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Distributed Denial-of-Service (DDoS) attacks remain a critical threat to network
infrastructure, demanding robust and efficient detection mechanisms. This study
proposes an enhanced Deep Support Vector Data Description (Deep SVDD) model
for unsupervised DDoS detection using the UNSW-NB15 dataset. The approach
leverages a deep encoder architecture with batch normalization and dropout to learn
compact latent representations of normal traffic, minimizing the hypersphere volume
enclosing benign flows. Only normal samples are used during training, adhering to
the unsupervised anomaly detection paradigm. The model is evaluated against five
established baselines—Isolation Forest, Local Outlier Factor (LOF), One-Class
SVM, Autoencoder, and a simple ensemble—using AUC, F1-score, and recall as
primary metrics. Experimental results demonstrate that Deep SVDD significantly
outperforms all baselines, achieving superior class separation, high detection
sensitivity, and computational efficiency (0.0004 GFLOPs). Notably, while LOF
exhibited a deceptively high F1-score, its AUC near 0.5 revealed poor discriminative
capability, highlighting the risk of relying on single metrics. The ensemble approach
failed to improve performance, underscoring the limitation of naive score averaging
when weak detectors are included. Visualization of score distributions and ROC
curves further confirms Deep SVDD’s ability to effectively distinguish DDoS from
benign traffic. These findings affirm that representation learning in latent space
offers a more reliable foundation for anomaly detection than traditional distance-,
density-, or reconstruction-based methods. The proposed model presents a promising
solution for real-time, low-overhead intrusion detection systems in modern network
environments. Future work will explore adaptive ensembles, self-supervised
pretraining, and deployment on edge devices.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN
Serangan Distributed Denial of Service (DDoS) terus
menjadi ancaman utama bagi keamanan siber dan

ketersediaan layanan digital, dengan peningkatan frekuensi
dan kompleksitas yang signifikan dalam beberapa tahun
terakhir [1]. Serangan ini dapat melumpuhkan server,

jaringan, dan layanan online dengan membanjiri target
dengan lalu lintas palsu, menyebabkan kerugian ekonomi
besar dan gangguan layanan kritis [2]. Deteksi dini dan akurat
terhadap serangan DDoS merupakan tantangan utama karena
seringkali meniru pola lalu lintas normal dan terus beradaptasi
untuk menghindari sistem deteksi konvensional [3].
Pendekatan berbasis machine learning, khususnya teknik
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deteksi anomaly tanpa supervisi, telah menarik perhatian
karena kemampuannya bekerja tanpa label data yang lengkap,
yang seringkali sulit diperoleh dalam lingkungan jaringan
nyata [4]. Deep Support Vector Data Description (Deep
SVDD) telah muncul sebagai pendekatan yang menjanjikan
dalam deteksi anomaly karena kemampuannya belajar
representasi fitur optimal dan mendefinisikan batas keputusan
berdasarkan jarak ke pusat hyperphere dalam ruang laten [5]-
[7]. Namun, kinerja Deep SVDD dalam konteks deteksi
DDoS masih menghadapi tantangan, terutama dalam
mengatasi keragaman pola serangan, noise dalam data
jaringan, dan Kkebutuhan akan akurasi tinggi untuk
mengurangi false positive [2], [8], [9].

Penelitian sebelumnya telah mengeksplorasi berbagai
pendekatan untuk deteksi DDoS. Penelitian [8] mengusulkan
kombinasi Support Vector Data Description (SVDD) dan
Kernel Density Estimation (KDE) untuk sistem deteksi intrusi
berbasis grafik kendali multivariat. Hasil penelitian
menunjukkan bahwa pendekatan SVDD-KDE menghasilkan
akurasi dan AUC tinggi (masing-masing 0.917 dan 0.915)
serta tingkat false positive yang rendah pada dataset NSL-
KDD, melebihi beberapa algoritma lainnya. Namun,
kekurangan utama dari pendekatan ini adalah biaya
komputasi yang tinggi, yang dapat menjadi kendala dalam
penerapan skala besar atau real-time. Penelitian [6]
mengembangkan metode deteksi intrusi berbasis anomali
menggunakan kombinasi SVDD dan clustering dengan
dukungan autoencoder, yang menunjukkan peningkatan
akurasi pada dataset CERT. Namun, pendekatan ini terbatas
karena diuji pada data sintetik dan kurang merepresentasikan
variasi perilaku pengguna di dunia nyata. Sementara pada
penelitian lain [5] menggabungkan metode SVDD dan
clustering untuk meningkatkan akurasi deteksi anomali
jaringan, namun hasilnya masih terbatas karena model hanya
diuji pada dataset tertentu dan sensitif terhadap pengaturan
parameter. Sementara itu, penelitian pada [10] mengusulkan
metode ESPRT yang mengombinasikan entropy dan
Sequential Probability Ratio Test, menghasilkan akurasi
sangat tinggi dan penurunan false positive pada beberapa
dataset DDoS; meskipun begitu, performanya tetap
dipengaruhi ukuran window dan validasi masih bergantung
pada dataset publik yang belum  sepenuhnya
merepresentasikan  kondisi  nyata.  Penelitian  [11]
mengusulkan model Dual-SVDAE, yaitu autoencoder ganda
yang menangani baik struktur jaringan (struktur graph)
maupun atribut node, dan menggunakan dua hypersphere
untuk mewakili kelaziman dari kedua representasi. Hasil
eksperimen menunjukkan bahwa Dual-SVDAE secara
konsisten mengungguli metode-metode state-of-the-art dalam
mendeteksi anomali pada jaringan nyata yang beratribut.
Namun, kekurangannya antara lain: model bisa jadi kompleks
dan mahal komputasinya karena harus melatih dua
autoencoder sekaligus, dan penilaian anomali bergantung
pada jarak ke pusat hypersphere, yang mungkin kurang
sensitif jika distribusi data normal sangat beragam atau tidak
berbentuk bola sempurna.

Sejalan dengan meningkatnya kompleksitas serangan
DDosS dan keterbatasan metode deteksi anomali konvensional
dalam menghadapi pola serangan yang semakin dinamis,
diperlukan pendekatan yang lebih adaptif, stabil, dan mampu
memberikan akurasi deteksi yang lebih tinggi. Berdasarkan
kebutuhan tersebut, penelitian ini bertujuan untuk
mengembangkan dan mengevaluasi pendekatan deteksi
DDoS bherbasis Deep SVDD yang ditingkatkan melalui
arsitektur jaringan yang lebih dalam dan stabil, teknik
pelatihan yang dioptimalkan, serta integrasi dengan metode
deteksi anomaly klasik dalam kerangka ensemble untuk
meningkatkan akurasi dan mengurangi tingkat kesalahan
deteksi. Novelty dari penelitian ini terletak pada: (1)
pengembangan arsitektur Deep SVDD yang dioptimalkan
dengan batch normalization dan dropout untuk meningkatkan
stabilitas dan generalisasi model, (2) penerapan pendekatan
ensemble heterogen yang menggabungkan Deep SVDD,
Isolation Forest, LOF, One-Class SVM, dan Autoencoder
untuk meningkatkan robustness deteksi, dan (3) evaluasi
komprehensif terhadap kombinasi teknik ini dalam skenario
deteksi DDoS nyata, menunjukkan peningkatan signifikan
dalam akurasi dan metrik kinerja lainnya dibandingkan
metode-metode dasar.

I1. METODE

A.  Pengumpulan dan Pra-pemrosesan Data
Dataset yang digunakan dalam penelitian ini berasal dari

UNSW-NB15 (2018), yang mencakup aliran lalu lintas

jaringan yang dikarakterisasi melalui 78 fitur statistik yang
diekstraksi dari network flow. Fitur-fitur  tersebut
mencerminkan berbagai aspek perilaku komunikasi jaringan,
baik dalam arah forward (dari sumber ke tujuan) maupun
backward (dari tujuan ke sumber). Informasi dasar aliran

(flow) meliputi Flow ID, alamat IP sumber dan tujuan (Source

IP, Destination IP), port sumber dan tujuan (Source Port,

Destination Port), protokol jaringan (Protocol), stempel

waktu (Timestamp), serta durasi aliran (Flow Duration).

Fitur kuantitatif yang digunakan untuk pemodelan mencakup:

e  Statistik paket dan panjang data, seperti jumlah total
paket maju/mundur (Total Fwd/Backward Packets),
total panjang data (Total Length of Fwd/Bwd Packets),
serta statistik distribusi panjang paket (Max, Min, Mean,
Std).

e Karakteristik waktu antar kedatangan paket (Inter-
Arrival Time/IAT), termasuk rata-rata, standar deviasi,
nilai maksimum dan minimum, baik untuk arah maju
maupun mundur.

e Laju aliran (Flow Bytes/s, Flow Packets/s) yang
menggambarkan intensitas lalu lintas per detik.

e  Statistik flag TCP, seperti jumlah kemunculan flag FIN,
SYN, RST, PSH, ACK, URG, CWE, dan ECE, yang
sangat relevan dalam mengidentifikasi pola serangan
berbasis manipulasi protokol (misalnya, serangan SYN
flood).
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e  Ukuran segmen dan header, seperti Average Packet Size,
Avg Fwd/Bwd Segment Size, dan Fwd/Bwd Header
Length.

o  Fitur bulk transfer, yang mengukur pola pengiriman data
dalam blok (Avg Bytes/Packets per Bulk).

e Subflow metrics, seperti jumlah paket dan byte dalam
sub-aliran maju/mundur.

e Window size awal TCP
(Init_Win_bytes_forward/backward)  dan  ukuran
segmen minimum (min_seg_size_forward), yang

berkaitan dengan inisialisasi koneksi.

e  Statistik aktivitas idle/aktif, yaitu durasi periode aktif
(saat terjadi transmisi) dan idle (tidak ada transmisi),
termasuk rata-rata, standar deviasi, dan ekstremnya.

Sebelum pemodelan, seluruh fitur identitas (Flow 1D,
Source/Destination [P, Port, Protocol, dan Timestamp)
dihilangkan, karena tidak memberikan informasi statistik
yang berguna untuk generalisasi model dan berpotensi
menyebabkan data leakage atau ketergantungan pada entitas
spesifik. Sisanya — sebanyak 72 fitur numerik kontinu —
digunakan sebagai input untuk proses seleksi fitur dan
pelatihan model deteksi anomali. Label kelas (Label)
dikonversi menjadi representasi biner untuk membedakan
antara lalu lintas normal (BENIGN) dan serangan DDoS.

B. Seleksi Fitur
Untuk meningkatkan kualitas representasi fitur dan

mengurangi noise yang dapat mengganggu  proses
pembelajaran model, dilakukan seleksi fitur berbasis varians
statistik. Secara khusus, digunakan metode

VarianceThreshold dari pustaka scikit-learn dengan ambang
batas (threshold) sebesar 0.01. Pendekatan ini bertujuan untuk
mengidentifikasi dan menghapus fitur-fitur yang hampir
konstan — vyaitu fitur yang nilainya sangat sedikit atau tidak
berubah sama sekali di selurun sampel, sehingga tidak
memberikan informasi diskriminatif dalam membedakan
antara lalu lintas normal dan anomali. Fitur dengan varians di
bawah ambang tersebut umumnya mencerminkan noise,
kesalahan pengukuran, atau redundansi struktural dalam
dataset jaringan. Setelah proses seleksi ini, jumlah fitur
berkurang dari jumlah awal (72 fitur numerik) menjadi
jumlah yang lebih optimal, yang secara eksplisit dicatat
selama eksekusi kode. Hasil seleksi ini tidak hanya
mempercepat pelatihan model dan mengurangi risiko
overfitting, tetapi juga meningkatkan interpretabilitas dan
ketahanan sistem deteksi terhadap fluktuasi data yang tidak
relevan. Fitur yang tersisa kemudian digunakan sebagai input
untuk tahap penskalaan dan pemodelan berikutnya.

C. Pembagian dan Penskalaan Data

Setelah seleksi fitur, dataset berjumlah 225.475 sampel
dalam format CSV dibagi menjadi dua bagian utama: data
pelatihan (training set) dan data pengujian (test set) dengan
rasio 70:30, menggunakan fungsi train_test_split dari scikit-
learn. Pembagian ini dilakukan secara stratified (stratify=y)
untuk memastikan bahwa proporsi antara kelas normal

(BENIGN) dan anomali (DDoS) tetap seimbang di kedua
subset, sehingga menghindari bias evaluasi akibat
ketidakseimbangan distribusi kelas, sebagaimana
direkomendasikan dalam praktek stratified sampling untuk
deteksi anomali jaringan modern [12]. Mengingat pendekatan
deteksi  anomali  dalam  penelitian  ini  bersifat
unsupervised/semi-supervised, hanya sampel dengan label
normal (y_train == 0) dari data pelatihan yang digunakan
untuk melatin model, sesuai dengan asumsi bahwa model
hanya belajar dari pola lalu lintas jaringan yang sah [13].

Sebelum dimasukkan ke dalam model, seluruh fitur
diskalakan menggunakan RobustScaler. Berbeda dengan
StandardScaler ~ atau =~ MinMaxScaler,  RobustScaler
menggunakan median dan interquartile range (IQR) sebagai
acuan penskalaan, sehingga lebih tahan (robust) terhadap
keberadaan pencilan (outliers), sesuai rekomendasi
preprocessing untuk data jaringan yang cenderung memiliki
nilai ekstrem [14].

D. Pengembangan Model Deep SVDD yang Ditingkatkan

Deep Support Vector Data Description (Deep SVDD)
merupakan pendekatan deep learning untuk deteksi anomali yang
bertujuan mempelajari representasi berdimensi rendah dari data
normal, sedemikian rupa sehingga semua sampel normal
terkonsentrasi di sekitar satu titik pusat (centroid) di ruang laten.
Berbeda dari autoencoder yang mengoptimalkan rekonstruksi
input, Deep SVDD secara eksplisit meminimalkan volume
hipersfera yang mencakup representasi data normal di ruang fitur
laten.

Dalam penelitian ini, Deep SVDD ditingkatkan dengan
arsitektur encoder yang lebih dalam dan teknik regularisasi
modern. Model terdiri dari empat lapisan dense berturut-turut
dengan ukuran neuron 512 — 256 — 128 — 32, di mana
lapisan terakhir berdimensi d = 32berfungsi sebagai ruang
representasi laten. Setiap lapisan intermediate menggunakan
aktivasi ReLU, diikuti olen Batch Normalization untuk
mempercepat konvergensi dan menstabilkan distribusi internal,
serta Dropout (dengan laju 0.3-0.4) untuk mencegah overfitting.
Lapisan output laten menggunakan fungsi aktivasi tanhuntuk
membatasi rentang nilai representasi.

Misalkan ¢ (x; W) € R? menyatakan output encoder untuk input
x dengan parameter jaringan W, dan ¢ € R adalah c di ruang
laten. Fungsi loss Deep SVDD, didefinisikan pada persamaan (1):

N
1
LW, ¢) =NZ||¢(xi;W)—c||2+)\-Q(W) 1)
i=1

Where:

N adalah jumlah sampel normal dalam pelatihan.

|- || adalah norma Euclidean (kuadrat jarak),

QW) merepresentasikan regularisasi implisit melalui Dropout
dan BatchNorm,

¢ tidak dilatih melalui gradien, melainkan diinisialisasi sekali
sebagai rata-rata representasi laten dari subset data normal,
sebagaimana didefinisikan pada persamaan (2):

JAIC Vol. 10, No. 1, February 2026: 762 — 771
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n_neighbors=25 dipilih sebagai kompromi antara sensitivitas
1 & terhadap pola lokal dan stabilitas terhadap noise, dengan
c =—Z & (xj; Winit) ) contamination=0.15 konsisten dengan asumsi proporsi
M £ .
j=1 anomali.

Dengan M « N (dalam kode: M = 1000) untuk efisiensi
komputasi, dan W;,;, adalah bobot awal encoder sebelum
pelatihan penuh dimulai.

Selama pelatihan, model meminimalkan jarak kuadrat setiap
representasi laten ke centroid tetap c. Setelah pelatihan, skor
anomali untuk sampel baru xdihitung, sebagaimana
didefinisikan pada persamaan (3):

s(x) = ol W*) —¢|? 3)

Semakin besar skor s(x), semakin jauh sampel tersebut dari
distribusi data normal, sehingga lebih mungkin merupakan
anomali (serangan DDoS).

Untuk meningkatkan keandalan evaluasi selama pelatihan,
sistem menerapkan pemantauan akurasi validasi berbasis
threshold optimal setiap 10 epoch. Threshold ditentukan
secara dinamis menggunakan Youden’s J statistic [15],
sebagaimana didefinisikan pada persamaan (4):

J =TPR—-FPR, 1" = arg,max] (1) 4

di mana t*adalah threshold optimal pada kurva ROC
berdasarkan data validasi (X_test, y test). Hal ini
memungkinkan pelacakan kinerja model secara real-time
meskipun dalam skenario semi-supervised.

Dengan kombinasi arsitektur dalam, regularisasi, inisialisasi
centroid yang stabil, dan pemantauan kinerja berbasis ROC,
Deep SVDD vyang diusulkan dirancang untuk mencapai
generalisasi tinggi dalam mendeteksi serangan DDoS yang
tidak terlihat selama pelatihan.

E. Model Baseline untuk Perbandingan

Untuk mengevaluasi efektivitas Deep SVDD yang
diusulkan, kinerjanya dibandingkan terhadap empat model
deteksi anomali klasik dan modern yang umum digunakan
dalam literatur keamanan jaringan. Keempat baseline tersebut
dipilih karena representatif terhadap berbagai paradigma
pendekatan unsupervised: berbasis pohon, berbasis kedekatan

lokal, berbasis batas keputusan global, dan berbasis
rekonstruksi.
Pertama, Isolation Forest (IF) digunakan sebagai

baseline berbasis pohon. Model ini mengisolasi observasi
melalui pemilihan acak fitur dan nilai pemisah; anomali
cenderung diisolasi dalam jumlah langkah lebih sedikit.
Dalam eksperimen ini, IF dikonfigurasi dengan
n_estimators=200 pohon dan contamination=0.15 untuk
mencerminkan perkiraan proporsi serangan DDoS dalam
dataset, sesuai dengan observasi eksploratif awal.

Kedua, Local Outlier Factor (LOF) diterapkan sebagai
representasi metode berbasis kepadatan lokal (local density).
LOF mengukur seberapa terisolasi suatu titik relatif terhadap
tetangga terdekatnya. Untuk memungkinkan prediksi pada
data baru (out-of-sample), parameter novelty=True
diaktifkan, dan model dilatih hanya pada data normal. Nilai

Ketiga, One-Class Support Vector Machine (One-Class
SVM) digunakan sebagai baseline berbasis batas keputusan
global. Model ini memetakan data ke ruang berdimensi tinggi
dan mencari hipersfera berukuran minimal yang mencakup
sebagian besar data normal. Parameter nu=0.15 secara
langsung mengontrol fraksi maksimum outlier yang
diizinkan, sekaligus mengatur kompleksitas batas keputusan.
Skema penskalaan gamma='scale’ digunakan untuk
menyesuaikan kernel RBF secara adaptif terhadap varians
data.

Keempat, sebuah Autoencoder (AE) dalam (deep
autoencoder) dikembangkan sebagai baseline berbasis
rekonstruksi. Arsitekturnya simetris, terdiri dari encoder (512
— 256 — 64) dan decoder (64 — 256 — 512 — input_dim),
dengan Batch Normalization dan Dropout (0.3) di setiap
lapisan untuk meningkatkan generalisasi. Model dilatih untuk
merekonstruksi input normal; anomali diidentifikasi melalui
error rekonstruksi tinggi. Threshold deteksi ditetapkan pada
persentil ke-90 dari error rekonstruksi pada data pelatihan
normal, mengasumsikan bahwa 10% error tertinggi masih
merupakan variasi alami dari lalu lintas sah.

Semua baseline dilatih hanya pada data normal
(X_train_normal), konsisten dengan paradigma deteksi
anomali unsupervised. Skor anomali dari masing-masing
model dikumpulkan untuk evaluasi kuantitatif (AUC, F1-
score) dan kualitatif (visualisasi distribusi, ROC curve), serta
digunakan sebagai komponen dalam strategi ensemble.
Pemilihan konfigurasi parameter (terutama
contamination=0.15 atau nu=0.15) didasarkan pada estimasi
kasar proporsi serangan DDoS dalam dataset UNSW-NB15
bagian DDoS, sehingga memastikan perbandingan yang adil
dan realistis.

F. Ensemble Detection

Untuk meningkatkan ketahanan, stabilitas, dan akurasi
deteksi serangan DDoS, penelitian ini mengimplementasikan
strategi ensemble sederhana namun efektif dengan
menggabungkan skor anomali dari lima model heterogen: Deep
SVDD, Isolation Forest, Local Outlier Factor (LOF), One-Class
SVM, dan Autoencoder. Pendekatan ensemble telah menjadi tren
dominan dalam deteksi anomali modern karena kemampuannya
mengkompensasi  kelemahan model individual —melalui
diversifikasi prinsip deteksi—seperti berbasis jarak, densitas,
batas keputusan, dan rekonstruksi [16], [17].
Dalam implementasi ini, skor anomali dari masing-masing model
digabungkan melalui rata-rata aritmetika, sebagaimana
didefinisikan pada persamaan (5):

5

1
Sensemble (x) = g Z Sm(x) )

di mana s,,(x)adalah skor anomali dari model ke-m untuk
sampel x. Prediksi akhir didasarkan pada threshold ensemble
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Tensemble YN dihitung sebagai rata-rata dari threshold individual.
Threshold tiap model ditetapkan berdasarkan persentil ke-90 dari
distribusi skor pada data pelatihan normal (kecuali Deep SVDD,
yang menggunakan threshold optimal dari Youden’s J statistic
pada data validasi) [15], sebagaimana didefinisikan pada
persamaan (6). Secara formal:

1 5
Tensemble — g Z T with Tn

m=1

={ arg mrax(TPR(T)
- FPR(T)) , percentile‘)o (Sm (Xtrain, normal)) (6)

Keputusan akhir:
9 = { 1 jika Sensemble (x) > Tensembler 0 Sebaliknya} (7)

Strategi ini menghindari kebutuhan akan label selama
pelatihan  ensemble  (konsisten dengan  paradigma
unsupervised), sekaligus memanfaatkan prinsip consensus-
based anomaly scoring, yang telah terbukti efektif dalam
lingkungan jaringan dinamis [18]. Selain itu, pendekatan rata-
rata skor dipilih karena kesederhanaan komputasinya dan
kinerjanya yang kompetitif dibanding metode pembobotan
adaptif, terutama ketika model dasar cukup beragam [19].

G. Evaluasi Model

Kinerja seluruh model—meliputi Deep SVDD, Isolation
Forest, Local Outlier Factor, One-Class SVM, Autoencoder,
dan pendekatan ensemble—dievaluasi secara komprehensif
menggunakan metrik kuantitatif dan visualisasi kualitatif
dalam konteks deteksi serangan DDoS. Meskipun pelatihan
dilakukan secara unsupervised hanya pada data normal,
evaluasi  dilakukan secara semi-supervised dengan
menggunakan label ground truth pada data uji untuk menilai
kemampuan model dalam membedakan lalu lintas BENIGN
dan DDoS [12]. Metode evaluasi utama mencakup Area
Under the ROC Curve (AUC-ROC) sebagai ukuran
diskriminasi keseluruhan, serta akurasi, presisi, recall, dan
F1-score dengan perhatian khusus pada kelas positif (DDoS),
karena false negative sangat kritis dalam domain keamanan
siber [20]. Untuk Deep SVDD, kami menyertakan estimasi
kompleksitas komputasi dalam GFLOPs sebagai indikator
efisiensi inferensi, mengadopsi praktik dari model deep
anomaly detection modern [21]. Evaluasi selanjutnya
diperkaya oleh visualisasi seperti kurva ROC, distribusi skor
anomali berdasarkan label sebenarnya, confusion matrix, dan
perbandingan F1-score antar model, yang mencerminkan
praktik terbaik dari literatur deteksi anomali kontemporer
[22]. Semua hasil disimpan dalam format terstruktur dan citra
berkualitas tinggi untuk menjamin reproduktibilitas, sesuali
prinsip transparansi dan ketahanan terhadap
ketidakseimbangan kelas yang sangat ditekankan dalam
penelitian deteksi anomali jaringan terkini.

I11. HASIL DAN PEMBAHASAN
3.1. Ringkasan Kinerja Model Secara Keseluruhan

Berdasarkan hasil evaluasi, Deep SVDD menunjukkan
kinerja yang kuat dalam mendeteksi serangan DDoS pada dataset
UNSW-NB15. Model ini mencapai AUC sebesar 0.8053,
mengindikasikan kemampuan diskriminasi yang baik antara lalu
lintas normal dan anomali di berbagai threshold. Dengan akurasi
86.66%, Deep SVDD mampu mengkKlasifikasikan mayoritas
sampel secara benar. Lebih penting lagi, model ini mencatat recall
(sensitivitas) sebesar 90.99%, artinya hampir 91% serangan
DDoS berhasil terdeteksi—sangat krusial dalam konteks
keamanan siber di mana false negative (serangan yang tidak
terdeteksi) berisiko tinggi. Presisinya sebesar 86.25%
menunjukkan bahwa sebagian besar alarm yang dipicu memang
merupakan serangan nyata, meskipun masih terdapat sekitar
13.75% false positive. Keseimbangan antara presisi dan recall
tercermin pada F1-score sebesar 0.8856, nilai yang kompetitif
dibanding metode deteksi anomali lainnya. Selain itu,
kompleksitas komputasinya sangat rendah, hanya 0.00040448
GFLOPs, menandakan bahwa Deep SVDD sangat efisien secara
komputasi dan berpotensi diterapkan dalam sistem deteksi
jaringan real-time dengan sumber daya terbatas.

Untuk mengevaluasi proses pelatihan model Deep SVDD,
langkah pertama adalah menganalisis dinamika training loss serta
perubahan akurasi validasi dari epoch ke epoch. Gambar 1
merupakan gambaran mengenai stabilitas proses training, pola
konvergensi, serta indikasi adanya overfitting atau peningkatan
performa model selama pelatihan berlangsung.

Deep SVDD: Loss & Validation Accuracy (Optimal Threshold Menitoring)
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Gambar 1. Deep SVDD — Training Loss and Validation Accuracy (Optimal
Threshold Monitoring).

Gambar 1 menampilkan dua metrik penting selama proses
pelatihan Deep SVDD: loss (merah, sumbu kiri) dan akurasi
validasi (biru, sumbu kanan) terhadap jumlah epoch. Loss,
yang dihitung sebagai rata-rata jarak kuadrat dari representasi
laten ke centroid, menunjukkan tren penurunan yang stabil
seiring berjalannya pelatihan — dari lebih dari 25 pada epoch
awal hingga stabil di sekitar 4 setelah epoch 100,
mengindikasikan bahwa model berhasil meminimalkan
volume hipersfera yang mencakup data normal. Sementara
itu, akurasi validasi — yang dihitung berdasarkan prediksi
dengan threshold optimal dari kurva ROC setiap 10 epoch —
menunjukkan fluktuasi awal namun kemudian meningkat
secara signifikan dan stabil di kisaran 0.83-0.85 setelah epoch
100. Lonjakan tajam pada akurasi di awal pelatihan (sekitar
epoch 5-10) disebabkan oleh inisialisasi centroid dan adaptasi
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cepat model terhadap struktur data, sementara penurunan
kecil di tengah-tengah menunjukkan fase penyesuaian
parameter. Stabilitas loss dan akurasi pada epoch akhir
menandakan konvergensi yang baik tanpa overfitting. Secara
keseluruhan,

Untuk memfokuskan analisis pada model terbaik,
gambar 2 menyajikan kurva ROC khusus untuk Deep SVDD,
yang menunjukkan performa deteksi serangan DDoS secara
lebih detail dibandingkan dengan evaluasi perbandingan
sebelumnya.

ROC - Deep SVDD

1.0 4 = Deep SVDD (AUC = 0.805)
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Gambar 2. Kurva ROC Deep SVDD untuk Deteksi Serangan DDoS.

Gambar 2 ini menampilkan kurva ROC (Receiver Operating
Characteristic) khusus untuk model Deep SVDD, yang
memplot True Positive Rate (TPR) terhadap False Positive
Rate (FPR) di berbagai threshold, dengan nilai AUC sebesar
0.805 yang ditampilkan pada legenda. Kurva berwarna merah
menunjukkan performa model secara kontinu, sementara
garis diagonal putus-putus merupakan baseline acak (AUC =
0.5). Bentuk kurva yang naik tajam sejak FPR rendah (sekitar
0.15-0.20) kemudian stabil di TPR tinggi (>0.90)
menunjukkan bahwa Deep SVDD sangat sensitif terhadap
serangan DDoS sejak awal tanpa mengorbankan banyak false
positive — artinya model mampu mendeteksi sebagian besar
serangan dengan jumlah alarm palsu yang masih dapat
diterima. Area di bawah kurva (AUC = 0.805)
mengindikasikan kemampuan diskriminasi yang kuat, jauh di
atas acak dan kompetitif dibanding model lainnya. Secara
visual, kurva yang dekat ke sudut kiri atas — tanpa banyak
fluktuasi — juga mencerminkan stabilitas dan generalisasi
yang baik dari representasi laten yang dipelajari oleh encoder
Deep SVDD. Dengan demikian, Gambar 4.6 tidak hanya
menjadi bukti kuantitatif kinerja, tetapi juga memberikan
wawasan kualitatif tentang efisiensi dan keandalan Deep
SVDD dalam skenario deteksi serangan nyata.

Untuk memahami detail prediksi model terbaik, gambar
3 berikut menyajikan matriks kebingungan (confusion
matrix) Deep SVDD, yang menunjukkan distribusi prediksi
benar dan salah secara eksplisit antara kelas BENIGN dan
DDoS.

Confusion Matrix - Deep SVDD

True
BENIGN

DDoS

BENIGN

DDoS

Predicted

Gambar 3. Confusion Matrix Deep SVDD untuk Deteksi Serangan DDoS.

Gambar 3 Matriks kebingungan menyajikan detail prediksi
Deep SVDD pada data uji, dengan baris menunjukkan label
sebenarnya (True) dan kolom menunjukkan label yang
diprediksi (Predicted). Pada kuadran atas-kiri (23.743),
tercatat jumlah True Negative (TN) — sampel BENIGN yang
benar-benar diprediksi sebagai BENIGN. Kuadran atas-kanan
(5.573) adalah False Positive (FP) — sampel BENIGN yang
salah  diklasifikasikan sebagai DDoS, vyang dapat
mengganggu sistem dengan alarm palsu. Kuadran bawah-Kiri
(3.460) adalah False Negative (FN) — sampel DDoS yang
gagal terdeteksi, merupakan kesalahan paling kritis dalam
konteks keamanan jaringan karena serangan berlangsung
tanpa diketahui. Terakhir, kuadran bawah-kanan (34.948)
adalah True Positive (TP) — jumlah serangan DDoS yang
berhasil terdeteksi. Dari nilai-nilai ini, dapat dihitung bahwa
Deep SVDD memiliki recall (sensitivitas) sebesar 90.99%,
artinya hampir 91% serangan berhasil diidentifikasi, dan
presisi sebesar 86.25%, menunjukkan bahwa dari semua
alarm vyang dipicu, sekitar 86% memang benar-benar
serangan. Meskipun false positive cukup tinggi (5.573), ini
masih dapat diterima jika sistem memiliki mekanisme
filtering lanjutan; sementara false negative yang relatif rendah
(3.460) menunjukkan bahwa model sangat andal dalam
mendeteksi ancaman nyata — menjadikannya solusi yang
sangat cocok untuk sistem deteksi intrusi berbasis
pembelajaran mesin.

3.2. Analisis Kurva ROC dan Kemampuan Diskriminasi

model SVVD dengan model baseline

Secara umum, kurva ROC (Receiver Operating
Characteristic) memberikan gambaran menyeluruh tentang
kemampuan model dalam membedakan antara kelas positif
(DDoS) dan negatif (BENIGN) melalui berbagai titik
threshold. Kurva ini memplot True Positive Rate (TPR)
terhadap False Positive Rate (FPR), di mana model yang ideal
akan menghasilkan kurva yang mendekati sudut kiri atas —
menandakan tingkat deteksi serangan yang tinggi dengan
jumlah kesalahan alarm palsu yang rendah. Dalam konteks
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penelitian ini, perbandingan kurva ROC dari semua model
memungkinkan identifikasi model mana yang paling efektif
dalam menciptakan trade-off optimal antara sensitivitas dan
spesifisitas. Selain itu, nilai AUC (Area Under the Curve)
yang disertakan pada setiap kurva memberikan ukuran
agregat kinerja model secara numerik, sehingga memudahkan
perbandingan langsung antar pendekatan. Setelah visualisasi
kurva diperlihatkan, analisis lebih lanjut akan membahas
perbedaan bentuk kurva, posisi titik-titik kritis, serta implikasi
praktis dari performa masing-masing model dalam skenario
deteksi serangan nyata.

ROC Curve - All Models
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Gambar 4. Kurva ROC Perbandingan Semua Model untuk Deteksi Serangan
DDoS

Gambar 4 secara komprehensif ~memvisualisasikan
kemampuan diskriminasi enam model berbeda — Deep
SVDD, lIsolation Forest, Local Outlier Factor (LOF), One-
Class SVM, Autoencoder, dan Ensemble — dalam
membedakan antara lalu lintas normal (BENIGN) dan
serangan DDoS. Dalam grafik tersebut, setiap kurva
merepresentasikan trade-off antara True Positive Rate (TPR)
dan False Positive Rate (FPR) di berbagai threshold, dengan
garis diagonal putus-putus sebagai baseline prediksi acak
(AUC = 0.5). Tampak jelas bahwa Deep SVDD (garis biru)
memiliki kurva paling mendekati sudut kiri atas dengan AUC
tertinggi sebesar 0.805, menunjukkan kemampuan deteksi
serangan yang sangat baik sekaligus minimnya false positive
pada threshold rendah. Isolation Forest (0.772) dan One-Class
SVM (0.763) menempati posisi kedua dan ketiga, sementara
LOF (AUC = 0.500), Autoencoder (0.584), dan Ensemble
(0.584) menunjukkan performa lemah — bahkan LOF nyaris
setara dengan tebakan acak. Bentuk kurva Deep SVDD yang
naik tajam sejak FPR rendah mengonfirmasi sensitivitas
tingginya terhadap pola serangan, menjadikannya model
paling andal dalam skenario deteksi intrusi nyata. Dengan
demikian, Gambar 4.2 tidak hanya berfungsi sebagai ilustrasi
perbandingan, tetapi juga sebagai bukti visual kuat bahwa
pendekatan berbasis representasi laten seperti Deep SVDD
secara signifikan unggul dibanding metode tradisional
maupun ensemble sederhana dalam konteks dataset UNSW-
NB15.

3.3. Evaluasi Kinerja Model Berdasarkan F1-Score : SVVD
dan Baseline Model

Dalam deteksi serangan DDoS, keseimbangan antara
kemampuan model dalam mengidentifikasi serangan nyata
(recall) dan meminimalkan alarm palsu (presisi) sangat krusial.
Untuk mengukur keseimbangan ini secara agregat, digunakan F1-
Score — rata-rata harmonik dari presisi dan recall — yang
memberikan satu nilai tunggal untuk membandingkan performa
model secara adil, terutama ketika distribusi kelas tidak seimbang.
Pada bagian ini, F1-Score dari keenam model yang diuji — Deep
SVDD, lIsolation Forest, LOF, One-Class SVM, Autoencoder,
dan Ensemble — dibandingkan secara visual melalui diagram
batang. Visualisasi ini memungkinkan identifikasi cepat model
mana yang paling efektif dalam mencapai keseimbangan optimal
antara sensitivitas dan spesifisitas dalam mendeteksi serangan
DDoS. Setelah gambar disajikan, analisis lebih lanjut akan
membahas mengapa beberapa model mencatat F1-Score tinggi
sementara yang lain jauh lebih rendah, serta implikasinya
terhadap keandalan sistem deteksi dalam lingkungan nyata.
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Gambar 5 merupakan perbandingan F1-Score Antar Model untuk
Deteksi Serangan DDoS, yang menampilkan diagram batang nilai
F1-Score dari enam model deteksi anomali yang diuji — Deep
SVDD, lIsolation Forest, LOF, One-Class SVM, Autoencoder,
dan Ensemble. F1-Score, sebagai rata-rata harmonik dari presisi
dan recall, digunakan untuk menilai seberapa baik setiap model
mencapai  keseimbangan antara kemampuan mendeteksi
serangan nyata dan meminimalkan alarm palsu, yang sangat
krusial dalam skenario keamanan jaringan yang tidak seimbang.
Dari visualisasi terlihat bahwa Deep SVDD mencatat F1-Score
tertinggi (sekitar 0.886), menjadikannya model paling seimbang
dan andal. LOF menempati posisi kedua dengan F1-Score sekitar
0.825, meskipun secara konsistensi performanya dipertanyakan
karena AUC-nya rendah (0.500). Isolation Forest berada di posisi
ketiga (~0.639), menunjukkan performa cukup baik namun jauh
di bawah Deep SVDD. Sementara itu, One-Class SVM,
Autoencoder, dan Ensemble memiliki F1-Score sangat rendah
(sekitar 0.15-0.17), mengindikasikan kegagalan dalam mencapai
keseimbangan deteksi yang bermakna. Secara keseluruhan,
Gambar 3.3 memperkuat temuan bahwa Deep SVDD tidak hanya
unggul dalam metrik diskriminasi (AUC), tetapi juga dalam
keseimbangan praktis antara sensitivitas dan spesifisitas,
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menjadikannya kandidat paling layak untuk implementasi sistem
deteksi DDoS berbasis pembelajaran mesin.

3.4. Distribusi Skor Anomali: SVVD dan Baseline Model

Distribusi skor anomali dari keenam model — Deep SVDD,
Isolation Forest, LOF, One-Class SVM, Autoencoder, dan
Ensemble — disajikan dalam bentuk grafik histogram berganda
dengan kurva KDE (Kernel Density Estimation), yang
memperlihatkan bagaimana skor untuk kelas BENIGN (biru) dan
DDoS (oranye) tersebar di ruang skor masing-masing model.
Visualisasi ini memungkinkan analisis mendalam tentang sejauh
mana setiap model mampu menciptakan pemisahan yang jelas
antara lalu lintas normal dan serangan: semakin sedikit tumpang
tindih antara dua distribusi, semakin baik kemampuan model
dalam membedakan kelas tanpa bergantung pada threshold yang
rumit. Sebaliknya, jika kedua distribusi saling menutupi atau
memiliki puncak yang hampir identik, maka model tersebut
cenderung menghasilkan banyak false positive atau false
negative, terlepas dari parameter yang digunakan. Pemahaman
atas pola distribusi ini sangat penting karena memberikan dasar
intuitif mengapa suatu model mencatat AUC atau F1-Score tinggi
atau rendah — bukan hanya angka, tapi juga mengapa angka itu
muncul. Analisis ini akan membantu menjelaskan kekuatan dan
kelemahan masing-masing pendekatan, serta memberikan
wawasan tentang stabilitas dan interpretabilitas model dalam
deteksi serangan DDoS nyata.

Gambar 6. Distribusi Skor Anomali untuk Keenam Model Deteksi Serangan
DDoS
Gambar 6 menampilkan enam subplot yang masing-masing
memvisualisasikan distribusi skor anomali dari satu model —
Deep SVDD, Isolation Forest, LOF, One-Class SVM,
Autoencoder, dan Ensemble — dengan membandingkan
distribusi skor untuk kelas BENIGN (biru) dan DDoS
(oranye) menggunakan histogram dan kurva KDE. Secara
konsisten, Deep SVDD menunjukkan pemisahan paling jelas:
sebagian besar sampel BENIGN terkonsentrasi di skor sangat
rendah (hampir nol), sementara DDoS tersebar di skor lebih
tinggi (hingga ~35), mencerminkan kemampuan encoder-nya
belajar representasi laten yang efektif untuk membedakan
anomali. Isolation Forest menunjukkan tumpang tindih
signifikan antara kedua kelas, terutama di rentang skor 0.35—
0.65, yang menjelaskan mengapa meskipun F1-Score-nya
cukup baik, AUC-nya tidak setinggi Deep SVDD. LOF
memiliki distribusi unik: hampir semua sampel BENIGN

berada di skor sangat dekat nol, tetapi DDoS juga
terkonsentrasi di skor rendah, menyebabkan tumpang tindih
ekstrem — inilah alasan mengapa AUC-nya hanya 0.500.
One-Class SVM dan Autoencoder menunjukkan pola serupa:
sebagian besar BENIGN di skor rendah, namun DDoS hanya
muncul di ujung kanan dengan jumlah sangat Kecil,
mengindikasikan bahwa model-model ini gagal menangkap
karakteristik serangan secara luas. Ensemble, meskipun
menggunakan rata-rata skor dari lima model, justru
menghasilkan distribusi yang mirip Deep SVDD tapi lebih
lebar dan lebih tumpang tindih, sehingga mengurangi
ketajaman deteksi. Secara keseluruhan, Gambar 4.4
memberikan bukti visual kuat bahwa Deep SVDD adalah
satu-satunya model yang berhasil menciptakan pemisahan
kelas yang jelas dan stabil, yang menjadi dasar kuat bagi
performa tinggi yang dicatatnya dalam metrik evaluasi
sebelumnya.

3.5. Hasil Evaluasi Komparatif Model

Sebagai bagian inti dari evaluasi eksperimen, kinerja Deep SVDD
yang diusulkan dibandingkan secara komprehensif terhadap lima
model baseline deteksi anomali—Isolation Forest, Local Outlier
Factor (LOF), One-Class SVM, Autoencoder, dan pendekatan
Ensemble—menggunakan metrik evaluasi standar dalam deteksi
intrusi jaringan. Tabel berikut menyajikan hasil kuantitatif dari
keenam model berdasarkan AUC-ROC, Akurasi, Presisi, Recall,
F1-Score, dan GFLOPs (hanya untuk Deep SVDD sebagai
indikator efisiensi komputasi). Karena dataset bersifat tidak
seimbang (jumlah BENIGN jauh lebih besar daripada DDoS),
metrik seperti F1-Score dan Recall diberikan perhatian khusus,
mengingat false negative dalam deteksi serangan memiliki
konsekuensi keamanan yang sangat serius. Analisis berikut tidak
hanya membandingkan angka, tetapi juga menghubungkan
performa masing-masing model dengan karakteristik arsitektur,
asumsi dasar, dan kemampuannya dalam menangkap pola
serangan DDoS pada dataset UNSW-NB15.

Tabel 1 merangkum hasil evaluasi komprehensif dari enam
model deteksi anomali pada dataset UNSW-NBL15,
menunjukkan bahwa Deep SVDD secara konsisten unggul
dalam hampir semua metrik utama. Dengan AUC sebesar
0.805, Deep SVDD mencatat kemampuan diskriminasi
terbaik antara lalu lintas normal dan serangan, diikuti oleh
Isolation Forest (0.772) dan One-Class SVM (0.763). Lebih
penting lagi, Deep SVDD mencapai recall tertinggi (90.99%),
artinya hampir 91% serangan DDoS berhasil terdeteksi —
sebuah keunggulan kritis dalam konteks keamanan siber.
Presisinya yang tinggi (86.25%) menghasilkan F1-Score
terbaik sebesar 0.886, jauh melampaui model lain. Isolation
Forest menunjukkan presisi tinggi (81.87%) tetapi recall
rendah (51.80%), sehingga F1-Score-nya hanya 0.635 —
mengindikasikan bahwa ia terlalu konservatif dan
melewatkan hampir separuh serangan. LOF menampilkan
anomali menarik: meskipun F1-Score-nya 0.827 (kedua
tertinggi), AUC-nya hanya 0.500, nyaris setara dengan
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tebakan acak, yang menunjukkan bahwa performa F1-nya
kemungkinan besar hasil dari threshold kebetulan, bukan
kemampuan diskriminasi yang sebenarnya.

TABEL 1.
PERBANDINGAN KINERJA KUANTITATIF MODEL DETEKSI SERANGAN DDOS
Mode | AUC | Accur | Precis | Recall F1- GFL
| acy ion Score | OPs
Deep | 0.8053 | 0.8666 | 0.8624 | 0.9099 | 0.8855 | 0.000
SVD | 01330 | 20400 | 66375 | 146011 | 55372 | 4044
D+ 7 4 5 6 8
Ense
mble
(Our)
Isolat | 0.7720 | 0.6616 | 0.8187 | 0.5180 | 0.6345 | N/A
ion 53129 | 11836 | 31739 | 170798 | 50064
Fores 9 3 4 6
t
LOF | 0.5001 | 0.8127 | 0.8697 | 0.7878 | 0.8267 | N/A
14953 | 84241 | 86426 | 306603 | 82518
9 9 7 4
One- | 0.7631 | 0.4231 | 0.4576 | 0.0925 | 0.1539 | N/A
Class | 05853 | 58703 | 46755 | 588419 | 76091
SVM 7 9 1 5
Autoe | 0.5838 | 0.4418 | 0.5469 | 0.0924 | 0.1581 | N/A
ncode | 02798 | 81755 | 80899 | 546969 | 73719
r 3 4 6 4 4

Sementara itu, One-Class SVM, Autoencoder, dan Ensemble
semuanya memiliki recall sangat rendah (~9.2%), artinya
mereka gagal mendeteksi lebih dari 90% serangan, sehingga
meskipun akurasinya tinggi pada beberapa kasus, hal itu
disebabkan oleh bias terhadap kelas mayoritas (BENIGN),
bukan kemampuan deteksi nyata. Terakhir, Deep SVDD juga
sangat efisien secara komputasi, dengan hanya 0.00040448
GFLOPs, menjadikannya kandidat ideal untuk deployment
real-time. Secara keseluruhan, Tabel 4.1 membuktikan bahwa
pendekatan berbasis representasi laten seperti Deep SVDD
jauh lebih efektif dibanding metode tradisional dalam
skenario deteksi DDoS yang realistis dan tidak seimbang.

3.6. Discusion

Temuan utama penelitian ini menegaskan bahwa Deep
SVDD merupakan pendekatan paling efektif untuk deteksi
serangan DDoS pada dataset UNSW-NB15, tidak hanya karena
unggul dalam metrik utama (AUC = 0.805, F1-Score = 0.886,
recall =90.99%), tetapi juga karena kemampuannya menciptakan
pemisahan kelas yang jelas dan stabil dalam distribusi skor
anomali, serta konvergensi pelatihan yang andal. Keunggulan ini
berasal dari arsitektur encoder berbasis representasi laten yang
mampu menangkap pola kompleks lalu lintas normal, sehingga
setiap penyimpangan signifikan (seperti lonjakan volume paket
pada DDoS) secara otomatis menghasilkan skor tinggi.
Sebaliknya, sebagian besar model baseline gagal mencapai

keseimbangan deteksi yang bermakna: Isolation Forest terlalu
konservatif (recall hanya 51.8%), One-Class SVM dan
Autoencoder nyaris buta terhadap serangan (recall ~9.2%), dan
yang mengejutkan, LOF menunjukkan F1-Score tinggi (0.827)
namun AUC-nya 0.500 — sebuah kontradiksi yang mengungkap
risiko menilai model hanya berdasarkan satu metrik tanpa melihat
distribusi skor atau kurva ROC. Fenomena ini menunjukkan
bahwa LOF mungkin “beruntung” menemukan threshold yang
cocok untuk F1, tetapi tidak memiliki kemampuan diskriminasi
intrinsik. Lebih mengejutkan lagi, pendekatan ensemble justru
gagal meningkatkan performa, bahkan menurunkannya ke level
Autoencoder, mengindikasikan bahwa rata-rata skor dari model
heterogen tanpa pembobotan adaptif atau seleksi cerdas dapat
melemahkan sinyal deteksi model terbaik. Temuan ini selaras
dengan studi terkini yang menekankan bahwa ensemble dalam
deteksi anomali hanya efektif jika komponennya berkualitas
tinggi dan beragam secara bermakna (Wang et al., 2023). Selain
itu, efisiensi komputasi Deep SVDD (0.0004 GFLOPs) membuka
peluang untuk implementasi real-time pada sistem jaringan
berkecepatan tinggi dengan sumber daya terbatas. Implikasi
praktisnya jelas: dalam skenario keamanan siber, di mana false
negative jauh lebih berbahaya daripada false positive, Deep
SVDD menawarkan solusi yang tidak hanya akurat, tetapi juga
andal, efisien, dan berdasarkan prinsip pembelajaran representasi
yang kuat — menjadikannya kandidat utama untuk integrasi ke
dalam sistem deteksi intrusi generasi berikutnya.

1V. KESIMPULAN

Penelitian ini menunjukkan bahwa Deep SVDD, dengan
arsitektur encoder berbasis representasi laten dan pelatihan
berfokus pada data normal, mampu menghasilkan sistem
deteksi serangan DDoS yang lebih andal, stabil, dan efisien
dibandingkan pendekatan unsupervised konvensional. Model
ini unggul karena kemampuannya mempelajari pola lalu
lintas sah secara mendalam, sehingga penyimpangan akibat
serangan dapat diidentifikasi dengan presisi tinggi tanpa
bergantung pada label anomali. Sebaliknya, banyak metode
baseline — termasuk ensemble sederhana — gagal mencapai
keseimbangan deteksi yang bermakna, terutama karena
keterbatasan dalam menangkap kompleksitas pola serangan
modern.

Untuk penelitian lanjutan, arah yang menjanjikan meliputi:
(1) pengembangan ensemble adaptif yang memberikan bobot
dinamis berdasarkan kualitas skor tiap model; (2) integrasi
Deep SVDD dengan mekanisme self-supervised learning
untuk memperkaya representasi tanpa label; (3) evaluasi pada
dataset multi-serangan dan skenario jaringan real-time; serta
(4) optimasi arsitektur untuk deployment di perangkat edge
dengan sumber daya terbatas. Dengan demikian, Deep SVDD
bukan hanya solusi teknis, tetapi juga fondasi yang kuat untuk
sistem keamanan siber adaptif di masa depan.
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