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Acne is a common inflammatory skin condition that can affect an individual’s
psychological well-being and overall quality of life. The inability to independently
recognize specific types of acne often leads to the use of inappropriate skincare
products. This situation highlights the need for an image-based classification system
that can provide accurate visual identification. The self-supervised learning method
Distillation with NO Labels, version 2 (DINOV2), is employed as a feature extractor
to classify four types of acne—Acne fulminans, Acne nodules, Papules, and
Pustules—using the “skin-90 dataset. The fine-tuning process is conducted through
a Parameter-Efficient Fine-Tuning (PEFT) approach using Low-Rank Adaptation
(LoRA) to adjust the model’s visual representations to the acne domain without
updating all parameters in full, followed by integration with a classification head.
The results show that the model achieves an accuracy of 90.70%, with precision,
recall, and F1-score values of 90.64%, 90.68%, and 90.57%, respectively. The
findings suggest that the proposed architectural design and training configuration are
suitable for capturing relevant visual patterns of acne, while further validation is

required to assess robustness across more diverse data distributions.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Acne is an inflammatory skin disorder with a high
prevalence among adolescents and is still commonly observed
in some adults [1], [2]. This condition affects not only skin
health but also influences an individual’s confidence,
psychological well-being, and overall quality of life [3], [4].
A major challenge in acne treatment lies in the limited ability
of individuals to identify the specific types of acne accurately.
Misclassification often leads to the use of inappropriate
skincare products, which may worsen the skin condition and
result in unnecessary time and financial costs. This situation
highlights the need for an image-based classification system
that can consistently and accurately identify various types of
acne.

Advancements in computer vision and artificial
intelligence have enabled the development of automated
image-based classification systems capable of identifying
distinctive visual patterns through feature extraction [5], [6].
In dermatological image analysis, however, the availability of

large-scale annotated datasets remains limited. Facial acne
images often exhibit substantial intra-class variation and
inter-class similarity, which poses challenges for supervised
learning approaches that rely heavily on labelled data.

To address these limitations, self-supervised learning has
emerged as a promising paradigm for learning robust visual
representations without requiring manual annotations [7], [8].
Distillation with NO Labels version 2 (DINOv2) is a Vision
Transformer (ViT)-based foundation model pretrained on
large-scale unlabeled data to produce stable and transferable
representations [9]. Self-supervised learning approaches such
as SIMCLR, MoCo, and BYOL primarily rely on instance-
level contrastive objectives or projection heads to learn visual
representations [10], [11], [12]. Although these methods have
demonstrated strong performance in general image
recognition tasks, their effectiveness is influenced by data
augmentation strategies and the availability of sufficient
training samples. In medical image analysis, where subtle
inter-class differences and high intra-class variability are
common, such reliance may limit the learning of dense and
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semantically rich representations under constrained data
conditions.

In response to these limitations, previous studies have
reported that DINOV2 exhibits strong generalization across
diverse visual domains, including medical imaging and
dermatological analysis, as well as visual pattern retrieval
tasks such as Content-Based Image Retrieval (CBIR) [13],
[14]. Unlike contrastive self-supervised methods, DINOV2 is
designed to learn dense visual representations without explicit
negative pairs, which supports more stable feature transfer to
fine-grained classification tasks. In this study, the pretrained
DINOV2 model is adapted using a Parameter-Efficient Fine-
Tuning (PEFT) strategy based on Low-Rank Adaptation
(LoRA), which updates only a limited subset of parameters to
specialize the representations for the acne classification task
[15].

Prior research has developed automatic acne classification
systems using supervised CNN-based transfer learning, such
as MobileNetVV2 combined with K-Fold cross-validation on
the “skin-90” dataset [16]. Although these approaches
demonstrate promising results, the learned representations
remain dependent on labelled data. They may be limited in
capturing complex visual variations in facial acne images,
particularly under constrained data settings.

In contrast to supervised CNN-based methods, this study
explores the use of a self-supervised vision foundation model,
namely DINOv2, adapted through PEFT for facial acne
classification. To the best of our knowledge, this study
represents the first investigation of adapting a self-supervised
vision foundation model with LoRA for acne classification on
the “skin-90” dataset. This work, therefore, evaluates the
applicability of self-supervised vision foundation models in a
domain that has not been explicitly examined in prior “skin-
90”-based studies.

This study aims to evaluate the performance of DINOv2,
adapted with LoRA, in classifying four types of acne in the
“skin-90” dataset: Acne fulminans, Acne nodules, Papules,
and Pustules [16]. The evaluation is conducted using a
confusion matrix and the metrics of accuracy, precision,
recall, and F1-score to provide a comprehensive assessment
of the model’s predictive quality [17].

The findings of this study are expected to contribute to the
development of a more accurate and efficient image-based
acne classification system. The results also have the potential
to serve as an educational tool for understanding skin
conditions and supporting the selection of relevant and safe
skincare ingredients based on the classified acne type. Thus,
this research provides not only academic value but also
practical benefits in enhancing technology-based skincare
literacy.

Il. METHODS

This study adopts a quantitative experimental methodology
to evaluate the effectiveness of a self-supervised learning
model for acne type classification. The computational
experiments involve training, validation, and testing phases
conducted on the “skin-90” dataset, which consists of facial
images containing visible acne. The dataset is obtained from
Kaggle, and its class distribution is summarized in Table 1.
As shown in the table, the number of samples is uneven across
acne categories, with certain classes represented by fewer
images. This imbalance reflects the natural variation in acne
occurrence and constitutes an important characteristic of the
dataset considered in this study.

TABLE 1.
TOTAL OF IMAGES FOR EACH ACNE TYPE
Acne Types Data
Acne fulminans 70
Acne nodules 71
Papules 70
Pustules 70

The images exhibit variability in lighting conditions, facial
pose, and image quality, which introduces visual diversity but
also potential sources of bias. Furthermore, the dataset does
not provide metadata related to subject demographics, skin
tone, or acquisition settings, limiting the assessment of
demographic representativeness and potential sampling bias.
As a secondary dataset collected from public sources, these
characteristics should be considered when interpreting the
experimental results.

Only images that display human faces with visible acne
types were included to ensure that the analysis focuses on the
visual characteristics of acne severity, without considering
factors such as age, gender, or ethnicity. DINOV2 is used for
feature extraction, while LoRA is applied to fine-tune the
model to the ache domain. The main objective is to assess the
model’s performance across four acne classes: Acne
fulminans, Acne nodules, Papules, and Pustules. To illustrate
the visual diversity among these categories, examples are
presented in Figure 1.
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Figure 1. Visualization of Acne Types: (a) Acne fulminans, (b) Acne nodules,
(c) Papule, and (d) Pustules

Figure 1(a) presents the severe acne form Acne fulminans,
characterized by intense inflammation and coalescent
nodulocystic lesions [18], [19]. Figure 1(b) shows Acne
nodules, which are inflammatory lesions consisting of large,
firm, and painful lumps that develop beneath the skin’s
surface and may lead to permanent scarring [18], [20]. The
papule shown in Figure 1(c) is a type of acne that appears as
a small red or pink bump resulting from inflammation in a
clogged hair follicle. Despite its relatively small size, a papule
can be painful when touched [18]. Pustules, illustrated in
Figure 1(d), are pus-filled lesions with a red and tender base
[18], [21].

The selection of these four acne classes in this study is
based on the consideration that acne variations often confuse
individuals without dermatological knowledge when
identified.  Although each category has distinct
characteristics, these differences frequently appear similar
during everyday visual observation. This situation indicates
that lay assessments are prone to misclassification.

The flowchart is used to visually and systematically
represent the stages of the research, facilitating a clearer
understanding of the overall process. Each stage is arranged
sequentially, from pre-processing to model evaluation,
thereby providing a complete overview of the workflow in
developing the acne classification system. The flowchart is
presented in Figure 2. The process begins with dataset
collection.

A. Pre-processing

The pre-processing stage begins with a systematic division
of the dataset into training, validation, and testing subsets
using a 70:15:15 split ratio. This strategy is designed to
preserve the relative class proportions, ensuring that each
acne category is represented consistently across all subsets.
The resulting sample distribution for each split is summarized

in Table 2.
TABLE 2.
DISTRIBUTION OF IMAGES FOR EACH ACNE TYPE IN THE TRAINING,
VALIDATION, AND TESTING SUBSETS

Acne Types — patg -
Training Validation Testing

Acne fulminans 49 11 10

Acne nodules 49 11 11

Papules 49 10 11

Pustules 49 10 11

To improve model generalization and robustness against
real-world variations, a comprehensive data augmentation
pipeline is applied during training. The pipeline incorporates
geometric transformations, including random rotations, affine
transformations, horizontal and vertical flipping, and random
resized cropping, to enhance spatial invariance. Photometric
augmentations such as color jittering, Gaussian blur,
Contrast-Limited ~ Adaptive  Histogram  Equalization
(CLAHE), adaptive sharpening, and the injection of light
noise are employed to account for variations in illumination,
contrast, and image quality.

Further robustness is introduced through perspective
distortion and random erasing, which simulate partial
occlusions and missing visual information. In addition to
instance-level augmentations, MixUp is applied as a sample-
level regularization technique by linearly combining pairs of
images and their corresponding labels, encouraging smoother
decision  boundaries.  Policy-based augmentation s
incorporated using TrivialAugment, allowing stochastic
selection of transformation operations with varying
magnitudes.

All images are resized to a fixed resolution prior to
normalization to ensure architectural compatibility and
consistent spatial representation. Finally, input tensors are
normalized using the mean and standard deviation derived
from ImageNet normalization statistics, which are adopted to
maintain compatibility with pretrained backbone models.
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Figure 2. System Workflow Flowchart

JAIC Vol. 10, No. 1, February 2026: 378 — 387



JAIC

e-1SSN: 2548-6861 381

The wvalidation and testing subsets undergo only
normalization to ensure consistent scaling without altering the
intrinsic characteristics of each acne type. Every image is
transformed using the same statistical parameters applied to
the training subset. Table 3 presents the detailed distribution
of acne images across the training, validation, and testing
subsets after augmentations and normalization.

TABLE 3.
DISTRIBUTION OF IMAGES FOR EACH ACNE TYPE IN THE TRAINING,
VALIDATION, AND TESTING SUBSETS AFTER AUGMENTATIONS AND
NORMALIZATION

Acne Types — I_:)ate_i -
Training Validation Testing

Acne fulminans 294 10 11

Acne nodules 294 11 11

Papules 294 11 10

Pustules 294 10 11

The data splitting is carried out using a stratified approach
to maintain proportional representation across all acne
categories, thereby preserving class balance and ensuring
consistent diversity throughout the experimental workflow.
B. Training and Validation

The training and validation processes were conducted for
20 epochs, during which the system generated indicators such
as loss, accuracy, precision, recall, and F1-score. An early
stopping mechanism with a patience threshold of five epochs
was applied to reduce overfitting. If the macro F1-score on
the validation set exceeded the previous best value, the model
parameters were saved as the optimal checkpoint. Conversely,
if no improvement occurred for five consecutive epochs, the
training and validation processes were automatically
terminated. This optimization strategy ensures that the final
model reflects a configuration that is well-generalized, stable,
and maintains a balanced trade-off between sensitivity and
specificity across all types of acne.

C. Testing

After determining the model with optimal performance, the
process continued with the testing stage. The evaluation was
conducted on the testing subset, which consists of data unseen
during training and validation, thereby ensuring an objective
assessment of the model’s real-world generalization
capability. The outputs include a classification report
encompassing accuracy, precision, recall, and F1-score, as
well as a confusion matrix that visually illustrates the
correspondence between predicted labels and actual labels.
D. Website Implementation

The system implementation was carried out through the
development of a website that serves as the main interface for
users to classify acne types and obtain recommended skincare
ingredients. The website was built using a combination of
HTML, CSS, JavaScript, and Bootstrap to produce a
responsive, consistent, and user-friendly interface. HTML is
used to construct the page structure, while CSS manages the
layout and visual aspects through color settings, typography,

and interface elements. The use of the Bootstrap framework
accelerates the development of user interface components
through standardized, ready-to-use elements, ensuring visual
consistency across all pages.

JavaScript handles the interactive logic, including image
input processing, classification function calls, prediction
display, and the management of dynamic elements on the
website. Integration with Supabase enables the system to
authenticate users and manage the skincare ingredient
recommendation tables. Supabase was selected because it
provides a serverless backend service with fast APIs,
supported by a PostgreSQL database, and equipped with
Row-Level Security (RLS) mechanisms. The integration is
carried out through the JavaScript SDK provided by
Supabase, allowing authentication, data retrieval, and table
updates to be performed directly from the client side without
adding infrastructure complexity.

The Maximum Softmax Percentage (MSP) is applied to
determine whether an image can be classified into one of the
four acne categories or falls outside the model’s scope [22].
In this system, a threshold of 0.70 is used, obtained by
calculating the minimum MSP value from correct predictions
and the maximum MSP value from incorrect predictions, then
adjusting it according to the application’s requirements. This
adjustment is intended to reduce false positives for data that
do not belong to the target classes.

All website functionalities were tested using the black-box
testing method to ensure alignment between the system
outputs and the predefined functional requirements [23]. The
testing was carried out by designing various scenarios, which
are presented in Table 4.

TABLE 4.
BLACKBOX TESTING

No. Tested Scenario Input Expected
Features Output

1. The user A name, an The account is
registers with  unregistered  successfully
valid data. email, and a  created, a

valid registration
password. success
notification
appears, and a
verification
Account link is sent to
Registratio the user’s
n (Sign Up) email.

2. The user A name, an The system
registers email that rejects the
using an has already registration and
email that is been used, displays an
already and a valid error message
registered. password. indicating that

the email is
already
registered.

3. The user A valid The wuser is

System signs in with  email and directed to the
Login (Sign  the correct the main page
In) credentials. correspondi according to
ng their role

password. (user/admin).
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No. Tested Scenario Input Expected This approach is relevant because it does not require
- Features — A —— OUtPUtt examining the source code; instead, it evaluates the system’s
. e user vall e system - - -
signs in with email andan  displays ~ an behaviour based on its responses to user inputs.
an incorrect incorrect error message
password. password. indicating that I11. RESULT AND DISCUSSION
the  sign-in A. Method Success Evaluation
attempt ~ has ]
failed. The evaluation of the method’s performance was
5. The  user A wvalid The  system conducted to assess the model’s generalization ability.
E”ab'esb the gg"si:,'vorda”d ZL"tLifmicaﬁ;rTe Figures 3 to 5, along with Tables 5 and 6, are used to present
remembper y . - . ..
Remember me” option with  the token, allowing thg dyna_mlcs_of the metrics during training, the patterns of
Me Feature  during sign- “remember  the user to misclassification across each subset, and the consistency of
in. me” option remain signed the model’s confidence levels in the final predictions.
CheCked' in fOr the nEXt Training vs Validation Loss
seSSion' : = Train Loss
6. The  user Registered  The  system e T e
submits  a  email. sends a reset . i
Forgot password I|nk_I to thg E
Password reset request. emai an 1o H
allows the & 1
password to be os i
reset. i
7. The user Image filein  The system 06 |
uploads an JPG/PNG accepts the file, i
Upload acne facial format. displays a 04 !
Facial image in a preview, and is e i 7 Coren T 10 e w0
Image supported ready to @)
format. perform  the - o
classification Lo Training vs Validation F1-macro :
8. The user Facial image The  system ol — i il i
clicks  the file. displays  the !
“Classity” acne type, the 08 !
Ac_n_e . button after confidence 07 ;
Classificati . 2 i
uploading a score, and the 3 I
on Process S £as !
valid image. recommended ¢ :
skincare os !
ingredients. 04 :
9. The system  Predicted The 03 i
Skincare displays acne type. re(_:ommended | | | | | ; ‘ ‘
. reCOmmenda Sklncare 25 5.0 75 10.0 12.5 15.0 17.5 20.0
Ingredient . : . Epoch
tions based ingredients
Recommen on the appear (b)
dations P . Figure 3. Training and Validation Result Graphs: (a) Loss and (b) F1-macro
classification according  to Fi 3 illustrates the d ! f the | | P
results. the acne type. igure (a) illustrates the dynamics of the loss values for
10. The admin _ Valid admin _The  system both. thg traln_ln_g and validation data over 2_0_epochs. During
opens  the credentials.  displays  the the initial training phase, both curves exhibit a pronounced
mo?e' _ mOdz' | decrease, indicating rapid adaptation of model parameters to
g‘;ge”a“o” $§ttﬁbitﬁorf 85 the underlying data patterns. In subsequent epochs, the loss
dataset image reductior} becomes more gradual, reflecting a stabilization of
Admin previews, the learning process.
EM|Odte'| model - metrics Throughout training, the training loss remains slightly
Vi:ge'on é?ii?!focny higher than the validation loss, while both curves follow
recall,  Fl1- similar trajectories with a relatively stable gap. This pattern
score), the suggests aligned optimization behaviour between the training
C'aSS'tflca“(;)f;h and validation phases rather than evidence of performance
o won © divergence. Overall, the loss trends indicate a controlled
matrix. trai_ning process \{vith no apparent signs of unstable learning,
11. Manageme 1€ admin — New The  system while not implying uniform performance across all acne
nt gf updates the recommenda  saves the classes.
Skincare |t of  tion data. changes  and Figure 3(b) presents the progression of the model’s F1-
- skincare consistently
Ingredient .0 odient displays  the macro over 20 epochs. Both curves show an upward trend as
R%ﬁgnmse” recommenda updated list. training progresses, indicating an overall improvement in the
tions. model’s classification performance as measured by the macro
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F1 metric. During the early epochs, the validation F1-macro
increases more noticeably, suggesting effective initial
adaptation to the data structure.

In later epochs, the training Fl-macro improves more
gradually with minor fluctuations, while the validation F1-
macro reaches its highest value at epoch 15, which is therefore
selected as the best-performing checkpoint. The similar
trajectories of the training and validation curves reflect stable
evaluation behavior at the metric level rather than uniform
performance across individual classes. Overall, the trend
indicates a controlled learning process that enhances
predictive quality up to an optimal point as defined by the
validation F1-macro.

TABLE 5.
EVALUATION RESULTS PER EPOCH IN THE VALIDATION PROCESS

Epochs Loss Accuracy Precision Recall F1-
(%) (%) (%) Score
Macro

(%)

1 1.3469 28.6 26.8 27.7 25.3
2 1.2322 47.6 45.4 46.6 42.7
3 1.0186 64.3 71.0 63.9 62.9
4 0.8322 85.7 86.6 85.5 85.5
5 0.7727 71.4 75.4 71.4 70.0
6 0.7395 76.2 83.2 75.9 76.7
7 0.5715 85.7 87.9 86.1 86.0
8 0.5369 90.5 91.5 90.7 90.7
9 0.5151 90.5 92.9 90.9 90.7
10 0.4983 95.2 95.4 95.2 95.2
11 0.4752 95.2 95.6 95.2 95.2
12 0.5027 92.9 93.8 93.0 92.8
13 0.4957 90.5 91.9 90.2 90.5
14 0.5027 92.9 94.2 93.2 92.8
15 0.4640 97.6 97.7 97.7 97.6
16 0.4740 95.2 95.4 95.2 95.2
17 0.4454 95.2 95.4 95.2 95.2
18 0.4548 97.6 97.7 97.7 97.6
19 0.4424 97.6 97.7 97.7 97.6
20 0.4547 97.6 97.7 97.7 97.6

The per-epoch validation results presented in Table 3
demonstrate a clear improvement in model performance as
reflected by the progression of evaluation metrics across
training epochs. At the first epoch, the validation loss remains
relatively high at 1.3469, accompanied by an accuracy of
28.6% and a macro-averaged F1 score of 25.3%, indicating
limited initial predictive capability.

A substantial performance gain becomes evident at epoch
4, where the loss decreases to 0.8322, and the macro F1 score
rises to 85.5%, alongside an accuracy of 85.7%. Between
epochs 8 and 11, the validation loss further stabilizes within
the range of 0.5369-0.4752, while accuracy improves to
90.5%-95.2%. During this interval, the macro F1 score
consistently exceeds 90%, reflecting strong overall
classification performance at the metric level.

The highest validation performance is achieved at epoch
15, with a loss value of 0.4640, accuracy of 97.6%, precision
of 97.7%, recall of 97.7%, and a peak macro F1 score of

97.6%. This epoch is therefore selected as the optimal
checkpoint based on validation results. In subsequent epochs,
the macro F1 score remains high but does not surpass the
performance observed at epoch 15, suggesting that the model
has reached its optimal validation performance under the
current training configuration.

Confusion Matrix {Counts) — TEST

10
Pustula

ache fulminans 4

True

acne nodules 4 1

papula o

¥ & & ®
S
X & & Q,OQ

Predicted
Figure 4. Confusion Matrix Results in the Testing Process

The confusion matrix on the testing set, presented in Figure
4, indicates that not all samples are correctly classified
according to their respective categories. Several
misclassifications are observed, including instances where
Pustules are predicted as Acne fulminans, Acne fulminans as
Acne nodules, and Acne nodules as either Pustules or Papules.

These error patterns suggest the presence of overlapping
visual characteristics among certain acne types, particularly
in cases where morphological differences are subtle. Despite
these misclassifications, the number of correctly predicted
samples remains dominant across the testing set, indicating
that the model captures general discriminative patterns within
the data.

Nevertheless, the observed confusion across specific
classes highlights that the learned representations do not
uniformly separate all acne categories. Therefore, the
confusion matrix should be interpreted as evidence of strong
overall predictive capability rather than consistent class-wise
performance.

TABLE 6.
CLASSIFICATION REPORT RESULTS IN THE TESTING PROCESS

Acne Accuracy Precision Recall F1-
Types (%) (%) (%) Score
(%)
Acne 90.70 90.0 90.0 90.0
fulminans
Acne 90.70 90.0 81.82 85.71
nodules
Papules 90.70 91.67 100.0 95.65
Pustules 90.70 90.91 90.91 90.91

The classification report presented in Table 6 complements
the confusion matrix analysis by providing class-wise
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performance metrics on the testing set. The overall accuracy
remains constant at 90.70% across classes, while precision,
recall, and F1-score exhibit noticeable variation among acne
categories.

The Papules class achieves the highest recall value of 1.00,
indicating that all Papules samples are correctly identified
under the current evaluation setting. In contrast, the Acne
nodules class records a lower recall of 81.82% and an F1-
score of 85.71%, suggesting greater classification difficulty
for this category. This discrepancy may reflect visual overlap
with other acne types or a more limited number of
representative samples.

These results indicate that, although the model
demonstrates strong overall predictive performance on the
testing data, class-wise behavior is not uniform. Therefore,
the reported metrics should be interpreted as evidence of
effective aggregate performance rather than perfectly
consistent classification across all acne categories or
guaranteed robustness under different data distributions.

o Average Confidence Method

87.76%

<]
@

—-==- Confidence Margin (72.44%)

o
o

Average Confidence
°
S

o
N

0.0

Pustula acne fulminans acne nodules papula

True Acne Class
Figure 5. Result of Average Confidence Method

The average confidence analysis is illustrated in Figure 5
to examine the model’s confidence level for predictions
across acne classes. This measure is computed as the mean
predicted probability assigned to correctly classified samples
in the testing set, based on their ground-truth labels. A
confidence margin of 72.44% is adopted as a reference
threshold representing a minimally acceptable confidence
level. All classes exhibit average confidence values above this
margin, with scores of 84.27% for Pustules, 87.76% for Acne
fulminans, 75.04% for Acne nodules, and 81.47% for
Papules.

The highest confidence score is observed for the Acne
fulminans class. This pattern may be attributed to its
distinctive visual characteristics, such as pronounced
inflammation, which can facilitate clearer separation from
other acne categories. However, average confidence values
should be interpreted cautiously, as high confidence does not
necessarily imply uniform reliability across all samples or
complete robustness to unseen data variations.

Overall, the confidence analysis suggests that the LoRA-
based adaptation enables the model to maintain relatively
well-separated feature representations, particularly for classes
with  more homogeneous visual patterns, while

acknowledging residual uncertainty for categories with
greater visual overlap.

The relatively high performance metrics observed in this
study warrant careful interpretation, particularly given the
limited size of the dataset. Nevertheless, several
methodological factors may help mitigate the risk of
overfitting. No substantial divergence was observed between
training and validation performance during model
optimization, indicating stable learning behavior rather than
excessive memorization. In addition, the use of Parameter-
Efficient Fine-Tuning through LoRA constrains the number
of trainable parameters, thereby reducing model complexity
and functioning as an implicit regularization mechanism. This
strategy enables domain adaptation while preserving the
pretrained representations learned by the DINOv2 foundation
model, which itself benefits from large-scale self-supervised
pretraining on diverse unlabelled data.

Despite these considerations, characteristics of the “skin-
90” dataset may still introduce potential biases. The class
distribution is imbalanced, with certain acne types
represented by fewer samples, which may limit the model’s
ability to learn distinctive features for underrepresented
categories. Moreover, visual similarities among acne classes
pose additional challenges. Papules and Pustules often share
comparable morphological traits, such as size and color, while
differing mainly in subtle surface characteristics. Severe acne
conditions may also exhibit overlapping visual patterns under
varying lighting and acquisition conditions, increasing the
likelihood of misclassification, particularly for minority
classes. The absence of demographic metadata, including skin
tone and acquisition context, further constrains the
assessment of representativeness and generalizability to
broader populations. Consequently, aggregate metrics such as
accuracy and Fl-score may not fully reflect class-specific
performance.

In addition, this study does not include direct experimental
comparisons with supervised convolutional or transformer-
based baseline models trained on the same dataset. As a result,
the observed performance cannot be interpreted as a
comparative advantage attributable exclusively to the use of
DINOv2 and LoRA. Instead, the findings demonstrate the
feasibility of adapting a self-supervised vision foundation
model for acne classification under limited data conditions.
Incorporating baseline models in future work would enable a
more comprehensive and comparative evaluation of the
proposed approach.

B. Website Implementation

The results of the implementation and testing on the
website are presented in Figure 6 and Table 7.
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Figure 6. Result of Website Implementation: (a) Home Page, (b)
Classification Page using Camera, and (c) Classification Page with the Result

Figure 6(a) shows the “Home” page, which serves as the
main display after users successfully log into the application.
The text “WELCOME TO ACNE BLOOM?” is placed at the
center as the primary welcoming element, accompanied by
the phrase “ACNE TYPE CLASSIFICATION,” emphasizing
the application’s role as an acne-type classification system. At
the top of the page, a navigation bar contains the menus
“Home,” “Acne Type Classification,” and “Sign Out,”
allowing users to easily access the main features. On the
“Home” page for administrators, the navigation bar includes
“Home,” “Model Evaluation,” “Skincare Ingredients
Recommendation,” and “Sign Out.”

Although the system interface includes a feature labeled
“Skincare Ingredients Recommendation,” this component is
intended solely for educational and informational purposes.
The recommendations are derived from a literature-based
mapping of acne categories and skincare ingredients, as
reported in peer-reviewed dermatological studies, rather than
from validated clinical guidelines or direct expert consultation
[19], [20], [24]. Therefore, this feature should not be

interpreted as providing medical or therapeutic advice. The
proposed system is designed as a supportive learning tool to
enhance general understanding of acne types, not as a
diagnostic or clinical decision-making system. Users are
advised to consult qualified dermatology professionals for
medical evaluation and treatment decisions.

The classification output is presented in Figure 6(b) on the
“Acne Type Classification” page, which displays the system’s
results after the facial image has been analyzed following the
upload process. The results are presented in two main
components: an image area on the left, displaying the user’s
face, and a classification table on the right, which provides
information on the acne type, confidence score, and
recommended skincare ingredients.

Figure 6(c) illustrates the “Acne Type Classification” page
when users directly utilize the camera to capture their facial
image as input for the classification process. A display area is
provided to show the real-time camera feed.

TABLE 7.
TESTING RESULTS WITH BLACKBOX TESTING

No. Scenario Input Expected Testing
Qutput Results
1. The user A name, an The account is
registers unregistered successfully
with  valid email, and a created, a
data. valid registration
password. success Successful
notification
appears, and a
verification link
is sent to the
user’s email.
2. The user A name, an The system
registers email that has rejects the
using an already been registration and
email that is used, and a displays an error
already valid message Successful
registered. password. indicating  that
the email is
already
registered.
3. The user A valid email The user is
signs in with  and the directed to the
the correct corresponding main page Successful
credentials. password. according to their
role
(user/admin).
4. The user A valid email The system
signs in with  and an displays an error
an incorrect incorrect message
password. password. indicating  that Successful
the sign-in
attempt has
failed.
5. The user A valid email The system
enables the and password, stores the
“remember with the authentication
me” option  “remember token, allowing
. . » . Successful
during sign- me option the user to
in. checked. remain signed in
for the next
session.
6. The user  Registered The system sends
. - - Successful
submits a email. a reset link to the
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1VV. CONCLUSION

The results of this study indicate that integrating DINOv2
with a Parameter-Efficient Fine-Tuning strategy based on
LoRA can achieve strong classification performance on the

four evaluated acne categories within the “skin-90” dataset.
Freezing the backbone preserves pretrained visual
representations, while updating only the adapter layers and
classification head provides an effective mechanism for

domain adaptation under limited data conditions. The best-
performing model was selected based on the stability of
validation metrics at their optimal epoch.

Evaluation on the testing set yields an accuracy of 90.70%,
with precision, recall, and Fl-score values of 90.64%,
90.68%, and 90.57%, respectively. These results reflect
reliable predictive performance at the aggregate level within

the experimental setting. However, the reported metrics
should be interpreted as indicative of effectiveness on the
evaluated dataset rather than as evidence of uniform class-
wise consistency or broad generalization. The findings
suggest that the proposed architectural design and training
configuration are suitable for capturing relevant visual

No. Scenario Input Expected Testing
Output Results
password email and allows
reset the password to
request. be reset.
7. The user Image file in The system
uploads an JPG/PNG accepts the file,
acne facial format. displays a
image in a preview, and is Successful
supported ready to perform
format. the classification
8. The user Facial image The system
clicks  the file. displays the acne
“Classify” type, the
button after confidence score, Successful
uploading a and the
valid image. recommended
skincare
ingredients.
9. The system Predicted acne The
displays type. recommended
recommenda skincare
tions based ingredients Successful
on the appear according
classificatio to the acne type.
n results.
10. The admin Valid admin The system
opens  the credentials. displays the
model model metadata,
evaluation class
page. distribution,
dataset  image
previews, model
metrics Successful
(accuracy,
precision, recall,
Fl-score), the
classification
report, and the
confusion
matrix.
11. The admin  New The system saves
updates the recommendati the changes and
list of on data. consistently
skincare displays the  Successful
ingredient updated list.
recommenda
tions.

patterns of acne, while further validation is required to assess
robustness across more diverse data distributions. Future
work may include systematic comparisons between LoRA-
based parameter-efficient fine-tuning, full fine-tuning, and
linear probing to quantitatively assess the trade-offs between
computational efficiency and classification performance in
acne image analysis.
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