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 Acne is a common inflammatory skin condition that can affect an individual’s 

psychological well-being and overall quality of life. The inability to independently 

recognize specific types of acne often leads to the use of inappropriate skincare 

products. This situation highlights the need for an image-based classification system 

that can provide accurate visual identification. The self-supervised learning method 

Distillation with NO Labels, version 2 (DINOv2), is employed as a feature extractor 
to classify four types of acne—Acne fulminans, Acne nodules, Papules, and 

Pustules—using the “skin-90” dataset. The fine-tuning process is conducted through 

a Parameter-Efficient Fine-Tuning (PEFT) approach using Low-Rank Adaptation 

(LoRA) to adjust the model’s visual representations to the acne domain without 

updating all parameters in full, followed by integration with a classification head. 

The results show that the model achieves an accuracy of 90.70%, with precision, 

recall, and F1-score values of 90.64%, 90.68%, and 90.57%, respectively. The 

findings suggest that the proposed architectural design and training configuration are 

suitable for capturing relevant visual patterns of acne, while further validation is 

required to assess robustness across more diverse data distributions. 
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I. INTRODUCTION 

Acne is an inflammatory skin disorder with a high 

prevalence among adolescents and is still commonly observed 

in some adults [1], [2]. This condition affects not only skin 

health but also influences an individual’s confidence, 

psychological well-being, and overall quality of life [3], [4]. 

A major challenge in acne treatment lies in the limited ability 

of individuals to identify the specific types of acne accurately. 

Misclassification often leads to the use of inappropriate 
skincare products, which may worsen the skin condition and 

result in unnecessary time and financial costs. This situation 

highlights the need for an image-based classification system 

that can consistently and accurately identify various types of 

acne. 

Advancements in computer vision and artificial 

intelligence have enabled the development of automated 

image-based classification systems capable of identifying 

distinctive visual patterns through feature extraction [5], [6]. 

In dermatological image analysis, however, the availability of 

large-scale annotated datasets remains limited. Facial acne 

images often exhibit substantial intra-class variation and 

inter-class similarity, which poses challenges for supervised 

learning approaches that rely heavily on labelled data. 
To address these limitations, self-supervised learning has 

emerged as a promising paradigm for learning robust visual 

representations without requiring manual annotations [7], [8]. 

Distillation with NO Labels version 2 (DINOv2) is a Vision 

Transformer (ViT)-based foundation model pretrained on 

large-scale unlabeled data to produce stable and transferable 

representations [9]. Self-supervised learning approaches such 

as SimCLR, MoCo, and BYOL primarily rely on instance-

level contrastive objectives or projection heads to learn visual 

representations [10], [11], [12]. Although these methods have 

demonstrated strong performance in general image 
recognition tasks, their effectiveness is influenced by data 

augmentation strategies and the availability of sufficient 

training samples. In medical image analysis, where subtle 

inter-class differences and high intra-class variability are 

common, such reliance may limit the learning of dense and 
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semantically rich representations under constrained data 

conditions. 

In response to these limitations, previous studies have 

reported that DINOv2 exhibits strong generalization across 

diverse visual domains, including medical imaging and 

dermatological analysis, as well as visual pattern retrieval 

tasks such as Content-Based Image Retrieval (CBIR) [13], 

[14]. Unlike contrastive self-supervised methods, DINOv2 is 
designed to learn dense visual representations without explicit 

negative pairs, which supports more stable feature transfer to 

fine-grained classification tasks. In this study, the pretrained 

DINOv2 model is adapted using a Parameter-Efficient Fine-

Tuning (PEFT) strategy based on Low-Rank Adaptation 

(LoRA), which updates only a limited subset of parameters to 

specialize the representations for the acne classification task 

[15]. 

Prior research has developed automatic acne classification 

systems using supervised CNN-based transfer learning, such 

as MobileNetV2 combined with K-Fold cross-validation on 
the “skin-90” dataset [16]. Although these approaches 

demonstrate promising results, the learned representations 

remain dependent on labelled data. They may be limited in 

capturing complex visual variations in facial acne images, 

particularly under constrained data settings. 

In contrast to supervised CNN-based methods, this study 

explores the use of a self-supervised vision foundation model, 

namely DINOv2, adapted through PEFT for facial acne 

classification. To the best of our knowledge, this study 

represents the first investigation of adapting a self-supervised 

vision foundation model with LoRA for acne classification on 

the “skin-90” dataset. This work, therefore, evaluates the 
applicability of self-supervised vision foundation models in a 

domain that has not been explicitly examined in prior “skin-

90”-based studies. 

This study aims to evaluate the performance of DINOv2, 

adapted with LoRA, in classifying four types of acne in the 

“skin-90” dataset: Acne fulminans, Acne nodules, Papules, 

and Pustules [16]. The evaluation is conducted using a 

confusion matrix and the metrics of accuracy, precision, 

recall, and F1-score to provide a comprehensive assessment 

of the model’s predictive quality [17]. 

The findings of this study are expected to contribute to the 
development of a more accurate and efficient image-based 

acne classification system. The results also have the potential 

to serve as an educational tool for understanding skin 

conditions and supporting the selection of relevant and safe 

skincare ingredients based on the classified acne type. Thus, 

this research provides not only academic value but also 

practical benefits in enhancing technology-based skincare 

literacy. 

 

 

 

 
 

II. METHODS 

This study adopts a quantitative experimental methodology 
to evaluate the effectiveness of a self-supervised learning 

model for acne type classification. The computational 

experiments involve training, validation, and testing phases 

conducted on the “skin-90” dataset, which consists of facial 

images containing visible acne. The dataset is obtained from 

Kaggle, and its class distribution is summarized in Table 1. 

As shown in the table, the number of samples is uneven across 

acne categories, with certain classes represented by fewer 

images. This imbalance reflects the natural variation in acne 

occurrence and constitutes an important characteristic of the 

dataset considered in this study. 
TABLE 1.  

TOTAL OF IMAGES FOR EACH ACNE TYPE 

Acne Types Data 

Acne fulminans 70 
Acne nodules 71 
Papules 70 
Pustules 70 

 

The images exhibit variability in lighting conditions, facial 

pose, and image quality, which introduces visual diversity but 

also potential sources of bias. Furthermore, the dataset does 

not provide metadata related to subject demographics, skin 

tone, or acquisition settings, limiting the assessment of 

demographic representativeness and potential sampling bias. 

As a secondary dataset collected from public sources, these 

characteristics should be considered when interpreting the 

experimental results. 
Only images that display human faces with visible acne 

types were included to ensure that the analysis focuses on the 

visual characteristics of acne severity, without considering 

factors such as age, gender, or ethnicity. DINOv2 is used for 

feature extraction, while LoRA is applied to fine-tune the 

model to the acne domain. The main objective is to assess the 

model’s performance across four acne classes: Acne 

fulminans, Acne nodules, Papules, and Pustules. To illustrate 

the visual diversity among these categories, examples are 

presented in Figure 1. 

 

  
(a) (b) 
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(c) (d) 

Figure 1. Visualization of Acne Types: (a) Acne fulminans, (b) Acne nodules, 

(c) Papule, and (d) Pustules 

 

Figure 1(a) presents the severe acne form Acne fulminans, 

characterized by intense inflammation and coalescent 

nodulocystic lesions [18], [19]. Figure 1(b) shows Acne 

nodules, which are inflammatory lesions consisting of large, 

firm, and painful lumps that develop beneath the skin’s 

surface and may lead to permanent scarring [18], [20]. The 

papule shown in Figure 1(c) is a type of acne that appears as 

a small red or pink bump resulting from inflammation in a 

clogged hair follicle. Despite its relatively small size, a papule 
can be painful when touched [18]. Pustules, illustrated in 

Figure 1(d), are pus-filled lesions with a red and tender base 

[18], [21].  

The selection of these four acne classes in this study is 

based on the consideration that acne variations often confuse 

individuals without dermatological knowledge when 

identified. Although each category has distinct 

characteristics, these differences frequently appear similar 

during everyday visual observation. This situation indicates 

that lay assessments are prone to misclassification. 

The flowchart is used to visually and systematically 
represent the stages of the research, facilitating a clearer 

understanding of the overall process. Each stage is arranged 

sequentially, from pre-processing to model evaluation, 

thereby providing a complete overview of the workflow in 

developing the acne classification system. The flowchart is 

presented in Figure 2. The process begins with dataset 

collection. 

A. Pre-processing 

The pre-processing stage begins with a systematic division 

of the dataset into training, validation, and testing subsets 

using a 70:15:15 split ratio. This strategy is designed to 

preserve the relative class proportions, ensuring that each 

acne category is represented consistently across all subsets. 

The resulting sample distribution for each split is summarized 

in Table 2. 
TABLE 2.  

DISTRIBUTION OF IMAGES FOR EACH ACNE TYPE IN THE TRAINING, 

VALIDATION, AND TESTING SUBSETS 

Acne Types 
Data 

Training Validation Testing 

Acne fulminans 49 11 10 

Acne nodules 49 11 11 
Papules 49 10 11 
Pustules 49 10 11 

 

To improve model generalization and robustness against 

real-world variations, a comprehensive data augmentation 

pipeline is applied during training. The pipeline incorporates 

geometric transformations, including random rotations, affine 

transformations, horizontal and vertical flipping, and random 

resized cropping, to enhance spatial invariance. Photometric 

augmentations such as color jittering, Gaussian blur, 

Contrast-Limited Adaptive Histogram Equalization 

(CLAHE), adaptive sharpening, and the injection of light 
noise are employed to account for variations in illumination, 

contrast, and image quality. 

Further robustness is introduced through perspective 

distortion and random erasing, which simulate partial 

occlusions and missing visual information. In addition to 

instance-level augmentations, MixUp is applied as a sample-

level regularization technique by linearly combining pairs of 

images and their corresponding labels, encouraging smoother 

decision boundaries. Policy-based augmentation is 

incorporated using TrivialAugment, allowing stochastic 

selection of transformation operations with varying 
magnitudes. 

All images are resized to a fixed resolution prior to 

normalization to ensure architectural compatibility and 

consistent spatial representation. Finally, input tensors are 

normalized using the mean and standard deviation derived 

from ImageNet normalization statistics, which are adopted to 

maintain compatibility with pretrained backbone models. 

 

 
Figure 2. System Workflow Flowchart 
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The validation and testing subsets undergo only 

normalization to ensure consistent scaling without altering the 

intrinsic characteristics of each acne type. Every image is 

transformed using the same statistical parameters applied to 

the training subset. Table 3 presents the detailed distribution 

of acne images across the training, validation, and testing 

subsets after augmentations and normalization. 

TABLE 3.  

DISTRIBUTION OF IMAGES FOR EACH ACNE TYPE IN THE TRAINING, 

VALIDATION, AND TESTING SUBSETS AFTER AUGMENTATIONS AND 

NORMALIZATION 

Acne Types 
Data 

Training Validation Testing 

Acne fulminans 294 10 11 
Acne nodules 294 11 11 
Papules 294 11 10 
Pustules 294 10 11 

 

The data splitting is carried out using a stratified approach 

to maintain proportional representation across all acne 

categories, thereby preserving class balance and ensuring 

consistent diversity throughout the experimental workflow. 

B. Training and Validation 

The training and validation processes were conducted for 

20 epochs, during which the system generated indicators such 
as loss, accuracy, precision, recall, and F1-score. An early 

stopping mechanism with a patience threshold of five epochs 

was applied to reduce overfitting. If the macro F1-score on 

the validation set exceeded the previous best value, the model 

parameters were saved as the optimal checkpoint. Conversely, 

if no improvement occurred for five consecutive epochs, the 

training and validation processes were automatically 

terminated. This optimization strategy ensures that the final 

model reflects a configuration that is well-generalized, stable, 

and maintains a balanced trade-off between sensitivity and 

specificity across all types of acne. 

C. Testing 

After determining the model with optimal performance, the 

process continued with the testing stage. The evaluation was 

conducted on the testing subset, which consists of data unseen 

during training and validation, thereby ensuring an objective 

assessment of the model’s real-world generalization 
capability. The outputs include a classification report 

encompassing accuracy, precision, recall, and F1-score, as 

well as a confusion matrix that visually illustrates the 

correspondence between predicted labels and actual labels. 

D. Website Implementation 

The system implementation was carried out through the 
development of a website that serves as the main interface for 

users to classify acne types and obtain recommended skincare 

ingredients. The website was built using a combination of 

HTML, CSS, JavaScript, and Bootstrap to produce a 

responsive, consistent, and user-friendly interface. HTML is 

used to construct the page structure, while CSS manages the 

layout and visual aspects through color settings, typography, 

and interface elements. The use of the Bootstrap framework 

accelerates the development of user interface components 

through standardized, ready-to-use elements, ensuring visual 

consistency across all pages. 

JavaScript handles the interactive logic, including image 

input processing, classification function calls, prediction 

display, and the management of dynamic elements on the 

website. Integration with Supabase enables the system to 
authenticate users and manage the skincare ingredient 

recommendation tables. Supabase was selected because it 

provides a serverless backend service with fast APIs, 

supported by a PostgreSQL database, and equipped with 

Row-Level Security (RLS) mechanisms. The integration is 

carried out through the JavaScript SDK provided by 

Supabase, allowing authentication, data retrieval, and table 

updates to be performed directly from the client side without 

adding infrastructure complexity. 

The Maximum Softmax Percentage (MSP) is applied to 

determine whether an image can be classified into one of the 
four acne categories or falls outside the model’s scope [22]. 

In this system, a threshold of 0.70 is used, obtained by 

calculating the minimum MSP value from correct predictions 

and the maximum MSP value from incorrect predictions, then 

adjusting it according to the application’s requirements. This 

adjustment is intended to reduce false positives for data that 

do not belong to the target classes. 

All website functionalities were tested using the black-box 

testing method to ensure alignment between the system 

outputs and the predefined functional requirements [23]. The 

testing was carried out by designing various scenarios, which 

are presented in Table 4.  

TABLE 4.  

BLACKBOX TESTING 

No. Tested 

Features 

Scenario Input Expected 

Output 

1. 

Account 

Registratio

n (Sign Up) 

 

The user 

registers with 

valid data. 

A name, an 

unregistered 

email, and a 

valid 

password. 

The account is 

successfully 

created, a 

registration 

success 

notification 

appears, and a 

verification 

link is sent to 

the user’s 

email. 

2.  The user 

registers 

using an 

email that is 

already 

registered. 

A name, an 

email that 

has already 

been used, 

and a valid 

password. 

The system 

rejects the 

registration and 

displays an 

error message 

indicating that 

the email is 

already 

registered. 

3. 

System 

Login (Sign 

In) 

 

The user 

signs in with 

the correct 

credentials. 

A valid 

email and 

the 

correspondi

ng 

password. 

The user is 

directed to the 

main page 

according to 

their role 

(user/admin). 
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No. Tested 

Features 

Scenario Input Expected 

Output 

4. The user 

signs in with 

an incorrect 

password. 

A valid 

email and an 

incorrect 

password. 

The system 

displays an 

error message 

indicating that 

the sign-in 

attempt has 

failed. 

5. 

Remember 

Me Feature 

The user 

enables the 

“remember 

me” option 

during sign-

in. 

A valid 

email and 

password, 

with the 

“remember 

me” option 

checked. 

The system 

stores the 

authentication 

token, allowing 

the user to 

remain signed 

in for the next 

session. 

6. 

Forgot 

Password 

The user 

submits a 

password 

reset request. 

Registered 

email. 

The system 

sends a reset 

link to the 

email and 

allows the 

password to be 

reset.  

7. 

Upload 

Facial 

Image 

The user 

uploads an 

acne facial 

image in a 

supported 

format. 

Image file in 

JPG/PNG 

format. 

The system 

accepts the file, 

displays a 

preview, and is 

ready to 

perform the 

classification 

8. 

Acne 

Classificati

on Process 

The user 

clicks the 

“Classify” 

button after 

uploading a 

valid image. 

Facial image 

file. 

The system 

displays the 

acne type, the 

confidence 

score, and the 

recommended 

skincare 

ingredients. 

9. 

Skincare 

Ingredient 

Recommen

dations 

The system 

displays 

recommenda

tions based 

on the 

classification 

results. 

Predicted 

acne type. 

The 

recommended 

skincare 

ingredients 

appear 

according to 

the acne type. 

10. 

Admin 

Model 

Evaluation 

Page 

The admin 

opens the 

model 

evaluation 

page. 

Valid admin 

credentials. 

The system 

displays the 

model 

metadata, class 

distribution, 

dataset image 

previews, 

model metrics 

(accuracy, 

precision, 

recall, F1-

score), the 

classification 

report, and the 

confusion 

matrix. 

11. 
Manageme

nt of 

Skincare 

Ingredient 

Recommen

dations 

The admin 

updates the 

list of 

skincare 

ingredient 

recommenda

tions. 

New 

recommenda

tion data. 

The system 

saves the 

changes and 

consistently 

displays the 

updated list. 

This approach is relevant because it does not require 

examining the source code; instead, it evaluates the system’s 

behaviour based on its responses to user inputs. 

III. RESULT AND DISCUSSION 

A. Method Success Evaluation 

The evaluation of the method’s performance was 

conducted to assess the model’s generalization ability. 

Figures 3 to 5, along with Tables 5 and 6, are used to present 

the dynamics of the metrics during training, the patterns of 

misclassification across each subset, and the consistency of 

the model’s confidence levels in the final predictions. 

 
(a) 

 
(b) 

Figure 3. Training and Validation Result Graphs: (a) Loss and (b) F1-macro 

Figure 3(a) illustrates the dynamics of the loss values for 

both the training and validation data over 20 epochs. During 

the initial training phase, both curves exhibit a pronounced 

decrease, indicating rapid adaptation of model parameters to 
the underlying data patterns. In subsequent epochs, the loss 

reduction becomes more gradual, reflecting a stabilization of 

the learning process. 

Throughout training, the training loss remains slightly 

higher than the validation loss, while both curves follow 

similar trajectories with a relatively stable gap. This pattern 

suggests aligned optimization behaviour between the training 

and validation phases rather than evidence of performance 

divergence. Overall, the loss trends indicate a controlled 

training process with no apparent signs of unstable learning, 

while not implying uniform performance across all acne 
classes. 

Figure 3(b) presents the progression of the model’s F1-

macro over 20 epochs. Both curves show an upward trend as 

training progresses, indicating an overall improvement in the 

model’s classification performance as measured by the macro 
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F1 metric. During the early epochs, the validation F1-macro 

increases more noticeably, suggesting effective initial 

adaptation to the data structure. 

In later epochs, the training F1-macro improves more 

gradually with minor fluctuations, while the validation F1-

macro reaches its highest value at epoch 15, which is therefore 

selected as the best-performing checkpoint. The similar 

trajectories of the training and validation curves reflect stable 
evaluation behavior at the metric level rather than uniform 

performance across individual classes. Overall, the trend 

indicates a controlled learning process that enhances 

predictive quality up to an optimal point as defined by the 

validation F1-macro. 

TABLE 5.  

EVALUATION RESULTS PER EPOCH IN THE VALIDATION PROCESS 

Epochs Loss Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

Macro 

(%) 

1 1.3469 28.6 26.8 27.7 25.3 
2 1.2322 47.6 45.4 46.6 42.7 
3 1.0186 64.3 71.0 63.9 62.9 
4 0.8322 85.7 86.6 85.5 85.5 
5 0.7727 71.4 75.4 71.4 70.0 
6 0.7395 76.2 83.2 75.9 76.7 
7 0.5715 85.7 87.9 86.1 86.0 
8 0.5369 90.5 91.5 90.7 90.7 
9 0.5151 90.5 92.9 90.9 90.7 

10 0.4983 95.2 95.4 95.2 95.2 
11 0.4752 95.2 95.6 95.2 95.2 

12 0.5027 92.9 93.8 93.0 92.8 
13 0.4957 90.5 91.9 90.2 90.5 
14 0.5027 92.9 94.2 93.2 92.8 

15 0.4640 97.6 97.7 97.7 97.6 
16 0.4740 95.2 95.4 95.2 95.2 
17 0.4454 95.2 95.4 95.2 95.2 

18 0.4548 97.6 97.7 97.7 97.6 
19 0.4424 97.6 97.7 97.7 97.6 
20 0.4547 97.6 97.7 97.7 97.6 

 

The per-epoch validation results presented in Table 3 

demonstrate a clear improvement in model performance as 

reflected by the progression of evaluation metrics across 

training epochs. At the first epoch, the validation loss remains 

relatively high at 1.3469, accompanied by an accuracy of 

28.6% and a macro-averaged F1 score of 25.3%, indicating 
limited initial predictive capability. 

A substantial performance gain becomes evident at epoch 

4, where the loss decreases to 0.8322, and the macro F1 score 

rises to 85.5%, alongside an accuracy of 85.7%. Between 

epochs 8 and 11, the validation loss further stabilizes within 

the range of 0.5369–0.4752, while accuracy improves to 

90.5%–95.2%. During this interval, the macro F1 score 

consistently exceeds 90%, reflecting strong overall 

classification performance at the metric level. 

The highest validation performance is achieved at epoch 

15, with a loss value of 0.4640, accuracy of 97.6%, precision 

of 97.7%, recall of 97.7%, and a peak macro F1 score of 

97.6%. This epoch is therefore selected as the optimal 

checkpoint based on validation results. In subsequent epochs, 

the macro F1 score remains high but does not surpass the 

performance observed at epoch 15, suggesting that the model 

has reached its optimal validation performance under the 

current training configuration. 

 

 
Figure 4. Confusion Matrix Results in the Testing Process 

The confusion matrix on the testing set, presented in Figure 

4, indicates that not all samples are correctly classified 

according to their respective categories. Several 

misclassifications are observed, including instances where 

Pustules are predicted as Acne fulminans, Acne fulminans as 

Acne nodules, and Acne nodules as either Pustules or Papules. 

These error patterns suggest the presence of overlapping 

visual characteristics among certain acne types, particularly 

in cases where morphological differences are subtle. Despite 

these misclassifications, the number of correctly predicted 
samples remains dominant across the testing set, indicating 

that the model captures general discriminative patterns within 

the data. 

Nevertheless, the observed confusion across specific 

classes highlights that the learned representations do not 

uniformly separate all acne categories. Therefore, the 

confusion matrix should be interpreted as evidence of strong 

overall predictive capability rather than consistent class-wise 

performance. 

TABLE 6.  

CLASSIFICATION REPORT RESULTS IN THE TESTING PROCESS 

Acne 

Types 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Acne 

fulminans 

90.70 90.0 90.0 90.0 

Acne 

nodules 

90.70 90.0 81.82 85.71 

Papules 90.70 91.67 100.0 95.65 

Pustules 90.70 90.91 90.91 90.91 

 

The classification report presented in Table 6 complements 

the confusion matrix analysis by providing class-wise 
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performance metrics on the testing set. The overall accuracy 

remains constant at 90.70% across classes, while precision, 

recall, and F1-score exhibit noticeable variation among acne 

categories. 

The Papules class achieves the highest recall value of 1.00, 

indicating that all Papules samples are correctly identified 

under the current evaluation setting. In contrast, the Acne 

nodules class records a lower recall of 81.82% and an F1-

score of 85.71%, suggesting greater classification difficulty 
for this category. This discrepancy may reflect visual overlap 

with other acne types or a more limited number of 

representative samples. 

These results indicate that, although the model 

demonstrates strong overall predictive performance on the 

testing data, class-wise behavior is not uniform. Therefore, 

the reported metrics should be interpreted as evidence of 

effective aggregate performance rather than perfectly 

consistent classification across all acne categories or 

guaranteed robustness under different data distributions. 

 
Figure 5. Result of Average Confidence Method 

The average confidence analysis is illustrated in Figure 5 

to examine the model’s confidence level for predictions 
across acne classes. This measure is computed as the mean 

predicted probability assigned to correctly classified samples 

in the testing set, based on their ground-truth labels. A 

confidence margin of 72.44% is adopted as a reference 

threshold representing a minimally acceptable confidence 

level. All classes exhibit average confidence values above this 

margin, with scores of 84.27% for Pustules, 87.76% for Acne 

fulminans, 75.04% for Acne nodules, and 81.47% for 

Papules. 

The highest confidence score is observed for the Acne 

fulminans class. This pattern may be attributed to its 

distinctive visual characteristics, such as pronounced 
inflammation, which can facilitate clearer separation from 

other acne categories. However, average confidence values 

should be interpreted cautiously, as high confidence does not 

necessarily imply uniform reliability across all samples or 

complete robustness to unseen data variations. 

Overall, the confidence analysis suggests that the LoRA-

based adaptation enables the model to maintain relatively 

well-separated feature representations, particularly for classes 

with more homogeneous visual patterns, while 

acknowledging residual uncertainty for categories with 

greater visual overlap. 

The relatively high performance metrics observed in this 

study warrant careful interpretation, particularly given the 

limited size of the dataset. Nevertheless, several 

methodological factors may help mitigate the risk of 

overfitting. No substantial divergence was observed between 

training and validation performance during model 

optimization, indicating stable learning behavior rather than 
excessive memorization. In addition, the use of Parameter-

Efficient Fine-Tuning through LoRA constrains the number 

of trainable parameters, thereby reducing model complexity 

and functioning as an implicit regularization mechanism. This 

strategy enables domain adaptation while preserving the 

pretrained representations learned by the DINOv2 foundation 

model, which itself benefits from large-scale self-supervised 

pretraining on diverse unlabelled data. 

Despite these considerations, characteristics of the “skin-

90” dataset may still introduce potential biases. The class 

distribution is imbalanced, with certain acne types 
represented by fewer samples, which may limit the model’s 

ability to learn distinctive features for underrepresented 

categories. Moreover, visual similarities among acne classes 

pose additional challenges. Papules and Pustules often share 

comparable morphological traits, such as size and color, while 

differing mainly in subtle surface characteristics. Severe acne 

conditions may also exhibit overlapping visual patterns under 

varying lighting and acquisition conditions, increasing the 

likelihood of misclassification, particularly for minority 

classes. The absence of demographic metadata, including skin 

tone and acquisition context, further constrains the 

assessment of representativeness and generalizability to 
broader populations. Consequently, aggregate metrics such as 

accuracy and F1-score may not fully reflect class-specific 

performance. 

In addition, this study does not include direct experimental 

comparisons with supervised convolutional or transformer-

based baseline models trained on the same dataset. As a result, 

the observed performance cannot be interpreted as a 

comparative advantage attributable exclusively to the use of 

DINOv2 and LoRA. Instead, the findings demonstrate the 

feasibility of adapting a self-supervised vision foundation 

model for acne classification under limited data conditions. 
Incorporating baseline models in future work would enable a 

more comprehensive and comparative evaluation of the 

proposed approach. 

B. Website Implementation 

The results of the implementation and testing on the 

website are presented in Figure 6 and Table 7. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Result of Website Implementation: (a) Home Page, (b) 

Classification Page using Camera, and (c) Classification Page with the Result  

 

Figure 6(a) shows the “Home” page, which serves as the 

main display after users successfully log into the application. 

The text “WELCOME TO ACNE BLOOM” is placed at the 
center as the primary welcoming element, accompanied by 

the phrase “ACNE TYPE CLASSIFICATION,” emphasizing 

the application’s role as an acne-type classification system. At 

the top of the page, a navigation bar contains the menus 

“Home,” “Acne Type Classification,” and “Sign Out,” 

allowing users to easily access the main features. On the 

“Home” page for administrators, the navigation bar includes 

“Home,” “Model Evaluation,” “Skincare Ingredients 

Recommendation,” and “Sign Out.” 

Although the system interface includes a feature labeled 

“Skincare Ingredients Recommendation,” this component is 
intended solely for educational and informational purposes. 

The recommendations are derived from a literature-based 

mapping of acne categories and skincare ingredients, as 

reported in peer-reviewed dermatological studies, rather than 

from validated clinical guidelines or direct expert consultation 

[19], [20], [24]. Therefore, this feature should not be 

interpreted as providing medical or therapeutic advice. The 

proposed system is designed as a supportive learning tool to 

enhance general understanding of acne types, not as a 

diagnostic or clinical decision-making system. Users are 

advised to consult qualified dermatology professionals for 

medical evaluation and treatment decisions. 

The classification output is presented in Figure 6(b) on the 

“Acne Type Classification” page, which displays the system’s 
results after the facial image has been analyzed following the 

upload process. The results are presented in two main 

components: an image area on the left, displaying the user’s 

face, and a classification table on the right, which provides 

information on the acne type, confidence score, and 

recommended skincare ingredients. 

Figure 6(c) illustrates the “Acne Type Classification” page 

when users directly utilize the camera to capture their facial 

image as input for the classification process. A display area is 

provided to show the real-time camera feed. 

TABLE 7.  

TESTING RESULTS WITH BLACKBOX TESTING 

No. Scenario Input Expected 

Output 

Testing 

Results 

1. The user 

registers 

with valid 

data. 

A name, an 

unregistered 

email, and a 

valid 

password. 

The account is 

successfully 

created, a 

registration 

success 

notification 

appears, and a 

verification link 

is sent to the 

user’s email. 

Successful 

2.  The user 

registers 

using an 

email that is 

already 

registered. 

A name, an 

email that has 

already been 

used, and a 

valid 

password. 

The system 

rejects the 

registration and 

displays an error 

message 

indicating that 

the email is 

already 

registered. 

Successful 

3. The user 

signs in with 

the correct 

credentials. 

A valid email 

and the 

corresponding 

password. 

The user is 

directed to the 

main page 

according to their 

role 

(user/admin). 

Successful 

4. The user 

signs in with 

an incorrect 

password. 

A valid email 

and an 

incorrect 

password. 

The system 

displays an error 

message 

indicating that 

the sign-in 

attempt has 

failed. 

Successful 

5. The user 

enables the 

“remember 

me” option 

during sign-

in. 

A valid email 

and password, 

with the 

“remember 

me” option 

checked. 

The system 

stores the 

authentication 

token, allowing 

the user to 

remain signed in 

for the next 

session. 

Successful 

6. The user 

submits a 

Registered 

email. 

The system sends 

a reset link to the 
Successful 
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No. Scenario Input Expected 

Output 

Testing 

Results 

password 

reset 

request. 

email and allows 

the password to 

be reset.  

7. The user 

uploads an 

acne facial 

image in a 

supported 

format. 

Image file in 

JPG/PNG 

format. 

The system 

accepts the file, 

displays a 

preview, and is 

ready to perform 

the classification 

Successful 

8. The user 

clicks the 

“Classify” 

button after 

uploading a 

valid image. 

Facial image 

file. 

The system 

displays the acne 

type, the 

confidence score, 

and the 

recommended 

skincare 

ingredients. 

Successful 

9. The system 

displays 

recommenda

tions based 

on the 

classificatio

n results. 

Predicted acne 

type. 

The 

recommended 

skincare 

ingredients 

appear according 

to the acne type. 

Successful 

10. The admin 

opens the 

model 

evaluation 

page. 

Valid admin 

credentials. 

The system 

displays the 

model metadata, 

class 

distribution, 

dataset image 

previews, model 

metrics 

(accuracy, 

precision, recall, 

F1-score), the 

classification 

report, and the 

confusion 

matrix. 

Successful 

11. The admin 

updates the 

list of 

skincare 

ingredient 

recommenda

tions. 

New 

recommendati

on data. 

The system saves 

the changes and 

consistently 

displays the 

updated list. 

Successful 

 

Table 5 contains three main components in the black-box 

evaluation: the testing scenarios, the input types, and the 

expected system outputs. All testing scenarios received a 

“successful” status. Therefore, the website implementation is 

deemed to perform very well and is suitable for use. 

Despite the promising classification performance, the 

interpretability of the proposed model remains limited. The 

DINOv2-based architecture operates as a deep vision 
transformer, where the learned representations are not directly 

interpretable in terms of clinically meaningful visual cues. 

This study does not include explicit visual explanation 

techniques, such as saliency maps or attention visualizations, 

which constrains the transparency of the model’s decision-

making process. Consequently, the predictions should be 

viewed as algorithmic outputs rather than explanatory clinical 

evidence. 

IV. CONCLUSION 

The results of this study indicate that integrating DINOv2 

with a Parameter-Efficient Fine-Tuning strategy based on 
LoRA can achieve strong classification performance on the 

four evaluated acne categories within the “skin-90” dataset. 

Freezing the backbone preserves pretrained visual 

representations, while updating only the adapter layers and 

classification head provides an effective mechanism for 

domain adaptation under limited data conditions. The best-

performing model was selected based on the stability of 

validation metrics at their optimal epoch. 

Evaluation on the testing set yields an accuracy of 90.70%, 

with precision, recall, and F1-score values of 90.64%, 

90.68%, and 90.57%, respectively. These results reflect 

reliable predictive performance at the aggregate level within 
the experimental setting. However, the reported metrics 

should be interpreted as indicative of effectiveness on the 

evaluated dataset rather than as evidence of uniform class-

wise consistency or broad generalization. The findings 

suggest that the proposed architectural design and training 

configuration are suitable for capturing relevant visual 

patterns of acne, while further validation is required to assess 

robustness across more diverse data distributions. Future 

work may include systematic comparisons between LoRA-

based parameter-efficient fine-tuning, full fine-tuning, and 

linear probing to quantitatively assess the trade-offs between 
computational efficiency and classification performance in 

acne image analysis. 
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