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 Tuberculosis (TB) remains a major health challenge, and predicting treatment 

outcomes continues to be difficult in real-world settings. Recent advances in 

Artificial Intelligence (AI), particularly transformer-based models, have shown 

promise in modelling longitudinal, multimodal, and heterogeneous TB data. 

However, their clinical adoption is constrained by limited interpretability, fairness 

concerns, and deployment challenges. This study presents a systematic literature 

review of explainable transformer and machine learning models used for TB 

prognosis. Following PRISMA guidelines, searches across ACM, IEEE Xplore, 

PubMed, and ScienceDirect identified 17 peer-reviewed studies published between 

2020 and 2025 that met the inclusion criteria. The review synthesises evidence on 

predictive performance, explainability techniques, and deployment considerations. 

Findings indicate that transformer-based and deep learning models generally 

outperform conventional machine learning approaches on longitudinal and 

multimodal data. In contrast, traditional models remain competitive for tabular 

clinical datasets. Explainability approaches are dominated by feature importance 

methods and SHAP, with limited use of intrinsic transformer interpretability 

mechanisms. Persistent challenges include data scarcity, limited generalisability, 

computational overhead, insufficient evaluation of fairness, and weak alignment 

with real-world TB care workflows. Building on these findings, the study proposes 

the Explainable Transformer Adoption Model for TB Prognosis (ETAMTB) as a 

conceptual clinical adoption framework integrating multimodal transformers, 

explainability layers, clinician-facing interfaces, and deployment enablers. Overall, 

the review concludes that effective AI adoption in TB care requires balancing 

predictive performance, interpretability, and equity, and that explainable 

transformers should currently be viewed as promising but largely experimental tools 

rather than deployment-ready solutions. 
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I. INTRODUCTION 

         As the leading infectious disease killer after COVID-19, 

tuberculosis (TB) continues to be a serious global health 

concern, accounting for more deaths than HIV/AIDS[1][2]. 

TB, which is caused by Mycobacterium tuberculosis, mainly 

affects the lungs but can also affect other organs like the brain 

or spine.[1], [3]. When an infected individual coughs or 

sneezes, airborne particles are released into the air, causing 

transmission[4].TB can also be latent and asymptomatic, 

while other cases can be active, presenting symptoms such as 

fever, night sweats, weakness, and loss of appetite[5].  

     Drug-resistant strains (DR-TB) are also a big concern 

when dealing with TB because they have been linked to more 

complex diagnoses, lengthy and toxic therapies, and increased 

death rates[1],  [9]. Moreover, TB is one of the contributing 

factors to deaths associated with HIV infections worldwide 

because comorbid conditions such as HIV can greatly 

enhance the progression of TB [7],[11]. 
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        One of the most crucial factors to measure the 

effectiveness of therapeutic efficacy in this case is to make a 

correct prediction about treatment outcomes, which can 

merely be classified into success or failure.[8], [12]. The 

emergence of data-driven approaches such as machine 

learning (ML) provides unique opportunities to investigate 

correlations between patient information, biomarkers, and 

socioeconomic variables and outcomes of prognosis for this 

particular disease[13]. Causes of treatment failure have been 

identified as including income, family size, patient 

knowledge, and the quality of care received. In addition to 

these factors, crowding and inadequate infection control 

within medical facilities contribute to disease transmission 

and poor outcomes [14]–[16]. 

      Artificial Intelligence (AI) refers to computer systems 

capable of performing tasks that normally require human 

intelligence. Machine Learning (ML) is a subset of AI; which 

involves algorithms that learn from data to make predictions 

or classifications [17][18]. Machine Learning algorithms have 

been extensively researched for predicting treatment 

outcomes in various diseases [19], [20]. Predicting treatment 

outcomes using ML allows clinicians to identify potential 

treatment failure or relapse risks and the occurrence of 

reactions, allowing adjustments to treatment plans 

maximising treatment success rates [21]. Research on the 

application of ML algorithms for predicting TB treatment 

outcomes is limited compared to the research focused on TB 

diagnosis and spread [22]. Early studies used traditional 

algorithms such as logistic regression and random forests 

[23]. However, data has become more complex and 

multimodal, ML models, especially transformer architecture, 

have shown superior performance [13], [24], [25]. 

      Since their introduction in the seminal 2017 paper 

"Attention is All You Need" [26], transformer models have 

revolutionised AI through their innovative self-attention 

mechanisms. This architecture, which includes integrated 

encoder-decoder components and a scalable structure, enables 

the models to contextualise input data and generate 

sophisticated predictions [26], [27]. Transformers have 

achieved tremendous success in healthcare regarding the 

analysis of complex data types, such as genomic sequences, 

sequential patient records, and medical images [26], [28]. 

Their self-attention mechanism provides a key structural 

advantage over recurrent architectures like Long Short-Term 

Memory (LSTM) or Gated Recurrent Unit (GRU) for 

modelling long-range dependencies in longitudinal data, as it 

processes sequences in parallel rather than sequentially and 

mitigates issues of vanishing gradients [27], [28]. This makes 

them particularly suited for the temporal and multimodal 

fusion tasks prevalent in TB prognosis. However, most of the 

challenges exist in the way of their clinical adoption. These 

models usually function like black boxes that provide 

accurate predictions without providing a clear explanation, 

which in turn depletes clinical confidence [7], [26]. 

Furthermore, transformers that have been trained on data from 

high-income settings often exhibit poor generalisability in 

low-income areas [28], [29]. However, their high hardware 

and cloud-computing requirements pose further obstacles to 

implementation in resource-constrained areas where the 

burden of tuberculosis is highest. [15], [27]. 

     This systematic review represents a novel and imperative 

advance in these research avenues by focusing not only on 

diagnosis but also on prognostic capabilities through the 

application of explainable transformers. Although other 

systematic reviews have been conducted by other researchers, 

like [30] have extensively described the TB diagnosis 

application via artificial intelligence models in TB treatment 

and management, their focus remained broad and operative 

solely in terms of diagnosis and screening capabilities. They 

have not only restricted their discussions to comprehensive 

utilisation but have also often aggregated broad deep learning 

models like CNN without distinguishing newer architectures. 

Similarly, other systematic reviews, such as [31], have 

explored therapeutic efficacy but remained broad and general 

in their descriptions and encompassed adverse drug reactions 

and drug resistance without examining the architectural 

specifics of these adverse effects. Conversely, this systematic 

review for the first time specifically identifies and assesses 

these newly developed transformer models like Decoder 

Transformer (DT-THRE) and their effectiveness in TB 

treatment, in accurately forecasting patient consequences like 

treatment failure, recurrence and mortality. In addition to the 

aspects discussed above, this systematic study addresses 

critical gaps noted in other landmark studies, such as [32], 

which analysed prediction models developed prior to the 

widespread adoption of transformers and relied heavily on 

traditional statistical methods, such as logistic regression. 

This study deviates from these conventional approaches by 

synthesising and identifying these newly developed models, 

like explainable transformers and assessing their 

effectiveness to newly direct attention towards TB treatment 

forecasting methods, like treatment failure. In addition to the 

specifics discussed above, this systematic study further 

explores new areas related to newly developed methods, such 

as multimodal data fusion, synthesising how modern 

transformers integrate unstructured clinical and 

sociodemographic data with structured electronic health 

records to enhance predictive performance. Furthermore, the 

study moves beyond the superficial treatment of black-box 

limitations in previous systematic literature reviews by 

rigorously assessing architectural explainability. This review 

critically evaluates inherent interpretability mechanisms such 

as attention weights that are central to fostering clinical trust 

and autonomy in high-stakes decision-making, rather than 

merely noting the use of generic tools like SHAP. The 

primary contribution of this article is a systematic synthesis 

of explainable AI models and ML models for predicting TB 

treatment outcomes complemented by the ETAMTB 

framework as a synthesis-derived conceptual guide for 

clinical adoption rather than an empirically validated system.  

Unlike prior work, it uniquely connects predictive accuracy, 
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clinical interpretability, and adoption challenges in low-

resource, high-burden settings.  

Despite the widespread applications of AI in TB management, 

there remains a gap in effectively utilising diagnostic success 

to inform prognostic actions. Presently, systematic reviews 

have primarily focused on reporting the aggregate 

performance of general approaches to diagnosis and diagnosis 

via broad deep learning models, but have not necessarily 

assessed newer models, such as transformers, in depth. 

Reports on approaches that utilise intrinsic methods of 

explanation, rather than general attention heat maps derived 

directly from these complex models, to promote clinicians' 

trust and enable immediate decision-making have not yet 

been explored in depth. Additionally, this review will address 

this gap by focusing solely on the role of explainable 

transformer models, specifically those designed for 

prognostic functionality and trustworthiness in TB treatment.  

To this end, the review is guided by the following research 

questions: 

1. How do transformer-based models compare to 

traditional machine learning algorithms in predicting 

TB treatment outcomes 

2. What explainability techniques are integrated into 

transformer-based models to enhance clinical 

interpretability in the context of TB treatment 

outcomes prediction. 

3. What are the challenges faced in deployment and 

adaptability of transformer models for TB treatment 

outcome prediction. 

 

    To address these questions, this paper is structured as 

follows: Section II describes the review methodology, where 

the search strategy, eligibility criteria, study selection, quality 

assessment and inclusion and exclusion criteria used to obtain 

relevant studies are specified. Section III shows the results of 

the review and the discussions, implications, limitations and 

direction for future work of the study. Section IV concludes 

the review.  
 

II. METHODS 

     This systematic review was conducted following the 

Preferred Reporting Items for Systematic Reviews and Meta 

Analysis (PRISMA). The PRISMA consists of a flow diagram 

divided into four parts: identification, screening, eligibility, 

and included. 

 

A. Search Strategy 

      After the research questions were formulated, keywords 

that are relevant to the research were identified. The keywords 

were used to formulate search queries to identify articles 

relevant to this study. A search was conducted on the 22nd of 

September 2025, through the search papers were obtained 

from four main databases: ACM, IEEE Xplore, PubMed and 

ScienceDirect. The keywords were used as follows 

("tuberculosis" OR "TB" OR "mycobacterium tuberculosis") 

AND ("treatment outcome" OR "treatment success" OR 

"treatment failure" OR "prognosis" OR "therapy response") 

AND ("transformer model" OR "BERT" OR "attention-based 

model" OR  "encoder-decoder") AND ("explainable AI" OR 

"XAI" OR "model interpretability" OR "explainability" OR 

"attention visualisation" OR "transparency") AND ("machine 

learning" OR "artificial intelligence" OR "AI" OR "predictive 

model") AND (2020:2025[dp]) AND (English[lang]). A total 

of 205 articles were retrieved from the four databases: ACM 

(n = 33), PubMed (n = 46), IEEE Xplore (n = 63) and 

ScienceDirect (n = 63). These included conference papers, 

editorials, abstracts, preprints, peer-reviewed papers, 

empirical papers and reviews.  

 

B. Screening 

     All retrieved articles were imported into Mendeley 

Reference Manager. Duplicates were automatically identified 

and removed. During title and abstract screening, studies were 

evaluated for the following indicators: presence of 

tuberculosis or TB treatment outcome in the title or abstract, 

evidence of AI, ML or Transformer model use and mention 

of explainability, interpretability or transparency in the 

methodology. Articles that did not meet these criteria were 

excluded. Out of 205 initial records, 113 duplicates were 

removed, leaving 92 papers. After title and abstract screening, 

57 papers were excluded, leaving 35 for full-text review. 

Eighteen were excluded at this stage, resulting in 17 studies 

included for final analysis. 

TABLE 1 

INCLUSION & EXCLUSION CRITERIA 

Inclusion Exclusion  

Studies predicting TB treatment 

outcomes using AI, ML or 

transformer models 

Studies focused on TB 

diagnosis or detection 

Integration of explainable AI 

(XAI) or interpretability 

Studies without explainability 

or interpretability components 

Peer-reviewed full-text journal, 

conference papers (2020-2025) 

Preprints, Editorials, Book 

chapters and abstract only 

Studies addressing clinical 

deployment challenges 

Studies not addressing clinical 

application or deployment 

challenges 

Studies written in English  Studies not written in English 

 

C. Eligibility Criteria  

      The review focused on peer-reviewed empirical studies 

published between 2020 and 2025 that investigated TB 

treatment outcomes using transformer-based or other 

explainable AI models. Studies were considered eligible if 

they: (1) predicted definitive TB treatment outcomes, (2) 

applied a transformer architecture or integrated an explainable 

AI (XAI) technique with any ML model; (3) utilised relevant 

clinical data modalities (4) reported quantitative performance 

metrics or qualitative interpretability insights. Studies were 
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excluded if they focused only on TB diagnosis or detection, 

addressed other diseases unrelated to TB and were non-peer-

reviewed materials.  

D.  Included  

       A total of 92 studies progressed to title and abstract 

screening after removal of duplicates. From these, 35 articles 

were selected for full-text review based on their relevance to 

tuberculosis treatment outcome prediction and the use of 

artificial intelligence methods. Following a detailed 

assessment, 18 studies were excluded for reasons such as 

focusing exclusively on TB diagnosis, lacking an 

explainability component, or not employing transformer-

based or comparable predictive models. Consequently, 17 

studies met all inclusion criteria and were included in the final 

qualitative synthesis of this systematic review. 

E. Data Extraction and Synthesis 

      Studies were downloaded and retrieved from the web and 

saved into a file named SLR Reference 1. The folder was 

imported into Mendeley Reference Manager, where the 

duplicates were then removed. After the eligibility screening 

process was complete, the remaining studies were then saved 

in another folder named SLR references 2. An Excel sheet 

was developed by SS to extract relevant data from studies. 

The Excel sheet had columns that included author, year, study 

design, data modality, transformer or ML or AI model used, 

explainability method and relevance to research questions. 

These columns were used to extract key data from studies. 

The author SS conducted the initial data extraction and BN 

verified all extractions. Full-text papers were independently 

assessed by both reviewers against the predefined inclusion 

and exclusion criteria, leaving the final included studies for 

full analysis, which were now moved and saved in the folder 

FINAL SLR References.  

F. Quality Assessment  

       The methodological quality, credibility, and relevance of 

the 17 included primary studies were assessed using the 

Critical Appraisal Skills Programme (CASP) checklist [31]. 

The CASP tool allows for a systematic assessment of research 

evidence by taking into consideration such aspects as the 

validity of the study, its methodological rigour, and the 

applicability of its findings [32]. As a result, each study was 

rated according to the criteria of clear research aims and 

objectives, methodological appropriateness, study design, 

data collection, data analysis, research ethics, and the research 

question addressed. Studies were considered low quality if 

they had severe methodological issues and incomplete 

descriptions; moderate quality if they met most criteria but 

had minimal limitations; and high quality if they exhibited 

clear aims, sophisticated or robust methodology, appropriate 

validation, and extensive reporting. Additionally, three 

studies employed multimodal data, whereas most used 

retrospective data. Lastly, the research involved numerous 

methodologies due to the differences in the research 

objectives of the studies.Approaches to model validation that 

enhance reliability were described in 11 articles. In terms of 

interpretability, four studies utilised formal explainability 

techniques, while six studies provided simple feature-

importance analyses. Ethical considerations were well 

reported in nine studies, while six others mentioned them in 

passing or made no reference. Thus, the studies ranged in 

quality, with seven receiving a high-quality rating due to 

comprehensive methodology and validation, four rated 

moderate quality, and six categorised as low quality due to 

significant reporting or methodological gaps. Appendix A 

presents the adapted CASP quality assessment of the study 

whilst Appendix B presents the quality assessment score 

criteria. 

 

III. RESULTS AND DISCUSSION 

 

      The systematic search and selection process, detailed in 

the PRISMA flow diagram. Given the relatively limited 

number of included studies (n=17) and their methodological 

heterogeneity, of varying methods, this synthesis identifies 

trends rather than firm conclusions as it presents their 

characteristics and findings. 

 

 
 
                        Figure 1: PRISMA Screening Result
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TABLE 2 
 RESULTS TABLE 

Aut

hor/ 

Year 

Country Model Type/ 

Name 

Explainability 

Technique used  

Performan

ce Metrics 

Key Predictors/ 

Data Modalities 

Challenges/ 

Limitations 

Deployment 

& Adaptation 

Context 

Key Findings 

[33] China Radiomic 

models  

Deep 

Learning  

(Gradient 

Boosting, 

Small Deep 

Learning 

Model 

• Feature 

importance 

via 

radiomics 

• Fusion 

interpretab

ility 

AUC 

(0.764-

0.867), 

internal/ex

ternal 

validation 

• Longitudin

al CT scans 

• Demograp

hic data 

• Clinical 

data 

• Small 

dataset  

• High 

comput

ational 

cost 

Hospital level 

imaging 

integration 

Fused 

radiomics, deep 

learning 

improved 

prediction of 

DR-TB 

outcomes early 

in treatment  

 

[34] D.R. 

Congo 

CNN vs. 

classical ML 

(SVM, KNN, 

RF, Decision 

Tree) 

• Implicit 

visual 

feature 

learning 

Accuracy 

94%, 

AUC 

93%, 

Sensitivity 

88%, F1-

score 

91.3% 

• Clinical 

data  

• Demograp

hic data 

• Limite

d 

dataset  

• Lack of 

real 

world 

testing  

• Model 

interpr

etabilit

y 

Academic 

evaluation, 

low cost 

implementabl

e in Congolese 

clinics 

CNN 

outperformed 

traditional 

models; suitable 

for early TB 

screening. 

 [35] China  LASSO-Cox 

regression 

(clinical 

prognostic 

model) 

• Coefficient 

Interpretati

on 

(transparen

t statistical 

model) 

AUC 

0.766 

(train), 

0.796 

(validatio

n) 

• Blood 

• Biochemic

al markers 

• Only 

Chines

e 

cohorts  

• Manual 

data 

entry 

Clinical use 

for prognosis 

prediction in 

hospital TB 

management 

Clinical 

indicator based 

risk score 

effectively 

predicted TB 

treatment 

outcomes 

[36] Brazil/ 

USA  

Logistic 

regression  
• Coefficient

s 

• Nomogra

m 

(interpreta

ble) 

C  statistic 

0.77 

:bootstrap 

validation 

• HIV status, 

Hypertensi

on  

• Drug use  

• Age  

• Education 

level  

 

• Limite

d by 

missin

g data  

• No 

externa

l 

validati

on 

Web based 

point of care 

tool for TB 

prognosis 

Simple clinical 

model predicted 

unsuccessful TB 

outcomes with 

good 

discrimination 

[37] Colombi

a  

Machine 

learning 

(Random 

Forest, 

Natural 

Language 

Processing 

models, Data 

Fusion) 

• Feature 

importance 

(clinician 

validated) 

Sensitivity 

73 % 
• EMR text 

• Clinical 

data  

• Limite

d 

structur

ed 

EMR 

data  

Designed for 

low resource, 

multi source 

diagnostic, 

prognosis 

detection 

system 

AI models, 

especially 

clinical data 

driven, 

outperform 

traditional 

diagnostics, 

prognosis 

detection. 

[30] India  AI for TB 

diagnosis & 

treatment 

• CNN 

heatmaps, 

saliency 

Narrative 

synthesis 
• Radiology 

genomics 

• Clinical 

data 

• Limite

d 

explain

ability 

• Data 

bias 

• Ethical 

barriers 

AI adoption in 

Indian clinics 

AI can 

revolutionise 

TB detection 

and prognosis 

but ethical 

deployment is 

essential 
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[38] Israel Transformer 

Explainability 

model 

• Deep 

Taylor  

• Decompos

ition based 

relevance 

propagatio

n 

Qualitativ

e visual 

heat maps 

• Vision text 

transformer 

features 

• Compl

ex 

implem

entatio

n  

Foundation 

model for 

visual 

explainability 

Introduces 

explainability 

method for 

transformer 

beyond attention 

visualisation 

[39] China  AI models 

(CNN, 

Random 

Forest) 

• SHAP  

• Feature 

Importanc

e 

Comparati

ve 

narrative 

• Clinical 

data 

• Imaging 

• Genomic 

• Treatment 

data 

• Publica

tion 

bias 

General 

recommendati

on for AI use 

in therapy 

monitoring 

AI models 

improve 

monitoring of 

Pulmonary TB 

treatment 

efficacy and 

drug resistance  

[15] South 

Africa  

Logistic 

Regression  
• Model 

Coefficient

s 

(interpreta

ble) 

Accuracy 

64%  

Recall 

95% 

F1 score 

76% 

• Comorbidit

ies (HIV, 

obesity, 

hypertensio

n) 

• Limite

d 

sample 

size  

Public health 

and primary 

care 

integration 

Comorbidities 

strongly affect 

DR-TB 

treatment 

outcomes, 

integrated care 

is vital 

[40] Canada  DT-THRE 

(Decoder 

Transformer 

for Temporal 

Health Data 

• Temporal 

attention 

embedding 

visualisati

on 

Accuracy 

78.5%  

Baseline 

40.5% 

• Sequential 

EHR data  

• Model 

comple

xity 

Prototype for 

decision 

support in 

disease 

prediction and 

prognosis 

Incorporating 

temporal 

encoding 

significantly 

improves 

outcomes 

prediction 

accuracy 

[11] China XGBoost 

Random 

Forest 

 Boruta 

feature 

selection 

• SHAP 

(Shapley 

Additive 

Explanatio

ns) 

AUC = 

0.928 (test 

set) 

• resistance 

type, 

• Activated 

Partial 

Thrombopl

astin Time, 

Thrombin 

Time, 

Platelet 

Distributio

n Width,  

Prothrombi

n Time 

•   clinical & 

CT data 

• Limite

d 

externa

l 

validati

on; 

single 

centre 

data 

hospital 

Electronic 

Medical 

Record 

(EMR) data to 

predict 

treatment 

outcomes or 

risks in 

patients who 

have both 

tuberculosis 

(TB) and 

diabetes 

mellitus 

(DM). 

XGBoost model 

with SHAP 

improved 

interpretability 

and early 

detection of 

treatment failure 

among TB-DM 

patients. 

[41] India  Decision 

Tree, Random 

Forest, SVM, 

Naïve Bayes 

• Feature 

weight 

visualisati

on 

(implicit) 

AUC = 

0.909 

Accuracy 

= 92.7% 

• Clinical 

data 

• Region

al 

general

isabilit

y  

• Interpr

etabilit

y 

limited  

Indian 

Randomised 

Controlled 

Trial (RCT) to 

forecast when 

a TB patient's 

sputum 

culture will 

turn negative 

during 

treatment. 

Decision Tree 

outperformed 

others, showing 

high precision 

and recall; ML 

viable for 

clinical TB 

monitoring. 

[23] Malaysi

a  

XGBoost 

(with 

hyperparamet

er tuning), 

Logistic 

Regression, 

• Feature 

ranking 

(XGBoost 

gain) 

Accuracy 

= 68.1% 
• Demograp

hic data 

• Clinical 

data 

• Small 

sample  

• Single 

year 

dataset 

Applicable to 

Penang State 

TB registry 

systems 

Hyperparameter

-tuned XGBoost 

yielded best 

accuracy; 

highlighted ML 

potential for 
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Decision Tree 

comparisons 

regional public 

health TB 

surveillance. 

[42] Moldov

a / USA 

Neural 

Network, 

Random 

Forest, 

Logistic 

Regression 

• Model 

feature 

importance 

(AUC 

based) 

OC  AUC 

= 0.87 
• Demograp

hic data 

• Clinical 

data 

• District 

level FLQ 

resistance 

data 

• No 

externa

l 

validati

on 

• Small 

dataset 

Supports rapid 

empiric 

treatment 

guidance in 

low resource 

settings 

Neural Network 

effectively 

predicted 

fluoroquinolone 

resistance in 

RR-TB using 

routine 

surveillance 

data. 

[14] India  AI driven 

multi model 

approach (ML 

+ DL 

ensemble) 

• Interpretivi

st AI 

framework 

Accuracy 

= 87.5% 

Sensitivity 

= 88.2% 

• Clinical 

records 

• Laboratory 

• Imaging 

features 

• Ethical 

data 

privacy 

concer

ns 

• Limite

d real 

world 

testing 

Academic 

proof of 

concept for AI 

decision 

support in TB 

care 

AI models 

outperformed 

traditional 

diagnostics; 

emphasised 

ethical 

integration and 

personalised 

care potential 

[22] Malaysi

a / Brazil 

Multinomial 

Naïve Bayes  

SMOTE for 

class 

imbalance 

• Model 

transparen

cy via 

probabilist

ic output 

Accuracy  • Lab  

• Demograp

hic data 

(Brazilian 

SINAN 

databases) 

• Imbala

nced 

classes 

• Data 

represe

ntative

ness 

Resource 

allocation 

support in 

public TB 

programmes 

Naïve Bayes and  

SMOTE 

enhanced TB 

outcome 

prediction in 

imbalanced 

datasets; useful 

for targeted 

follow-up. 

[43] USA / 

Tanzani

a / 

Banglad

esh / 

Siberia 

Logistic 

Regression, 

Random 

Forest, 

XGBoost 

(stratified by 

regimen) 

• Feature 

importance 

ranking 

per 

regimen 

F1 score = 

0.766; 

0.667; 

0.787 

(regimen 

specific) 

• Demograp

hic data  

• BMI 

• Drug 

regimen 

• Comorbidit

ies  

• Sparse 

longitu

dinal 

data 

• Limite

d 

follow 

up 

Research 

collaboration 

tool for MDR-

TB across 

LMICs 

Stratified 

XGBoost 

improved 

interpretability 

and 

performance; 

BMI a key 

predictor for TB 

recovery. 
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A.  Publication Trends 

     The publication trend graph shows how research on 

explainable AI and ML has changed over time, in relation to 

tuberculosis treatment outcomes. This helps distinguish 

periods of greater scholarly activity and relate them to 

scientific vigour. 

 

 
Figure 2: Publication Trends 

      The annual publication trends are depicted in Figure 2, 

which reflects a sharp increase in publication activity 

beginning in 2021 to a maximum publication rate of six 

papers per year during 2024. This is no surprise because there 

has been a resurgence of interest in analytics pertaining to TB 

across the globe due to care disruptions arising out of the 

COVID-19 pandemic. The nominal decrease inaccurately 

depicts a decrease in publication interest indicated to occur 

during 2025 and is most likely reflective of the natural 

evolution of this field into more niche domains like building 

Health Prediction Systems and Hyperparameter Optimisation 

Algorithms. 

 

B. Study Origin  

      The knowledge about regional distribution helps to 

identify capacity growth trends regarding AI solutions within 

TB care, highlighting novelty produced due to high-volume 

regions. 

 
Figure 3:Study Origin 

      The research activity is identified in Figure 3, which gives 

a breakdown of study origins of the research studies included. 

The contribution of Asia is notable, with China, India, and 

Malaysia combining for almost half (45%) of the total 

research studies. The high prevalence rate of tuberculosis 

within this region, together with increased support for 

research on artificial intelligence, is not surprising. North 

America comprised 20% due to methodological excellence. 

Europe accounted for 5% of research studies, conducted 

through collaborative research partnerships in TB 

surveillance and modelling. South America and Africa, which 

are both high-prevalence regions, accounted for a surprisingly 

low 15% combined. 

 

C. Algorithms Found  

     The studies included assessed and compared varied ML 

algorithms for predicting treatment outcomes, progression, 

and resistance in TB treatment. The algorithm, authors, and 

results are presented in TABLE 3. 

 
TABLE 3 

 ALGORITHMS FOUND 

Algorithm Author(s) Efficiency & 

Performance 

Decision 

Tree 

[23], [41] Accuracy 92.72%, 

AUC 0.909, precision 

95.9%  

Random 

Forest 

[34], [39], [41]–

[43],[37] 

AUC > 0.80  

XGBoost 

(baseline, 

regimen 

stratified, 

tuned) 

[11], [23], [43] Accuracy 66.3%, F1 

scores 0.667–0.787 

depending on regimen, 

Accuracy 68.1% (best 

in study) 

Logistic 

Regression 

[15], [34], [41], [42] 63.3% baseline; 

moderate performance  

Neural 

Networks 

(CNN) 

[42] AUC 0.87 predicting 

FQ resistance  

      

A comparative synthesis of key performance metrics 

across model categories reveals a nuanced picture. For tabular 

data, traditional ensemble methods like Random 

Forest and XGBoost consistently achieved high AUCs (0.80-

0.93) and accuracy [11], [23], [41]. Transformer-based 

models (DT-THRE) demonstrated superior performance 

(Accuracy: 78.5%) on complex, sequential EHR data where 

they could leverage temporal attention, significantly 

outperforming baseline models [40]. Deep learning 

models (CNNs) applied to imaging data also showed high 

predictive value (AUC 0.76-0.87) [33]. Logistic 

Regression provided a strong, interpretable baseline but 

generally yielded lower discriminative performance 

(Accuracy ~64%, C-statistic ~0.77) [15], [36]. This supports 

a context-dependent model selection strategy.  Direct 

quantitative comparison across all models was not feasible 

due to heterogeneity in datasets, outcome definitions, and 

validation strategies; therefore, performance trends are 

interpreted comparatively rather than as absolute superiority 

claims 
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D. Challenges 

    There are a number of persistent challenges to the 

application of these AI models in actual clinical settings. The 

main issues found are summarised in TABLE 4. 

 
TABLE 4 

 CHALLENGES 

Challenge Author(s

) 

Description Impact 

Data 

Limitations 

[33], 

[34], 

[36][14], 

[42], [43] 

Small dataset 

size, missing 

data, sparse 

longitudinal 

data, and 

imbalanced 

classes. 

Compromises 

model 

generalisability

, increases 

overfitting risk, 

and reduces 

clinical 

reliability. 

Limited 

Generalisabilit

y 

[11], 

[35], 

[36], 

[41], [42] 

Models 

trained on 

single centre 

or specific 

national 

cohorts (e.g., 

only Chinese 

patients). 

Poor 

performance 

when applied to 

new 

populations 

with different 

demographic or 

clinical 

characteristics. 

Computational 

Resources 

[33], [34] High 

computationa

l cost of deep 

learning and 

transformer 

models. 

Barriers 

deployment in 

resource 

constrained 

clinics common 

in high TB 

burden regions. 

Interpretability 

Gaps 

[30], 

[34], [41] 

Complex 

models acting 

as black 

boxes or 

using implicit 

feature 

visualisation 

without 

formal XAI. 

Hinders clinical 

trust and 

adoption, as 

clinicians 

cannot verify 

the model's 

reasoning. 

Ethical & 

Privacy 

Concerns 

[14], [30] Data privacy 

issues and 

potential for 

algorithmic 

bias in model 

predictions. 

Raises barriers 

to data sharing 

and necessitates 

rigorous ethical 

frameworks for 

deployment. 

       

The synthesis revealed a number of recurrent issues, which 

are listed in Table 4. Data restrictions, which included small 

sample sizes, missing data, and class imbalance, were the 

most significant obstacle, mentioned in more than one-third 

of the research (6/17). Concerns about limited generalisability 

(5/17), when models trained on certain national cohorts, for 

example, China, Brazil, demonstrated ambiguous 

performance in other populations, immediately followed this. 

Significant barriers to real-world clinical application were 

also repeatedly identified, especially in LMICs, which include 

interpretability limitations, computational resource needs, and 

ethical and privacy issues. 

 

E. Explainability Approaches Used 

     Figure 4 visualises the range of explainability methods 

applied across the studies included in this review. As 

transparency and clinician trust are essential for TB treatment 

decision support, analysing which techniques are used and 

how frequently they highlight the maturity and direction of 

explainable AI in this domain. 

 
Figure 4: Explainability Approaches 

       There is a definite preference for explainability strategies 

that strike a balance between clinical intuitiveness and 

computational efficiency, according to the analysis. The most 

popular methods, used in six out of the seventeen research 

(35%), were feature importance and model coefficients. With 

three studies (18%), SHAP was the next most popular 

method, indicating a shift toward more reliable, instance-level 

explanations. More complex approaches like Layer wise 

Relevance Propagation (LRP) (n = 1) and attention 

visualisations (n = 2) were relatively rare and typically limited 

to studies involving transformer architectures and complex 

multimodal data. This distribution results from a sense of 

discipline to facilitate clinically useful, interpretable results as 

more sophisticated models increasingly adopt advanced 

concepts within XAI. 
 

F. Discussion 

      Compared with prior SLRs, which focus either on TB 

diagnostics and CNN-based imaging [29] or conventional ML 

models without considerations of interpretability [20], this 

review advances the field by assessing transformer 

architectures through a three-dimensional lens, which 

includes comparative performance, explainability for clinical 

trust and feasibility of deployment in resource-constrained TB 

health systems. No existing review combines these 

dimensions, so this paper represents a novel sociotechnical 

perspective on explainable transformers for TB prognosis. 

 

RQ1: Performance Comparison: Transformer-Based Models 

vs Traditional Machine Learning Algorithms in TB Treatment 

Outcome Prediction 

0
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      For structured, cross-sectional clinical data, traditional 

ML algorithms, especially Random Forest, being the most 

popular algorithm having been employed in six studies and 

XGBoost have proved outstanding performance with 

tremendous efficacy [23], [41]. Some major advantages 

reinforce their ongoing relevance, namely computational 

effectiveness, reduced training data volume requirements, and 

some inherent interpretability via feature importance metrics 

[19], [39], [44]. These attributes make them a more viable 

alternative in many real-world clinical environments with 

restricted resources, in which IT support could be limited, 

especially in areas with few data [15], [28]. For example, 

simplicity was highlighted in the logistic regression model 

proposed by [36], [45], demonstrating its utility for clinical 

prediction with a C-statistic of 0.77.  

       Nevertheless, it is crucial to note, from the analysis, that 

there is a definite and powerful advantage to transformers and 

other deep learning architectures in scenarios that demand 

modelling rich, longitudinal or highly multimodal data [26], 

[28]. What stands out about the performance of the DT-THRE 

model from [40], which significantly demonstrates the 

transformer's core strength, is its capacity to model complex 

temporal dependencies in patient records, which static models 

simply cannot model. It achieved a remarkable accuracy of 

78.5% on sequential EHR data, representing a substantial 

improvement over the benchmark model's 40.5%. It is further 

validated by studies such as  [33], illustrating movements in 

performance by architectures being specially modified for 

dynamic high-dimensional data, for which a deep learning 

model on longitudinal CT scan data improved AUC value to 

0.764-0.867. Another validation is [34], illustrating improved 

performance for a CNN in healthcare, outperforming 

traditional ML, reaching an accuracy rate of 94% on its 

clinical predictive tasks, demonstrating improved 

performance in healthcare ecosystems with increasing 

multimodal, temporarily dynamic data [24], [25], for which 

there will be substantiation in their importance. 

      These findings indicate that in model selection, there is a 

need for a complex paradigm. Traditional algorithms are 

effective and efficient for structured, tabular data. In contrast, 

transformer models, with their parallel self-attention 

architecture, excel at processing sequential or multimodal 

data by capturing long range dependencies [27], [28]. 

Transformers require large datasets and high computational 

power, often unavailable in high burden settings, making 

traditional ML models more practical for static predictions in 

such environments [46]. 

1. Random Forest: Random Forest (RF) is an ensemble 

learning method that operates by constructing a multitude 

of decision trees during training and outputting the mode 

of the classes of the individual trees [47]. It introduces 

randomness through bagging, which is bootstrap 

aggregating and random feature selection, which 

combats overfitting and enhances generalisability [19]. 

Random Forest was the most frequently employed 

algorithm across the reviewed studies. Its ensemble 

structure demonstrated strong performance with AUCs 

consistently above 0.80, which was attributed to its 

robustness against overfitting and capacity to handle 

nonlinear relationships in clinical data [19], [39]. 

However, despite providing global feature importance 

scores, its intrinsic lack of transparency for individual 

predictions presents a significant limitation for clinical 

deployment [41].  

 

2. XGBoost:  XGBoost (eXtreme Gradient Boosting) is a 

sophisticated and efficient implementation of gradient 

boosting[23]. It sequentially builds an ensemble of trees, 

with each new tree designed to correct the errors of the 

previous ones, using a gradient-based optimisation 

process. XGBoost was found to be remarkably proficient 

at structured clinical datasets owing to its inherent error-

corrective regularisation technologies [23]. XGBoost 

performed remarkably well in complex scenarios, with 

AUC values amounting to 0.928 for treatment failure 

predictions. [11], [23]. Yet, it requires SHAP analysis for 

output interpretation due to its inherent complexity in 

clinical contexts [11], [43] 

 

3. Logistic Regression: A fundamental mode in statistics for 

binary classification, logistic regression employs a 

logistic function to calculate predictions based on 

probability [42]. It is a linear model, mapping a 

transformation of inputs into their linear combination, 

followed by passing it through the sigmoid function [15]. 

Some works employed logistic regression as a simple 

model for comparison due to its interpretability, 

simplicity and accuracy. Though being constrained to 

assume linearity, it reduces its capacity for complex 

pattern identification in comparison with other 

algorithms; its coefficient interpretability is 

unambiguous  [42], [43]. 

 

4. Convolutional Neural Networks (CNNs): Convolutional 

Neural Networks (CNNs) are a subclass of deep neural 

networks that are most frequently used for visual imagery 

analysis. They are essential for radiology image analysis 

because they employ convolutional layers to 

automatically and adaptively learn spatial hierarchies of 

features from input images [3]. In the context of TB, [34] 

used a CNN-based Supervised Deep Learning model 

(SDLM) to examine longitudinal CT scans and predict 

treatment outcomes in DR-TB patients [48]. Moreover, 

[34] also validated the supremacy of CNN over 

conventional ML for anticipating clinical information 

[34]. As far as the capability to distil the complex patterns 

implicit in high-dimensional information is concerned, 

the CNNs currently have no equal. Their limitations are 

being a black box model, requiring greatly intense 

computational power and necessitating large amounts of 

annotated information during the learning phase, which 
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can be a rather severe limitation in the vast majority of 

resource-limited environments [26]. 

RQ2: Explainability Techniques for Clinical Interpretability 

in Transformer-Based TB Treatment Outcome Prediction. 

 

      A core aim of explainability is to build clinical trust and 

promote AI adoption in TB care [49]. However, while widely 

assumed, direct empirical evidence that XAI enhances 

clinician trust or improves decision making in TB prognosis 

remains scarce. The studies reviewed show a range of 

approaches, with a definite preference for those offering 

intuitive, practically useful insights. Explainability is 

progressing beyond simple attention visualisation for 

transformer-based models, which are intrinsically complex 

[38]. The author [38] proposed a novel framework that 

incorporates Deep Taylor Decomposition and Layer wise 

Relevance Propagation (LRP) to generate more robust and 

faithful explanations than attention maps alone, which is 

crucial for verifying model reasoning in high-stakes clinical 

predictions [38]. 

      However, feature significance approaches continue to be 

the most popular across all model types because they are 

obvious for doctors who are used to evaluating risk variables. 

The author [11] introduced a game theory based technique 

called SHAP (SHapley Additive exPlanations) to a XGBoost 

model, which revealed important indicators such as certain 

blood coagulation markers for treatment failure in TB 

Diabetes patients [11]. Similarly, [35] used the coefficients 

from a LASSO Cox regression model to construct a 

transparent, clinical indicator-based risk score, which is 

inherently interpretable [39]. For imaging based models, such 

as the radiomics and deep learning fusion model by [33], 

feature importance via radiomics provided insights into which 

imaging biomarkers drove the predictions [33]. Explainable 

AI methods such as SHAP (SHapley Additive exPlanations) 

improve interpretability by providing insights into "why" a 

model makes a particular prediction [50],[51]. The trend 

indicates that while advanced XAI for transformers is 

emerging, the field currently relies heavily on model agnostic 

techniques like SHAP and intrinsic model interpretability to 

bridge the transparency gap. Attention visualisations are 

intuitive but non-causal and open to misinterpretation [38], 

while methods like Layer-wise Relevance Propagation (LRP) 

remain too computationally complex for routine clinical use 

and SHAP can be computationally expensive and may 

produce unstable explanations with correlated features. This 

underscores the urgent need for robust, clinically validated 

explanation methods that are both faithful to the model and 

actionable for practitioners. 

 

1) SHAP (SHapley Additive exPlanations) : SHAP is a 

unified approach to interpreting the output of any ML 

model based on Shapley values from cooperative game 

theory [39]. It works by computing the marginal 

contribution of each feature to the prediction outcome 

across all possible combinations of features, assigning 

each an importance value for a specific prediction [39]. 

SHAP's strong theoretical reinforcements, capacity to 

offer both local and global individual prediction and 

overall model behaviour interpretability are its main 

advantages [38], [52]. Its major deficiency is the high 

computational cost that makes it slow in real-time clinical 

applications, especially for models with many 

characteristics or complicated ensembles [28]. 

 

2) Feature Importance and Model Coefficients: This 

method identifies the contribution of each input variable 

to the model's performance based on the model's internal 

characteristics, which can be the weights of a linear 

model or the feature importance of a tree-based model 

[35]. In the case of linear models such as Logistic 

Regression and LASSO regression, the magnitude and 

sign of the model's coefficients provide direct 

information about the contribution of each input variable 

[37]. The main advantage of this method is its 

interpretability without requiring a deep understanding of 

AI concepts. However, its disadvantage can be the case 

when the input variables are correlated in the model and 

it fails to account for why a specific prediction was made  

[43]. 

 

3) Attention Visualisation: Attention visualisation is a 

technique unique to attention-based models such as 

transformers [29]. It visualises attention weights to reveal 

which input sequence elements the model mainly focused 

on while making a certain prediction. Based on this, the 

author [40] applied the temporal attention embedding 

visualisation for their DT-THRE model to clearly 

describe how the model emphasises certain points in time 

in sequential health data [40]. The strength of this method 

is that it gives a straightforward intuitive look into the 

model's internal decision process and aligns well with 

sequential data. According to [38], attention weights can 

be difficult to interpret in models with multiple attention 

layers, and they are not always correct explanations for 

the model's decision making process. High attention does 

not always equate to causal importance [38]. 

 

4) Layer wise Relevance Propagation (LRP) : LRP is a 

technique for explaining the predictions of deep neural 

networks by redistributing the prediction output 

backwards through the network's layers to the input, 

assigning a relevance score to each input feature [34]. It 

works by using a set of propagation rules to trace the 

contribution of each neuron back to the input. The key 

strength of LRP is its ability to generate detailed, pixel-

wise or feature-wise explanations for complex deep 

learning models, and its weakness lies in its complexity 

and computational intensity, requiring specialised 

expertise to implement and interpret correctly, which can 

be a significant barrier in routine clinical practice [28]. 
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RQ3: Challenges in Deployment and Adaptability of 

Transformer Models for TB Treatment Outcome Prediction 

 

      In this review, fairness is understood as the absence of 

systematic performance disparities across clinically relevant 

subgroups, including gender, HIV status, socioeconomic 

context, and geographical setting, consistent with group-

based and distributional fairness perspectives in healthcare 

AI. A significant obstacle to successful AI that remains is 

high-quality representative data. Notable flaws in the data, 

such as small dataset sizes [34], [42], the presence of missing 

data points and imbalanced class distributions [22], [43], have 

been noticed in many studies. These naturally reduce the 

robustness of the model and result in overfitting [34], [48]. A 

condition called dataset shift arises when ML models trained 

on specific populations demonstrate substantial drops in 

performance on new demographical or clinical environments, 

exhibiting the challenge presented by data [53]. This is 

especially apparent in studies being performed on particular 

national cohorts  [35], thereby raising several questions 

regarding the fairness associated with using such models on 

various scenarios in different settings of healthcare [43]. 

       The resource demands of deep AI create a deployment 

paradox in low-resource, high-burden settings. Key barriers 

include unreliable internet for cloud inference, absent 

digitised EHRs, scarce technical support, and variable staff 

capacity for complex dashboards. Furthermore, the challenge 

of fairness, ensuring models do not exhibit biased 

performance across patient subgroups (gender, ethnicity, or 

HIV status), is rarely addressed. None of the reviewed studies 

conducted formal fairness audits, a critical omission for 

equitable deployment [43]. 

      However, difficulties also arise on the human side of 

adoption. This is especially true, even if highly effective 

models are developed and since there is a lack of 

interpretability originating from their black box approach, this 

undermines trust among clinicians to use predicted outcomes 

within practice [34]. Lack of trust is further worsened by 

legitimate concerns for ethics regarding privacy and security 

and also for fairness regarding algorithmic bias to vulnerable 

populations [14], [30]. Absence of strong governance 

structures and properly defined ethical frameworks further 

restricts the development of trust essential for clinical 

adoption[43] 

     The application of transformer AI into high-burden 

settings like LMICs brings unique ethical deployment 

challenges. The most critical issue is fairness: models trained 

on data from High Income Countries (HICs) are often 

inaccurate when applied to the local population of TB 

patients, whose clinical and socioeconomic profiles differ 

significantly from those in HICs [43]. This lack of local 

validation may result in biased or unequal care and calls for 

mandatory local fairness audits. Secondly, privacy and 

integrity of sensitive patient data are threatened by the model's 

reliance on multimodal data fusion, which can be overcome 

with the adoption of federated learning that securely enables 

collaborative model training without centralising sensitive 

patient data[37]. Finally, to guarantee accountability, the 

complexity of transformer logic needs to be made auditable 

using inherently robust XAI methods so that local clinicians 

confidently use the system[38]. 

      A coordinated approach that recognises their 

interdependence is required to address these problems. 

Developing lean implementations of frugal AI to improve 

computationally efficiency [54], as well as partnerships for 

diverse data acquisition tasks, are examples of structural 

solutions to be combined with different solutions like data 

augmentation [48], synthetic minority oversampling  [22], 

and domain adaptation techniques. Above all, explanations 

should not remain an addition but be fundamental principles 

[38], [40], and at the same time, developed ethics and 

governance frameworks ensure patient safety and equity 

against risks imposed by advancements in technology [27]. 

 

G. Conceptual Framework 

       Synthesising the identified challenges and requirements, 

we propose the Explainable Transformer Adoption Model for 

TB care (ETAMTB) as a conceptual framework for 

integration. It is crucial to clarify that ETAMTB is not an 

empirically validated tool but a synthesis-derived roadmap 

outlining the necessary components and workflow for 

responsible development and deployment. The framework 

suggests a structured clinical course through which 

transformer-based AI can be integrated into the decision-

making process of tuberculosis treatment. It begins with the 

capture of multimodal TB data. 

     These further undergo pre-processing and TB-specific 

feature engineering to combine these heterogeneous data 

sources for model ingestion. At the heart of this framework 

lies a transformer-based prognosis model that influences 

attention mechanisms in learning clinical dependencies 

within the dataset for predicting treatment outcomes, severity 

progressions or response likelihoods. ETAM TB goes ahead 

to emphasise that such predictions should not be black box 

outputs but rather a feed into a dedicated explainability layer 

using SHAP values, attention weighting, and feature 

relevance visualisation to produce clinically interpretable 

reasoning behind model predictions. Such explanations are 

channelled through to a clinician-facing prognosis dashboard 

designed to support risk stratification and inform the need for 

treatment adjustment, hence empowering health workers 

rather than replacing clinical judgment.  

     Finally, the framework introduces operational enablers 

like federated learning are implemented for preserving 

privacy, model distillation for low-resource deployment, and 

governance mechanisms addressing ethics, fairness, and 

regulatory compliance. All these put together position ETAM 

TB as a practical, trustworthy, and context sensitive outline 

on how explainable transformers can be used in real world TB 

care.  
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Figure 5: ETAM TB Framework 

 

H. Implications of the Study 

      The conclusions of this review also have key implications 

for practice and future studies; the development of context-

sensitive AI pathways should address all stated criteria and, 

therefore, take first priority for health systems at this point in 

time. It is clearly essential that researchers have cost-effective 

transformer architecture designs suited to settings where 

tuberculosis is still predominant. 

 

1) Practical Implications: Results highlight that the strategy 

of application for AI needs to be context-specific. Even 

though resource-intensive models perform equally well 

on longitudinal data for well-resourced hospitals, their 

application to primary care clinics in high-burden areas 

is far from reality [33], [40]. Low-cost, lightweight AI 

tools using public data, tailored to the specific constraints 

of the low-resource environment, are therefore urgently 

needed [35], [39]. Furthermore, explainability faces a 

significant gap in the operational integration of its 

implementation. Techniques like SHAP and nomograms 

are technologically feasible [11], [36], but their clinical 

efficacy depends on partnership with clinicians in order 

to co-design the AI interface to make explanations 

trustworthy and therapeutically actionable to overcome 

the black box uncertainty of doctors [30]. 

 

a) Practical Recommendations: Clinical systems 

should integrate XAI dashboards like attention 

relevance maps and SHAP to validate the clinician 

side. The Ministries of Health should develop 

federated data frameworks for TB that may improve 

transformer generalisability across regions. 

Hospitals from LMICs should consider the use of 

lightweight, distilled transformers consistent with 

offline execution on more limited computing 

infrastructure. TB programmes should mandate 

external validation and gender sensitive fairness 

testing before fielding AI models. 

 

2)  Theoretical Implications: From a theoretical standpoint, 

the analysis advocates a paradigm shift from optimising 

particular models to designing AI for equality and 

generalisation instead. Poor generalisability remains 

prevalent [11], [35], which poses a crucial limitation: 

locally trained models tend to break down in new 

populations. These indicators highlight the urgent need 

for federated learning strategies and novel domain 

adaptation capable of learning trustworthy 

representations from different international TB data 

without jeopardising patients' privacy. Furthermore, the 

area urges digging deeper into theoretical explanations 

for explanations themselves and developing reputable 

instruments to determine whether an explanation 

genuinely improves clinician comprehension and 

decision making or it is just a technical output. The high 

computational cost of advanced models, given the small, 

vague datasets typical of many TB programs, presents an 

important research direction towards frugal AI by model 

distillation and efficient architectural search[28]. 

 

3) Policy Implications: These findings have direct policy 

implications. The World Health Organisation and 

national TB programmes should establish data 

management frameworks that protect patient privacy 

while enabling data sharing for AI development. 

Policymakers and funders must support the creation of 

large, representative national datasets to monitor model 

performance and prevent disparities. Crucially, policy 

must mandate fairness evaluations and transparency, 

requiring AI developers to report and address 

performance gaps across key subgroups before 

deployment. 

 

I. Limitations of the Study 

       Despite the very rigorous approach adopted for this 

systematic review, several limitations exist which should also 

be appreciated: while focusing on four large databases and 

English language publications, this may have excluded 

significant studies published in local journals and non-English 

publications, thus possibly also infusing geographical bias. 

Additionally, putting into focus on publications after 2020 

while ensuring currency, leaving out earlier foundational 

work, lack of homogeneity in reporting among selected 

studies prevented direct algorithmic comparisons and meta-

analysis, though dual reviewer techniques have minimised 

subjectivity, there was interpretive judgement in this rapidly 

evolving field. The synthesis of only 17 studies limits robust 

quantitative comparisons and alongside a geographic 

concentration in Asia, reduces applicability to other high 

burden regions. 
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J. Future Work 

      Future research should establish an integrated 

sociotechnical paradigm, starting with the basic work 

required. This calls for the constitution of international 

consortia in order to create large-scale, multimodal data sets 

from genomic, imaging, and socioeconomic elements 

representing diversity originating from the high burden 

regions. Architectural innovation should then focus on the 

creation of domain-specific lightweight transformers using 

knowledge distillation, precisely benchmarked against frugal 

ML/AI models for their capability to assure vigorous and 

efficient offline operation and the ability to suggest clinically 

tailored interventions. Regarding explainability, future work 

should focus on co-designing clinically verifiable XAI 

dashboards with clinicians, ensuring that the visual interface 

showing SHAP values and attention heatmaps is effortlessly 

integrated into Electronic Medical Records (EMRs). In turn, 

this can make static predictions dynamic clinical partners. 

Lastly, on clinical integration and ethics, future research 

should ensure deployability and equity in LMICs by adopting 

federated learning and domain adaptation. To this end, well-

structured ethical and policy frameworks should be 

established to ensure uniform reporting and a comprehensive 

multicentre validation process within national TB programs. 

 

IV. CONCLUSION 

This review finds that while traditional models handle 

structured TB data well, transformers better manage complex, 

longitudinal datasets. However, adoption is hindered by 

limited interpretability, unaddressed fairness, high 

computational costs, and poor generalisability. Accuracy 

alone is insufficient for clinical use; current explainability 

methods like SHAP need more robust, context-aware 

evaluation. The bias toward studies from high-resource 

settings raises equity concerns for high-burden regions. The 

proposed ETAMTB framework serves as a conceptual 

roadmap to bridge these gaps. Ultimately, explainable 

transformers show promise but remain experimental, 

requiring diverse data, explicit fairness audits, efficient 

design, and stakeholder collaboration to become deployable, 

equitable tools in real-world care. 
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