5
Epoch

Figure 4. Training vs Validation Loss for ViT X-ray Classification

10 11 12

Evaluation on the test dataset reveals a pattern of stable and
reliable predictive behavior, with an overall accuracy of
0.958, corresponding to 95.8% of the samples being assigned
to their correct categories. The recorded precision of 0.959
indicates a high level of confidence in the model’s positive
predictions, suggesting that identified abnormal cases are
largely trustworthy and unlikely to result in unwarranted
clinical actions.

TABLEII
MODEL EVALUATION ON TEST DATA
Test Metrics
Accuracy Precision Recall Fl1
0,958 0,959 0,958 0,9582

Meanwhile, the recall value of 0.958 demonstrates strong
sensitivity in capturing relevant cases across all classes,
reducing the likelihood of overlooked pathological findings.
The resulting F1-score of 0.9582 provides further evidence of
consistent performance across complementary evaluation
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perspectives, reinforcing the robustness of the model when
applied to previously unseen data that were not included
during either training or validation.

TABLE IlI
METRICS PERFORMANCE ON EACH CLASS
Precision Recall F1- Support

Score
Covid-19 0,98 0,99 0,99 260
Pneumonia 0,97 0,99 0,98 234
Pneumothorax 0,93 0,96 0,94 249
Normal 0,95 0,90 0,92 257

To enable a more thorough interpretation of the evaluation
results, the class-wise performance of the model on the test
dataset was examined using the confusion matrix of the
Vision Transformer (ViT), as shown in Figure 6, for the four-
class X-ray classification task comprising COVID-19,
Pneumonia, Pneumothorax, and Normal. The corresponding
class-specific performance metrics are summarized in Table
3.

Model Accuracy

In the first class category, namely Covid-19, out of 260
images, only 257 were correctly classified, while only 2
samples were incorrectly predicted as Normal, and 1 sample
was misclassified as Pneumothorax. The resulting recall score
0f 0.99 reflects the model’s strong ability to detect Covid-19
cases, indicating a minimal occurrence of false negative
predictions. This minimizes the likelihood of infected patients
being undetected, thereby supporting effective infection
control and timely clinical decision-making.

In the Pneumonia class, out of 234 images, 231 were
correctly classified, while 2 images were misclassified as
Normal and 1 image as COVID-19. The high recall value
demonstrates the model’s reliable capability in detecting
pneumonia, which is essential for preventing delayed
diagnosis and subsequent clinical complications.

For the Pneumothorax class, 239 out of 249 images were
correctly classified. Most misclassifications occurred when
pneumothorax cases were predicted as Normal. Although a
small number of false negatives remain, this performance
indicates the model’s potential as an effective early screening
tool to assist radiologists in identifying critical cases.

Model Precision

0.998

0.996

0.994 -

0.992 4

Accuracy

0.990

0.988 4

0.986 4

0.998

0.996 4

0.994 -

0.992

Precision

0.990 4

0.988

0.986

Model Recall

Model F1 Score

0.998

0.996

0.994 -

0.992 4

Recall

0.990

0.988 4

0.986 4

0.998

0.996

0.994 -

0.992 4

F1 Score

0.990

0.988 4

0.986 1

Figure 5. Performance of (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score

. In the Normal class, only 231 out of 260 images were
correctly classified, indicating relatively lower performance
compared to the pathological classes. Misclassifications
predominantly occurred as Pneumothorax (18 cases) and, to a
lesser extent, as Pneumonia. The lower recall value (0.90)

suggests that some normal lung images were incorrectly
identified as pathological, resulting in false positives. In
clinical practice, this may lead to unnecessary follow-up
examinations; however, from a patient safety perspective,
such errors are generally more tolerable than false negatives.
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The macro-averaged metrics (Precision, Recall, and F1-
score = 0.96) indicate that the model delivers balanced
performance across all classes without significant bias toward
any specific category. Additionally, the consistent weighted
average metrics (0.96) confirm that the model maintains
stable performance despite variations in sample size among
classes.

Overall, the confusion matrix and classification report
results demonstrate that the Vision Transformer model for
lung X-ray classification exhibits strong and balanced
diagnostic capability. The high recall values achieved for
major disease classes—COVID-19, pneumonia, and
pneumothorax—are particularly relevant in clinical settings,
as they minimize the risk of missing pathological cases.

3 Class Lungs

True Label
normal covid

pneumonia

pneumothorax

i i
covid normal

250

200

150

-100
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!
pneumonia

pneumothorax

Predicted Label
Figure 6. Confusion Matrix of ViT Lung X-Ray Classification

Subsequently, a quantitative comparison between the
proposed approach and several established baseline models is
summarized in Table IV, enabling a clear assessment of

relative performance.
TABLE IV
STUDY COMPARISON
Dataset
Kaggle’s
pneumonia
detection dataset
(5.856 images)
Combined 3
datasets (25.966
images)
NIH ChestXray
14 dataset
(112.120 images)
20.000 images

Study Methods
[32] VGG16

Accuracy
95,4%

[33] EfficientNet +
Noisy Student

86,6%

[9] VIT 33.4%

Our VIT 95,8%

Table IV summarizes the performance comparison
between the proposed model and prior studies that employ
different deep learning architectures, varying dataset sizes,
and heterogeneous data sources. Study [32] utilized the

VGG16 architecture on the Kaggle pneumonia dataset,
consisting of 5,856 images, and achieved an accuracy of
95.4%, demonstrating that conventional CNN architectures
can still deliver competitive performance on relatively small
and focused datasets. In contrast, the study [33], which
applied EfficientNet with a Noisy Student approach on a
larger combined dataset of 25,966 images, achieved an
accuracy of only 86.6%, suggesting that increased data
complexity and source heterogeneity may negatively affect
model stability.

In Study [9], a Vision Transformer (ViT) model was
evaluated using the NIH ChestXrayl4 dataset comprising
more than 112,120 images, yet it achieved an accuracy of
83.4%. Despite the large dataset size, the complex class
distribution and diverse pathological labels are suspected to
have contributed to the reduced overall classification
performance. Conversely, the proposed Vision Transformer—
based model, trained and fine-tuned on 20,000 lung X-ray
images, achieved the highest accuracy of 95.8%. These
findings demonstrate that an appropriate transfer learning and
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fine-tuning strategy, combined with effective data
management, can yield superior performance even without
extremely large-scale datasets.

Overall, the results presented in Table IV indicate that the
proposed Vision Transformer—based model achieves
competitive, and in several cases superior, performance
compared to existing baseline studies, despite being trained
on a comparatively moderate-sized dataset. This suggests that
the adopted fine-tuning strategy and data preprocessing
pipeline play a crucial role in maximizing model
effectiveness, particularly in medical imaging scenarios
where data availability and class distribution are often
constrained.

Nonetheless, there remains room for further improvement.
Future work may explore more efficient Vision Transformer
variants, employ generative model-based data augmentation,
evaluate cross-hospital generalization, and integrate the
system into real-world clinical workflows to assess
operational performance. These directions are expected to
enhance model reliability and expand its applicability in
modern radiological practice.

1VV. CONCLUSION

This study demonstrates that the application of a transfer
learning framework combined with systematic fine-tuning on
the Vision Transformer (ViT) architecture results in strong
and stable performance for multi-class lung X-ray
classification. The presented configuration model attained an
overall test accuracy of 95.8%, accompanied by consistently
strong precision, recall, and F1-score values, indicating robust
generalization to previously unseen data. Notably, the model
exhibited particularly high recall for clinically critical classes,
including COVID-19, pneumonia, and pneumothorax,
highlighting its effectiveness in identifying pathological
conditions that require timely clinical intervention.

The class-wise analysis based on the confusion matrix
further confirms the model’s capability to capture complex
radiographic patterns across different lung conditions. The
low rate of false negatives observed in disease classes is
especially significant in a clinical context, as it reduces the
risk of missed diagnoses. Although relatively higher
misclassification rates were observed in the Normal class—
primarily due to confusion with pneumothorax and
pneumonia—such errors predominantly result in false
positives, which are generally more tolerable in medical
screening scenarios than false negatives. Collectively, these
findings imply that the proposed ViT model is well-suited as
an early screening or decision-support tool to assist
radiologists in clinical practice.

When compared with existing baseline studies, the
proposed model achieved competitive and, in several cases,
superior performance despite being trained on a moderately
sized dataset. This outcome underscores the importance of
effective data preprocessing and fine-tuning strategies in
maximizing the performance of Vision Transformer models,

particularly in medical imaging tasks where data availability
and class distribution are often constrained.

Nevertheless, the findings of this study should be
interpreted with caution. Although the model was evaluated
using combined public datasets with a balanced class
distribution, these datasets may not fully reflect real-world
clinical imaging conditions. Variations in image acquisition
protocols, equipment, and patient demographics across
clinical settings may limit the generalizability of the proposed
model when deployed in heterogeneous healthcare
environments.  Therefore, future investigations are
encouraged to focus on validating the proposed approach
using multi-center and cross-institutional datasets that better
capture real clinical variability, as well as assessing model
performance within operational clinical workflows. Such
efforts are necessary to ensure the reliability, robustness, and
practical applicability of Vision Transformer—based systems
in modern radiological practice.
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