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 Distributed Denial-of-Service (DDoS) attacks remain a critical threat to network 

infrastructure, demanding robust and efficient detection mechanisms. This study 

proposes an enhanced Deep Support Vector Data Description (Deep SVDD) model 

for unsupervised DDoS detection using the UNSW-NB15 dataset. The approach 

leverages a deep encoder architecture with batch normalization and dropout to learn 

compact latent representations of normal traffic, minimizing the hypersphere volume 

enclosing benign flows. Only normal samples are used during training, adhering to 

the unsupervised anomaly detection paradigm. The model is evaluated against five 

established baselines—Isolation Forest, Local Outlier Factor (LOF), One-Class 
SVM, Autoencoder, and a simple ensemble—using AUC, F1-score, and recall as 

primary metrics. Experimental results demonstrate that Deep SVDD significantly 

outperforms all baselines, achieving superior class separation, high detection 

sensitivity, and computational efficiency (0.0004 GFLOPs). Notably, while LOF 

exhibited a deceptively high F1-score, its AUC near 0.5 revealed poor discriminative 

capability, highlighting the risk of relying on single metrics. The ensemble approach 

failed to improve performance, underscoring the limitation of naive score averaging 

when weak detectors are included. Visualization of score distributions and ROC 

curves further confirms Deep SVDD’s ability to effectively distinguish DDoS from 

benign traffic. These findings affirm that representation learning in latent space 

offers a more reliable foundation for anomaly detection than traditional distance-, 
density-, or reconstruction-based methods. The proposed model presents a promising 

solution for real-time, low-overhead intrusion detection systems in modern network 

environments. Future work will explore adaptive ensembles, self-supervised 

pretraining, and deployment on edge devices. 
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I. PENDAHULUAN 

Serangan Distributed Denial of Service (DDoS) terus 

menjadi ancaman utama bagi keamanan siber dan 
ketersediaan layanan digital, dengan peningkatan frekuensi 

dan kompleksitas yang signifikan dalam beberapa tahun 

terakhir [1]. Serangan ini dapat melumpuhkan server, 

jaringan, dan layanan online dengan membanjiri target 

dengan lalu lintas palsu, menyebabkan kerugian ekonomi 

besar dan gangguan layanan kritis [2]. Deteksi dini dan akurat 

terhadap serangan DDoS merupakan tantangan utama karena 

seringkali meniru pola lalu lintas normal dan terus beradaptasi 

untuk menghindari sistem deteksi konvensional [3]. 

Pendekatan berbasis machine learning, khususnya teknik 
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deteksi anomaly tanpa supervisi, telah menarik perhatian 

karena kemampuannya bekerja tanpa label data yang lengkap, 

yang seringkali sulit diperoleh dalam lingkungan jaringan 

nyata [4]. Deep Support Vector Data Description (Deep 

SVDD) telah muncul sebagai pendekatan yang menjanjikan 

dalam deteksi anomaly karena kemampuannya belajar 

representasi fitur optimal dan mendefinisikan batas keputusan 

berdasarkan jarak ke pusat hyperphere dalam ruang laten [5]–
[7]. Namun, kinerja Deep SVDD dalam konteks deteksi 

DDoS masih menghadapi tantangan, terutama dalam 

mengatasi keragaman pola serangan, noise dalam data 

jaringan, dan kebutuhan akan akurasi tinggi untuk 

mengurangi false positive [2], [8], [9]. 

Penelitian sebelumnya telah mengeksplorasi berbagai 

pendekatan untuk deteksi DDoS. Penelitian [8] mengusulkan 

kombinasi Support Vector Data Description (SVDD) dan 

Kernel Density Estimation (KDE) untuk sistem deteksi intrusi 

berbasis grafik kendali multivariat. Hasil penelitian 

menunjukkan bahwa pendekatan SVDD-KDE menghasilkan 
akurasi dan AUC tinggi (masing-masing 0.917 dan 0.915) 

serta tingkat false positive yang rendah pada dataset NSL-

KDD, melebihi beberapa algoritma lainnya. Namun, 

kekurangan utama dari pendekatan ini adalah biaya 

komputasi yang tinggi, yang dapat menjadi kendala dalam 

penerapan skala besar atau real-time. Penelitian [6] 

mengembangkan metode deteksi intrusi berbasis anomali 

menggunakan kombinasi SVDD dan clustering dengan 

dukungan autoencoder, yang menunjukkan peningkatan 

akurasi pada dataset CERT. Namun, pendekatan ini terbatas 

karena diuji pada data sintetik dan kurang merepresentasikan 

variasi perilaku pengguna di dunia nyata. Sementara pada 
penelitian lain [5] menggabungkan metode SVDD dan 

clustering untuk meningkatkan akurasi deteksi anomali 

jaringan, namun hasilnya masih terbatas karena model hanya 

diuji pada dataset tertentu dan sensitif terhadap pengaturan 

parameter. Sementara itu, penelitian pada [10] mengusulkan 

metode ESPRT yang mengombinasikan entropy dan 

Sequential Probability Ratio Test, menghasilkan akurasi 

sangat tinggi dan penurunan false positive pada beberapa 

dataset DDoS; meskipun begitu, performanya tetap 

dipengaruhi ukuran window dan validasi masih bergantung 

pada dataset publik yang belum sepenuhnya 
merepresentasikan kondisi nyata. Penelitian [11] 

mengusulkan model Dual-SVDAE, yaitu autoencoder ganda 

yang menangani baik struktur jaringan (struktur graph) 

maupun atribut node, dan menggunakan dua hypersphere 

untuk mewakili kelaziman dari kedua representasi. Hasil 

eksperimen menunjukkan bahwa Dual-SVDAE secara 

konsisten mengungguli metode-metode state-of-the-art dalam 

mendeteksi anomali pada jaringan nyata yang beratribut. 

Namun, kekurangannya antara lain: model bisa jadi kompleks 

dan mahal komputasinya karena harus melatih dua 

autoencoder sekaligus, dan penilaian anomali bergantung 

pada jarak ke pusat hypersphere, yang mungkin kurang 
sensitif jika distribusi data normal sangat beragam atau tidak 

berbentuk bola sempurna. 

Sejalan dengan meningkatnya kompleksitas serangan 

DDoS dan keterbatasan metode deteksi anomali konvensional 

dalam menghadapi pola serangan yang semakin dinamis, 

diperlukan pendekatan yang lebih adaptif, stabil, dan mampu 

memberikan akurasi deteksi yang lebih tinggi. Berdasarkan 

kebutuhan tersebut, penelitian ini bertujuan untuk 

mengembangkan dan mengevaluasi pendekatan deteksi 

DDoS berbasis Deep SVDD yang ditingkatkan melalui 
arsitektur jaringan yang lebih dalam dan stabil, teknik 

pelatihan yang dioptimalkan, serta integrasi dengan metode 

deteksi anomaly klasik dalam kerangka ensemble untuk 

meningkatkan akurasi dan mengurangi tingkat kesalahan 

deteksi. Novelty dari penelitian ini terletak pada: (1) 

pengembangan arsitektur Deep SVDD yang dioptimalkan 

dengan batch normalization dan dropout untuk meningkatkan 

stabilitas dan generalisasi model, (2) penerapan pendekatan 

ensemble heterogen yang menggabungkan Deep SVDD, 

Isolation Forest, LOF, One-Class SVM, dan Autoencoder 

untuk meningkatkan robustness deteksi, dan (3) evaluasi 
komprehensif terhadap kombinasi teknik ini dalam skenario 

deteksi DDoS nyata, menunjukkan peningkatan signifikan 

dalam akurasi dan metrik kinerja lainnya dibandingkan 

metode-metode dasar. 

II. METODE  

A. Pengumpulan dan Pra-pemrosesan Data 

Dataset yang digunakan dalam penelitian ini berasal dari 

UNSW-NB15 (2018), yang mencakup aliran lalu lintas 

jaringan yang dikarakterisasi melalui 78 fitur statistik yang 

diekstraksi dari network flow. Fitur-fitur tersebut 

mencerminkan berbagai aspek perilaku komunikasi jaringan, 

baik dalam arah forward (dari sumber ke tujuan) maupun 
backward (dari tujuan ke sumber). Informasi dasar aliran 

(flow) meliputi Flow ID, alamat IP sumber dan tujuan (Source 

IP, Destination IP), port sumber dan tujuan (Source Port, 

Destination Port), protokol jaringan (Protocol), stempel 

waktu (Timestamp), serta durasi aliran (Flow Duration).  

Fitur kuantitatif yang digunakan untuk pemodelan mencakup:  

 Statistik paket dan panjang data, seperti jumlah total 

paket maju/mundur (Total Fwd/Backward Packets), 

total panjang data (Total Length of Fwd/Bwd Packets), 

serta statistik distribusi panjang paket (Max, Min, Mean, 

Std).  

 Karakteristik waktu antar kedatangan paket (Inter-

Arrival Time/IAT), termasuk rata-rata, standar deviasi, 

nilai maksimum dan minimum, baik untuk arah maju 

maupun mundur.  

 Laju aliran (Flow Bytes/s, Flow Packets/s) yang 

menggambarkan intensitas lalu lintas per detik.  

 Statistik flag TCP, seperti jumlah kemunculan flag FIN, 

SYN, RST, PSH, ACK, URG, CWE, dan ECE, yang 

sangat relevan dalam mengidentifikasi pola serangan 

berbasis manipulasi protokol (misalnya, serangan SYN 

flood).  
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 Ukuran segmen dan header, seperti Average Packet Size, 

Avg Fwd/Bwd Segment Size, dan Fwd/Bwd Header 

Length.  

 Fitur bulk transfer, yang mengukur pola pengiriman data 

dalam blok (Avg Bytes/Packets per Bulk).  

 Subflow metrics, seperti jumlah paket dan byte dalam 

sub-aliran maju/mundur.  

 Window size awal TCP 

(Init_Win_bytes_forward/backward) dan ukuran 
segmen minimum (min_seg_size_forward), yang 

berkaitan dengan inisialisasi koneksi.  

 Statistik aktivitas idle/aktif, yaitu durasi periode aktif 

(saat terjadi transmisi) dan idle (tidak ada transmisi), 

termasuk rata-rata, standar deviasi, dan ekstremnya. 

Sebelum pemodelan, seluruh fitur identitas (Flow ID, 

Source/Destination IP, Port, Protocol, dan Timestamp) 

dihilangkan, karena tidak memberikan informasi statistik 

yang berguna untuk generalisasi model dan berpotensi 

menyebabkan data leakage atau ketergantungan pada entitas 

spesifik. Sisanya — sebanyak 72 fitur numerik kontinu — 
digunakan sebagai input untuk proses seleksi fitur dan 

pelatihan model deteksi anomali. Label kelas (Label) 

dikonversi menjadi representasi biner untuk membedakan 

antara lalu lintas normal (BENIGN) dan serangan DDoS. 

 

B. Seleksi Fitur 

Untuk meningkatkan kualitas representasi fitur dan 

mengurangi noise yang dapat mengganggu proses 

pembelajaran model, dilakukan seleksi fitur berbasis varians 

statistik. Secara khusus, digunakan metode 

VarianceThreshold dari pustaka scikit-learn dengan ambang 
batas (threshold) sebesar 0.01. Pendekatan ini bertujuan untuk 

mengidentifikasi dan menghapus fitur-fitur yang hampir 

konstan — yaitu fitur yang nilainya sangat sedikit atau tidak 

berubah sama sekali di seluruh sampel, sehingga tidak 

memberikan informasi diskriminatif dalam membedakan 

antara lalu lintas normal dan anomali. Fitur dengan varians di 

bawah ambang tersebut umumnya mencerminkan noise, 

kesalahan pengukuran, atau redundansi struktural dalam 

dataset jaringan. Setelah proses seleksi ini, jumlah fitur 

berkurang dari jumlah awal (72 fitur numerik) menjadi 

jumlah yang lebih optimal, yang secara eksplisit dicatat 

selama eksekusi kode. Hasil seleksi ini tidak hanya 
mempercepat pelatihan model dan mengurangi risiko 

overfitting, tetapi juga meningkatkan interpretabilitas dan 

ketahanan sistem deteksi terhadap fluktuasi data yang tidak 

relevan. Fitur yang tersisa kemudian digunakan sebagai input 

untuk tahap penskalaan dan pemodelan berikutnya. 

 

C. Pembagian dan Penskalaan Data 

Setelah seleksi fitur, dataset berjumlah 225.475 sampel 

dalam format CSV dibagi menjadi dua bagian utama: data 

pelatihan (training set) dan data pengujian (test set) dengan 

rasio 70:30, menggunakan fungsi train_test_split dari scikit-
learn. Pembagian ini dilakukan secara stratified (stratify=y) 

untuk memastikan bahwa proporsi antara kelas normal 

(BENIGN) dan anomali (DDoS) tetap seimbang di kedua 

subset, sehingga menghindari bias evaluasi akibat 

ketidakseimbangan distribusi kelas, sebagaimana 

direkomendasikan dalam praktek stratified sampling untuk 

deteksi anomali jaringan modern [12]. Mengingat pendekatan 

deteksi anomali dalam penelitian ini bersifat 

unsupervised/semi-supervised, hanya sampel dengan label 

normal (y_train == 0) dari data pelatihan yang digunakan 

untuk melatih model, sesuai dengan asumsi bahwa model 
hanya belajar dari pola lalu lintas jaringan yang sah [13]. 

Sebelum dimasukkan ke dalam model, seluruh fitur 

diskalakan menggunakan RobustScaler. Berbeda dengan 

StandardScaler atau MinMaxScaler, RobustScaler 

menggunakan median dan interquartile range (IQR) sebagai 

acuan penskalaan, sehingga lebih tahan (robust) terhadap 

keberadaan pencilan (outliers), sesuai rekomendasi 

preprocessing untuk data jaringan yang cenderung memiliki 

nilai ekstrem [14]. 

 

D. Pengembangan Model Deep SVDD yang Ditingkatkan 
Deep Support Vector Data Description (Deep SVDD) 

merupakan pendekatan deep learning untuk deteksi anomali yang 

bertujuan mempelajari representasi berdimensi rendah dari data 

normal, sedemikian rupa sehingga semua sampel normal 

terkonsentrasi di sekitar satu titik pusat (centroid) di ruang laten. 

Berbeda dari autoencoder yang mengoptimalkan rekonstruksi 

input, Deep SVDD secara eksplisit meminimalkan volume 

hipersfera yang mencakup representasi data normal di ruang fitur 

laten. 

Dalam penelitian ini, Deep SVDD ditingkatkan dengan 

arsitektur encoder yang lebih dalam dan teknik regularisasi 

modern. Model terdiri dari empat lapisan dense berturut-turut 

dengan ukuran neuron 512 → 256 → 128 → 32, di mana 

lapisan terakhir berdimensi 𝑑 = 32berfungsi sebagai ruang 

representasi laten. Setiap lapisan intermediate menggunakan 

aktivasi ReLU, diikuti oleh Batch Normalization untuk 

mempercepat konvergensi dan menstabilkan distribusi internal, 

serta Dropout (dengan laju 0.3–0.4) untuk mencegah overfitting. 

Lapisan output laten menggunakan fungsi aktivasi tanh⁡untuk 

membatasi rentang nilai representasi. 

Misalkan ϕ(𝑥;𝑊) ∈ 𝑅𝑑 menyatakan output encoder untuk input 

𝑥 dengan parameter jaringan 𝑊, dan 𝑐 ∈ 𝑅𝑑  adalah c di ruang 
laten. Fungsi loss Deep SVDD, didefinisikan pada persamaan (1): 

 

𝐿(𝑊, 𝑐) =
1

𝑁
∑||

𝑁

𝑖=1

ϕ(𝑥𝑖;𝑊) − 𝑐||2 + λ ⋅ Ω(𝑊)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Where: 

𝑁 adalah jumlah sampel normal dalam pelatihan. 

||. ||⁡adalah norma Euclidean (kuadrat jarak), 

Ω(𝑊) merepresentasikan regularisasi implisit melalui Dropout 

dan BatchNorm, 

𝑐 tidak dilatih melalui gradien, melainkan diinisialisasi sekali 

sebagai rata-rata representasi laten dari subset data normal, 

sebagaimana didefinisikan pada persamaan (2): 
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𝑐 =
1

𝑀
∑ϕ(𝑥𝑗 ;𝑊init)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)

𝑀

𝑗=1

 

Dengan 𝑀⁡ ≪ 𝑁 (dalam kode: 𝑀 = 1000) untuk efisiensi 

komputasi, dan 𝑊init adalah bobot awal encoder sebelum 

pelatihan penuh dimulai. 

Selama pelatihan, model meminimalkan jarak kuadrat setiap 

representasi laten ke centroid tetap 𝐜. Setelah pelatihan, skor 

anomali untuk sampel baru x⁡dihitung, sebagaimana 
didefinisikan pada persamaan (3): 

 

𝑠(𝑥) = |ϕ(𝑥;𝑊∗) − 𝑐|2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 
Semakin besar skor 𝑠(𝐱), semakin jauh sampel tersebut dari 

distribusi data normal, sehingga lebih mungkin merupakan 

anomali (serangan DDoS). 

Untuk meningkatkan keandalan evaluasi selama pelatihan, 

sistem menerapkan pemantauan akurasi validasi berbasis 

threshold optimal setiap 10 epoch. Threshold ditentukan 

secara dinamis menggunakan Youden’s J statistic [15], 

sebagaimana didefinisikan pada persamaan (4): 

 

𝐽 = TPR− FPR, τ∗ = argτmax𝐽 (τ)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 
di mana 𝜏∗⁡adalah threshold optimal pada kurva ROC 

berdasarkan data validasi (X_test, y_test). Hal ini 

memungkinkan pelacakan kinerja model secara real-time 

meskipun dalam skenario semi-supervised. 

Dengan kombinasi arsitektur dalam, regularisasi, inisialisasi 

centroid yang stabil, dan pemantauan kinerja berbasis ROC, 

Deep SVDD yang diusulkan dirancang untuk mencapai 

generalisasi tinggi dalam mendeteksi serangan DDoS yang 

tidak terlihat selama pelatihan. 

 
E. Model Baseline untuk Perbandingan 

Untuk mengevaluasi efektivitas Deep SVDD yang 

diusulkan, kinerjanya dibandingkan terhadap empat model 

deteksi anomali klasik dan modern yang umum digunakan 

dalam literatur keamanan jaringan. Keempat baseline tersebut 

dipilih karena representatif terhadap berbagai paradigma 

pendekatan unsupervised: berbasis pohon, berbasis kedekatan 

lokal, berbasis batas keputusan global, dan berbasis 

rekonstruksi. 

Pertama, Isolation Forest (IF) digunakan sebagai 

baseline berbasis pohon. Model ini mengisolasi observasi 
melalui pemilihan acak fitur dan nilai pemisah; anomali 

cenderung diisolasi dalam jumlah langkah lebih sedikit. 

Dalam eksperimen ini, IF dikonfigurasi dengan 

n_estimators=200 pohon dan contamination=0.15 untuk 

mencerminkan perkiraan proporsi serangan DDoS dalam 

dataset, sesuai dengan observasi eksploratif awal. 

Kedua, Local Outlier Factor (LOF) diterapkan sebagai 

representasi metode berbasis kepadatan lokal (local density). 

LOF mengukur seberapa terisolasi suatu titik relatif terhadap 

tetangga terdekatnya. Untuk memungkinkan prediksi pada 

data baru (out-of-sample), parameter novelty=True 

diaktifkan, dan model dilatih hanya pada data normal. Nilai 

n_neighbors=25 dipilih sebagai kompromi antara sensitivitas 

terhadap pola lokal dan stabilitas terhadap noise, dengan 

contamination=0.15 konsisten dengan asumsi proporsi 

anomali. 

Ketiga, One-Class Support Vector Machine (One-Class 

SVM) digunakan sebagai baseline berbasis batas keputusan 

global. Model ini memetakan data ke ruang berdimensi tinggi 

dan mencari hipersfera berukuran minimal yang mencakup 
sebagian besar data normal. Parameter nu=0.15 secara 

langsung mengontrol fraksi maksimum outlier yang 

diizinkan, sekaligus mengatur kompleksitas batas keputusan. 

Skema penskalaan gamma='scale' digunakan untuk 

menyesuaikan kernel RBF secara adaptif terhadap varians 

data. 

Keempat, sebuah Autoencoder (AE) dalam (deep 

autoencoder) dikembangkan sebagai baseline berbasis 

rekonstruksi. Arsitekturnya simetris, terdiri dari encoder (512 

→ 256 → 64) dan decoder (64 → 256 → 512 → input_dim), 

dengan Batch Normalization dan Dropout (0.3) di setiap 
lapisan untuk meningkatkan generalisasi. Model dilatih untuk 

merekonstruksi input normal; anomali diidentifikasi melalui 

error rekonstruksi tinggi. Threshold deteksi ditetapkan pada 

persentil ke-90 dari error rekonstruksi pada data pelatihan 

normal, mengasumsikan bahwa 10% error tertinggi masih 

merupakan variasi alami dari lalu lintas sah. 

Semua baseline dilatih hanya pada data normal 

(X_train_normal), konsisten dengan paradigma deteksi 

anomali unsupervised. Skor anomali dari masing-masing 

model dikumpulkan untuk evaluasi kuantitatif (AUC, F1-

score) dan kualitatif (visualisasi distribusi, ROC curve), serta 

digunakan sebagai komponen dalam strategi ensemble. 
Pemilihan konfigurasi parameter (terutama 

contamination=0.15 atau nu=0.15) didasarkan pada estimasi 

kasar proporsi serangan DDoS dalam dataset UNSW-NB15 

bagian DDoS, sehingga memastikan perbandingan yang adil 

dan realistis. 

 

F. Ensemble Detection 

Untuk meningkatkan ketahanan, stabilitas, dan akurasi 

deteksi serangan DDoS, penelitian ini mengimplementasikan 

strategi ensemble sederhana namun efektif dengan 

menggabungkan skor anomali dari lima model heterogen: Deep 
SVDD, Isolation Forest, Local Outlier Factor (LOF), One-Class 

SVM, dan Autoencoder. Pendekatan ensemble telah menjadi tren 

dominan dalam deteksi anomali modern karena kemampuannya 

mengkompensasi kelemahan model individual melalui 

diversifikasi prinsip deteksi—seperti berbasis jarak, densitas, 

batas keputusan, dan rekonstruksi [16], [17]. 

Dalam implementasi ini, skor anomali dari masing-masing model 

digabungkan melalui rata-rata aritmetika, sebagaimana 

didefinisikan pada persamaan (5): 

𝑠ensemble(𝑥) =
1

5
∑ 𝑠𝑚(𝑥)

5

𝑚=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

di mana 𝑠𝑚(x)adalah skor anomali dari model ke-𝑚 untuk 

sampel x. Prediksi akhir didasarkan pada threshold ensemble 
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𝜏ensemble , yang dihitung sebagai rata-rata dari threshold individual. 

Threshold tiap model ditetapkan berdasarkan persentil ke-90 dari 

distribusi skor pada data pelatihan normal (kecuali Deep SVDD, 

yang menggunakan threshold optimal dari Youden’s J statistic 

pada data validasi) [15], sebagaimana didefinisikan pada 

persamaan (6). Secara formal: 

 

τensemble =
1

5
∑ τ𝑚

5

𝑚=1

,  with τ𝑚

= {  argmax
τ
(TPR(τ)

− FPR(τ)) ,  percentile90 (𝑠𝑚(𝑋train,⁡normal))⁡⁡⁡⁡⁡⁡⁡(6) 

 

Keputusan akhir: 

𝑦̂ = { 1⁡jika⁡𝑠ensemble(𝑥) > τensemble,  0⁡sebaliknya }⁡⁡⁡⁡(7) 
 

Strategi ini menghindari kebutuhan akan label selama 

pelatihan ensemble (konsisten dengan paradigma 

unsupervised), sekaligus memanfaatkan prinsip consensus-

based anomaly scoring, yang telah terbukti efektif dalam 
lingkungan jaringan dinamis [18]. Selain itu, pendekatan rata-

rata skor dipilih karena kesederhanaan komputasinya dan 

kinerjanya yang kompetitif dibanding metode pembobotan 

adaptif, terutama ketika model dasar cukup beragam [19]. 

 

G. Evaluasi Model 

Kinerja seluruh model—meliputi Deep SVDD, Isolation 

Forest, Local Outlier Factor, One-Class SVM, Autoencoder, 

dan pendekatan ensemble—dievaluasi secara komprehensif 

menggunakan metrik kuantitatif dan visualisasi kualitatif 

dalam konteks deteksi serangan DDoS. Meskipun pelatihan 
dilakukan secara unsupervised hanya pada data normal, 

evaluasi dilakukan secara semi-supervised dengan 

menggunakan label ground truth pada data uji untuk menilai 

kemampuan model dalam membedakan lalu lintas BENIGN 

dan DDoS [12]. Metode evaluasi utama mencakup Area 

Under the ROC Curve (AUC-ROC) sebagai ukuran 

diskriminasi keseluruhan, serta akurasi, presisi, recall, dan 

F1-score dengan perhatian khusus pada kelas positif (DDoS), 

karena false negative sangat kritis dalam domain keamanan 

siber [20]. Untuk Deep SVDD, kami menyertakan estimasi 

kompleksitas komputasi dalam GFLOPs sebagai indikator 
efisiensi inferensi, mengadopsi praktik dari model deep 

anomaly detection modern [21]. Evaluasi selanjutnya 

diperkaya oleh visualisasi seperti kurva ROC, distribusi skor 

anomali berdasarkan label sebenarnya, confusion matrix, dan 

perbandingan F1-score antar model, yang mencerminkan 

praktik terbaik dari literatur deteksi anomali kontemporer 

[22]. Semua hasil disimpan dalam format terstruktur dan citra 

berkualitas tinggi untuk menjamin reproduktibilitas, sesuai 

prinsip transparansi dan ketahanan terhadap 

ketidakseimbangan kelas yang sangat ditekankan dalam 

penelitian deteksi anomali jaringan terkini. 

 
 

III. HASIL DAN PEMBAHASAN 

3.1. Ringkasan Kinerja Model Secara Keseluruhan 

Berdasarkan hasil evaluasi, Deep SVDD menunjukkan 

kinerja yang kuat dalam mendeteksi serangan DDoS pada dataset 

UNSW-NB15. Model ini mencapai AUC sebesar 0.8053, 

mengindikasikan kemampuan diskriminasi yang baik antara lalu 

lintas normal dan anomali di berbagai threshold. Dengan akurasi 

86.66%, Deep SVDD mampu mengklasifikasikan mayoritas 

sampel secara benar. Lebih penting lagi, model ini mencatat recall 
(sensitivitas) sebesar 90.99%, artinya hampir 91% serangan 

DDoS berhasil terdeteksi—sangat krusial dalam konteks 

keamanan siber di mana false negative (serangan yang tidak 

terdeteksi) berisiko tinggi. Presisinya sebesar 86.25% 

menunjukkan bahwa sebagian besar alarm yang dipicu memang 

merupakan serangan nyata, meskipun masih terdapat sekitar 

13.75% false positive. Keseimbangan antara presisi dan recall 

tercermin pada F1-score sebesar 0.8856, nilai yang kompetitif 

dibanding metode deteksi anomali lainnya. Selain itu, 

kompleksitas komputasinya sangat rendah, hanya 0.00040448 

GFLOPs, menandakan bahwa Deep SVDD sangat efisien secara 
komputasi dan berpotensi diterapkan dalam sistem deteksi 

jaringan real-time dengan sumber daya terbatas. 

Untuk mengevaluasi proses pelatihan model Deep SVDD, 

langkah pertama adalah menganalisis dinamika training loss serta 

perubahan akurasi validasi dari epoch ke epoch. Gambar 1 

merupakan gambaran mengenai stabilitas proses training, pola 

konvergensi, serta indikasi adanya overfitting atau peningkatan 

performa model selama pelatihan berlangsung. 

 
Gambar 1. Deep SVDD – Training Loss and Validation Accuracy (Optimal 

Threshold Monitoring).  
 

Gambar 1 menampilkan dua metrik penting selama proses 

pelatihan Deep SVDD: loss (merah, sumbu kiri) dan akurasi 

validasi (biru, sumbu kanan) terhadap jumlah epoch. Loss, 

yang dihitung sebagai rata-rata jarak kuadrat dari representasi 

laten ke centroid, menunjukkan tren penurunan yang stabil 

seiring berjalannya pelatihan — dari lebih dari 25 pada epoch 

awal hingga stabil di sekitar 4 setelah epoch 100, 

mengindikasikan bahwa model berhasil meminimalkan 

volume hipersfera yang mencakup data normal. Sementara 

itu, akurasi validasi — yang dihitung berdasarkan prediksi 
dengan threshold optimal dari kurva ROC setiap 10 epoch — 

menunjukkan fluktuasi awal namun kemudian meningkat 

secara signifikan dan stabil di kisaran 0.83–0.85 setelah epoch 

100. Lonjakan tajam pada akurasi di awal pelatihan (sekitar 

epoch 5–10) disebabkan oleh inisialisasi centroid dan adaptasi 
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cepat model terhadap struktur data, sementara penurunan 

kecil di tengah-tengah menunjukkan fase penyesuaian 

parameter. Stabilitas loss dan akurasi pada epoch akhir 

menandakan konvergensi yang baik tanpa overfitting. Secara 

keseluruhan,  

Untuk memfokuskan analisis pada model terbaik, 

gambar 2 menyajikan kurva ROC khusus untuk Deep SVDD, 

yang menunjukkan performa deteksi serangan DDoS secara 
lebih detail dibandingkan dengan evaluasi perbandingan 

sebelumnya. 

 
Gambar 2. Kurva ROC Deep SVDD untuk Deteksi Serangan DDoS. 

 

Gambar 2 ini menampilkan kurva ROC (Receiver Operating 
Characteristic) khusus untuk model Deep SVDD, yang 

memplot True Positive Rate (TPR) terhadap False Positive 

Rate (FPR) di berbagai threshold, dengan nilai AUC sebesar 

0.805 yang ditampilkan pada legenda. Kurva berwarna merah 

menunjukkan performa model secara kontinu, sementara 

garis diagonal putus-putus merupakan baseline acak (AUC = 

0.5). Bentuk kurva yang naik tajam sejak FPR rendah (sekitar 

0.15–0.20) kemudian stabil di TPR tinggi (>0.90) 

menunjukkan bahwa Deep SVDD sangat sensitif terhadap 

serangan DDoS sejak awal tanpa mengorbankan banyak false 

positive — artinya model mampu mendeteksi sebagian besar 
serangan dengan jumlah alarm palsu yang masih dapat 

diterima. Area di bawah kurva (AUC = 0.805) 

mengindikasikan kemampuan diskriminasi yang kuat, jauh di 

atas acak dan kompetitif dibanding model lainnya. Secara 

visual, kurva yang dekat ke sudut kiri atas — tanpa banyak 

fluktuasi — juga mencerminkan stabilitas dan generalisasi 

yang baik dari representasi laten yang dipelajari oleh encoder 

Deep SVDD. Dengan demikian, Gambar 4.6 tidak hanya 

menjadi bukti kuantitatif kinerja, tetapi juga memberikan 

wawasan kualitatif tentang efisiensi dan keandalan Deep 

SVDD dalam skenario deteksi serangan nyata. 

Untuk memahami detail prediksi model terbaik, gambar 
3 berikut menyajikan matriks kebingungan (confusion 

matrix) Deep SVDD, yang menunjukkan distribusi prediksi 

benar dan salah secara eksplisit antara kelas BENIGN dan 

DDoS. 

 
Gambar 3. Confusion Matrix Deep SVDD untuk Deteksi Serangan DDoS. 

 
Gambar 3 Matriks kebingungan menyajikan detail prediksi 

Deep SVDD pada data uji, dengan baris menunjukkan label 

sebenarnya (True) dan kolom menunjukkan label yang 

diprediksi (Predicted). Pada kuadran atas-kiri (23.743), 

tercatat jumlah True Negative (TN) — sampel BENIGN yang 

benar-benar diprediksi sebagai BENIGN. Kuadran atas-kanan 

(5.573) adalah False Positive (FP) — sampel BENIGN yang 

salah diklasifikasikan sebagai DDoS, yang dapat 

mengganggu sistem dengan alarm palsu. Kuadran bawah-kiri 

(3.460) adalah False Negative (FN) — sampel DDoS yang 

gagal terdeteksi, merupakan kesalahan paling kritis dalam 

konteks keamanan jaringan karena serangan berlangsung 
tanpa diketahui. Terakhir, kuadran bawah-kanan (34.948) 

adalah True Positive (TP) — jumlah serangan DDoS yang 

berhasil terdeteksi. Dari nilai-nilai ini, dapat dihitung bahwa 

Deep SVDD memiliki recall (sensitivitas) sebesar 90.99%, 

artinya hampir 91% serangan berhasil diidentifikasi, dan 

presisi sebesar 86.25%, menunjukkan bahwa dari semua 

alarm yang dipicu, sekitar 86% memang benar-benar 

serangan. Meskipun false positive cukup tinggi (5.573), ini 

masih dapat diterima jika sistem memiliki mekanisme 

filtering lanjutan; sementara false negative yang relatif rendah 

(3.460) menunjukkan bahwa model sangat andal dalam 
mendeteksi ancaman nyata — menjadikannya solusi yang 

sangat cocok untuk sistem deteksi intrusi berbasis 

pembelajaran mesin. 

 

3.2. Analisis Kurva ROC dan Kemampuan Diskriminasi 

model SVVD dengan model baseline 

Secara umum, kurva ROC (Receiver Operating 

Characteristic) memberikan gambaran menyeluruh tentang 

kemampuan model dalam membedakan antara kelas positif 

(DDoS) dan negatif (BENIGN) melalui berbagai titik 

threshold. Kurva ini memplot True Positive Rate (TPR) 

terhadap False Positive Rate (FPR), di mana model yang ideal 
akan menghasilkan kurva yang mendekati sudut kiri atas — 

menandakan tingkat deteksi serangan yang tinggi dengan 

jumlah kesalahan alarm palsu yang rendah. Dalam konteks 
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penelitian ini, perbandingan kurva ROC dari semua model 

memungkinkan identifikasi model mana yang paling efektif 

dalam menciptakan trade-off optimal antara sensitivitas dan 

spesifisitas. Selain itu, nilai AUC (Area Under the Curve) 

yang disertakan pada setiap kurva memberikan ukuran 

agregat kinerja model secara numerik, sehingga memudahkan 

perbandingan langsung antar pendekatan. Setelah visualisasi 

kurva diperlihatkan, analisis lebih lanjut akan membahas 

perbedaan bentuk kurva, posisi titik-titik kritis, serta implikasi 
praktis dari performa masing-masing model dalam skenario 

deteksi serangan nyata. 

 

 
Gambar 4. Kurva ROC Perbandingan Semua Model untuk Deteksi Serangan 

DDoS 

 

Gambar 4 secara komprehensif memvisualisasikan 

kemampuan diskriminasi enam model berbeda — Deep 

SVDD, Isolation Forest, Local Outlier Factor (LOF), One-

Class SVM, Autoencoder, dan Ensemble — dalam 

membedakan antara lalu lintas normal (BENIGN) dan 

serangan DDoS. Dalam grafik tersebut, setiap kurva 

merepresentasikan trade-off antara True Positive Rate (TPR) 

dan False Positive Rate (FPR) di berbagai threshold, dengan 

garis diagonal putus-putus sebagai baseline prediksi acak 
(AUC = 0.5). Tampak jelas bahwa Deep SVDD (garis biru) 

memiliki kurva paling mendekati sudut kiri atas dengan AUC 

tertinggi sebesar 0.805, menunjukkan kemampuan deteksi 

serangan yang sangat baik sekaligus minimnya false positive 

pada threshold rendah. Isolation Forest (0.772) dan One-Class 

SVM (0.763) menempati posisi kedua dan ketiga, sementara 

LOF (AUC = 0.500), Autoencoder (0.584), dan Ensemble 

(0.584) menunjukkan performa lemah — bahkan LOF nyaris 

setara dengan tebakan acak. Bentuk kurva Deep SVDD yang 

naik tajam sejak FPR rendah mengonfirmasi sensitivitas 

tingginya terhadap pola serangan, menjadikannya model 

paling andal dalam skenario deteksi intrusi nyata. Dengan 
demikian, Gambar 4.2 tidak hanya berfungsi sebagai ilustrasi 

perbandingan, tetapi juga sebagai bukti visual kuat bahwa 

pendekatan berbasis representasi laten seperti Deep SVDD 

secara signifikan unggul dibanding metode tradisional 

maupun ensemble sederhana dalam konteks dataset UNSW-

NB15. 

 

3.3. Evaluasi Kinerja Model Berdasarkan F1-Score : SVVD 

dan Baseline Model 

Dalam deteksi serangan DDoS, keseimbangan antara 

kemampuan model dalam mengidentifikasi serangan nyata 

(recall) dan meminimalkan alarm palsu (presisi) sangat krusial. 

Untuk mengukur keseimbangan ini secara agregat, digunakan F1-

Score — rata-rata harmonik dari presisi dan recall — yang 

memberikan satu nilai tunggal untuk membandingkan performa 

model secara adil, terutama ketika distribusi kelas tidak seimbang. 

Pada bagian ini, F1-Score dari keenam model yang diuji — Deep 

SVDD, Isolation Forest, LOF, One-Class SVM, Autoencoder, 

dan Ensemble — dibandingkan secara visual melalui diagram 
batang. Visualisasi ini memungkinkan identifikasi cepat model 

mana yang paling efektif dalam mencapai keseimbangan optimal 

antara sensitivitas dan spesifisitas dalam mendeteksi serangan 

DDoS. Setelah gambar disajikan, analisis lebih lanjut akan 

membahas mengapa beberapa model mencatat F1-Score tinggi 

sementara yang lain jauh lebih rendah, serta implikasinya 

terhadap keandalan sistem deteksi dalam lingkungan nyata. 

 

Gambar 5. Perbandingan F1-Score Antar Model untuk Deteksi Serangan DDoS 

Gambar 5 merupakan perbandingan F1-Score Antar Model untuk 

Deteksi Serangan DDoS, yang menampilkan diagram batang nilai 

F1-Score dari enam model deteksi anomali yang diuji — Deep 

SVDD, Isolation Forest, LOF, One-Class SVM, Autoencoder, 

dan Ensemble. F1-Score, sebagai rata-rata harmonik dari presisi 

dan recall, digunakan untuk menilai seberapa baik setiap model 

mencapai keseimbangan antara kemampuan mendeteksi 

serangan nyata dan meminimalkan alarm palsu, yang sangat 

krusial dalam skenario keamanan jaringan yang tidak seimbang. 

Dari visualisasi terlihat bahwa Deep SVDD mencatat F1-Score 

tertinggi (sekitar 0.886), menjadikannya model paling seimbang 

dan andal. LOF menempati posisi kedua dengan F1-Score sekitar 
0.825, meskipun secara konsistensi performanya dipertanyakan 

karena AUC-nya rendah (0.500). Isolation Forest berada di posisi 

ketiga (~0.639), menunjukkan performa cukup baik namun jauh 

di bawah Deep SVDD. Sementara itu, One-Class SVM, 

Autoencoder, dan Ensemble memiliki F1-Score sangat rendah 

(sekitar 0.15–0.17), mengindikasikan kegagalan dalam mencapai 

keseimbangan deteksi yang bermakna. Secara keseluruhan, 

Gambar 3.3 memperkuat temuan bahwa Deep SVDD tidak hanya 

unggul dalam metrik diskriminasi (AUC), tetapi juga dalam 

keseimbangan praktis antara sensitivitas dan spesifisitas, 
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menjadikannya kandidat paling layak untuk implementasi sistem 

deteksi DDoS berbasis pembelajaran mesin. 

3.4. Distribusi Skor Anomali: SVVD dan Baseline Model 

Distribusi skor anomali dari keenam model — Deep SVDD, 

Isolation Forest, LOF, One-Class SVM, Autoencoder, dan 

Ensemble — disajikan dalam bentuk grafik histogram berganda 

dengan kurva KDE (Kernel Density Estimation), yang 

memperlihatkan bagaimana skor untuk kelas BENIGN (biru) dan 

DDoS (oranye) tersebar di ruang skor masing-masing model. 

Visualisasi ini memungkinkan analisis mendalam tentang sejauh 

mana setiap model mampu menciptakan pemisahan yang jelas 

antara lalu lintas normal dan serangan: semakin sedikit tumpang 

tindih antara dua distribusi, semakin baik kemampuan model 

dalam membedakan kelas tanpa bergantung pada threshold yang 
rumit. Sebaliknya, jika kedua distribusi saling menutupi atau 

memiliki puncak yang hampir identik, maka model tersebut 

cenderung menghasilkan banyak false positive atau false 

negative, terlepas dari parameter yang digunakan. Pemahaman 

atas pola distribusi ini sangat penting karena memberikan dasar 

intuitif mengapa suatu model mencatat AUC atau F1-Score tinggi 

atau rendah — bukan hanya angka, tapi juga mengapa angka itu 

muncul. Analisis ini akan membantu menjelaskan kekuatan dan 

kelemahan masing-masing pendekatan, serta memberikan 

wawasan tentang stabilitas dan interpretabilitas model dalam 

deteksi serangan DDoS nyata. 
 

 
Gambar 6. Distribusi Skor Anomali untuk Keenam Model Deteksi Serangan 

DDoS 

Gambar 6 menampilkan enam subplot yang masing-masing 

memvisualisasikan distribusi skor anomali dari satu model — 

Deep SVDD, Isolation Forest, LOF, One-Class SVM, 

Autoencoder, dan Ensemble — dengan membandingkan 
distribusi skor untuk kelas BENIGN (biru) dan DDoS 

(oranye) menggunakan histogram dan kurva KDE. Secara 

konsisten, Deep SVDD menunjukkan pemisahan paling jelas: 

sebagian besar sampel BENIGN terkonsentrasi di skor sangat 

rendah (hampir nol), sementara DDoS tersebar di skor lebih 

tinggi (hingga ~35), mencerminkan kemampuan encoder-nya 

belajar representasi laten yang efektif untuk membedakan 

anomali. Isolation Forest menunjukkan tumpang tindih 

signifikan antara kedua kelas, terutama di rentang skor 0.35–

0.65, yang menjelaskan mengapa meskipun F1-Score-nya 

cukup baik, AUC-nya tidak setinggi Deep SVDD. LOF 

memiliki distribusi unik: hampir semua sampel BENIGN 

berada di skor sangat dekat nol, tetapi DDoS juga 

terkonsentrasi di skor rendah, menyebabkan tumpang tindih 

ekstrem — inilah alasan mengapa AUC-nya hanya 0.500. 

One-Class SVM dan Autoencoder menunjukkan pola serupa: 

sebagian besar BENIGN di skor rendah, namun DDoS hanya 

muncul di ujung kanan dengan jumlah sangat kecil, 

mengindikasikan bahwa model-model ini gagal menangkap 

karakteristik serangan secara luas. Ensemble, meskipun 
menggunakan rata-rata skor dari lima model, justru 

menghasilkan distribusi yang mirip Deep SVDD tapi lebih 

lebar dan lebih tumpang tindih, sehingga mengurangi 

ketajaman deteksi. Secara keseluruhan, Gambar 4.4 

memberikan bukti visual kuat bahwa Deep SVDD adalah 

satu-satunya model yang berhasil menciptakan pemisahan 

kelas yang jelas dan stabil, yang menjadi dasar kuat bagi 

performa tinggi yang dicatatnya dalam metrik evaluasi 

sebelumnya. 

 

3.5. Hasil Evaluasi Komparatif Model 

Sebagai bagian inti dari evaluasi eksperimen, kinerja Deep SVDD 

yang diusulkan dibandingkan secara komprehensif terhadap lima 

model baseline deteksi anomali—Isolation Forest, Local Outlier 

Factor (LOF), One-Class SVM, Autoencoder, dan pendekatan 

Ensemble—menggunakan metrik evaluasi standar dalam deteksi 

intrusi jaringan. Tabel berikut menyajikan hasil kuantitatif dari 
keenam model berdasarkan AUC-ROC, Akurasi, Presisi, Recall, 

F1-Score, dan GFLOPs (hanya untuk Deep SVDD sebagai 

indikator efisiensi komputasi). Karena dataset bersifat tidak 

seimbang (jumlah BENIGN jauh lebih besar daripada DDoS), 

metrik seperti F1-Score dan Recall diberikan perhatian khusus, 

mengingat false negative dalam deteksi serangan memiliki 

konsekuensi keamanan yang sangat serius. Analisis berikut tidak 

hanya membandingkan angka, tetapi juga menghubungkan 

performa masing-masing model dengan karakteristik arsitektur, 

asumsi dasar, dan kemampuannya dalam menangkap pola 

serangan DDoS pada dataset UNSW-NB15. 

Tabel 1 merangkum hasil evaluasi komprehensif dari enam 

model deteksi anomali pada dataset UNSW-NB15, 

menunjukkan bahwa Deep SVDD secara konsisten unggul 

dalam hampir semua metrik utama. Dengan AUC sebesar 

0.805, Deep SVDD mencatat kemampuan diskriminasi 
terbaik antara lalu lintas normal dan serangan, diikuti oleh 

Isolation Forest (0.772) dan One-Class SVM (0.763). Lebih 

penting lagi, Deep SVDD mencapai recall tertinggi (90.99%), 

artinya hampir 91% serangan DDoS berhasil terdeteksi — 

sebuah keunggulan kritis dalam konteks keamanan siber. 

Presisinya yang tinggi (86.25%) menghasilkan F1-Score 

terbaik sebesar 0.886, jauh melampaui model lain. Isolation 

Forest menunjukkan presisi tinggi (81.87%) tetapi recall 

rendah (51.80%), sehingga F1-Score-nya hanya 0.635 — 

mengindikasikan bahwa ia terlalu konservatif dan 

melewatkan hampir separuh serangan. LOF menampilkan 
anomali menarik: meskipun F1-Score-nya 0.827 (kedua 

tertinggi), AUC-nya hanya 0.500, nyaris setara dengan 
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tebakan acak, yang menunjukkan bahwa performa F1-nya 

kemungkinan besar hasil dari threshold kebetulan, bukan 

kemampuan diskriminasi yang sebenarnya. 

TABEL 1.  

PERBANDINGAN KINERJA KUANTITATIF MODEL DETEKSI SERANGAN DDOS 

Mode

l 

AUC Accur

acy 

Precis

ion 

Recall F1-

Score 

GFL

OPs 

Deep 

SVD

D + 

Ense

mble 

(Our) 

0.8053

01330

7 

0.8666

20400

4 

0.8624

66375

5 

0.9099

146011 

0.8855

55372

6 

0.000

4044

8 

Isolat

ion 

Fores

t 

0.7720

53129

9 

0.6616

11836

3 

0.8187

31739

4 

0.5180

170798 

0.6345

50064

6 

N/A 

LOF 0.5001

14953

9 

0.8127

84241

9 

0.8697

86426

7 

0.7878

306603 

0.8267

82518

4 

N/A 

One-

Class 

SVM 

0.7631

05853

7 

0.4231

58703 

0.4576

46755

9 

0.0925

588419

1 

0.1539

76091

5 

N/A 

Autoe

ncode

r 

0.5838

02798

3 

0.4418

81755

4 

0.5469

80899

6 

0.0924

546969

4 

0.1581

73719

4 

N/A 

 

Sementara itu, One-Class SVM, Autoencoder, dan Ensemble 

semuanya memiliki recall sangat rendah (~9.2%), artinya 

mereka gagal mendeteksi lebih dari 90% serangan, sehingga 
meskipun akurasinya tinggi pada beberapa kasus, hal itu 

disebabkan oleh bias terhadap kelas mayoritas (BENIGN), 

bukan kemampuan deteksi nyata. Terakhir, Deep SVDD juga 

sangat efisien secara komputasi, dengan hanya 0.00040448 

GFLOPs, menjadikannya kandidat ideal untuk deployment 

real-time. Secara keseluruhan, Tabel 4.1 membuktikan bahwa 

pendekatan berbasis representasi laten seperti Deep SVDD 

jauh lebih efektif dibanding metode tradisional dalam 

skenario deteksi DDoS yang realistis dan tidak seimbang. 

 

3.6. Discusion 

Temuan utama penelitian ini menegaskan bahwa Deep 

SVDD merupakan pendekatan paling efektif untuk deteksi 

serangan DDoS pada dataset UNSW-NB15, tidak hanya karena 
unggul dalam metrik utama (AUC = 0.805, F1-Score = 0.886, 

recall = 90.99%), tetapi juga karena kemampuannya menciptakan 

pemisahan kelas yang jelas dan stabil dalam distribusi skor 

anomali, serta konvergensi pelatihan yang andal. Keunggulan ini 

berasal dari arsitektur encoder berbasis representasi laten yang 

mampu menangkap pola kompleks lalu lintas normal, sehingga 

setiap penyimpangan signifikan (seperti lonjakan volume paket 

pada DDoS) secara otomatis menghasilkan skor tinggi. 

Sebaliknya, sebagian besar model baseline gagal mencapai 

keseimbangan deteksi yang bermakna: Isolation Forest terlalu 

konservatif (recall hanya 51.8%), One-Class SVM dan 

Autoencoder nyaris buta terhadap serangan (recall ~9.2%), dan 

yang mengejutkan, LOF menunjukkan F1-Score tinggi (0.827) 

namun AUC-nya 0.500 — sebuah kontradiksi yang mengungkap 

risiko menilai model hanya berdasarkan satu metrik tanpa melihat 

distribusi skor atau kurva ROC. Fenomena ini menunjukkan 

bahwa LOF mungkin “beruntung” menemukan threshold yang 

cocok untuk F1, tetapi tidak memiliki kemampuan diskriminasi 
intrinsik. Lebih mengejutkan lagi, pendekatan ensemble justru 

gagal meningkatkan performa, bahkan menurunkannya ke level 

Autoencoder, mengindikasikan bahwa rata-rata skor dari model 

heterogen tanpa pembobotan adaptif atau seleksi cerdas dapat 

melemahkan sinyal deteksi model terbaik. Temuan ini selaras 

dengan studi terkini yang menekankan bahwa ensemble dalam 

deteksi anomali hanya efektif jika komponennya berkualitas 

tinggi dan beragam secara bermakna (Wang et al., 2023). Selain 

itu, efisiensi komputasi Deep SVDD (0.0004 GFLOPs) membuka 

peluang untuk implementasi real-time pada sistem jaringan 

berkecepatan tinggi dengan sumber daya terbatas. Implikasi 
praktisnya jelas: dalam skenario keamanan siber, di mana false 

negative jauh lebih berbahaya daripada false positive, Deep 

SVDD menawarkan solusi yang tidak hanya akurat, tetapi juga 

andal, efisien, dan berdasarkan prinsip pembelajaran representasi 

yang kuat — menjadikannya kandidat utama untuk integrasi ke 

dalam sistem deteksi intrusi generasi berikutnya. 

 

IV. KESIMPULAN 

Penelitian ini menunjukkan bahwa Deep SVDD, dengan 

arsitektur encoder berbasis representasi laten dan pelatihan 

berfokus pada data normal, mampu menghasilkan sistem 

deteksi serangan DDoS yang lebih andal, stabil, dan efisien 
dibandingkan pendekatan unsupervised konvensional. Model 

ini unggul karena kemampuannya mempelajari pola lalu 

lintas sah secara mendalam, sehingga penyimpangan akibat 

serangan dapat diidentifikasi dengan presisi tinggi tanpa 

bergantung pada label anomali. Sebaliknya, banyak metode 

baseline — termasuk ensemble sederhana — gagal mencapai 

keseimbangan deteksi yang bermakna, terutama karena 

keterbatasan dalam menangkap kompleksitas pola serangan 

modern.  

Untuk penelitian lanjutan, arah yang menjanjikan meliputi: 

(1) pengembangan ensemble adaptif yang memberikan bobot 
dinamis berdasarkan kualitas skor tiap model; (2) integrasi 

Deep SVDD dengan mekanisme self-supervised learning 

untuk memperkaya representasi tanpa label; (3) evaluasi pada 

dataset multi-serangan dan skenario jaringan real-time; serta 

(4) optimasi arsitektur untuk deployment di perangkat edge 

dengan sumber daya terbatas. Dengan demikian, Deep SVDD 

bukan hanya solusi teknis, tetapi juga fondasi yang kuat untuk 

sistem keamanan siber adaptif di masa depan. 
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