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 Accurate and well-calibrated heart disease risk prediction is essential for supporting 
medical decision-making. This study analyzes Logistic Regression as an applied 

statistical model for heart disease prediction using the UCI Heart Disease dataset. 

Beyond discrimination metrics, we explicitly focus on probability reliability by 

evaluating calibration through the Brier score, calibration slope, and intercept, and 

by quantifying the impact of post-hoc calibration (isotonic regression and Platt 

scaling) on both calibration and discrimination. Model validation was conducted 

using stratified 5-fold cross-validation with AUROC, AUPRC, accuracy, and F1-

score as evaluation metrics. The results show that Logistic Regression achieved 

competitive performance (AUROC 0.903; AUPRC 0.911; Accuracy 0.822; F1-score 

0.835) with well-calibrated probability estimates relative to Random Forest and 

Gradient Boosting under the evaluated setting. Feature importance analysis using 

permutation methods identified chest pain type, number of major vessels (ca), ST 
depression (oldpeak), and exercise-induced angina (exang) as key predictors 

consistent with clinical literature. These findings indicate that simple applied 

statistical modeling, when paired with rigorous calibration assessment, can provide 

interpretable risk estimates that are more suitable for threshold-based decision 

support in early heart disease screening. 
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I. INTRODUCTION 

Cardiovascular disease remains the leading cause of 

mortality worldwide, including in developing countries such 
as Indonesia, where its prevalence continues to increase 

alongside lifestyle changes and demographic shifts [1], [2]. 

According to the World Health Organization, cardiovascular 

disease accounts for nearly one-third of all deaths globally, 

highlighting its significant public health impact [3], [4]. This 

condition is also directly linked to the third Sustainable 

Development Goal (SDG 3) of ensuring healthy lives and 

promoting well-being for all ages, as early detection and 

prevention of heart disease can significantly reduce premature 

mortality [5], [6]. Early detection of individuals at high risk is 

therefore essential, as it enables timely intervention, 
preventive measures, and more efficient allocation of 

healthcare resources [7], [8]. These needs encourage 

researchers to explore various mathematical and 

computational approaches that can support clinicians in risk 

stratification and medical decision-making. 

In the era of digital health, statistical modeling and 

machine learning have been widely adopted to analyze 

complex medical datasets [9], [10]. These approaches are 

capable of identifying hidden patterns and generating 
predictive models that can guide clinical decision support 

systems. Logistic Regression, in particular, has been one of 

the most frequently used techniques due to its simplicity, 

interpretability, and strong theoretical foundation in applied 

statistics [11]. Despite its advantages, many studies applying 

Logistic Regression in medical contexts tend to emphasize 

only the discrimination ability of the model, commonly 
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measured by the Area Under the Receiver Operating 

Characteristic curve (AUROC) [12], [13]. However, high 

AUROC does not necessarily guarantee reliable probability 

estimates, which are crucial in clinical settings where 

decisions often depend on calibrated risk values rather than 

binary predictions [14], [15]. 

Several advanced machine learning models such as 

Random Forest and Gradient Boosting have been introduced 

as alternatives to improve predictive performance [16], [17]. 
These ensemble-based models are capable of handling 

complex interactions and non-linear relationships within data, 

often resulting in higher accuracy compared to traditional 

statistical methods [18]. Nevertheless, these models are 

computationally demanding, less interpretable, and frequently 

suffer from poor probability calibration, which reduces their 

practical usefulness in medicine [19], [20]. To address this 

issue, calibration techniques such as isotonic regression and 

Platt scaling have been proposed as post-hoc methods to align 

predicted probabilities with actual outcome frequencies [21], 

[22]. While promising, research investigating the role of 
calibration in small and medium-sized medical datasets, such 

as the Heart Disease dataset, remains limited[23], [24]. 

Considering this gap, the present study focuses on a 

comprehensive evaluation of both discrimination and 

calibration aspects of predictive modeling in heart disease risk 

assessment. Logistic Regression is employed as the primary 

baseline model, with additional comparisons against Random 

Forest and Gradient Boosting to assess the trade-offs between 

simplicity, interpretability, and predictive reliability [25], 

[26], [27]. Furthermore, a feature importance analysis using 

permutation methods is conducted to highlight clinically 

relevant predictors such as chest pain type, number of major 
vessels, and ST segment depression. These features are not 

only statistically significant but also clinically interpretable, 

strengthening the link between computational results and real-

world medical knowledge[28], [29]. 

The objectives of this study are threefold: (i) to evaluate 

the discrimination and calibration performance of Logistic 

Regression in predicting heart disease risk using the Heart 

Disease dataset; (ii) to compare its performance with more 

complex ensemble methods; and (iii) to provide 

interpretability through a permutation-based feature audit that 

can assist clinicians in understanding the model’s predictions. 
By addressing both accuracy and calibration, this study 

contributes to the literature in biomathematics and applied 

statistics, while emphasizing the importance of probability 

reliability in predictive modeling for cardiovascular disease. 

Ultimately, this research aligns with the vision of SDG 3 by 

supporting innovations aimed at reducing premature deaths 

from non-communicable diseases through the integration of 

statistical modeling and health informatics[30], [31]. 

This study contributes by explicitly prioritizing probability 

reliability through a combined discrimination–calibration 

evaluation for heart disease risk prediction. In addition to 

reporting conventional discrimination metrics, we provide a 
dedicated calibration assessment using the Brier score, 

calibration slope and intercept, and calibration curves, and we 

quantify how post-hoc calibration (Platt scaling and isotonic 

regression) changes the quality of predicted probabilities. 

Random Forest and Gradient Boosting are included as 

comparative baselines to contextualize trade-offs between 

interpretability, model complexity, and calibration, rather 

than to support universal claims of model superiority. 

Because the analysis is conducted on a single classical UCI 

dataset with a relatively small sample size, the findings should 
be interpreted as a dataset-specific evaluation. External 

validation on larger and more contemporary clinical cohorts 

is therefore required before generalizing these conclusions to 

broader clinical settings. 

II. METHOD  

This research method was systematically arranged to 

ensure that the study could be replicated and scientifically 

justified. The overall stages of the study are illustrated in 

Figure 1, showing the sequential process beginning with data 

collection and continuing through pre-processing, descriptive 

analysis, model training, calibration, model testing, 
evaluation, and final interpretation of results. Each stage is 

explained in detail below. 

 

 

Figure 1 Flow Diagram of the Proposed Research Method 

Figure 1 provides an overview of the methodological 

workflow employed in this study, which was carefully 

structured to ensure replicability and scientific rigor. The 

process begins with the collection of the UCI Heart Disease 

dataset, followed by a series of preprocessing steps. These 

include imputation to handle missing values, normalization of 

numerical attributes to reduce scale bias, and one-hot 

encoding of categorical features to accommodate non-ordinal 

variables. A descriptive analysis was then performed to 
examine variable distributions, detect potential anomalies, 
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and assess the balance of target classes before proceeding to 

the modeling stage[32]. 

After preprocessing and descriptive analysis, three 

predictive models Logistic Regression (LR), Random Forest 

(RF), and Gradient Boosting (GB) were developed using a 5 

fold cross validation strategy to improve generalizability and 

reduce overfitting. At the calibration checkpoint, post hoc 

methods such as Platt scaling and isotonic regression were 
applied to refine probability estimates. The calibrated models 

were subsequently tested and evaluated using a combination 

of discrimination metrics (AUROC, AUPRC, and F1-score) 

and calibration measures (Brier score and calibration slope). 

Finally, feature importance analysis was conducted to 

highlight clinically relevant predictors and identify potential 

dataset-specific biases, ensuring both methodological 

robustness and interpretability. 

A. Data 

The dataset used in this study is the Heart Disease dataset, 
which is part of the UCI Machine Learning Repository[23]. 

This dataset has been widely adopted in cardiovascular risk 

prediction research because of its availability, standardized 

structure, and inclusion of clinically relevant features. The 

repository provides 303 patient records, after initial screening 

for incomplete entries, 299 records were retained for analysis. 

Each record contains 13 predictor variables and one binary 

target variable indicating the presence (1) or absence (0) of 

heart disease. 

The variables are categorized into demographic, clinical, 

and test-based features. A summary of the features is 

presented in Table 1, which provides information about the 
data type, range, and a short description of each attribute. 

 

TABLE 1  

DESCRIPTION OF DATASET FEATURES 

Feature Type Range / Categories Description 

age Numeric 29–77 Age of patient (years) 

sex Categorical 0 = female; 1 = male Gender 

cp Categorical 0–3 Chest pain type (4 categories) 

trestbps Numeric 94–200 Resting blood pressure (mmHg) 

chol Numeric 126–564 Serum cholesterol (mg/dl) 

fbs Categorical 0 = false; 1 = true Fasting blood sugar >120 mg/dl 

restecg Categorical 0–2 Resting electrocardiographic result 

thalach Numeric 71–202 Maximum heart rate achieved 

exang Categorical 0 = no; 1 = yes Exercise-induced angina 

oldpeak Numeric 0.0–6.2 ST depression induced by exercise 

slope Categorical 0–2 Slope of peak exercise ST segment 

ca Numeric 0–3 No. of major vessels (0–3) 

thal Categorical 3 = normal; 6 = fixed; 7 = rev Thalassemia type 

target Categorical 0 = no; 1 = yes Presence of heart disease (label) 

The target data distribution is relatively balanced, as shown 

in Table 2. 

TABLE 2  

DISTRIBUTION OF HEART DISEASE CLASSES 

Target Value Count Percentage 

0 = No heart disease 160 52.8% 

1 = heart desease 139 47.2% 

 

Based on Table 2, the positive class prevalence is 47.2% 

(139/299), while the negative class accounts for 52.8% 

(160/299). This prevalence also represents the baseline 

AUPRC of a no-skill classifier, meaning that AUPRC values 

should be interpreted relative to 0.472 rather than in isolation. 

Therefore, reporting both AUROC and AUPRC is necessary 
to provide a balanced view of discrimination under the 

observed class distribution. 

The structure of the dataset can also be illustrated through 

representative patient records. However, due to space 

limitations in the manuscript, the sample data are not 

displayed in full. Complete information and the full dataset 

can be accessed directly through the UCI Machine Learning 

Repository (Heart Disease Dataset), which enables other 

researchers to replicate or extend this study. 

B. Preprocessing Data 

Before modeling, a series of pre-processing steps was 

carried out to ensure data quality and consistency, in the raw 

dataset, missing entries (e.g., values encoded as “?”) were first 

treated as missing (NaN) before applying imputation. Missing 

values were handled using a simple imputation strategy that 

was consistent across validation folds (median for numerical 

features and mode for categorical features), so as not to 

significantly reduce the sample size. Numerical features (e.g., 

age, resting blood pressure, cholesterol, and oldpeak) were 
normalized using z-score standardization to unify scales and 

prevent large-scale variables from dominating the training 

process. Categorical features (e.g., sex, cp, restecg, exang, 

slope, thal, and ca-treated as discrete categories) were 

transformed using One Hot Encoding with the 

handle_unknown= ‘ignore’ option to avoid failures during 

cross validation. 
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Afterward, descriptive analysis was performed to examine 

feature distributions, class balance, and basic correlations 

among clinical factors. This stage provided initial clinical 

context, helped detect meaningful outliers, and ensured that 

no anomalous inputs would potentially lead to data leakage 

during the training process. Figure 2 illustrates the 

distribution of key numerical features prior to preprocessing, 

highlighting the variability of scales, skewed distributions, 

and potential outliers that justify the normalization and 

cleaning steps applied in this study. 

All preprocessing steps (imputation, standardization, and 

encoding) were fitted exclusively on the training folds and 

then applied to the corresponding validation fold within each 

cross-validation split. This pipeline-based setup prevents 

information leakage from the validation data into the training 

process and ensures an unbiased performance estimate.

 

Figure 2 Distribution of key numerical features 

C. Model Development and Cross Validation 

 Logistic Regression (LR) was employed as the baseline 

model in this study due to its interpretability and statistical 

robustness in medical research. Mathematically, LR models 

the relationship between predictors and the logit 𝓏 as : 

𝑧 = 𝛽0 + ∑  𝛽𝑖𝑥𝑖
𝑝
𝑡=1             (1) 

Where  𝛽0 is the intercept, 𝛽𝑖  are the model coefficients, and 

𝑥𝑖 are the predictor variables. This linear term 𝓏  is then 

transformed into a probability value using the logistic 

(sigmoid) function : 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑐−2          (2) 

which maps the output into the range [0,1][0,1][0,1], 
making it suitable for binary classification tasks such as heart 

disease prediction. The model parameters β\betaβ are 

estimated by maximizing the log-likelihood function, which 

quantifies the agreement between predicted probabilities and 

observed outcomes : 

𝐿(𝛽) = − ∑ [𝑦𝑖 log 𝑃(𝑦𝑖) + (1 − 𝑦𝑖) log (1 − 𝑃(𝑦𝑖))]𝑛
𝑖=𝑛                  

(3) 

After establishing LR as the baseline model, additional 

algorithms such as Random Forest (RF) and Gradient 

Boosting (GB) were developed for comparison. To obtain an 

unbiased estimate of out-of-sample performance within the 

dataset, a stratified 5-fold cross-validation technique was 

applied. Stratification was used to preserve the class 

distribution in each fold (shuffle=True, random_state=42). 
Performance metrics were computed on each validation fold 

and then summarized across folds,  in this process, the dataset 

was divided into five folds, where each fold acted once as a 

validation set while the remaining folds served as training 

data. This strategy not only reduced the risk of overfitting but 

also provided a more reliable estimation of model 

performance across different data partitions. To ensure a fair 

comparison, hyperparameters for Random Forest and 

Gradient Boosting were optimized using randomized search 

on the training folds, with an inner cross-validation loop for 

model selection (nested within the outer 5-fold evaluation). 
The search space included the number of estimators, tree 

depth, and learning rate–related parameters, and the best 

configuration was selected based on AUROC on the inner 

folds.The procedure of the 5-fold cross-validation applied in 

this study is illustrated in Figure 3. 
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Figure 3 Illustration of the 5-Fold Cross-Validation procedure 

D. Probability Calibration and Model Testing 

    The distinguishing aspect (novelty) of this study lies in its 

emphasis on probability calibration. After the initial training, 

two post-hoc calibration techniques were applied, within each 

training fold, calibration was learned using only training data 

and then applied to the corresponding validation fold to avoid 
leakage. Platt scaling (sigmoid) and isotonic regression were 

implemented as post-hoc mappings from raw model scores to 

calibrated probabilities. Platt scaling (sigmoid) and Isotonic 

Regression on the predicted probabilities from each model. 

An internal decision checkpoint (see diamond in Figure 1) 

was used to examine whether calibration improved the 

agreement between predicted probabilities and observed 

event frequencies, as evaluated by calibration metrics. If the 

improvement was insufficient, the process returned to the 

training stage for configuration review; if satisfactory, the 

model proceeded to testing on the hold-out set (or 

representative validation folds) to obtain stable ROC/PR 
curves and reliability diagrams. This approach ensured that 

the reported probabilities not only achieved good 

discrimination between classes but also provided trustworthy 

estimates for risk threshold–based clinical decision-making. 

Formally, the calibration metrics can be defined as follows :  

𝐵𝑟𝑖𝑒𝑟(𝑥) =
1

𝑁
+ ∑ (𝑝𝑖 + 𝑦𝑖)

2𝑛

𝑖=1
                     (4)                                                                

   This metric ranges from 0 to 1, where lower values indicate 
better calibration and more accurate probability estimates. It 

directly penalizes deviations between predicted risks and 

observed outcomes, making it suitable for evaluating 

probabilistic predictions in clinical settings. In addition, the 

calibration slope evaluates the agreement between predicted 

and observed risks by regressing predicted probabilities 

against true labels: 

𝑦𝑖̂ = 𝛼 + β𝑝𝑖                       (5)                                                                                                                

   A slope 𝛽 = 1 indicates that the model produces well-

calibrated probabilities, whereas values 𝛽 < 1  suggest 

overestimation of risk and 𝛽 > 1 suggest underestimation. 

This provides an interpretable measure of how closely 

predicted risks align with observed frequencies. 

E. Model Evaluation Metrics 

    To comprehensively assess model performance, both 

discrimination and calibration metrics were employed. For 
metrics requiring hard class labels (accuracy and F1-score), 

predicted probabilities were converted to class labels using a 

default threshold of 0.5, Discrimination metrics included the 

Area Under the Receiver Operating Characteristic Curve 

(AUROC), Area Under the Precision Recall Curve (AUPRC), 

accuracy, and F1-score, which provide insight into the models 

ability to distinguish between patients with and without heart 

disease. Calibration performance was measured using the 

Brier score, calibration slope, and calibration intercept, which 

quantify the agreement between predicted probabilities and 

observed outcomes, in addition to calibration slope, 

calibration intercept was computed to quantify systematic 
over or under-prediction; an intercept close to 0 indicates no 

overall bias in predicted risk, while positive/negative values 

indicate under-/over-estimation, respectively.  

    Furthermore, graphical evaluation was performed by 

plotting ROC and PR curves to visualize discrimination, as 
well as reliability diagrams to visualize calibration before and 

after applying post-hoc adjustment, calibration curves 

(reliability diagrams) were plotted to visually compare 

predicted probabilities against observed event frequencies 

before and after post-hoc calibration. This dual evaluation 

framework ensured that the models were not only able to 

classify outcomes accurately but also to generate probability 

estimates that are clinically meaningful and reliable for 

decision-making. 

F. Model Evaluation Metrics 

Permutation importance was used as a model-agnostic 

feature audit by measuring the performance decrease after 

randomly permuting each feature in the validation data. 

Because correlated predictors can share predictive 

information, permutation importance may be unstable or 

diluted across correlated features; therefore, the results are 

interpreted as an importance ranking for model behavior 

rather than causal attribution. 

 

III. RESULT AND DISCUSSION 

A. Overall Model Performance 

Table 3 presents the mean results of 5-fold cross-validation 

for the three algorithms tested Logistic Regression (LR), 
Random Forest (RF), and Gradient Boosting (GB) under both 

uncalibrated and calibrated settings. Among them, LR 

without calibration achieved the most balanced performance, 

with an AUROC of 0.903, AUPRC of 0.911, accuracy of 

82.2%, and F1-score of 0.835. In comparison, RF and GB 

attained AUROC values of 0.893 and 0.891, respectively, but 

these did not translate into better calibration, as indicated by 
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their higher Brier scores and less optimal calibration slopes. 

These findings suggest that for relatively small and structured 

medical datasets, interpretable models such as LR can remain 

highly competitive against more complex ensemble methods. 

TABLE 3  

MODEL PERFORMANCE ACROSS DISCRIMINATION AND CALIBRATION METRICS 

Model Calibration AUROC AUPRC Acc F1 Brier CalSlope CalIntercept 

LR none 0.903217 0.911457 0.821739 0.835356 0.122287 0.140254 0.51877503 

LR isotonic 0.89883 0.889734 0.826087 0.847302 0.126568 0.044822 0.53845088 

RF platt 0.89318 0.89914 0.816304 0.834646 0.127738 0.174981 0.504663364 

RF none 0.89318 0.89914 0.815217 0.834046 0.129192 0.140292 0.523808435 

GB platt 0.891263 0.895894 0.811957 0.831623 0.130488 0.170012 0.495122682 

GB none 0.891263 0.895894 0.809783 0.827765 0.132124 0.138206 0.5017918 

RF isotonic 0.885984 0.869632 0.820652 0.843655 0.132271 0.043156 0.551206609 

GB isotonic 0.880766 0.867366 0.806522 0.83015 0.137549 0.046113 0.546083116 

 

The results in Table 3 emphasize that higher AUROC 

values alone do not guarantee clinically reliable models. For 

instance, RF and GB slightly trailed LR in AUROC but 

suffered from inferior calibration, meaning their probability 

outputs may be misleading in practice. This highlights the 

importance of complementing discrimination metrics with 

calibration measures, particularly when the model is intended 

for decision support systems where predicted probabilities are 

used to guide threshold-based actions, such as identifying 

high-risk patients for early intervention). 
 

 

Figure 4 Metric Heatmap by Model and Calibration  

To provide a more intuitive comparison, Figure 4 presents 

a heatmap of the main performance metrics (AUROC, 

AUPRC, Accuracy, F1) across all models and calibration 

methods. This visualization confirms that Logistic Regression 

without calibration outperformed more complex ensemble 

methods in terms of balanced discrimination, while isotonic 
calibration yielded slight improvements in probability 

reliability. The heatmap also highlights that Random Forest 

and Gradient Boosting, despite achieving competitive 

AUROC values, demonstrated less stable calibration patterns 

compared to Logistic Regression. 

B. ROC and Precision Recall Curves 

Figure 5 displays the Receiver Operating Characteristic 

(ROC) curves for the evaluated models. All models achieved 

AUROC values above 0.88, indicating strong discriminatory 

power in distinguishing between patients with and without 

heart disease. Logistic Regression consistently maintained the 

highest AUROC, confirming its robustness despite its simpler 

structure compared to ensemble methods. Random Forest and 

Gradient Boosting showed similar ROC performance but did 

not provide additional advantages, aligning with previous 

findings that complex models may not always outperform 

interpretable linear models in small medical datasets. 

 

 

Figure 5 ROC curves of LR, RF, and GB models 

As illustrated in Figure 5, the ROC curve of Logistic 

Regression clearly lies above those of Random Forest and 

Gradient Boosting across most thresholds, suggesting 

superior discriminative ability. While the ensemble models 

captured non-linear interactions, their added complexity did 

not translate into clinically meaningful improvements. This 

finding supports the use of Logistic Regression as a robust yet 

interpretable tool for structured medical datasets. 

Figure 6 presents the Precision Recall (PR) curves, which 
provide additional insight under class imbalance conditions. 

Logistic Regression again achieved favorable performance, 

maintaining a high level of precision across clinically relevant 

recall thresholds. Random Forest and Gradient Boosting also 

performed competitively, though their curves indicated 

slightly less stability at higher recall levels. Taken together, 

these results suggest that Logistic Regression offers not only 

robust AUROC but also clinically meaningful trade-offs 
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between sensitivity and specificity, making it a reliable choice 

for heart disease risk prediction. 

 

 

Figure 6 Precision Recall curves of LR, RF, and GB models 

As shown in Figure 6, Logistic Regression maintained a 

more stable precision across a wide range of recall values 

compared to ensemble methods. This stability is critical in 

clinical practice, where maintaining high precision at 

moderate-to-high recall levels ensures that most flagged 

patients are truly at risk, reducing unnecessary interventions 

while still capturing the majority of true positive cases. 

C. Calibration Analysis 

Calibration analysis was performed to evaluate how well 
the predicted probabilities aligned with the actual observed 

frequencies of heart disease cases. While discrimination 

metrics such as AUROC and AUPRC provide valuable 

insight into classification accuracy, they do not guarantee that 

the estimated probabilities are trustworthy for clinical 

decision making. Therefore, we applied post-hoc calibration 

techniques to assess whether Logistic Regression could yield 

reliable probability estimates. 

 

 

Figure 7  Calibration Curve of Uncalibrated Logistic Regression 

Figure 7 presents the calibration (reliability) curve of the 

best-performing model. The solid blue line represents the 

relationship between predicted and observed probabilities, 

while the orange dashed line denotes perfect calibration. The 

closer the blue curve aligns with the diagonal reference line, 

the more reliable the probability estimates. Logistic 

Regression with isotonic calibration showed strong 

agreement with the diagonal, indicating well-calibrated 
probabilities across most thresholds. Minor deviations at the 

extremes suggest that probability estimates at very low or 

high risk levels should be interpreted with caution.  

This result reinforces the importance of calibration 

analysis: even models with strong AUROC values may 

misrepresent risk if not properly calibrated. By confirming 

that the predicted probabilities closely match observed 

outcomes, this study ensures that Logistic Regression is not 

only effective in distinguishing cases from non-cases but also 

reliable for supporting clinical decisions based on risk 

thresholds. 

D. Feature Importance Analysis 

Table 4 summarizes the results of permutation importance 

for the Logistic Regression model, presenting the ten most 

influential predictors. The most significant features include 

dataset origin, chest pain type (cp), number of major vessels 

colored by fluoroscopy (ca), ST depression induced by 

exercise (oldpeak), and exercise-induced angina (exang). 

These results align with established cardiology evidence, 

where chest pain characteristics, ischemic burden, and vessel 
narrowing are consistently recognized as strong indicators of 

heart disease risk. 
TABLE 4  

TOP 10 FEATURES BY PERMUTATION IMPORTANCE 

Rank Feature Importance Score 

1 dataset 0.0916 

2 cp 0.0399 

3 ca 0.0146 

4 oldpeak 0.0126 

5 exang 0.01 

6 slope 0.0071 

7 sex 0.006 

8 thal 0.0033 

9 thalch 0.0011 

10 restecg -0.0002 

 
The high ranking of cp and ca illustrates the interpretability 

advantage of Logistic Regression, allowing direct mapping 

between clinical features and predictive outcomes. At the 

same time, the prominence of dataset origin as a top feature 

suggests potential cohort-specific artifacts or biases 

embedded within the Heart Desease dataset. Such findings 

underscore a dual perspective: on one hand, feature 

importance confirms known medical knowledge; on the other, 

it warns researchers of hidden dataset limitations that must be 

addressed before clinical deployment. This makes feature 

analysis a valuable tool for both validating existing theories 

and identifying structural issues in medical datasets.  
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E. Discussion and Related Work 

The results of this study reinforce the importance of 

evaluating not only discrimination metrics but also calibration 
when developing predictive models for clinical applications. 

While many prior studies on cardiovascular risk prediction 

have emphasized AUROC as the principal measure of 

performance, our findings indicate that high AUROC does not 

necessarily guarantee reliable probability estimates. Logistic 

Regression consistently achieved balanced results across 

discrimination and calibration metrics, confirming its 

robustness for small structured medical datasets. In contrast, 

ensemble methods such as Random Forest and Gradient 

Boosting, despite their capacity to capture non-linear patterns, 

did not consistently deliver superior calibration. These 

observations are in line with several statistical reports that 
highlight the trade-off between complexity and 

interpretability, particularly in medical datasets where 

reliability is essential. 

Furthermore, the emphasis on probability calibration 

directly connects this work with broader discussions in 

applied statistics and public health. The stability of Logistic 

Regression underlines its suitability for integration into 

clinical decision support systems, where probability 

thresholds guide patient management strategies. This aligns 

with Sustainable Development Goal (SDG) 3, which 

emphasizes strengthening early detection and effective 
management of non-communicable diseases such as 

cardiovascular illness. By ensuring that models provide well-

calibrated probabilities, this study contributes both 

methodologically, by advancing applied statistical modeling 

practices, and practically, by supporting health systems in 

allocating limited resources more effectively. 

 

IV. CONCLUSION 

This study demonstrated that Logistic Regression (LR) 

outperformed Random Forest (RF) and Gradient Boosting 

(GB) when applied to the UCI Heart Disease dataset, 

particularly in terms of balanced discrimination and 
probability calibration. LR without additional calibration 

achieved the best overall performance with AUROC 0.903 

and AUPRC 0.911, while maintaining strong calibration 

properties. This finding highlights that simple and 

interpretable models can remain highly competitive, even 

compared to more complex ensemble approaches, when 

applied to small and structured medical datasets. 

The novelty of this research lies in its emphasis on 

probability calibration rather than solely focusing on 

discrimination metrics. The results show that models with 

slightly lower AUROC but superior calibration may be more 
trustworthy for clinical decision-making. Moreover, feature 

importance analysis confirmed the medical relevance of 

predictors such as chest pain type (cp), number of major 

vessels (ca), and ST depression (oldpeak), while also 

highlighting potential dataset specific artifacts. 

From a practical perspective, this work contributes to 

Sustainable Development Goal (SDG) 3: Good Health and 

Well-being, by providing a calibrated modeling strategy that 

supports early detection of cardiovascular risk. Nevertheless, 

the study is limited by the relatively small and homogeneous 

dataset. Future research should validate these findings across 

larger and more diverse cohorts, and explore alternative 

calibration methods or hybrid modeling approaches to further 

enhance clinical applicability. 
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