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Tuberculosis (TB) remains a major health challenge, and predicting treatment
outcomes continues to be difficult in real-world settings. Recent advances in
Artificial Intelligence (Al), particularly transformer-based models, have shown
promise in modelling longitudinal, multimodal, and heterogeneous TB data.
However, their clinical adoption is constrained by limited interpretability, fairness
concerns, and deployment challenges. This study presents a systematic literature
review of explainable transformer and machine learning models used for TB
prognosis. Following PRISMA guidelines, searches across ACM, IEEE Xplore,
PubMed, and ScienceDirect identified 17 peer-reviewed studies published between
2020 and 2025 that met the inclusion criteria. The review synthesises evidence on
predictive performance, explainability techniques, and deployment considerations.
Findings indicate that transformer-based and deep learning models generally
outperform conventional machine learning approaches on longitudinal and
multimodal data. In contrast, traditional models remain competitive for tabular
clinical datasets. Explainability approaches are dominated by feature importance
methods and SHAP, with limited use of intrinsic transformer interpretability
mechanisms. Persistent challenges include data scarcity, limited generalisability,
computational overhead, insufficient evaluation of fairness, and weak alignment
with real-world TB care workflows. Building on these findings, the study proposes
the Explainable Transformer Adoption Model for TB Prognosis (ETAMTB) as a
conceptual clinical adoption framework integrating multimodal transformers,
explainability layers, clinician-facing interfaces, and deployment enablers. Overall,
the review concludes that effective Al adoption in TB care requires balancing
predictive performance, interpretability, and equity, and that explainable
transformers should currently be viewed as promising but largely experimental tools
rather than deployment-ready solutions.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

As the leading infectious disease killer after COVID-19,
tuberculosis (TB) continues to be a serious global health
concern, accounting for more deaths than HIV/AIDS[1][2].
TB, which is caused by Mycobacterium tuberculosis, mainly
affects the lungs but can also affect other organs like the brain
or spine.[1], [3]. When an infected individual coughs or
sneezes, airborne particles are released into the air, causing
transmission[4].TB can also be latent and asymptomatic,

while other cases can be active, presenting symptoms such as
fever, night sweats, weakness, and loss of appetite[5].

Drug-resistant strains (DR-TB) are also a big concern
when dealing with TB because they have been linked to more
complex diagnoses, lengthy and toxic therapies, and increased
death rates[1], [9]. Moreover, TB is one of the contributing
factors to deaths associated with HIV infections worldwide
because comorbid conditions such as HIV can greatly
enhance the progression of TB [7],[11].
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One of the most crucial factors to measure the
effectiveness of therapeutic efficacy in this case is to make a
correct prediction about treatment outcomes, which can
merely be classified into success or failure.[8], [12]. The
emergence of data-driven approaches such as machine
learning (ML) provides unique opportunities to investigate
correlations between patient information, biomarkers, and
socioeconomic variables and outcomes of prognosis for this
particular disease[13]. Causes of treatment failure have been
identified as including income, family size, patient
knowledge, and the quality of care received. In addition to
these factors, crowding and inadequate infection control
within medical facilities contribute to disease transmission
and poor outcomes [14]-[16].

Artificial Intelligence (Al) refers to computer systems
capable of performing tasks that normally require human
intelligence. Machine Learning (ML) is a subset of AI; which
involves algorithms that learn from data to make predictions
or classifications [17][18]. Machine Learning algorithms have
been extensively researched for predicting treatment
outcomes in various diseases [19], [20]. Predicting treatment
outcomes using ML allows clinicians to identify potential
treatment failure or relapse risks and the occurrence of
reactions, allowing adjustments to treatment plans
maximising treatment success rates [21]. Research on the
application of ML algorithms for predicting TB treatment
outcomes is limited compared to the research focused on TB
diagnosis and spread [22]. Early studies used traditional
algorithms such as logistic regression and random forests
[23]. However, data has become more complex and
multimodal, ML models, especially transformer architecture,
have shown superior performance [13], [24], [25].

Since their introduction in the seminal 2017 paper
"Attention is All You Need" [26], transformer models have
revolutionised Al through their innovative self-attention
mechanisms. This architecture, which includes integrated
encoder-decoder components and a scalable structure, enables
the models to contextualise input data and generate
sophisticated predictions [26], [27]. Transformers have
achieved tremendous success in healthcare regarding the
analysis of complex data types, such as genomic sequences,
sequential patient records, and medical images [26], [28].
Their self-attention mechanism provides a key structural
advantage over recurrent architectures like Long Short-Term
Memory (LSTM) or Gated Recurrent Unit (GRU) for
modelling long-range dependencies in longitudinal data, as it
processes sequences in parallel rather than sequentially and
mitigates issues of vanishing gradients [27], [28]. This makes
them particularly suited for the temporal and multimodal
fusion tasks prevalent in TB prognosis. However, most of the
challenges exist in the way of their clinical adoption. These
models usually function like black boxes that provide
accurate predictions without providing a clear explanation,
which in turn depletes clinical confidence [7], [26].
Furthermore, transformers that have been trained on data from
high-income settings often exhibit poor generalisability in

low-income areas [28], [29]. However, their high hardware
and cloud-computing requirements pose further obstacles to
implementation in resource-constrained areas where the
burden of tuberculosis is highest. [15], [27].

This systematic review represents a novel and imperative
advance in these research avenues by focusing not only on
diagnosis but also on prognostic capabilities through the
application of explainable transformers. Although other
systematic reviews have been conducted by other researchers,
like [30] have extensively described the TB diagnosis
application via artificial intelligence models in TB treatment
and management, their focus remained broad and operative
solely in terms of diagnosis and screening capabilities. They
have not only restricted their discussions to comprehensive
utilisation but have also often aggregated broad deep learning
models like CNN without distinguishing newer architectures.
Similarly, other systematic reviews, such as [31], have
explored therapeutic efficacy but remained broad and general
in their descriptions and encompassed adverse drug reactions
and drug resistance without examining the architectural
specifics of these adverse effects. Conversely, this systematic
review for the first time specifically identifies and assesses
these newly developed transformer models like Decoder
Transformer (DT-THRE) and their effectiveness in TB
treatment, in accurately forecasting patient consequences like
treatment failure, recurrence and mortality. In addition to the
aspects discussed above, this systematic study addresses
critical gaps noted in other landmark studies, such as [32],
which analysed prediction models developed prior to the
widespread adoption of transformers and relied heavily on
traditional statistical methods, such as logistic regression.
This study deviates from these conventional approaches by
synthesising and identifying these newly developed models,
like explainable transformers and assessing their
effectiveness to newly direct attention towards TB treatment
forecasting methods, like treatment failure. In addition to the
specifics discussed above, this systematic study further
explores new areas related to newly developed methods, such
as multimodal data fusion, synthesising how modern
transformers  integrate  unstructured  clinical  and
sociodemographic data with structured electronic health
records to enhance predictive performance. Furthermore, the
study moves beyond the superficial treatment of black-box
limitations in previous systematic literature reviews by
rigorously assessing architectural explainability. This review
critically evaluates inherent interpretability mechanisms such
as attention weights that are central to fostering clinical trust
and autonomy in high-stakes decision-making, rather than
merely noting the use of generic tools like SHAP. The
primary contribution of this article is a systematic synthesis
of explainable Al models and ML models for predicting TB
treatment outcomes complemented by the ETAMTB
framework as a synthesis-derived conceptual guide for
clinical adoption rather than an empirically validated system.
Unlike prior work, it uniquely connects predictive accuracy,
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clinical interpretability, and adoption challenges in low-
resource, high-burden settings.

Despite the widespread applications of Al in TB management,
there remains a gap in effectively utilising diagnostic success
to inform prognostic actions. Presently, systematic reviews
have primarily focused on reporting the aggregate
performance of general approaches to diagnosis and diagnosis
via broad deep learning models, but have not necessarily
assessed newer models, such as transformers, in depth.
Reports on approaches that utilise intrinsic methods of
explanation, rather than general attention heat maps derived
directly from these complex models, to promote clinicians'
trust and enable immediate decision-making have not yet
been explored in depth. Additionally, this review will address
this gap by focusing solely on the role of explainable
transformer models, specifically those designed for
prognostic functionality and trustworthiness in TB treatment.
To this end, the review is guided by the following research
questions:

1. How do transformer-based models compare to
traditional machine learning algorithms in predicting
TB treatment outcomes

2. What explainability techniques are integrated into
transformer-based models to enhance clinical
interpretability in the context of TB treatment
outcomes prediction.

3. What are the challenges faced in deployment and
adaptability of transformer models for TB treatment
outcome prediction.

To address these questions, this paper is structured as
follows: Section II describes the review methodology, where
the search strategy, eligibility criteria, study selection, quality
assessment and inclusion and exclusion criteria used to obtain
relevant studies are specified. Section III shows the results of
the review and the discussions, implications, limitations and
direction for future work of the study. Section IV concludes
the review.

II. METHODS
This systematic review was conducted following the
Preferred Reporting Items for Systematic Reviews and Meta
Analysis (PRISMA). The PRISMA consists of a flow diagram
divided into four parts: identification, screening, eligibility,
and included.

A. Search Strategy

After the research questions were formulated, keywords
that are relevant to the research were identified. The keywords
were used to formulate search queries to identify articles
relevant to this study. A search was conducted on the 22" of
September 2025, through the search papers were obtained
from four main databases: ACM, IEEE Xplore, PubMed and
ScienceDirect. The keywords were used as follows

("tuberculosis" OR "TB" OR "mycobacterium tuberculosis")
AND ("treatment outcome" OR "treatment success" OR
"treatment failure" OR "prognosis" OR "therapy response")
AND ("transformer model" OR "BERT" OR "attention-based
model" OR "encoder-decoder") AND ("explainable AI" OR
"XAI" OR "model interpretability" OR "explainability" OR
"attention visualisation" OR "transparency") AND ("machine
learning" OR "artificial intelligence" OR "AI" OR "predictive
model") AND (2020:2025[dp]) AND (English[lang]). A total
of 205 articles were retrieved from the four databases: ACM
(n = 33), PubMed (n = 46), IEEE Xplore (n = 63) and
ScienceDirect (n = 63). These included conference papers,
editorials, abstracts, preprints, peer-reviewed papers,
empirical papers and reviews.

B. Screening

All retrieved articles were imported into Mendeley
Reference Manager. Duplicates were automatically identified
and removed. During title and abstract screening, studies were
evaluated for the following indicators: presence of
tuberculosis or TB treatment outcome in the title or abstract,
evidence of Al, ML or Transformer model use and mention
of explainability, interpretability or transparency in the
methodology. Articles that did not meet these criteria were
excluded. Out of 205 initial records, 113 duplicates were
removed, leaving 92 papers. After title and abstract screening,
57 papers were excluded, leaving 35 for full-text review.
Eighteen were excluded at this stage, resulting in 17 studies
included for final analysis.

TABLE 1
INCLUSION & EXCLUSION CRITERIA

Inclusion Exclusion

Studies focused on TB
diagnosis or detection

Studies predicting TB treatment
outcomes using Al, ML or
transformer models

Integration of explainable Al
(XAl or interpretability

Studies without explainability
or interpretability components

Peer-reviewed full-text journal,
conference papers (2020-2025)

Preprints, Editorials, Book
chapters and abstract only

Studies  addressing clinical
deployment challenges

Studies not addressing clinical
application or deployment
challenges

Studies written in English Studies not written in English

C. Eligibility Criteria

The review focused on peer-reviewed empirical studies
published between 2020 and 2025 that investigated TB
treatment outcomes using transformer-based or other
explainable Al models. Studies were considered eligible if
they: (1) predicted definitive TB treatment outcomes, (2)
applied a transformer architecture or integrated an explainable
Al (XAI) technique with any ML model; (3) utilised relevant
clinical data modalities (4) reported quantitative performance
metrics or qualitative interpretability insights. Studies were
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excluded if they focused only on TB diagnosis or detection,
addressed other diseases unrelated to TB and were non-peer-
reviewed materials.

D. Included

A total of 92 studies progressed to title and abstract
screening after removal of duplicates. From these, 35 articles
were selected for full-text review based on their relevance to
tuberculosis treatment outcome prediction and the use of
artificial intelligence methods. Following a detailed
assessment, 18 studies were excluded for reasons such as
focusing exclusively on TB diagnosis, lacking an
explainability component, or not employing transformer-
based or comparable predictive models. Consequently, 17
studies met all inclusion criteria and were included in the final
qualitative synthesis of this systematic review.

E. Data Extraction and Synthesis

Studies were downloaded and retrieved from the web and
saved into a file named SLR Reference 1. The folder was
imported into Mendeley Reference Manager, where the
duplicates were then removed. After the eligibility screening
process was complete, the remaining studies were then saved
in another folder named SLR references 2. An Excel sheet
was developed by SS to extract relevant data from studies.
The Excel sheet had columns that included author, year, study
design, data modality, transformer or ML or Al model used,
explainability method and relevance to research questions.
These columns were used to extract key data from studies.
The author SS conducted the initial data extraction and BN
verified all extractions. Full-text papers were independently
assessed by both reviewers against the predefined inclusion
and exclusion criteria, leaving the final included studies for
full analysis, which were now moved and saved in the folder
FINAL SLR References.

F.  Quality Assessment

The methodological quality, credibility, and relevance of
the 17 included primary studies were assessed using the
Critical Appraisal Skills Programme (CASP) checklist [31].
The CASP tool allows for a systematic assessment of research
evidence by taking into consideration such aspects as the
validity of the study, its methodological rigour, and the
applicability of its findings [32]. As a result, each study was
rated according to the criteria of clear research aims and
objectives, methodological appropriateness, study design,
data collection, data analysis, research ethics, and the research
question addressed. Studies were considered low quality if
they had severe methodological issues and incomplete
descriptions; moderate quality if they met most criteria but
had minimal limitations; and high quality if they exhibited
clear aims, sophisticated or robust methodology, appropriate
validation, and extensive reporting. Additionally, three
studies employed multimodal data, whereas most used
retrospective data. Lastly, the research involved numerous

methodologies due to the differences in the research
objectives of the studies.Approaches to model validation that
enhance reliability were described in 11 articles. In terms of
interpretability, four studies utilised formal explainability
techniques, while six studies provided simple feature-
importance analyses. Ethical considerations were well
reported in nine studies, while six others mentioned them in
passing or made no reference. Thus, the studies ranged in
quality, with seven receiving a high-quality rating due to
comprehensive methodology and validation, four rated
moderate quality, and six categorised as low quality due to
significant reporting or methodological gaps. Appendix A
presents the adapted CASP quality assessment of the study
whilst Appendix B presents the quality assessment score
criteria.

III. RESULTS AND DISCUSSION

The systematic search and selection process, detailed in
the PRISMA flow diagram. Given the relatively limited
number of included studies (n=17) and their methodological
heterogeneity, of varying methods, this synthesis identifies
trends rather than firm conclusions as it presents their
characteristics and findings.
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Figure 1: PRISMA Screening Result
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TABLE 2
RESULTS TABLE

Aut | Country | Model Type/ | Explainability Performan | Key Predictors/ | Challenges/ | Deployment Key Findings

hor/ Name Technique used | ce Metrics | Data Modalities | Limitations | & Adaptation

Year Context

[33] | China Radiomic e  Feature AUC e Longitudin | ¢ Small | Hospital level | Fused
models importance | (0.764- al CT scans dataset | imaging radiomics, deep
Deep via 0.867), e  Demograp e High integration learning
Learning radiomics internal/ex hic data comput improved
(Gradient e  Fusion ternal e  Clinical ational prediction of
Boosting, interpretab | validation data cost DR-TB
Small  Deep ility outcomes early
Learning in treatment
Model

[34] | D.R. CNN vs. | o  Implicit Accuracy | e  Clinical e Limite | Academic CNN

Congo classical ML visual 94%, data d evaluation, outperformed
(SVM, KNN, feature AUC e  Demograp dataset | low cost | traditional
RF, Decision learning 93%, hic data e Lack of | implementabl | models; suitable
Tree) Sensitivity real ein Congolese | for early TB
88%, Fl1- world clinics screening.
score testing
91.3% e  Model
interpr
ctabilit
y

[35] | China LASSO-Cox o  Coefficient | AUC e Blood e Only Clinical use | Clinical
regression Interpretati | 0.766 e Biochemic Chines | for prognosis | indicator based
(clinical on (train), al markers e prediction in | risk score
prognostic (transparen | 0.796 cohorts | hospital TB | effectively
model) t statistical | (validatio e  Manual | management predicted TB

model) n) data treatment
entry outcomes
[36] | Brazil/ Logistic e  Coefficient | C statistic | ¢  HIV status, | ¢ Limite | Web  based | Simple clinical
USA regression s 0.77 Hypertensi d by | point of care | model predicted
e  Nomogra :bootstrap on missin | tool for TB | unsuccessful TB
m validation | e  Drug use g data prognosis outcomes with
(interpreta o Age e No good
ble) e  Education externa discrimination
level 1
validati
on
[37] | Colombi | Machine e  Feature Sensitivity | ¢  EMR text e Limite | Designed for | Al models,
a learning importance | 73 % e  Clinical d low resource, | especially
(Random (clinician data structur | multi  source | clinical data
Forest, validated) ed diagnostic, driven,
Natural EMR prognosis outperform
Language data detection traditional
Processing system diagnostics,
models, Data prognosis
Fusion) detection.

[30] | India Al for TB | e CNN Narrative e Radiology | e Limite | Aladoptionin | Al can
diagnosis & heatmaps, | synthesis genomics d Indian clinics | revolutionise
treatment saliency ° Clinical explain B detection

data ability and  prognosis
e Data but ethical
bias deployment s
e FEthical essential
barriers
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[38] | Israel Transformer Deep Qualitativ Vision text | ¢  Compl | Foundation Introduces
Explainability Taylor e visual transformer ex model for | explainability
model Decompos | heat maps features implem | visual method for
ition based entatio | explainability | transformer
relevance n beyond attention
propagatio visualisation
n
[39] | China Al models SHAP Comparati Clinical e  Publica | General Al models
(CNN, Feature ve data tion recommendati | improve
Random Importanc | narrative Imaging bias on for Al use | monitoring of
Forest) e Genomic in therapy | Pulmonary TB
Treatment monitoring treatment
data efficacy and
drug resistance
[15] | South Logistic Model Accuracy Comorbidit | © Limite | Public health | Comorbidities
Africa Regression Coefficient | 64% ies (HIV, d and primary | strongly affect
$ Recall obesity, sample | care DR-TB
(interpreta | 95% hypertensio size integration treatment
ble) F1 score n) outcomes,
76% integrated care
is vital
[40] | Canada | DT-THRE Temporal Accuracy Sequential | ¢  Model | Prototype for | Incorporating
(Decoder attention 78.5% EHR data comple | decision temporal
Transformer embedding | Baseline xity support in | encoding
for Temporal visualisati | 40.5% disease significantly
Health Data on prediction and | improves
prognosis outcomes
prediction
accuracy
[11] | China XGBoost SHAP AUC = resistance e Limite | hospital XGBoost model
Random (Shapley 0.928 (test type, d Electronic with SHAP
Forest Additive set) Activated externa | Medical improved
Boruta Explanatio Partial 1 Record interpretability
feature ns) Thrombopl validati | (EMR) data to | and early
selection astin Time, on; predict detection of
Thrombin single treatment treatment failure
Time, centre outcomes or | among TB-DM
Platelet data risks in | patients.
Distributio patients  who
n  Width, have both
Prothrombi tuberculosis
n Time (TB) and
clinical & diabetes
CT data mellitus
(DM).
[41] | India Decision Feature AUC = Clinical e Region | Indian Decision  Tree
Tree, Random weight 0.909 data al Randomised outperformed
Forest, SVM, visualisati | Accuracy general | Controlled others, showing
Naive Bayes on =92.7% isabilit | Trial (RCT) to | high precision
(implicit) y forecast when | and recall; ML
e Interpr | @ TB patient's | viable for
etabilit | sputum clinical TB
y culture  will | monitoring.
limited | turn negative
during
treatment.
[23] | Malaysi | XGBoost Feature Accuracy Demograp | e  Small Applicable to | Hyperparameter
a (with ranking =68.1% hic data sample | Penang State | -tuned XGBoost
hyperparamet (XGBoost Clinical e Single | TB registry | yiclded  best
er tuning), gain) data year systems accuracy;
Logistic dataset highlighted ML
Regression, potential for
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Decision Tree regional public
comparisons health TB

surveillance.

[42] | Moldov | Neural Model OC AUC Demograp No Supports rapid | Neural Network

a/USA | Network, feature =0.87 hic data externa | empiric effectively
Random importance Clinical 1 treatment predicted
Forest, (AUC data validati | guidance in | fluoroquinolone
Logistic based) District on low resource | resistance in
Regression level FLQ Small settings RR-TB  using
resistance dataset routine
data surveillance
data.

[14] | India Al driven Interpretivi | Accuracy Clinical Ethical | Academic Al models
multi  model st Al | =87.5% records data proof of | outperformed
approach (ML framework | Sensitivity Laboratory privacy | concept for Al | traditional
+ DL =88.2% Imaging concer | decision diagnostics;
ensemble) features ns support in TB | emphasised

Limite care ethical

d real integration and
world personalised
testing care potential

[22] | Malaysi | Multinomial Model Accuracy Lab Imbala | Resource Naive Bayes and

a/Brazil | Naive Bayes transparen Demograp nced allocation SMOTE
SMOTE for cy via hic data classes | support in | enhanced TB
class probabilist (Brazilian Data public TB | outcome
imbalance ic output SINAN represe | programmes prediction in
databases) ntative imbalanced
ness datasets; useful
for targeted
follow-up.
[43] | USA /| Logistic Feature F1 score = Demograp Sparse | Research Stratified
Tanzani | Regression, importance | 0.766; hic data longitu | collaboration XGBoost
a / | Random ranking 0.667; BMI dinal tool for MDR- | improved
Banglad | Forest, per 0.787 Drug data TB across | interpretability
esh /| XGBoost regimen (regimen regimen Limite | LMICs and
Siberia (stratified by specific) Comorbidit d performance;
regimen) ies follow BMI a key
up predictor for TB
recovery.
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A.  Publication Trends

The publication trend graph shows how research on
explainable Al and ML has changed over time, in relation to
tuberculosis treatment outcomes. This helps distinguish
periods of greater scholarly activity and relate them to
scientific vigour.

Number of Publications

10
5
0
2020 2021 2022 2023 2024 2025
Years

Figure 2: Publication Trends

The annual publication trends are depicted in Figure 2,
which reflects a sharp increase in publication activity
beginning in 2021 to a maximum publication rate of six
papers per year during 2024. This is no surprise because there
has been a resurgence of interest in analytics pertaining to TB
across the globe due to care disruptions arising out of the
COVID-19 pandemic. The nominal decrease inaccurately
depicts a decrease in publication interest indicated to occur
during 2025 and is most likely reflective of the natural
evolution of this field into more niche domains like building
Health Prediction Systems and Hyperparameter Optimisation
Algorithms.

B.  Study Origin
The knowledge about regional distribution helps to
identify capacity growth trends regarding Al solutions within

TB care, highlighting novelty produced due to high-volume
regions.

Study Origin

15%

15%
20%

Figure 3:Study Origin

M Asia
B North America
Africa

B South America

The research activity is identified in Figure 3, which gives
a breakdown of study origins of the research studies included.
The contribution of Asia is notable, with China, India, and
Malaysia combining for almost half (45%) of the total
research studies. The high prevalence rate of tuberculosis
within this region, together with increased support for

research on artificial intelligence, is not surprising. North
America comprised 20% due to methodological excellence.
Europe accounted for 5% of research studies, conducted
through collaborative research partnerships in TB
surveillance and modelling. South America and Africa, which
are both high-prevalence regions, accounted for a surprisingly
low 15% combined.

C. Algorithms Found

The studies included assessed and compared varied ML
algorithms for predicting treatment outcomes, progression,
and resistance in TB treatment. The algorithm, authors, and
results are presented in TABLE 3.

TABLE 3
ALGORITHMS FOUND

Algorithm Author(s) Efficiency &
Performance

Decision [23], [41] Accuracy 92.72%,

Tree AUC 0.909, precision
95.9%

Random [34], [39], [41]- AUC>0.80

Forest [431,[37]

XGBoost [11],[23], [43] Accuracy 66.3%, F1

(baseline, scores 0.667-0.787

regimen depending on regimen,

stratified, Accuracy 68.1% (best

tuned) in study)

Logistic [15], [34], [41], [42] 63.3% baseline;

Regression moderate performance

Neural [42] AUC 0.87 predicting

Networks FQ resistance

(CNN)

A comparative synthesis of key performance metrics
across model categories reveals a nuanced picture. For tabular
data, traditional = ensemble methods like Random
Forest and XGBoost consistently achieved high AUCs (0.80-
0.93) and accuracy [11], [23], [41]. Transformer-based
models (DT-THRE) demonstrated superior performance
(Accuracy: 78.5%) on complex, sequential EHR data where
they could leverage temporal attention, significantly
outperforming baseline models [40]. Deep learning
models (CNNs) applied to imaging data also showed high
predictive  value (AUC  0.76-0.87)  [33]. Logistic
Regression provided a strong, interpretable baseline but
generally yielded lower discriminative performance
(Accuracy ~64%, C-statistic ~0.77) [15], [36]. This supports
a context-dependent model selection strategy.  Direct
quantitative comparison across all models was not feasible
due to heterogeneity in datasets, outcome definitions, and
validation strategies; therefore, performance trends are
interpreted comparatively rather than as absolute superiority
claims
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D. Challenges

There are a number of persistent challenges to the
application of these Al models in actual clinical settings. The
main issues found are summarised in TABLE 4.

TABLE 4
CHALLENGES
Challenge Author(s | Description Impact
)
Data [33], Small dataset | Compromises
Limitations [34], size, missing | model
[36][14], | data, sparse | generalisability
[42], [43] | longitudinal s increases
data, and | overfitting risk,
imbalanced and reduces
classes. clinical
reliability.
Limited [11], Models Poor
Generalisabilit | [35], trained on | performance
y [36], single centre | when applied to
[41],[42] | or specific | new
national populations
cohorts (e.g., | with different
only Chinese | demographic or
patients). clinical
characteristics.
Computational | [33], [34] | High Barriers
Resources computationa | deployment in
1 cost of deep | resource
learning and | constrained
transformer clinics common
models. in high TB
burden regions.
Interpretability | [30], Complex Hinders clinical
Gaps [34], [41] | models acting | trust and
as black | adoption, as
boxes or | clinicians
using implicit | cannot  verify
feature the model's
visualisation reasoning.
without
formal XAl
Ethical & | [14],[30] | Data privacy | Raises barriers
Privacy issues and | to data sharing
Concerns potential for | and necessitates
algorithmic rigorous ethical
bias in model | frameworks for
predictions. deployment.

The synthesis revealed a number of recurrent issues, which
are listed in Table 4. Data restrictions, which included small
sample sizes, missing data, and class imbalance, were the
most significant obstacle, mentioned in more than one-third
of the research (6/17). Concerns about limited generalisability
(5/17), when models trained on certain national cohorts, for
example, China, Brazil, demonstrated ambiguous
performance in other populations, immediately followed this.
Significant barriers to real-world clinical application were
also repeatedly identified, especially in LMICs, which include

interpretability limitations, computational resource needs, and
ethical and privacy issues.

E.  Explainability Approaches Used

Figure 4 visualises the range of explainability methods
applied across the studies included in this review. As
transparency and clinician trust are essential for TB treatment
decision support, analysing which techniques are used and
how frequently they highlight the maturity and direction of
explainable Al in this domain.

Explainability Approaches Used
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Figure 4: Explainability Approaches

There is a definite preference for explainability strategies
that strike a balance between clinical intuitiveness and
computational efficiency, according to the analysis. The most
popular methods, used in six out of the seventeen research
(35%), were feature importance and model coefficients. With
three studies (18%), SHAP was the next most popular
method, indicating a shift toward more reliable, instance-level
explanations. More complex approaches like Layer wise
Relevance Propagation (LRP) (n = 1) and attention
visualisations (n = 2) were relatively rare and typically limited
to studies involving transformer architectures and complex
multimodal data. This distribution results from a sense of
discipline to facilitate clinically useful, interpretable results as
more sophisticated models increasingly adopt advanced
concepts within XAI.

F. Discussion

Compared with prior SLRs, which focus either on TB
diagnostics and CNN-based imaging [29] or conventional ML
models without considerations of interpretability [20], this
review advances the field by assessing transformer
architectures through a three-dimensional lens, which
includes comparative performance, explainability for clinical
trust and feasibility of deployment in resource-constrained TB
health systems. No existing review combines these
dimensions, so this paper represents a novel sociotechnical
perspective on explainable transformers for TB prognosis.

RQI: Performance Comparison: Transformer-Based Models
vs Traditional Machine Learning Algorithms in TB Treatment
Outcome Prediction
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For structured, cross-sectional clinical data, traditional
ML algorithms, especially Random Forest, being the most
popular algorithm having been employed in six studies and
XGBoost have proved outstanding performance with
tremendous efficacy [23], [41]. Some major advantages
reinforce their ongoing relevance, namely computational
effectiveness, reduced training data volume requirements, and
some inherent interpretability via feature importance metrics
[19], [39], [44]. These attributes make them a more viable
alternative in many real-world clinical environments with
restricted resources, in which IT support could be limited,
especially in areas with few data [15], [28]. For example,
simplicity was highlighted in the logistic regression model
proposed by [36], [45], demonstrating its utility for clinical
prediction with a C-statistic of 0.77.

Nevertheless, it is crucial to note, from the analysis, that
there is a definite and powerful advantage to transformers and
other deep learning architectures in scenarios that demand
modelling rich, longitudinal or highly multimodal data [26],
[28]. What stands out about the performance of the DT-THRE
model from [40], which significantly demonstrates the
transformer's core strength, is its capacity to model complex
temporal dependencies in patient records, which static models
simply cannot model. It achieved a remarkable accuracy of
78.5% on sequential EHR data, representing a substantial
improvement over the benchmark model's 40.5%. It is further
validated by studies such as [33], illustrating movements in
performance by architectures being specially modified for
dynamic high-dimensional data, for which a deep learning
model on longitudinal CT scan data improved AUC value to
0.764-0.867. Another validation is [34], illustrating improved
performance for a CNN in healthcare, outperforming
traditional ML, reaching an accuracy rate of 94% on its
clinical predictive tasks, demonstrating improved
performance in healthcare ecosystems with increasing
multimodal, temporarily dynamic data [24], [25], for which
there will be substantiation in their importance.

These findings indicate that in model selection, there is a
need for a complex paradigm. Traditional algorithms are
effective and efficient for structured, tabular data. In contrast,
transformer models, with their parallel self-attention
architecture, excel at processing sequential or multimodal
data by capturing long range dependencies [27], [28].
Transformers require large datasets and high computational
power, often unavailable in high burden settings, making
traditional ML models more practical for static predictions in
such environments [46].

1. Random Forest: Random Forest (RF) is an ensemble
learning method that operates by constructing a multitude
of decision trees during training and outputting the mode
of the classes of the individual trees [47]. It introduces
randomness through bagging, which is bootstrap
aggregating and random feature selection, which
combats overfitting and enhances generalisability [19].
Random Forest was the most frequently employed

3.

algorithm across the reviewed studies. Its ensemble
structure demonstrated strong performance with AUCs
consistently above 0.80, which was attributed to its
robustness against overfitting and capacity to handle
nonlinear relationships in clinical data [19], [39].
However, despite providing global feature importance
scores, its intrinsic lack of transparency for individual
predictions presents a significant limitation for clinical
deployment [41].

XGBoost: XGBoost (eXtreme Gradient Boosting) is a
sophisticated and efficient implementation of gradient
boosting[23]. It sequentially builds an ensemble of trees,
with each new tree designed to correct the errors of the
previous ones, using a gradient-based optimisation
process. XGBoost was found to be remarkably proficient
at structured clinical datasets owing to its inherent error-
corrective regularisation technologies [23]. XGBoost
performed remarkably well in complex scenarios, with
AUC values amounting to 0.928 for treatment failure
predictions. [11], [23]. Yet, it requires SHAP analysis for
output interpretation due to its inherent complexity in
clinical contexts [11], [43]

Logistic Regression: A fundamental mode in statistics for
binary classification, logistic regression employs a
logistic function to calculate predictions based on
probability [42]. It is a linear model, mapping a
transformation of inputs into their linear combination,
followed by passing it through the sigmoid function [15].
Some works employed logistic regression as a simple
model for comparison due to its interpretability,
simplicity and accuracy. Though being constrained to
assume linearity, it reduces its capacity for complex
pattern identification in comparison with other
algorithms;  its  coefficient interpretability is
unambiguous [42], [43].

Convolutional Neural Networks (CNNs): Convolutional
Neural Networks (CNNs) are a subclass of deep neural
networks that are most frequently used for visual imagery
analysis. They are essential for radiology image analysis
because they employ convolutional layers to
automatically and adaptively learn spatial hierarchies of
features from input images [3]. In the context of TB, [34]
used a CNN-based Supervised Deep Learning model
(SDLM) to examine longitudinal CT scans and predict
treatment outcomes in DR-TB patients [48]. Moreover,
[34] also validated the supremacy of CNN over
conventional ML for anticipating clinical information
[34]. As far as the capability to distil the complex patterns
implicit in high-dimensional information is concerned,
the CNNs currently have no equal. Their limitations are
being a black box model, requiring greatly intense
computational power and necessitating large amounts of
annotated information during the learning phase, which
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can be a rather severe limitation in the vast majority of
resource-limited environments [26].

RQ2: Explainability Techniques for Clinical Interpretability
in Transformer-Based TB Treatment Outcome Prediction.

A core aim of explainability is to build clinical trust and
promote Al adoption in TB care [49]. However, while widely
assumed, direct empirical evidence that XAI enhances
clinician trust or improves decision making in TB prognosis
remains scarce. The studies reviewed show a range of
approaches, with a definite preference for those offering
intuitive, practically useful insights. Explainability is
progressing beyond simple attention visualisation for
transformer-based models, which are intrinsically complex
[38]. The author [38] proposed a novel framework that
incorporates Deep Taylor Decomposition and Layer wise
Relevance Propagation (LRP) to generate more robust and
faithful explanations than attention maps alone, which is
crucial for verifying model reasoning in high-stakes clinical
predictions [38].

However, feature significance approaches continue to be
the most popular across all model types because they are
obvious for doctors who are used to evaluating risk variables.
The author [11] introduced a game theory based technique
called SHAP (SHapley Additive exPlanations) to a XGBoost
model, which revealed important indicators such as certain
blood coagulation markers for treatment failure in TB
Diabetes patients [11]. Similarly, [35] used the coefficients
from a LASSO Cox regression model to construct a
transparent, clinical indicator-based risk score, which is
inherently interpretable [39]. For imaging based models, such
as the radiomics and deep learning fusion model by [33],
feature importance via radiomics provided insights into which
imaging biomarkers drove the predictions [33]. Explainable
Al methods such as SHAP (SHapley Additive exPlanations)
improve interpretability by providing insights into "why" a
model makes a particular prediction [50],[51]. The trend
indicates that while advanced XAI for transformers is
emerging, the field currently relies heavily on model agnostic
techniques like SHAP and intrinsic model interpretability to
bridge the transparency gap. Attention visualisations are
intuitive but non-causal and open to misinterpretation [38],
while methods like Layer-wise Relevance Propagation (LRP)
remain too computationally complex for routine clinical use
and SHAP can be computationally expensive and may
produce unstable explanations with correlated features. This
underscores the urgent need for robust, clinically validated
explanation methods that are both faithful to the model and
actionable for practitioners.

1) SHAP (SHapley Additive exPlanations) : SHAP is a
unified approach to interpreting the output of any ML
model based on Shapley values from cooperative game
theory [39]. It works by computing the marginal
contribution of each feature to the prediction outcome

2)

3)

9)

across all possible combinations of features, assigning
each an importance value for a specific prediction [39].
SHAP's strong theoretical reinforcements, capacity to
offer both local and global individual prediction and
overall model behaviour interpretability are its main
advantages [38], [52]. Its major deficiency is the high
computational cost that makes it slow in real-time clinical
applications, especially for models with many
characteristics or complicated ensembles [28].

Feature Importance and Model Coefficients: This
method identifies the contribution of each input variable
to the model's performance based on the model's internal
characteristics, which can be the weights of a linear
model or the feature importance of a tree-based model
[35]. In the case of linear models such as Logistic
Regression and LASSO regression, the magnitude and
sign of the model's coefficients provide direct
information about the contribution of each input variable
[37]. The main advantage of this method is its
interpretability without requiring a deep understanding of
Al concepts. However, its disadvantage can be the case
when the input variables are correlated in the model and
it fails to account for why a specific prediction was made
[43].

Attention Visualisation: Attention visualisation is a
technique unique to attention-based models such as
transformers [29]. It visualises attention weights to reveal
which input sequence elements the model mainly focused
on while making a certain prediction. Based on this, the
author [40] applied the temporal attention embedding
visualisation for their DT-THRE model to clearly
describe how the model emphasises certain points in time
in sequential health data [40]. The strength of this method
is that it gives a straightforward intuitive look into the
model's internal decision process and aligns well with
sequential data. According to [38], attention weights can
be difficult to interpret in models with multiple attention
layers, and they are not always correct explanations for
the model's decision making process. High attention does
not always equate to causal importance [38].

Layer wise Relevance Propagation (LRP) : LRP is a
technique for explaining the predictions of deep neural
networks by redistributing the prediction output
backwards through the network's layers to the input,
assigning a relevance score to each input feature [34]. It
works by using a set of propagation rules to trace the
contribution of each neuron back to the input. The key
strength of LRP is its ability to generate detailed, pixel-
wise or feature-wise explanations for complex deep
learning models, and its weakness lies in its complexity
and computational intensity, requiring specialised
expertise to implement and interpret correctly, which can
be a significant barrier in routine clinical practice [28].
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RQ3: Challenges in Deployment and Adaptability of
Transformer Models for TB Treatment Outcome Prediction

In this review, fairness is understood as the absence of
systematic performance disparities across clinically relevant
subgroups, including gender, HIV status, socioeconomic
context, and geographical setting, consistent with group-
based and distributional fairness perspectives in healthcare
Al. A significant obstacle to successful Al that remains is
high-quality representative data. Notable flaws in the data,
such as small dataset sizes [34], [42], the presence of missing
data points and imbalanced class distributions [22], [43], have
been noticed in many studies. These naturally reduce the
robustness of the model and result in overfitting [34], [48]. A
condition called dataset shift arises when ML models trained
on specific populations demonstrate substantial drops in
performance on new demographical or clinical environments,
exhibiting the challenge presented by data [53]. This is
especially apparent in studies being performed on particular
national cohorts [35], thereby raising several questions
regarding the fairness associated with using such models on
various scenarios in different settings of healthcare [43].

The resource demands of deep Al create a deployment
paradox in low-resource, high-burden settings. Key barriers
include unreliable internet for cloud inference, absent
digitised EHRs, scarce technical support, and variable staff
capacity for complex dashboards. Furthermore, the challenge
of fairness, ensuring models do not exhibit biased
performance across patient subgroups (gender, ethnicity, or
HIV status), is rarely addressed. None of the reviewed studies
conducted formal fairness audits, a critical omission for
equitable deployment [43].

However, difficulties also arise on the human side of
adoption. This is especially true, even if highly effective
models are developed and since there is a lack of
interpretability originating from their black box approach, this
undermines trust among clinicians to use predicted outcomes
within practice [34]. Lack of trust is further worsened by
legitimate concerns for ethics regarding privacy and security
and also for fairness regarding algorithmic bias to vulnerable
populations [14], [30]. Absence of strong governance
structures and properly defined ethical frameworks further
restricts the development of trust essential for clinical
adoption[43]

The application of transformer AI into high-burden
settings like LMICs brings unique ethical deployment
challenges. The most critical issue is fairness: models trained
on data from High Income Countries (HICs) are often
inaccurate when applied to the local population of TB
patients, whose clinical and socioeconomic profiles differ
significantly from those in HICs [43]. This lack of local
validation may result in biased or unequal care and calls for
mandatory local fairness audits. Secondly, privacy and
integrity of sensitive patient data are threatened by the model's
reliance on multimodal data fusion, which can be overcome
with the adoption of federated learning that securely enables

collaborative model training without centralising sensitive
patient data[37]. Finally, to guarantee accountability, the
complexity of transformer logic needs to be made auditable
using inherently robust XAl methods so that local clinicians
confidently use the system[38].

A coordinated approach that recognises their
interdependence is required to address these problems.
Developing lean implementations of frugal Al to improve
computationally efficiency [54], as well as partnerships for
diverse data acquisition tasks, are examples of structural
solutions to be combined with different solutions like data
augmentation [48], synthetic minority oversampling [22],
and domain adaptation techniques. Above all, explanations
should not remain an addition but be fundamental principles
[38], [40], and at the same time, developed ethics and
governance frameworks ensure patient safety and equity
against risks imposed by advancements in technology [27].

G. Conceptual Framework

Synthesising the identified challenges and requirements,
we propose the Explainable Transformer Adoption Model for
TB care (ETAMTB)as a conceptual framework for
integration. It is crucial to clarify that ETAMTB is not an
empirically validated tool but a synthesis-derived roadmap
outlining the necessary components and workflow for
responsible development and deployment. The framework
suggests a structured clinical course through which
transformer-based Al can be integrated into the decision-
making process of tuberculosis treatment. It begins with the
capture of multimodal TB data.

These further undergo pre-processing and TB-specific
feature engineering to combine these heterogeneous data
sources for model ingestion. At the heart of this framework
lies a transformer-based prognosis model that influences
attention mechanisms in learning clinical dependencies
within the dataset for predicting treatment outcomes, severity
progressions or response likelihoods. ETAM TB goes ahead
to emphasise that such predictions should not be black box
outputs but rather a feed into a dedicated explainability layer
using SHAP wvalues, attention weighting, and feature
relevance visualisation to produce clinically interpretable
reasoning behind model predictions. Such explanations are
channelled through to a clinician-facing prognosis dashboard
designed to support risk stratification and inform the need for
treatment adjustment, hence empowering health workers
rather than replacing clinical judgment.

Finally, the framework introduces operational enablers
like federated learning are implemented for preserving
privacy, model distillation for low-resource deployment, and
governance mechanisms addressing ethics, fairness, and
regulatory compliance. All these put together position ETAM
TB as a practical, trustworthy, and context sensitive outline
on how explainable transformers can be used in real world TB
care.
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H. Implications of the Study

The conclusions of this review also have key implications
for practice and future studies; the development of context-
sensitive Al pathways should address all stated criteria and,
therefore, take first priority for health systems at this point in
time. It is clearly essential that researchers have cost-effective
transformer architecture designs suited to settings where
tuberculosis is still predominant.

1) Practical Implications: Results highlight that the strategy
of application for Al needs to be context-specific. Even
though resource-intensive models perform equally well
on longitudinal data for well-resourced hospitals, their
application to primary care clinics in high-burden areas
is far from reality [33], [40]. Low-cost, lightweight Al
tools using public data, tailored to the specific constraints
of the low-resource environment, are therefore urgently
needed [35], [39]. Furthermore, explainability faces a
significant gap in the operational integration of its
implementation. Techniques like SHAP and nomograms
are technologically feasible [11], [36], but their clinical
efficacy depends on partnership with clinicians in order
to co-design the Al interface to make explanations
trustworthy and therapeutically actionable to overcome
the black box uncertainty of doctors [30].

a) Practical Recommendations: Clinical systems
should integrate XAI dashboards like attention
relevance maps and SHAP to validate the clinician
side. The Ministries of Health should develop
federated data frameworks for TB that may improve
transformer  generalisability  across  regions.
Hospitals from LMICs should consider the use of
lightweight, distilled transformers consistent with
offline execution on more limited computing
infrastructure. TB programmes should mandate

'
EMPOWIRNG |
- HEAITHCARE WORKERS |

external validation and gender sensitive fairness
testing before fielding AI models.

2)  Theoretical Implications: From a theoretical standpoint,
the analysis advocates a paradigm shift from optimising
particular models to designing Al for equality and
generalisation instead. Poor generalisability remains
prevalent [11], [35], which poses a crucial limitation:
locally trained models tend to break down in new
populations. These indicators highlight the urgent need
for federated learning strategies and novel domain
adaptation  capable of learning  trustworthy
representations from different international TB data
without jeopardising patients' privacy. Furthermore, the
area urges digging deeper into theoretical explanations
for explanations themselves and developing reputable
instruments to determine whether an explanation
genuinely improves clinician comprehension and
decision making or it is just a technical output. The high
computational cost of advanced models, given the small,
vague datasets typical of many TB programs, presents an
important research direction towards frugal Al by model
distillation and efficient architectural search[28].

3) Policy Implications: These findings have direct policy
implications. The World Health Organisation and
national TB programmes should establish data
management frameworks that protect patient privacy
while enabling data sharing for AI development.
Policymakers and funders must support the creation of
large, representative national datasets to monitor model
performance and prevent disparities. Crucially, policy
must mandate fairness evaluations and transparency,

requiring Al developers to report and address
performance gaps across key subgroups before
deployment.

1. Limitations of the Study

Despite the very rigorous approach adopted for this
systematic review, several limitations exist which should also
be appreciated: while focusing on four large databases and
English language publications, this may have excluded
significant studies published in local journals and non-English
publications, thus possibly also infusing geographical bias.
Additionally, putting into focus on publications after 2020
while ensuring currency, leaving out earlier foundational
work, lack of homogeneity in reporting among selected
studies prevented direct algorithmic comparisons and meta-
analysis, though dual reviewer techniques have minimised
subjectivity, there was interpretive judgement in this rapidly
evolving field. The synthesis of only 17 studies limits robust
quantitative comparisons and alongside a geographic
concentration in Asia, reduces applicability to other high
burden regions.
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J. Future Work

Future research should establish an integrated
sociotechnical paradigm, starting with the basic work
required. This calls for the constitution of international
consortia in order to create large-scale, multimodal data sets
from genomic, imaging, and socioeconomic elements
representing diversity originating from the high burden
regions. Architectural innovation should then focus on the
creation of domain-specific lightweight transformers using
knowledge distillation, precisely benchmarked against frugal
ML/AI models for their capability to assure vigorous and
efficient offline operation and the ability to suggest clinically
tailored interventions. Regarding explainability, future work
should focus on co-designing clinically verifiable XAI
dashboards with clinicians, ensuring that the visual interface
showing SHAP values and attention heatmaps is effortlessly
integrated into Electronic Medical Records (EMRs). In turn,
this can make static predictions dynamic clinical partners.
Lastly, on clinical integration and ethics, future research
should ensure deployability and equity in LMICs by adopting
federated learning and domain adaptation. To this end, well-
structured ethical and policy frameworks should be
established to ensure uniform reporting and a comprehensive
multicentre validation process within national TB programs.

IV. CONCLUSION

This review finds that while traditional models handle
structured TB data well, transformers better manage complex,
longitudinal datasets. However, adoption is hindered by
limited interpretability, unaddressed fairness, high
computational costs, and poor generalisability. Accuracy
alone is insufficient for clinical use; current explainability
methods like SHAP need more robust, context-aware
evaluation. The bias toward studies from high-resource
settings raises equity concerns for high-burden regions. The
proposed ETAMTB framework serves as a conceptual
roadmap to bridge these gaps. Ultimately, explainable
transformers show promise but remain experimental,
requiring diverse data, explicit fairness audits, efficient
design, and stakeholder collaboration to become deployable,
equitable tools in real-world care.
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