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Accurate and well-calibrated heart disease risk prediction is essential for supporting
medical decision-making. This study analyzes Logistic Regression as an applied
statistical model for heart disease prediction using the UCI Heart Disease dataset.
Beyond discrimination metrics, we explicitly focus on probability reliability by
evaluating calibration through the Brier score, calibration slope, and intercept, and
by quantifying the impact of post-hoc calibration (isotonic regression and Platt
scaling) on both calibration and discrimination. Model validation was conducted
using stratified 5-fold cross-validation with AUROC, AUPRC, accuracy, and F1-
score as evaluation metrics. The results show that Logistic Regression achieved
competitive performance (AUROC 0.903; AUPRC 0.911; Accuracy 0.822; F1-score
0.835) with well-calibrated probability estimates relative to Random Forest and
Gradient Boosting under the evaluated setting. Feature importance analysis using
permutation methods identified chest pain type, number of major vessels (ca), ST
depression (oldpeak), and exercise-induced angina (exang) as key predictors
consistent with clinical literature. These findings indicate that simple applied
statistical modeling, when paired with rigorous calibration assessment, can provide
interpretable risk estimates that are more suitable for threshold-based decision

support in early heart disease screening.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Cardiovascular disease remains the leading cause of
mortality worldwide, including in developing countries such
as Indonesia, where its prevalence continues to increase
alongside lifestyle changes and demographic shifts [1], [2].
According to the World Health Organization, cardiovascular
disease accounts for nearly one-third of all deaths globally,
highlighting its significant public health impact [3], [4]. This
condition is also directly linked to the third Sustainable
Development Goal (SDG 3) of ensuring healthy lives and
promoting well-being for all ages, as early detection and
prevention of heart disease can significantly reduce premature
mortality [5], [6]. Early detection of individuals at high risk is
therefore essential, as it enables timely intervention,
preventive measures, and more efficient allocation of

healthcare resources [7], [8]. These needs encourage
researchers to explore various mathematical and
computational approaches that can support clinicians in risk
stratification and medical decision-making.

In the era of digital health, statistical modeling and
machine learning have been widely adopted to analyze
complex medical datasets [9], [10]. These approaches are
capable of identifying hidden patterns and generating
predictive models that can guide clinical decision support
systems. Logistic Regression, in particular, has been one of
the most frequently used techniques due to its simplicity,
interpretability, and strong theoretical foundation in applied
statistics [11]. Despite its advantages, many studies applying
Logistic Regression in medical contexts tend to emphasize
only the discrimination ability of the model, commonly
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measured by the Area Under the Receiver Operating
Characteristic curve (AUROC) [12], [13]. However, high
AUROC does not necessarily guarantee reliable probability
estimates, which are crucial in clinical settings where
decisions often depend on calibrated risk values rather than
binary predictions [14], [15].

Several advanced machine learning models such as
Random Forest and Gradient Boosting have been introduced
as alternatives to improve predictive performance [16], [17].
These ensemble-based models are capable of handling
complex interactions and non-linear relationships within data,
often resulting in higher accuracy compared to traditional
statistical methods [18]. Nevertheless, these models are
computationally demanding, less interpretable, and frequently
suffer from poor probability calibration, which reduces their
practical usefulness in medicine [19], [20]. To address this
issue, calibration techniques such as isotonic regression and
Platt scaling have been proposed as post-hoc methods to align
predicted probabilities with actual outcome frequencies [21],
[22]. While promising, research investigating the role of
calibration in small and medium-sized medical datasets, such
as the Heart Disease dataset, remains limited[23], [24].

Considering this gap, the present study focuses on a
comprehensive evaluation of both discrimination and
calibration aspects of predictive modeling in heart disease risk
assessment. Logistic Regression is employed as the primary
baseline model, with additional comparisons against Random
Forest and Gradient Boosting to assess the trade-offs between
simplicity, interpretability, and predictive reliability [25],
[26], [27]. Furthermore, a feature importance analysis using
permutation methods is conducted to highlight clinically
relevant predictors such as chest pain type, number of major
vessels, and ST segment depression. These features are not
only statistically significant but also clinically interpretable,
strengthening the link between computational results and real -
world medical knowledge[28], [29].

The objectives of this study are threefold: (i) to evaluate
the discrimination and calibration performance of Logistic
Regression in predicting heart disease risk using the Heart
Disease dataset; (ii) to compare its performance with more
complex ensemble methods; and (iii) to provide
interpretability through a permutation-based feature audit that
can assist clinicians in understanding the model’s predictions.
By addressing both accuracy and calibration, this study
contributes to the literature in biomathematics and applied
statistics, while emphasizing the importance of probability
reliability in predictive modeling for cardiovascular disease.
Ultimately, this research aligns with the vision of SDG 3 by
supporting innovations aimed at reducing premature deaths
from non-communicable diseases through the integration of
statistical modeling and health informatics[30], [31].

This study contributes by explicitly prioritizing probability
reliability through a combined discrimination—calibration
evaluation for heart disease risk prediction. In addition to
reporting conventional discrimination metrics, we provide a
dedicated calibration assessment using the Brier score,

calibration slope and intercept, and calibration curves, and we
quantify how post-hoc calibration (Platt scaling and isotonic
regression) changes the quality of predicted probabilities.
Random Forest and Gradient Boosting are included as
comparative baselines to contextualize trade-offs between
interpretability, model complexity, and calibration, rather
than to support universal claims of model superiority.

Because the analysis is conducted on a single classical UCI
dataset with a relatively small sample size, the findings should
be interpreted as a dataset-specific evaluation. External
validation on larger and more contemporary clinical cohorts
is therefore required before generalizing these conclusions to
broader clinical settings.

Il. METHOD

This research method was systematically arranged to
ensure that the study could be replicated and scientifically
justified. The overall stages of the study are illustrated in
Figure 1, showing the sequential process beginning with data
collection and continuing through pre-processing, descriptive
analysis, model training, calibration, model testing,
evaluation, and final interpretation of results. Each stage is
explained in detail below.

Pre-processing
(Normalization, Encoding)

Descriptive Analysis)

Model Training
((Lnglstlc Regression, RF, GB]H"‘“’"’ Cross "“"“‘“""’D

- Evaluation Metrics
(""d" [ECr |_"| (AUROC, AUPRC, F1, Brkr))
Interpretation of Results
(Feature Importance)

Figure 1 Flow Diagram of the Proposed Research Method

Figure 1 provides an overview of the methodological
workflow employed in this study, which was carefully
structured to ensure replicability and scientific rigor. The
process begins with the collection of the UCI Heart Disease
dataset, followed by a series of preprocessing steps. These
include imputation to handle missing values, normalization of
numerical attributes to reduce scale bias, and one-hot
encoding of categorical features to accommodate non-ordinal
variables. A descriptive analysis was then performed to
examine variable distributions, detect potential anomalies,
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and assess the balance of target classes before proceeding to
the modeling stage[32].

After preprocessing and descriptive analysis, three
predictive models Logistic Regression (LR), Random Forest
(RF), and Gradient Boosting (GB) were developed using a 5
fold cross validation strategy to improve generalizability and
reduce overfitting. At the calibration checkpoint, post hoc
methods such as Platt scaling and isotonic regression were
applied to refine probability estimates. The calibrated models
were subsequently tested and evaluated using a combination
of discrimination metrics (AUROC, AUPRC, and F1-score)
and calibration measures (Brier score and calibration slope).
Finally, feature importance analysis was conducted to
highlight clinically relevant predictors and identify potential
dataset-specific biases, ensuring both methodological
robustness and interpretability.

A. Data

The dataset used in this study is the Heart Disease dataset,
which is part of the UCI Machine Learning Repository[23].
This dataset has been widely adopted in cardiovascular risk
prediction research because of its availability, standardized
structure, and inclusion of clinically relevant features. The
repository provides 303 patient records, after initial screening
for incomplete entries, 299 records were retained for analysis.
Each record contains 13 predictor variables and one binary
target variable indicating the presence (1) or absence (0) of
heart disease.

The variables are categorized into demographic, clinical,
and test-based features. A summary of the features is
presented in Table 1, which provides information about the
data type, range, and a short description of each attribute.

TABLE 1
DESCRIPTION OF DATASET FEATURES

Feature Type Range / Categories Description

age Numeric 29-77 Age of patient (years)

sex Categorical 0 = female; 1 = male Gender

cp Categorical 0-3 Chest pain type (4 categories)

trestbps Numeric 94-200 Resting blood pressure (mmHg)

chol Numeric 126-564 Serum cholesterol (mg/dl)

fbs Categorical 0 = false; 1 = true Fasting blood sugar >120 mg/dl

restecg Categorical 0-2 Resting electrocardiographic result

thalach Numeric 71-202 Maximum heart rate achieved

exang Categorical 0=no; 1 =yes Exercise-induced angina

oldpeak Numeric 0.0-6.2 ST depression induced by exercise

slope Categorical 0-2 Slope of peak exercise ST segment

ca Numeric 0-3 No. of major vessels (0-3)

thal Categorical 3 =normal; 6 = fixed; 7 = rev Thalassemia type

target Categorical 0=no; 1 =yes Presence of heart disease (label)

The target data distribution is relatively balanced, as shown
in Table 2.

TABLE 2
DISTRIBUTION OF HEART DISEASE CLASSES
Target Value Count Percentage
0 = No heart disease 160 52.8%
1 = heart desease 139 47.2%

Based on Table 2, the positive class prevalence is 47.2%
(139/299), while the negative class accounts for 52.8%
(160/299). This prevalence also represents the baseline
AUPRC of a no-skill classifier, meaning that AUPRC values
should be interpreted relative to 0.472 rather than in isolation.
Therefore, reporting both AUROC and AUPRC is necessary
to provide a balanced view of discrimination under the
observed class distribution.

The structure of the dataset can also be illustrated through
representative patient records. However, due to space
limitations in the manuscript, the sample data are not
displayed in full. Complete information and the full dataset

can be accessed directly through the UCI Machine Learning
Repository (Heart Disease Dataset), which enables other
researchers to replicate or extend this study.

B. Preprocessing Data

Before modeling, a series of pre-processing steps was
carried out to ensure data quality and consistency, in the raw
dataset, missing entries (e.g., values encoded as “?”) were first
treated as missing (NaN) before applying imputation. Missing
values were handled using a simple imputation strategy that
was consistent across validation folds (median for numerical
features and mode for categorical features), so as not to
significantly reduce the sample size. Numerical features (e.g.,
age, resting blood pressure, cholesterol, and oldpeak) were
normalized using z-score standardization to unify scales and
prevent large-scale variables from dominating the training
process. Categorical features (e.g., sex, cp, restecg, exang,
slope, thal, and ca-treated as discrete categories) were
transformed using One Hot Encoding with the
handle_unknown= ‘ignore’ option to avoid failures during
cross validation.
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Afterward, descriptive analysis was performed to examine
feature distributions, class balance, and basic correlations
among clinical factors. This stage provided initial clinical
context, helped detect meaningful outliers, and ensured that
no anomalous inputs would potentially lead to data leakage
during the training process. Figure 2 illustrates the
distribution of key numerical features prior to preprocessing,
highlighting the variability of scales, skewed distributions,

and potential outliers that justify the normalization and
cleaning steps applied in this study.

All preprocessing steps (imputation, standardization, and
encoding) were fitted exclusively on the training folds and
then applied to the corresponding validation fold within each
cross-validation split. This pipeline-based setup prevents
information leakage from the validation data into the training
process and ensures an unbiased performance estimate.
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Figure 2 Distribution of key numerical features

C. Model Development and Cross Validation

Logistic Regression (LR) was employed as the baseline
model in this study due to its interpretability and statistical
robustness in medical research. Mathematically, LR models
the relationship between predictors and the logit z as :

z= B+ 20, Bix; 1)

Where S, is the intercept, B; are the model coefficients, and
x; are the predictor variables. This linear term z is then
transformed into a probability value using the logistic
(sigmoid) function :

1

Py=10 = @

which maps the output into the range [0,1][0,1][0,1],
making it suitable for binary classification tasks such as heart
disease prediction. The model parameters p\betaP are
estimated by maximizing the log-likelihood function, which
quantifies the agreement between predicted probabilities and
observed outcomes :

L(B) = —Xialyilog P(y;) + (1 — y;) log(1 — P(¥)]
€))

After establishing LR as the baseline model, additional
algorithms such as Random Forest (RF) and Gradient
Boosting (GB) were developed for comparison. To obtain an
unbiased estimate of out-of-sample performance within the
dataset, a stratified 5-fold cross-validation technique was
applied. Stratification was used to preserve the class
distribution in each fold (shuffle=True, random_state=42).
Performance metrics were computed on each validation fold
and then summarized across folds, in this process, the dataset
was divided into five folds, where each fold acted once as a
validation set while the remaining folds served as training
data. This strategy not only reduced the risk of overfitting but
also provided a more reliable estimation of model
performance across different data partitions. To ensure a fair
comparison, hyperparameters for Random Forest and
Gradient Boosting were optimized using randomized search
on the training folds, with an inner cross-validation loop for
model selection (nested within the outer 5-fold evaluation).
The search space included the number of estimators, tree
depth, and learning rate-related parameters, and the best
configuration was selected based on AUROC on the inner
folds.The procedure of the 5-fold cross-validation applied in
this study is illustrated in Figure 3.
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Figure 3 Illustration of the 5-Fold Cross-Validation procedure
D. Probability Calibration and Model Testing

The distinguishing aspect (novelty) of this study lies in its
emphasis on probability calibration. After the initial training,
two post-hoc calibration techniques were applied, within each
training fold, calibration was learned using only training data
and then applied to the corresponding validation fold to avoid
leakage. Platt scaling (sigmoid) and isotonic regression were
implemented as post-hoc mappings from raw model scores to
calibrated probabilities. Platt scaling (sigmoid) and Isotonic
Regression on the predicted probabilities from each model.
An internal decision checkpoint (see diamond in Figure 1)
was used to examine whether calibration improved the
agreement between predicted probabilities and observed
event frequencies, as evaluated by calibration metrics. If the
improvement was insufficient, the process returned to the
training stage for configuration review; if satisfactory, the
model proceeded to testing on the hold-out set (or
representative validation folds) to obtain stable ROC/PR
curves and reliability diagrams. This approach ensured that
the reported probabilities not only achieved good
discrimination between classes but also provided trustworthy
estimates for risk threshold—based clinical decision-making.
Formally, the calibration metrics can be defined as follows :

Brier(x) = % + Z?zl(pi + y;)? 4)

This metric ranges from 0 to 1, where lower values indicate
better calibration and more accurate probability estimates. It
directly penalizes deviations between predicted risks and
observed outcomes, making it suitable for evaluating
probabilistic predictions in clinical settings. In addition, the
calibration slope evaluates the agreement between predicted
and observed risks by regressing predicted probabilities
against true labels:

Y =a+Bp; ®)
A slope B =1 indicates that the model produces well-

calibrated probabilities, whereas values § <1  suggest
overestimation of risk and g > 1 suggest underestimation.

This provides an interpretable measure of how closely
predicted risks align with observed frequencies.

E. Model Evaluation Metrics

To comprehensively assess model performance, both
discrimination and calibration metrics were employed. For
metrics requiring hard class labels (accuracy and F1-score),
predicted probabilities were converted to class labels using a
default threshold of 0.5, Discrimination metrics included the
Area Under the Receiver Operating Characteristic Curve
(AUROC), Area Under the Precision Recall Curve (AUPRC),
accuracy, and F1-score, which provide insight into the models
ability to distinguish between patients with and without heart
disease. Calibration performance was measured using the
Brier score, calibration slope, and calibration intercept, which
quantify the agreement between predicted probabilities and
observed outcomes, in addition to calibration slope,
calibration intercept was computed to quantify systematic
over or under-prediction; an intercept close to O indicates no
overall bias in predicted risk, while positive/negative values
indicate under-/over-estimation, respectively.

Furthermore, graphical evaluation was performed by
plotting ROC and PR curves to visualize discrimination, as
well as reliability diagrams to visualize calibration before and
after applying post-hoc adjustment, calibration curves
(reliability diagrams) were plotted to visually compare
predicted probabilities against observed event frequencies
before and after post-hoc calibration. This dual evaluation
framework ensured that the models were not only able to
classify outcomes accurately but also to generate probability
estimates that are clinically meaningful and reliable for
decision-making.

F. Model Evaluation Metrics

Permutation importance was used as a model-agnostic
feature audit by measuring the performance decrease after
randomly permuting each feature in the validation data.
Because correlated predictors can share predictive
information, permutation importance may be unstable or
diluted across correlated features; therefore, the results are
interpreted as an importance ranking for model behavior
rather than causal attribution.

I11. RESULT AND DISCUSSION

A. Overall Model Performance

Table 3 presents the mean results of 5-fold cross-validation
for the three algorithms tested Logistic Regression (LR),
Random Forest (RF), and Gradient Boosting (GB) under both
uncalibrated and calibrated settings. Among them, LR
without calibration achieved the most balanced performance,
with an AUROC of 0.903, AUPRC of 0.911, accuracy of
82.2%, and F1-score of 0.835. In comparison, RF and GB
attained AUROC values of 0.893 and 0.891, respectively, but
these did not translate into better calibration, as indicated by
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their higher Brier scores and less optimal calibration slopes.
These findings suggest that for relatively small and structured

medical datasets, interpretable models such as LR can remain
highly competitive against more complex ensemble methods.

TABLE 3
MODEL PERFORMANCE ACROSS DISCRIMINATION AND CALIBRATION METRICS

Model Calibration AUROC AUPRC Acc F1 Brier CalSlope Callintercept
LR none 0.903217 0.911457 0.821739 0.835356 0.122287 0.140254 0.51877503
LR isotonic 0.89883 0.889734 0.826087 0.847302 0.126568 0.044822 0.53845088
RF platt 0.89318 0.89914 0.816304 0.834646 0.127738 0.174981 0.504663364
RF none 0.89318 0.89914 0.815217 0.834046 0.129192 0.140292 0.523808435
GB platt 0.891263 0.895894 0.811957 0.831623 0.130488 0.170012 0.495122682
GB none 0.891263 0.895894 0.809783 0.827765 0.132124 0.138206 0.5017918
RF isotonic 0.885984 0.869632 0.820652 0.843655 0.132271 0.043156 0.551206609
GB isotonic 0.880766 0.867366 0.806522 0.83015 0.137549 0.046113 0.546083116

The results in Table 3 emphasize that higher AUROC
values alone do not guarantee clinically reliable models. For
instance, RF and GB slightly trailed LR in AUROC but
suffered from inferior calibration, meaning their probability
outputs may be misleading in practice. This highlights the
importance of complementing discrimination metrics with
calibration measures, particularly when the model is intended
for decision support systems where predicted probabilities are
used to guide threshold-based actions, such as identifying
high-risk patients for early intervention).

LR + none 0.903 0.822 0.835
0.90

LR + isatonic 0.326 0.847
RF + platt 0.816 0.835 0.88

RF + none 0.815 0.834
0.86

GB + platt 0,891 D.896 0.812 0.832
GB + none 0.891 0.5%6 0.810 0.828 -0.84

RF + isatanic 0,586 0.870 0.821 0.844
-0.82

GB + isotonic 0.881 0.867 0.807 0.830

AUROC AUPRC Acc F1

Figure 4 Metric Heatmap by Model and Calibration

To provide a more intuitive comparison, Figure 4 presents
a heatmap of the main performance metrics (AUROC,
AUPRC, Accuracy, F1) across all models and calibration
methods. This visualization confirms that Logistic Regression
without calibration outperformed more complex ensemble
methods in terms of balanced discrimination, while isotonic
calibration yielded slight improvements in probability
reliability. The heatmap also highlights that Random Forest
and Gradient Boosting, despite achieving competitive
AUROC values, demonstrated less stable calibration patterns
compared to Logistic Regression.

B. ROC and Precision Recall Curves

Figure 5 displays the Receiver Operating Characteristic
(ROC) curves for the evaluated models. All models achieved
AUROC values above 0.88, indicating strong discriminatory

power in distinguishing between patients with and without
heart disease. Logistic Regression consistently maintained the
highest AUROC, confirming its robustness despite its simpler
structure compared to ensemble methods. Random Forest and
Gradient Boosting showed similar ROC performance but did
not provide additional advantages, aligning with previous
findings that complex models may not always outperform
interpretable linear models in small medical datasets.

1.04

0.81

0.6 1

0.4 4

True Positive Rate

0.2 —— LR+none
LR+isotonic
= RF+none

0.0 —— RF+isotonic

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5 ROC curves of LR, RF, and GB models

As illustrated in Figure 5, the ROC curve of Logistic
Regression clearly lies above those of Random Forest and
Gradient Boosting across most thresholds, suggesting
superior discriminative ability. While the ensemble models
captured non-linear interactions, their added complexity did
not translate into clinically meaningful improvements. This
finding supports the use of Logistic Regression as a robust yet
interpretable tool for structured medical datasets.

Figure 6 presents the Precision Recall (PR) curves, which
provide additional insight under class imbalance conditions.
Logistic Regression again achieved favorable performance,
maintaining a high level of precision across clinically relevant
recall thresholds. Random Forest and Gradient Boosting also
performed competitively, though their curves indicated
slightly less stability at higher recall levels. Taken together,
these results suggest that Logistic Regression offers not only
robust AUROC but also clinically meaningful trade-offs

JAIC Vol. 10, No. 1, February 2026: 327 — 335



JAIC

e-1SSN: 2548-6861 333

between sensitivity and specificity, making it a reliable choice
for heart disease risk prediction.
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0.9
5087
o
v}
f
2
Q0.7
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—— RF+nonhe
—— RF+isotonic
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 6 Precision Recall curves of LR, RF, and GB models

As shown in Figure 6, Logistic Regression maintained a
more stable precision across a wide range of recall values
compared to ensemble methods. This stability is critical in
clinical practice, where maintaining high precision at
moderate-to-high recall levels ensures that most flagged
patients are truly at risk, reducing unnecessary interventions
while still capturing the majority of true positive cases.

C. Calibration Analysis

Calibration analysis was performed to evaluate how well
the predicted probabilities aligned with the actual observed
frequencies of heart disease cases. While discrimination
metrics such as AUROC and AUPRC provide valuable
insight into classification accuracy, they do not guarantee that
the estimated probabilities are trustworthy for clinical
decision making. Therefore, we applied post-hoc calibration
techniques to assess whether Logistic Regression could yield
reliable probability estimates.

1.0 —#— LR + none
Perfect calibration »

o o
o @

I
'S
L

Observed frequency

) //

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability

Figure 7 Calibration Curve of Uncalibrated Logistic Regression

Figure 7 presents the calibration (reliability) curve of the
best-performing model. The solid blue line represents the
relationship between predicted and observed probabilities,
while the orange dashed line denotes perfect calibration. The
closer the blue curve aligns with the diagonal reference line,
the more reliable the probability estimates. Logistic
Regression with isotonic calibration showed strong
agreement with the diagonal, indicating well-calibrated
probabilities across most thresholds. Minor deviations at the
extremes suggest that probability estimates at very low or
high risk levels should be interpreted with caution.

This result reinforces the importance of calibration
analysis: even models with strong AUROC values may
misrepresent risk if not properly calibrated. By confirming
that the predicted probabilities closely match observed
outcomes, this study ensures that Logistic Regression is not
only effective in distinguishing cases from non-cases but also
reliable for supporting clinical decisions based on risk
thresholds.

D. Feature Importance Analysis

Table 4 summarizes the results of permutation importance
for the Logistic Regression model, presenting the ten most
influential predictors. The most significant features include
dataset origin, chest pain type (cp), number of major vessels
colored by fluoroscopy (ca), ST depression induced by
exercise (oldpeak), and exercise-induced angina (exang).
These results align with established cardiology evidence,
where chest pain characteristics, ischemic burden, and vessel
narrowing are consistently recognized as strong indicators of

heart disease risk.
TABLE 4
Topr 10 FEATURES BY PERMUTATION IMPORTANCE

Rank Feature Importance Score
1 dataset 0.0916
2 cp 0.0399
3 ca 0.0146
4 oldpeak 0.0126
5 exang 0.01
6 slope 0.0071
7 sex 0.006
8 thal 0.0033
9 thalch 0.0011
10 restecg -0.0002

The high ranking of cp and ca illustrates the interpretability
advantage of Logistic Regression, allowing direct mapping
between clinical features and predictive outcomes. At the
same time, the prominence of dataset origin as a top feature
suggests potential cohort-specific artifacts or biases
embedded within the Heart Desease dataset. Such findings
underscore a dual perspective: on one hand, feature
importance confirms known medical knowledge; on the other,
it warns researchers of hidden dataset limitations that must be
addressed before clinical deployment. This makes feature
analysis a valuable tool for both validating existing theories
and identifying structural issues in medical datasets.
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E. Discussion and Related Work

The results of this study reinforce the importance of
evaluating not only discrimination metrics but also calibration
when developing predictive models for clinical applications.
While many prior studies on cardiovascular risk prediction
have emphasized AUROC as the principal measure of
performance, our findings indicate that high AUROC does not
necessarily guarantee reliable probability estimates. Logistic
Regression consistently achieved balanced results across
discrimination and calibration metrics, confirming its
robustness for small structured medical datasets. In contrast,
ensemble methods such as Random Forest and Gradient
Boosting, despite their capacity to capture non-linear patterns,
did not consistently deliver superior calibration. These
observations are in line with several statistical reports that
highlight the trade-off between complexity and
interpretability, particularly in medical datasets where
reliability is essential.

Furthermore, the emphasis on probability calibration
directly connects this work with broader discussions in
applied statistics and public health. The stability of Logistic
Regression underlines its suitability for integration into
clinical decision support systems, where probability
thresholds guide patient management strategies. This aligns
with Sustainable Development Goal (SDG) 3, which
emphasizes strengthening early detection and effective
management of non-communicable diseases such as
cardiovascular illness. By ensuring that models provide well-
calibrated probabilities, this study contributes both
methodologically, by advancing applied statistical modeling
practices, and practically, by supporting health systems in
allocating limited resources more effectively.

IV. CONCLUSION

This study demonstrated that Logistic Regression (LR)
outperformed Random Forest (RF) and Gradient Boosting
(GB) when applied to the UCI Heart Disease dataset,
particularly in terms of balanced discrimination and
probability calibration. LR without additional calibration
achieved the best overall performance with AUROC 0.903
and AUPRC 0.911, while maintaining strong calibration
properties. This finding highlights that simple and
interpretable models can remain highly competitive, even
compared to more complex ensemble approaches, when
applied to small and structured medical datasets.

The novelty of this research lies in its emphasis on
probability calibration rather than solely focusing on
discrimination metrics. The results show that models with
slightly lower AUROC but superior calibration may be more
trustworthy for clinical decision-making. Moreover, feature
importance analysis confirmed the medical relevance of
predictors such as chest pain type (cp), number of major
vessels (ca), and ST depression (oldpeak), while also
highlighting potential dataset specific artifacts.

From a practical perspective, this work contributes to
Sustainable Development Goal (SDG) 3: Good Health and
Well-being, by providing a calibrated modeling strategy that
supports early detection of cardiovascular risk. Nevertheless,
the study is limited by the relatively small and homogeneous
dataset. Future research should validate these findings across
larger and more diverse cohorts, and explore alternative
calibration methods or hybrid modeling approaches to further
enhance clinical applicability.
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