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Phishing remains a persistent cybersecurity threat, evolving rapidly to bypass
traditional blacklist-based detection systems. Machine Learning (ML) approaches
offer a promising solution, yet finding the optimal balance between detection
accuracy and model interpretability remains a challenge. This study aims to evaluate
and optimize the performance of three state-of-the-art Gradient Boosting
algorithms—XGBoost, LightGBM, and CatBoost—for phishing website detection.
The research utilizes the UCI Phishing Websites dataset consisting of 11,055
instances. The novelty of this study lies in the implementation of the Optuna
framework with the Tree-structured Parzen Estimator (TPE) for automated
hyperparameter optimization and the application of SHAP (Shapley Additive
Explanations) interaction values to interpret the “black-box" models. The
experimental results demonstrate that the LightGBM model, optimized via Optuna,
achieved the highest performance with an F1-Score of 0.9798, outperforming the
baseline model (0.9713) by 0.87%. Furthermore, SHAP analysis identified
'SSLfinal_State' as the most critical determinant for distinguishing phishing sites.
This study confirms that optimizing modern boosting algorithms significantly
enhances phishing detection capabilities while providing necessary explainability for

cybersecurity analysts.

This is an open access article under the CC-BY-SA license.

|. PENDAHULUAN

Serangan phishing telah berevolusi menjadi salah satu
vektor ancaman keamanan siber yang paling persisten dan
merugikan dalam ekosistem digital global. Mekanisme
serangan ini mengeksploitasi kerentanan psikologis pengguna
melalui teknik rekayasa sosial (social engineering) untuk
memanipulasi korban agar mengungkapkan informasi
sensitif, seperti kredensial perbankan dan data pribadi, pada
situs web tiruan yang dirancang menyerupai entitas yang sah
[1]. Urgensi masalah ini dikuatkan oleh Laporan terbaru dari
Anti-Phishing  Working Group (APWG) mencatat
peningkatan aktivitas phishing yang signifikan pada kuartal
pertama tahun 2023 [2]. Metode pertahanan konvensional
dinilai semakin tidak efektif menghadapi ancaman ini.
Sebagai solusi, pendekatan Machine Learning telah diadopsi
secara luas. Studi oleh Al-garadi et al. [13] dan Alnemari et
al. [20] menunjukkan efektivitas metode deteksi berbasis Al.
Namun, tantangan utama tetap pada adaptabilitas model

terhadap serangan baru. Akhtar et al. [14] dalam penelitian
terbarunya tahun 2025 menekankan pentingnya Explainable
Al untuk memitigasi ancaman siber yang kompleks.

Algoritma Gradient Boosting seperti XGBoost [6],
LightGBM [7], dan CatBoost [5] telah menjadi standar
industri. [15] menerapkan klasifikasi gradient boosting untuk
deteksi phishing, namun penelitian tersebut belum
mengintegrasikan optimasi otomatis. Sementara itu, [11]
berfokus pada optimasi hiperparameter, tetapi menggunakan
metode yang komputasinya mahal. Oleh karena itu, penelitian
ini mengusulkan penggunaan kerangka kerja Optuna [3]
untuk optimasi yang lebih efisien, serta analisis SHAP [4][14]
untuk transparansi model, mengisi celah yang ditinggalkan
oleh penelitian sebelumnya.

Sebagai respons terhadap keterbatasan metode statis,
paradigma deteksi berbasis Machine Learning (ML) telah
diadopsi secara luas karena kemampuannya dalam
mengekstraksi pola non-linier yang kompleks dari fitur URL
dan konten web. Di antara berbagai pendekatan ML, metode
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Ensemble Learning terbukti memberikan kinerja yang lebih
superior  dibandingkan  algoritma  tunggal  Kkarena
kemampuannya mereduksi varians dan bias model [12].
Secara spesifik, keluarga algoritma Gradient Boosting telah
muncul sebagai standar state-of-the-art untuk data tabular.
Algoritma seperti eXtreme Gradient Boosting (XGBoost) [6],
Light Gradient Boosting Machine (LightGBM) [7], dan
Categorical Boosting (CatBoost) [5] menawarkan efisiensi
komputasi tinggi dan akurasi yang presisi. Ding et al. [10]
dalam studinya menyoroti potensi besar CatBoost dan
LightGBM dalam konteks deteksi intrusi jaringan, namun
studi komparatif yang komprehensif mengenai efektivitas
ketiga algoritma ini secara spesifik pada domain deteksi situs
phishing dengan fitur kategorikal masih perlu dieksplorasi
lebih mendalam untuk menentukan algoritma yang paling
robust.

Meskipun algoritma Gradient Boosting menawarkan
potensi akurasi yang tinggi, kinerja optimalnya sangat sensitif
terhadap konfigurasi hiperparameter. Studi terdahulu oleh
Althobaiti et al. [8] dan Omari et al. [15] telah menerapkan
model ensemble, namun optimasi yang dilakukan umumnya
terbatas pada metode Grid Search atau Random Search.
Metode konvensional ini menderita 'kutukan dimensi' (curse
of dimensionality) dan inefisiensi komputasi, sering kali gagal
mencapai konvergensi global. Sebagai pembeda utama
metodologis, penelitian ini menerapkan kerangka Kkerja
Optuna berbasis algoritma Tree-structured Parzen Estimator
(TPE) [3]. Pendekatan Bayesian ini memungkinkan pencarian
parameter yang probabilistik dan jauh lebih efisien
dibandingkan metode pencarian buta yang digunakan pada
studi-studi sebelumnya.

Selain aspek optimasi, tantangan kritikal lain adalah
transparansi model 'kotak hitam' (black-box). Walaupun
penggunaan SHAP (SHapley Additive exPlanations) mulai
diadopsi dalam deteksi phishing seperti pada studi Somesha
et al. [9], mayoritas penelitian tersebut berhenti pada analisis
feature importance global. Hal ini menyisakan celah analisis
mengenai bagaimana fitur-fitur tersebut saling berhubungan.
Kebaruan (novelty) signifikan dalam penelitian ini terletak
pada penerapan analisis SHAP Interaction Values. Berbeda
dengan studi sebelumnya, pendekatan ini tidak hanya
mengidentifikasi fitur dominan, tetapi secara empiris
mengungkap bagaimana kombinasi sinergis antar-fitur
(misalnya, interaksi antara panjang URL dan anomali
sertifikat SSL) memengaruhi keputusan deteksi. Wawasan
granular ini memberikan kontribusi analitis baru yang belum
dieksplorasi secara mendalam dalam literatur deteksi
phishing berbasis boosting.

Berdasarkan paparan masalah tersebut, penelitian ini
bertujuan untuk melakukan evaluasi kinerja (benchmarking)
terhadap tiga algoritma Gradient Boosting modern (XGBoost,
LightGBM, dan CatBoost) untuk klasifikasi situs phishing.
Kontribusi utama dan kebaruan (novelty) dari penelitian ini
terletak pada desain kerangka kerja eksperimental yang
menggabungkan: (1) Optimasi hiperparameter otomatis
berbasis TPE menggunakan Optuna untuk memaksimalkan
metrik F1-Score pada data tidak seimbang, dan (2) Penerapan
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analisis interaksi  fitur menggunakan SHAP untuk
memberikan wawasan granular mengenai determinan

karakteristik phishing. Hasil penelitian ini diharapkan dapat
menyediakan model deteksi yang tidak hanya memiliki
akurasi tinggi dan efisiensi komputasi, tetapi juga
transparansi yang memadai untuk mendukung pengambilan
keputusan dalam sistem keamanan siber.

I1. METODE

Penelitian ini mengadopsi kerangka kerja standar Cross-
Industry Standard Process for Data Mining (CRISP-DM)
yang disesuaikan untuk eksperimen komputasi. Tahapan
penelitian dirancang secara sistematis untuk menjamin
reproduksibilitas dan validitas hasil. Alur kerja penelitian
secara keseluruhan divisualisasikan pada Gambar 1.

Business Understanding | |Literature Review || Data Collection |

Data Visualization |
Matrix Correlation !----%
Analysis SSL Final State ‘

{ Data Preprocessing L——

Training 80% Data Splitting

Exploratery Data Analysis

Dataset

i Decoding Byte Strings
--4 Target Encoding

Testing 20%

Baseline

using using Using
LightcaM XGBoost CatBoost
4-{ Final Classification Model ‘

Model Optimization
(LightGBM, XGBoost, CatBoost,
Optuna)

Best Hyperparameters

Final Model Training

Gambar 1. Alur Penelitian

Interpretation Using
SHAP

A. Data Collection

Data yang digunakan dalam penelitian ini bersumber dari
repositori publik UCI Machine Learning Repository, yaitu
dataset "Phishing Websites" [1]. Dataset ini dipilih karena
variasi fiturnya yang komprehensif untuk pengujian algoritma
klasifikasi. Dataset terdiri dari 11.055 sampel observasi, di
mana setiap sampel memiliki 30 atribut fitur yang mencakup
karakteristik berbasis URL, kelainan pada source code
(HTML/JavaScript), dan reputasi domain.
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TABEL |
DETAIL DATASET
Detail Total
Jumlah Atribut Total 31
Jumlah Variabel Independen 30
Jumlah Variabel Kelas 1
Variabel Kelas Nama : Result
Jumlah Total data 11055
TABEL Il
DESKRIPSI DATA ATRIBUT
Data Atribut Training | Testing | Total
having_IP_Address 8844 2211 | 11055
URL_Length 8844 2211 | 11055
Shortening_Service 8844 2211 | 11055
28 Atribut Lainnya 8844 2211 | 11055

B. Pre-processing Data

Tahap pra-pemrosesan dilakukan untuk mempersiapkan
data mentah agar siap diproses oleh model pembelajaran
mesin. Berdasarkan hasil Eksplorasi Data (Exploratory Data
Analysis), distribusi kelas target teridentifikasi relatif
seimbang, sehingga teknik oversampling (seperti SMOTE)
tidak diperlukan. Langkah-langkah pra-pemrosesan meliputi:

1) Pembersihan Format: Mengonversi data dari format
.arff (yang mengandung byte strings) menjadi format numerik
integer standar.

2) Transformasi Label Target: Variabel target asli
memiliki label {-1, 1}. Untuk kebutuhan kompatibilitas
dengan fungsi objektif log-loss pada algoritma Gradient
Boosting, label ditransformasi menjadi format biner: 0 untuk
kelas Phishing (sebelumnya -1) dan 1 untuk kelas Legitimate
(sebelumnya 1).

3) Pembagian Data (Data Splitting): Dataset dibagi
menjadi data latih (training set : 8844, 30) dan data uji (test
set : 2211, 30) dengan rasio 80:20. Pembagian ini mengacu
pada studi Muraina [16] yang menyatakan bahwa rasio
tersebut ideal untuk menjaga keseimbangan antara bias dan
varians pada algoritma pembelajaran mesin pada kedua subset
data agar tetap konsisten (simetris), sehingga mencegah bias
pada proses evaluasi.

C. Arsitektur Model Gradient Boosting

Penelitian ini membandingkan Kinerja tiga varian
algoritma Gradient Boosting modern yang memiliki
karakteristik arsitektur berbeda dalam menangani bias dan
variance:

1) eXtreme Gradient Boosting (XGBoost): Algoritma
ini menerapkan strategi pertumbuhan pohon secara level-wise
(tumbuh mendatar/horizontal). Mekanisme ini memastikan
struktur pohon tetap seimbang pada setiap kedalaman, yang
secara teoritis mengurangi risiko overfitting namun

cenderung membutuhkan sumber daya komputasi yang lebih
besar. Keunggulan utama XGBoost terletak pada integrasi
regularisasi L1 (Lasso) dan L2 (Ridge) secara natif dalam
fungsi objektifnya, yang memberikan kontrol ketat terhadap
kompleksitas model [6][18].

2) Light Gradient Boosting Machine (LightGBM):
Berbeda dengan XGBoost, LightGBM mengadopsi strategi
pertumbuhan leaf-wise (tumbuh vertikal berdasarkan daun
dengan loss terbesar). Pendekatan ini memungkinkan
konvergensi yang lebih cepat dan sering kali menghasilkan
akurasi yang lebih tinggi pada dataset kompleks karena
mampu mengekstraksi pola yang lebih dalam. Namun,
strategi ini rentan terhadap overfitting pada data berukuran
kecil, sehingga memerlukan kontrol kedalaman pohon yang
presisi. Efisiensi komputasi dicapai melalui teknik Gradient-
based One-Side Sampling (GOSS) yang memprioritaskan
sampel data dengan gradien besar untuk pelatihan [7].

3) CatBoost (Categorical Boosting): Algoritma ini
dirancang khusus untuk menangani fitur kategorikal secara
otomatis tanpa memerlukan pra-pemrosesan One-Hot
Encoding yang ekstensif, menjadikannya sangat relevan
untuk data phishing yang kaya atribut diskrit. CatBoost
menggunakan algoritma Ordered Boosting untuk mengatasi
masalah prediction shift dan target leakage yang sering terjadi
pada metode boosting standar. Selain itu, penggunaan struktur
symmetric trees (pohon simetris) memungkinkan waktu
eksekusi prediksi yang sangat cepat dan stabil [5].

D. Optimasi Hiperparameter dengan Optuna

Untuk mendapatkan konfigurasi model yang optimal,
penelitian ini menerapkan kerangka kerja Optuna [3].
Berbeda dengan Grid Search konvensional, Optuna
menggunakan algoritma Tree-structured Parzen Estimator
(TPE), TPE merupakan metode optimasi Bayesian yang
memodelkan probabilitas kondisional dari hiperparameter
berdasarkan riwayat uji coba (trials) sebelumnya. Pendekatan
ini memungkinkan algoritma untuk fokus mengeksplorasi
area parameter yang menjanjikan dan menghindari area yang
berkinerja buruk, sehingga efisiensi pencarian meningkat
secara signifikan. Ruang pencarian (search space)
didefinisikan untuk parameter kunci meliputi: learning_rate,
max_depth, n_estimators, dan subsample. Fungsi objektif
dirancang untuk memaksimalkan rata-rata F1-Score melalui
validasi silang 3-lipatan (3-fold cross-validation) dengan total
iterasi sebanyak 30 trials untuk setiap algoritma.

TABEL I1I

RUANG PENCARIAN HIPERPARAMETER PADA OPTUNA
Hiperparameter Algoritma Rentang Nilai
learning_rate Semua 0.01-0.3
max_depth XGBoost, CatBoost | 310
n_estimators/ Semua 100 -500
iterations
num_leaves LightGBM 20 -100
subsample XGBoost 0.6-1.0

JAIC Vol. 10, No. 1, February 2026: 664 — 672
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E. Evaluasi dan Interpretasi Model

Kinerja model dievaluasi pada data uji terpisah (20%)
menggunakan metrik F1-Score, Accuracy, dan Area Under
the Curve (AUC-ROC). F1-Score dipilih sebagai metrik
utama untuk menyeimbangkan Precision dan Recall.
Pemilihan metrik diagnostik ini didasarkan pada panduan
evaluasi model pembelajaran mesin untuk data berisiko tinggi
yang dipaparkan oleh Varoquaux dan Colliot [21], di mana
keseimbangan antara sensitivitas dan presisi menjadi prioritas
utama. Selain evaluasi kuantitatif, penelitian ini menerapkan
analisis SHAP (SHapley Additive exPlanations) [4][14].
Analisis difokuskan pada SHAP Interaction Values untuk
mengungkap bagaimana interaksi sinergis antara dua fitur
(misalnya, panjang URL dan status SSL) memengaruhi
keputusan model dalam mengklasifikasikan situs sebagai
phishing. kinerja model diukur berdasarkan elemen
Confusion Matrix, yaitu True Positive (TP), True Negative
(TN), False Positive (FP), dan False Negative (FN).
Berdasarkan elemen tersebut, metrik evaluasi diformulasikan
sebagai berikut.

1) Akurasi (Accuracy): Mengukur rasio prediksi yang benar
terhadap keseluruhan data.

rorwsrrrn ()

2) Presisi (Precision): Mengukur ketepatan model dalam
memprediksi kelas positif (Phishing).

TP
(TP+FP) @

3) Recall (Sensitivitas): Mengukur kemampuan model
dalam menemukan kembali seluruh data kelas positif
yang sebenarnya.

Accuracy =

Precission =

TP
(TP+FN) @)

4) F1-Score: Merupakan rata-rata harmonik antara
Precision dan Recall. Metrik ini menjadi acuan utama
dalam penelitian ini karena memberikan gambaran
kinerja yang lebih seimbang dibandingkan akurasi
semata.

Recall =

F1— Score = 2 X Prec'is'ion-Recall (4)
Precision+Recall

Selain metrik di atas, penelitian ini juga menggunakan
kurva Receiver Operating Characteristic (ROC) yang
memplot True Positive Rate (TPR) melawan False Positive
Rate (FPR) pada berbagai ambang batas klasifikasi. Nilai
Area Under Curve (AUC) digunakan untuk mengukur
kemampuan diskriminatif model secara keseluruhan, di mana

nilai mendekati 1.0 mengindikasikan kinerja sempurna.

I11. HASIL DAN PEMBAHASAN

Hasil eksperimen komputasi yang mencakup analisis data
eksploratif, evaluasi kinerja model baseline, dampak optimasi

hiperparameter, serta model

SHAP.

interpretasi menggunakan

A. Analisis Data Eksploratif

Sebelum dilakukan pemodelan, distribusi kelas pada
dataset UCI Phishing dievaluasi untuk menentukan strategi
penanganan data. Seperti terlihat pada Gambar 2, dataset
menunjukkan proporsi yang relatif seimbang antara kelas
Phishing (label -1) dan Aman (label 1). Keseimbangan ini
mengonfirmasi bahwa metrik akurasi dan F1-Score dapat
digunakan secara valid tanpa risiko bias mayoritas yang
signifikan.

Distribusi Kelas Target (UCI Phishing Dataset)
6157.0
6000

5000 4898.0

4000

3000

Jumlah Sampel

2000

1000

0

1

- 1
Kelas (-1: Phishing, 1: Aman)

Gambar 2. Distribusi Kelas Target pada Dataset UCI Phishing

Analisis korelasi lebih lanjut menunjukkan bahwa
beberapa fitur memiliki hubungan linier yang kuat terhadap
variabel target, terutama fitur yang berkaitan dengan sertifikat
keamanan dan struktur jangkar (anchor) URL. Hal ini
menjadi indikasi awal bahwa fitur-fitur tersebut akan
memegang peranan dominan dalam proses klasifikasi Seperti
terlihat pada gambar 3.
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B. Evaluasi Model Baseline

Pada tahap awal, ketiga algoritma (XGBoost, LightGBM,
dan CatBoost) dilatih menggunakan parameter default
(bawaan pustaka). Evaluasi baseline ini bertujuan untuk
menetapkan standar kinerja minimum. Hasil perbandingan
F1-Score pada kondisi baseline disajikan pada Gambar 3.

Perbandingan F1-Score Model Baseline (Default Parameters)

0.9766

1.0 0.9771 0.9713

0.8

e
£

F1-Score

o
kS

0.2

0.0

CatBoost XGBoost

Algoritma Model

LightGBM

Gambar 3. Perbandingan F1-Score Model Baseline (Parameter Default)

Dapat diamati bahwa secara umum, ketiga algoritma
Gradient Boosting mampu mencapai F1-Score di atas 0.95
tanpa penyesuaian parameter. Hal ini menunjukkan bahwa
struktur data phishing memiliki pola yang dapat dipelajari
dengan baik oleh algoritma berbasis pohon keputusan. Di
antara ketiganya, CatBoost menunjukkan performa awal yang
sedikit lebih unggul berkat kemampuannya menangani fitur
kategorikal secara natif.

C. Hasil Optimasi dan Evaluasi Akhir

Penerapan optimasi hiperparameter menggunakan Optuna
dengan algoritma TPE berhasil meningkatkan kinerja model

secara terukur. Proses optimasi dilakukan selama 30 iterasi
untuk mengeksplorasi ruang parameter yang meliputi
learning rate, kedalaman pohon, dan jumlah estimator.

Hasil eksperimen menunjukkan bahwa LightGBM yang
dioptimalkan mencapai akurasi 97.29%. Hasil ini sejalan dan
sedikit lebih unggul dibandingkan penelitian [15] yang juga
menggunakan gradient boosting pada dataset serupa. Selain
itu, penggunaan seleksi fitur implisit melalui regularization
pada LightGBM terbukti lebih efektif dibandingkan
pendekatan SVM berbasis fitur URL konvensional [23].

Berdasarkan hasil eksperimen, model LightGBM terpilih

" sebagai model terbaik dengan stabilitas dan akurasi tertinggi.
~ Tabel 4 merangkum perbandingan kinerja antara model

baseline dan model yang telah dioptimasi (tuned).

TABEL IV
PERBANDINGAN F1-SCORE

Algoritma Default Tuned
XGBoost 0.9766 0.9778
LightGBM 0.9713 0.9798
CatBoost 0.9771 0.9759

Meskipun peningkatan F1-Score sebesar 0.87% (dari
0.9713 menjadi 0.9798) tampak marginal secara statistik,
signifikansi praktisnya sangat substansial dalam domain
keamanan siber. Dalam lingkungan operasional nyata yang
memproses jutaan lalu lintas URL setiap harinya, selisih
performa di bawah 1% dapat merepresentasikan ribuan
ancaman yang berhasil dideteksi atau lolos.

Peningkatan ini berkorelasi langsung dengan reduksi
tingkat False Negative (FN) pada model yang dioptimasi.
Sebagaimana terlihat pada matriks konfusi, model LightGBM
hasil tuning berhasil mengidentifikasi pola serangan phishing
subtil yang sebelumnya terklasifikasi aman oleh model
baseline. Mengingat biaya kerugian akibat satu serangan
phishing yang sukses (misalnya pencurian data kredensial
korporat) jauh lebih besar daripada biaya komputasi untuk
optimasi, peningkatan akurasi ini memberikan Return on
Investment (ROI) keamanan yang valid. Selain itu,
konsistensi skor validasi silang (cross-validation) selama
proses Optuna mengindikasikan bahwa peningkatan ini
adalah hasil dari konfigurasi hiperparameter yang lebih baik,
bukan sekadar variabilitas acak (random noise).

Optimasi  berhasil meningkatkan F1-Score model
LightGBM dari 0.9713 menjadi 0.9798, mencatatkan
peningkatan performa (improvement) sebesar 0.87%.

Peningkatan ini membuktikan bahwa strategi pertumbuhan
pohon leaf-wise pada LightGBM, ketika dikombinasikan
dengan parameter yang tepat, mampu menangkap pola
phishing yang kompleks lebih baik daripada algoritma
pesaing. Validasi lebih lanjut dilakukan menggunakan kurva
ROC (Receiver Operating Characteristic) yang ditunjukkan
pada Gambar 5.
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Gambar 5. Kurva ROC dan Nilai AUC Model LightGBM Terbaik

Gambar 5 memvisualisasikan kurva Receiver Operating
Characteristic (ROC) untuk model LightGBM terbaik. Kurva
ini memplot True Positive Rate (Sensitivitas) pada sumbu-Y
melawan False Positive Rate (1-Spesifisitas) pada sumbu-X
di berbagai ambang batas klasifikasi.

Secara visual, kurva ROC model terlihat menanjak tajam
mendekati sudut kiri atas plot. Hal ini mengindikasikan
bahwa model memiliki kemampuan diskriminatif yang sangat
baik: ia mampu mencapai tingkat deteksi benar (True
Positive) yang tinggi dengan laju kesalahan (False Positive)
yang sangat minimal.

Kuantifikasi kinerja ini ditunjukkan oleh nilai Area Under
the Curve (AUC) sebesar 0.9984 (atau sesuaikan dengan
angka di gambar Anda). Nilai AUC yang mendekati angka
sempurna 1.0 ini menegaskan bahwa model memiliki
probabilitas 99.8% untuk membedakan secara tepat antara
instance kelas positif (phishing) dan negatif (aman) yang
dipilih secara acak. Dalam domain keamanan siber, nilai
AUC vyang tinggi ini sangat krusial karena menunjukkan
ketahanan model (robustness) dalam memisahkan sinyal
ancaman dari lalu lintas web normal yang bising. Detail
kesalahan prediksi divisualisasikan melalui Confusion Matrix
pada tabel 5.

TABEL V
CONFUSION MATRIX BEST MODEL
precision | recall | fl-score | Tuned

0 0.98 0.97 0.97 980

1 0.97 0.99 0.98 1231
accuracy 0.98 2211
macro avg 0.98 0.98 0.98 2211
weighted avg 0.98 0.98 0.98 2211

Tabel 5 menyajikan rincian metrik evaluasi model
LightGBM terbaik setelah proses tuning. Secara keseluruhan,
model mencapai tingkat akurasi (Accuracy) yang sangat
tinggi sebesar 0.98 (98%) pada data uji sebanyak 2.211
sampel. Angka rata-rata tertimbang (weighted avg) untuk
Precision, Recall, dan F1-Score yang stabil di angka 0.98
mengindikasikan bahwa model memiliki kemampuan

generalisasi yang sangat baik dan tidak bias terhadap salah
satu kelas, meskipun terdapat sedikit ketidakseimbangan
jumlah sampel antara kelas 0 (980 sampel) dan kelas 1 (1231
sampel).

Analisis spesifik pada Kelas 0 (Situs Phishing)
menunjukkan nilai Precision sebesar 0.98 dan Recall sebesar
0.97. Nilai Precision yang tinggi menandakan bahwa ketika
model memprediksi sebuah situs sebagai phishing, prediksi
tersebut 98% benar (tingkat False Positive sangat rendah).
Hal ini penting untuk menjaga kenyamanan pengguna agar
situs yang aman tidak terblokir secara keliru. Sementara itu,
nilai Recall 0.97 adalah indikator kritis dalam deteksi
ancaman; ini berarti model berhasil mengenali 97% dari
seluruh serangan phishing yang ada dalam data uji.

Di sisi lain, performa pada Kelas 1 (Situs Aman)
menunjukkan Recall yang nyaris sempurna sebesar 0.99.
Artinya, 99% situs legal berhasil diidentifikasi dengan benar
sebagai situs aman. Kombinasi performa ini menegaskan
bahwa model LightGBM hasil optimasi Optuna berhasil
menekan tingkat False Negative secara signifikan. Dalam
konteks keamanan siber, kemampuan untuk meminimalkan
situs phishing yang lolos deteksi adalah prioritas utama, dan
LightGBM menunjukkan keandalan tinggi dalam aspek ini
tanpa mengorbankan aksesibilitas terhadap situs yang sah

Model LightGBM berhasil menekan tingkat False
Negative secara signifikan. Dalam konteks keamanan siber,
kemampuan untuk meminimalkan situs phishing yang lolos
deteksi adalah prioritas utama, dan LightGBM menunjukkan
keandalan tinggi dalam aspek ini.

Selain tinjauan pada F1-Score, analisis mendalam
mengenai trade-off antara Precision dan Recall sangat
esensial dalam menentukan kelayakan operasional model.
Berdasarkan Tabel 5, model LightGBM mencatatkan
Precision sebesar 0.98 dan Recall sebesar 0.97 untuk kelas
phishing.

Dalam konteks deteksi phishing, Precision yang tinggi
(0.98) mengindikasikan tingkat False Positive yang sangat
rendah. Hal ini krusial untuk mencegah alert fatigue atau
gangguan layanan akibat pemblokiran situs legitimate secara
keliru, yang sering menjadi keluhan utama pengguna sistem
keamanan. Di sisi lain, Recall sebesar 0.97 menunjukkan
bahwa sistem mampu menangkap 97% ancaman yang ada.

Meskipun secara ideal nilai Recall diharapkan mendekati
100% untuk menutup celah keamanan (zero leakage),
peningkatan Recall yang terlalu agresif sering Kkali
mengorbankan Precision. Hasil eksperimen ini menunjukkan
bahwa optimasi Optuna berhasil menemukan titik ekuilibrium
(keseimbangan) yang optimal, di mana risiko kebobolan
(False Negative) diminimalkan tanpa meningkatkan
gangguan operasional (False Positive) secara signifikan.
Profil performa yang seimbang ini menjadikan model sangat
cocok untuk diterapkan sebagai filter tahap pertama dalam
sistem keamanan berlapis (defense-in-depth).

D. Interpretasi Model (Explainability)
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Untuk memberikan transparansi pada keputusan model
LightGBM, analisis SHAP diterapkan. Gambar 6
menampilkan SHAP Summary Plot.

SHAP Summary: Determinan Phishing Liat
igh

SSLfinal State '+ e cem—- a4
URL_of_Anchor B et B
web_traffic ——-ﬁ-
Links_in_tags * —#- @
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SFH .‘_ 2
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having_IP_Address —n*-
sum of 21 other features - e ——*—-"
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Gambar 6. SHAP Summary Plot: Determinan Utama Deteksi Phishing

Analisis SHAP Summary Plot pada Gambar 6 memberikan
wawasan global mengenai hierarki fitur yang paling
memengaruhi keputusan model. Sumbu-Y mengurutkan fitur
berdasarkan tingkat kepentingannya (feature importance),
sedangkan sumbu-X merepresentasikan nilai  SHAP
(kontribusi terhadap prediksi).

Fitur SSLfinal_State teridentifikasi sebagai prediktor
paling dominan. Secara operasional, temuan ini memiliki
implikasi keamanan yang signifikan. Konsentrasi nilai SHAP
positif pada sertifikat SSL yang valid mencerminkan
pergeseran taktik penyerang yang Kkini semakin sering
memanfaatkan sertifikat gratis (seperti Let's Encrypt) untuk
memberikan rasa aman palsu kepada korban. Model
LightGBM berhasil mempelajari bahwa keberadaan SSL saja
tidak menjamin keamanan, melainkan harus divalidasi silang
dengan reputasi domain dan usia sertifikat.

Lebih jauh, analisis interaksi pada Gambar 7
memperlihatkan bahwa dampak fitur panjang URL (URL
Length) menjadi sangat negatif (indikasi phishing) ketika
dikombinasikan dengan anomali pada protokol keamanan.
Wawasan granular ini menawarkan manfaat praktis bagi
analis keamanan siber di Security Operations Center (SOC).
Dalam skenario investigasi insiden, visualisasi SHAP dapat
digunakan sebagai alat bantu keputusan (decision support
tool) untuk mempercepat proses triase. Alih-alih memeriksa
kode sumber situs secara manual, analis dapat melihat SHAP
Force Plot untuk memahami 'alasan' di balik keputusan blokir
model—misalnya, mengetahui apakah situs diblokir karena
struktur URL-nya atau karena konten javascript yang
mencurigakan. Transparansi ini sangat krusial untuk
membangun kepercayaan (trust) terhadap sistem Al dan
membantu analis membedakan antara ancaman nyata dengan
peringatan palsu (false positive) secara lebih efisien.
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Gambar 7. SHAP Interaction Plot (Scatter)

Gambar 7 memperlihatkan SHAP Dependence Plot yang
menyoroti interaksi non-linier antara fitur terpenting
('SSLfinal_State") dengan fitur pendukung lainnya. Sumbu-X
menunjukkan nilai asli dari fitur SSL, sementara sumbu-Y
menunjukkan dampak fitur tersebut terhadap prediksi model
(nilai SHAP).

Plot ini mengungkap nuansa yang tidak terlihat pada
analisis statistik biasa. Meskipun secara umum kepemilikan
sertifikat SSL meningkatkan skor keamanan (seperti terlihat
pada Klaster titik di sebelah kanan), terdapat variasi vertikal
yang signifikan pada nilai SHAP-nya. Variasi ini disebabkan
oleh interaksi dengan fitur lain yang ditunjukkan oleh skala
warna (vertical dispersion).

Fenomena ini menunjukkan bahwa model LightGBM tidak
bekerja secara linier. Meskipun sebuah situs memiliki SSL
(titik di kanan), jika fitur interaksinya berwarna biru/merah
(misalnya, URL Anchor mencurigakan atau domain baru
berumur pendek), nilai SHAP-nya akan turun mendekati nol.
Hal ini membuktikan bahwa model mampu mendeteksi
serangan phishing canggih yang menggunakan sertifikat SSL
gratis (misal: Let's Encrypt) untuk mengelabui korban,
dengan cara memverifikasi silang terhadap atribut
mencurigakan lainnya.

Analisis interaksi fitur pada Gambar 7 mengungkap pola
perilaku adversarial penyerang. Terlihat bahwa fitur panjang
URL (URL Length) memiliki dampak negatif yang kuat
(menandakan phishing) terutama ketika dikombinasikan
dengan ketiadaan sertifikat SSL valid. Hal ini
mengindikasikan bahwa penyerang sering kali menggunakan
URL yang sangat panjang untuk mengaburkan nama domain
asli mereka. Namun, fenomena ini menunjukkan bahwa
model LightGBM tidak bekerja secara linier; ia mampu
memverifikasi silang atribut tersebut. Upaya pengaburan
URL oleh penyerang menjadi tidak efektif jika sistem
mendeteksi anomali pada protokol keamanannya,
membuktikan bahwa model berhasil mempelajari kaidah
keamanan siber yang logis.

Meskipun  model LightGBM vyang dioptimalkan
menunjukkan  kinerja superior secara eksperimental,
penelitian ini memiliki beberapa batasan validitas yang perlu
digarisbawahi.
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Pertama, validitas eksternal model dibatasi oleh
penggunaan sumber dataset tunggal (single source dataset)
dari repositori UCI. Meskipun dataset ini merupakan standar
benchmark akademis, ketergantungan ini menimbulkan
potensi bias dataset, di mana model mungkin mengalami
overfitting terhadap karakteristik spesifik dari metode
pengumpulan data UCI dan tidak sepenuhnya kebal terhadap
variasi serangan dari sumber lain. Ketiadaan pengujian silang
(cross-dataset validation) pada dataset sekunder berarti klaim
efektivitas model saat ini terbatas pada lingkungan pengujian
terkontrol.

Kedua, sifat dataset yang statis ("potret sesaat™)
membuatnya rentan terhadap fenomena concept drift. Pola
serangan phishing di dunia nyata berevolusi dengan cepat,
sehingga model yang dilatih pada data historis berpotensi
mengalami degradasi performa jika dihadapkan pada teknik
pengaburan  (obfuscation) modern. Terakhir, terdapat
tantangan teknis dalam transisi ke lingkungan produksi,
khususnya terkait latensi inferensi pada lalu lintas jaringan
berskala besar yang menuntut infrastruktur komputasi
berkinerja tinggi.

1V. KESIMPULAN

Penelitian ini berhasil mengevaluasi efektivitas algoritma
Gradient Boosting modern untuk Klasifikasi situs phishing
melalui pendekatan eksperimen yang sistematis. Berdasarkan
hasil pengujian, LightGBM yang dioptimalkan menggunakan
kerangka kerja Optuna (TPE) terbukti sebagai algoritma
paling superior dibandingkan XGBoost dan CatBoost. Model
ini mencatatkan kinerja puncak dengan Akurasi 98% dan F1-
Score 0.9798. Keunggulan LightGBM ini menegaskan
efisiensi strategi pertumbuhan pohon leaf-wise dalam
menangkap pola ancaman siber yang kompleks dengan waktu
komputasi yang efisien.

Penerapan optimasi hiperparameter otomatis terbukti
memberikan dampak signifikan terhadap kualitas deteksi.
Proses tuning berhasil meningkatkan F1-Score sebesar 0.87%
dibandingkan model dengan parameter default. Peningkatan
ini berkorelasi langsung dengan penurunan tingkat False
Negative pada Confusion Matrix, yang mengindikasikan
bahwa model hasil optimasi jauh lebih andal dalam
mengidentifikasi situs phishing yang mencoba menyamar
sebagai situs sah. Selain itu, nilai AUC yang mencapai 0.9984
menunjukkan  stabilitas model yang tinggi dalam
membedakan kelas pada berbagai ambang batas.

Dari sisi interpretabilitas, integrasi metode SHAP
(SHapley Additive exPlanations) berhasil mengatasi
hambatan "kotak hitam™ pada model ensemble. Analisis fitur
mengonfirmasi  bahwa  status  sertifikat keamanan
(SSLfinal_State) dan struktur jangkar URL

(URL_of_Anchor) merupakan determinan paling kritis dalam
deteksi phishing. Wawasan ini, ditambah dengan analisis
interaksi fitur, menyediakan landasan logis bagi analis
keamanan untuk memahami Karakteristik serangan dan
membedakan antara ancaman nyata dengan False Positive.

Temuan ini memiliki implikasi praktis yang luas untuk
integrasi ke dalam sistem keamanan siber nyata. Keunggulan
komputasi LightGBM yang ringan membuka peluang
penerapan model sebagai layanan mikro (microservice)
berbasis REST API yang dapat merespons permintaan secara
real-time. Model ini dapat diintegrasikan pada titik akhir
(endpoint) sebagai ekstensi peramban untuk memverifikasi
URL sebelum dimuat, atau pada lapisan jaringan (firewall)
untuk menyaring lalu lintas keluar. Meskipun demikian,
penelitian ini masih terbatas pada penggunaan dataset statis
yang mungkin tidak sepenuhnya mencakup dinamika
serangan terbaru. Oleh karena itu, penelitian lanjutan sangat
disarankan untuk fokus pada pengembangan mekanisme
online learning guna menangani fenomena concept drift di
mana pola serangan berubah seiring waktu. Selain itu,
pengujian ketahanan model terhadap serangan adversarial
machine learning serta integrasi fitur multimodal yang
menggabungkan teks URL dengan analisis visual halaman
web menjadi arah pengembangan yang krusial untuk
mengantisipasi  teknik pengaburan (obfuscation) yang
semakin canggih.
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