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Chest X-ray imaging is one of the most widely used modalities for lung disease
screening; however, manual interpretation remains challenging due to overlapping
pathological patterns and the frequent presence of multiple coexisting abnormalities.
In recent years, Vision Transformer (ViT) models have demonstrated strong potential
for medical image analysis by capturing global contextual relationships.
Nevertheless, their performance is highly dependent on large-scale labeled datasets,
which are costly and difficult to obtain in clinical settings. To address this limitation,
this study proposes a Self-Supervised Learning Vision Transformer (SSL-ViT)
framework for multi-label lung disease classification using the CheXpert-v1.0-small
dataset. The proposed approach leverages self-supervised pretraining to learn robust
and transferable visual representations from unlabeled chest X-ray images prior to
supervised fine-tuning. A total of twelve clinically relevant thoracic disease labels are
retained, while non-disease labels are excluded to enhance interpretability and reduce
confounding effects. Experimental results demonstrate that SSL-ViT achieves a high
recall of 0.73 and a peak AUC of 0.75 on the test set, indicating strong sensitivity in
detecting pathological cases. Compared to the baseline ViT model, SSL-ViT exhibits
a recall-oriented performance profile that is particularly suitable for screening
applications, where minimizing false negatives is critical. Furthermore, Grad-CAM
visualizations confirm that the model focuses on anatomically meaningful lung
regions, supporting its clinical relevance. These findings suggest that SSL-enhanced
Vision Transformers provide a robust and effective solution for multi-label chest X-
ray screening tasks.

This is an open access article under the CC-BY-SA license.

I. INTRODUCTION

classification)[4].

multiple concurrent thoracic pathologies (multi-label

Lung diseases represent one of the leading causes of
mortality worldwide, with the prevalence continuing to
increase annually[1]. According to the World Health
Organization (WHO) and various journal studies, diseases
such as pneumonia, tuberculosis, and Chronic Obstructive
Pulmonary Disease (COPD) remain a significant global
health burden [2] and are projected to continue rising until
2050. Early detection plays a vital role in improving patient
prognoses and reducing fatality rates. Chest radiography (X-
ray) is one of the primary diagnostic modalities used for lung
disease screening[3]. However, the interpretation of chest X-
ray images requires considerable clinical expertise and is
susceptible to human error, particularly in cases involving

In this study, pulmonary X-ray image classification is
defined as an automated analysis procedure aimed at
identifying one or more lung diseases in chest radiographs
using deep learning-based approaches. Such classification
belongs to the category of multi-label image classification,
where a single radiograph may contain multiple disease
labels. Automated decision-support systems developed from
this classification approach are intended to assist clinicians in
providing faster and more accurate diagnoses, and they have
the potential to be integrated into clinical workflows in
hospitals and healthcare facilities[5]. Convolutional Neural
Networks (CNNs) have traditionally dominated medical

http://jurnal.polibatam.ac.id/index.php/JAIC


mailto:rahaba@students.amikom.ac.id
mailto:theopilus.27@amikom.ac.id
mailto:arifiyanto@amikom.ac.id
mailto:uyock@amikom.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC

e-1SSN: 2548-6861 299

image analysis tasks due to their strong inductive biases
toward local spatial features.

However, CNN-based approaches often rely on
hierarchical receptive fields and local convolution operations,
which may limit their ability to capture long-range global
dependencies across an entire image. In chest X-ray analysis,
pathological patterns frequently span multiple anatomical
regions, making global contextual understanding particularly
important. To address these limitations, this study adopts the
Vision Transformer (ViT) architecture[6] (ViT) a
transformer-based model originally developed for natural
language processing and later adapted to computer vision.
Unlike CNNs, ViT represents an image as a sequence of non-
overlapping patches and processes them using self-attention
mechanisms. This design enables ViT to model global
relationships between distant image regions, which is
particularly beneficial for detecting diffuse or overlapping
lung abnormalities. Recent studies have demonstrated that
VIiT achieves competitive or even superior performance
compared to CNNs in large-scale image classification
challenges such as ImageNet. Chen et al[7] further evaluated
fine-tuned VIiT models for COVID-19 detection using chest
radiographs and benchmarked them against EfficientNet,
MVIT, and EfficientViT, utilizing a public dataset comprising
3,616 COVID-19 samples, 10,192 normal images, 6,012 lung
opacity cases, and 1,345 pneumonia images. Their results
indicated that the ViT-based model achieved the highest
accuracy of 95.79% in four-class classification and 99.57% in
three-class classification, with an AUC of 0.9993 for the
COVID-19 category. Ko et al[8]. investigated the impact of
six optimization algorithms on three ViT architectures for
detecting seven pulmonary diseases from a dataset of 19,003
chest X-ray images. Optimizers based on Adam, particularly
RAdam and NAdam, produced the best performance. FastViT
with NAdam achieved the highest accuracy of 97.63% under
imbalanced conditions, while RAdam performed best on
balanced datasets with 95.87% accuracy. Although the
models effectively recognized Normal and Tuberculosis
classes, they struggled with minority diseases such as MERS
and SARS.

This work underscores the importance of selecting suitable
optimization strategies and addressing data imbalance to
improve ViT-based pulmonary disease classification.
Marikkar et al[9]. introduced LT-ViT, a lightweight Vision
Transformer architecture enhanced with label tokens for
multi-label chest X-ray classification. Unlike prior methods
such as C-Tran and Query2Label, LT-VIiT enables direct
interaction between label tokens and image tokens through
cross- and self-attention mechanisms, effectively capturing
inter-label relationships and multi-scale visual features.
Evaluations on NIH-CXR14 and CheXpert datasets showed
improved AUC performance while adding minimal
parameters to the ViT-S baseline. The model supports both
random and domain-specific pre-training and enables
inherent interpretability, as label tokens directly attend to
pathological regions. These findings demonstrate LT-ViT as

an efficient and accurate solution for multi-label medical
image classification using ViTs. Despite the advantages of
Vision Transformers, their performance is highly dependent
on the availability of large-scale labeled datasets. In medical
imaging, acquiring high-quality annotations is expensive,
time-consuming, and requires expert radiologists.

Moreover, datasets such as CheXpert[10] contain a
significant proportion of uncertain or missing labels, which
can negatively impact fully supervised training. To mitigate
these challenges, this study incorporates Self-Supervised
Learning (SSL)[11] as a pretraining strategy. Self-Supervised
Learning (SSL) enables models to learn meaningful visual
representations from large amounts of unlabeled data by
solving carefully designed pretext tasks, thereby reducing
reliance on annotated samples. Beyond improving general
feature learning, SSL has been shown to enhance model
sensitivity by encouraging the learning of more
comprehensive and inclusive feature representations, which is
particularly beneficial for detecting subtle or less frequent
pathological patterns in medical images. As a result, SSL-
pretrained models often demonstrate improved recall,
reflecting a reduced rate of false-negative predictions an
essential requirement in clinical screening and diagnostic
support systems.

When combined with Vision Transformers (ViT), SSL
becomes especially effective, as transformer-based
architectures strongly benefit from large-scale representation
learning and global contextual modeling. SSL pretraining
allows ViT encoders to capture long-range dependencies and
latent disease-related patterns across chest X-ray images,
facilitating improved sensitivity during downstream fine-
tuning. This characteristic is particularly advantageous in
multi-label medical classification tasks, where multiple
coexisting abnormalities may present with varying visual
prominence. In this study, the Vision Transformer (ViT) is
implemented for multi-lung disease classification using the
CheXpert-v1.0-small dataset, which consists of thousands of
chest X-ray images annotated with 12 thoracic disease labels.
One label represents the normal condition, while a device-
related label is excluded from the classification targets. The
primary objective of this research is to evaluate the
effectiveness of SSL-enhanced ViT models in simultaneously
identifying multiple lung diseases, with a particular emphasis
on improving recall performance, and to assess their potential
as a robust and recall-oriented alternative to conventional
CNN-based diagnostic systems.

Il. METHODS

This study was conducted through a series of systematic
stages, including data collection, exploratory data analysis
(EDA), preprocessing, self-supervised learning (SSL) using a
Vision Transformer (ViT) model, model evaluation, and
deployment. The overall workflow is illustrated in Figure 1.
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Figure 1. Pipeline research

A. Data Collecting

Data collection in this study utilized the publicly available
CheXpert-v1.0-small dataset[10], which is accessible through
the Kaggle platform. This dataset contains the latest updated
chest X-ray images collected from patient samples between
2002 and 2017 has been widely employed in research related
to lung disease detection using machine learning and deep
learning approaches. The CheXpert-v1.0-small dataset
consists of 223,414 data entries representing patients and their
radiological examinations in the form of chest X-ray images.
Each entry is accompanied by labels representing 14 lung
conditions, including No Finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung
Lesion, Edema, Consolidation, Pneumonia, Atelectasis,
Pneumothorax, Pleural Effusion, Pleural Other, Fracture, and
Support Devices. All images in this dataset are provided in
JPEG format and include metadata in the form of diagnostic
labels. These labels are stored in a .csv file containing
diagnosis values for each corresponding image. Figure 2
illustrates the comparison of the dataset across each class,
while Table 3 presents the distribution of the data.
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Figure 2. illustrates the comparison of the dataset across each class

TABLE 1.
DISTRIBUTION OF THE DATA ACROSS EACH CLASS

No | Diseases Positive | Negative | Uncertain
{1.0} {0.0} {-1.0}
1 | No Finding 22419 196 0
2 | Enlarged 10907 21763 12403
Cardiomediastinum
3 | Cardiomegaly 27068 11282 8087
4 | Lung Opacity 105707 6707 5598
5 | Lung Lesion 9187 1503 1488
6 | Edema 52291 20915 12984
7 | Consolidation 14816 28298 27742
8 | Pneumonia 6047 3025 18770
9 | Atelectasis 33456 1482 33739
10 | Pneumothorax 19456 56567 3145
11 | Pleural Effusion 86254 35563 11628
12 | Pleural Other 3524 549 2653
13 | Fracture 9040 2746 642
14 | Support Devices 116108 6264 1079

Based on the visual analysis of the comparisons presented
in Figure 3 and Table 1, including images with labels -1, 0,
and 1 across all disease categories, it is observed that images
labeled —1 tend to exhibit higher similarity to those labeled 1
(positive) than to those labeled 0 (negative). In many
instances, images assigned the —1 (uncertain) label contain
subtle abnormal patterns resembling early pathological
indicators. Several diseases, such as Edema, Consolidation,
Lung Opacity, and Atelectasis, present overlapping
radiological characteristics, making it difficult to distinguish
between labels —1 and 1, even for professional radiologists.
Similar conditions are found in diseases such as
Cardiomegaly and Enlarged Cardiomediastinum, where
cardiac enlargement frequently correlates with mediastinal
widening, resulting in uncertain labels due to the interrelated
nature of the conditions. These findings reinforce the
argument that, in clinical practice, the —1 (uncertain) label
more closely represents a weakly positive indication rather
than a truly neutral or negative state. This study adopts the U-
ones approach, in which the —1 label is treated as positive.

This decision is motivated by the visual evidence
indicating that images labeled —1 show closer resemblance to
positive cases, making it more consistent to handle them as
weak positives. While the U-Ones strategy is adopted in this
study to handle uncertain labels in the CheXpert dataset, it is
important to acknowledge the potential biases associated with
this approach. Treating uncertain labels as positive instances
may introduce a tendency toward overestimation of disease

prevalence, potentially increasing the false positive rate and
biasing the model toward higher sensitivity. However, prior
studies have shown that, in screening-oriented medical
applications, this bias is often acceptable when the primary
objective is to minimize false negatives, which pose greater
clinical risks than false positive[12].

Alternative strategies such as U-Zeros, which treat
uncertain labels as negative, may reduce false positives but
risk suppressing subtle pathological patterns, particularly in
diseases with ambiguous radiographic manifestations. This
can lead to systematic under-detection and degraded recall,
especially for conditions with overlapping visual
characteristics such as Edema and Consolidation[13].
Another approach, soft labeling, assigns probabilistic values
to uncertain labels and has been explored to mitigate hard
decision bias; however, it introduces additional complexity in
optimization and requires careful calibration to ensure stable
training, which may not be feasible in all practical
settings[14]. Given these considerations, the U-Ones strategy
is selected as a deliberate design choice aligned with the
screening-oriented goal of this study. By prioritizing
sensitivity and encouraging the model to learn inclusive
representations of pathological patterns, U-Ones supports
early detection scenarios where uncertain findings should
prompt further clinical evaluation rather than dismissal.
Nonetheless, future work will investigate comparative
analyses across uncertainty-handling strategies, including U-
Zeros and soft-labeling, to further assess their impact on
model calibration, bias, and generalization performance.

B. Feature Selection

The initial step involves selecting only the disease-related
labels that are directly relevant to the objective of this study,
which focuses on multi-label lung disease detection from
chest X-ray images. Non-disease labels such as Sex, Age,
Frontal/Lateral, AP/PA, No Finding, and Support Devices are
deliberately excluded from the learning process. This
exclusion is based on the methodological consideration that
such labels either represent demographic or acquisition
metadata, or correspond to non-pathological conditions, and
therefore do not contribute to the extraction of radiological
features associated with pulmonary abnormalities. From a
clinical and radiological perspective, lung disease
manifestations in chest X-ray images are determined by
pathological changes in pulmonary structures rather than by
patients’ personal information or imaging acquisition
parameters. Several prior studies on the CheXpert dataset
have adopted a similar label selection strategy, focusing
exclusively on disease-related findings to improve model
interpretability and clinical relevance while reducing
potential confounding factors. By excluding non-disease
labels, the model is encouraged to learn visual representations
that are directly attributable to pathological patterns rather
than spurious correlations. Furthermore, the exclusion of the
No Finding label is consistent with established practices in
multi-label chest X-ray classification, as this label represents
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the absence of disease rather than a specific pathological
category and may introduce ambiguity in multi-label learning
settings. Similarly, labels related to imaging devices and
acquisition views are removed to ensure that the learned
features are not biased toward non-anatomical artifacts, which
has been shown to negatively affect generalization
performance in medical imaging models[15]. As a result of
this label selection process, a total of 12 disease labels are
retained for model training and evaluation: Enlarged
Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung
Lesion, Edema, Consolidation, Pneumonia, Atelectasis,
Pneumothorax, Pleural Effusion, Pleural Other, and Fracture.
This selection aligns with the primary goal of capturing
clinically meaningful thoracic abnormalities  while
maintaining transparency and reproducibility in the
experimental design. By clearly defining the criteria for
disease label inclusion, the proposed methodology ensures
that the resulting model performance can be reliably
interpreted and fairly compared with prior CheXpert-based
studies.

C. Splitting Dataset

After the data pre-processing stage is completed, the next
step involves data splitting to ensure that the model is trained,
validated, and tested effectively. In this study, the dataset is
not only divided into training and testing subsets as in
conventional approaches but also includes a validation subset
as an essential component in the deep learning training
process. The dataset is partitioned into 60% for the training
set, 20% for the validation set, and 20% for the testing set[16].
The training data are utilized to adjust the model weights in
order to learn the patterns from the X-ray images, while the
validation data are employed to monitor model performance
during training and to prevent overfitting. The testing data are
used exclusively to evaluate the model’s generalization
capability on unseen samples. With this well-controlled data
separation, the training process of the Vision Transformer can
be objectively assessed, ensuring reliable and trustworthy
performance results. The dataset was divided into three
subsets, resulting in 134,048 data instances in the training set
and 44,683 data instances each in the validation and test sets.

D. Image Transformations & Data Augmentation

The image transformation process is conducted to meet the
input requirements of the Vision Transformer (ViT) model,
which operates with a fixed image resolution. Initially, a
cropping operation is applied to enlarge the lung region,
ensuring that the model focuses on the most relevant area. The
images are then resized to 224x224 pixels, normalized, and
converted into tensor format to comply with the ViT input
specifications. Furthermore, each data frame undergoes a
specific transformation procedure. To enhance the model’s
robustness against data variability and to reduce the risk of
overfitting, data augmentation is applied to the training set.
Several augmentation techniques are listed in Table 2.

TABLE 2.
DATA AUGMENTATION TECHNIQUES

No Data Augmentation Values

1 Random Resized Crop 0.85-1.0

2 Random Horizontal Flip | True

3 Random Rotation 10

4 Color Jitter Brightness = 0.15, contrast =
0.15

To improve the model’s generalization capability and
increase robustness against variations in image data, several
augmentation techniques are applied during training. Random
Resized Crop is utilized by randomly cropping a portion of
the image with a scale range of 0.85-1.0. A Random
Horizontal Flip[17] is performed enhancing sensitivity to left-
right orientation differences. Random Rotation up to 10
degrees is applied to account for slight rotational changes that
may occur during image acquisition. Additionally, Color
Jitter[18] is incorporated by adjusting the image brightness
and contrast by a factor of 0.15, enabling the model to remain
robust under varying lighting conditions.

E. Self-Supervised Learning (SSL)

To enhance feature representations learning and reduce
dependency on large amounts of labelled data, a Self-
Supervised Learning (SSL)[19] stage was incorporated prior
to the supervised training phase. SSL enables the model to
learn meaningful and transferable representations by
exploiting intrinsic structures within unlabelled data through
carefully designed pretext tasks. This approach is particularly
beneficial in medical imaging domains, where labelled data
are often scarce, expensive, and time-consuming to obtain. In
this study, SSL is applied during a pretraining phase using
only the training images without label information. Multiple
stochastic data augmentations are performed to generate
different views of the same input image. These augmented
views are then used to define a pretext task that encourages
the model to learn invariant and discriminative
representations. By learning from unlabelled data, the model
captures low-level and high-level visual patterns that are
robust to variations in illumination, orientation, and noise.

The Vision Transformer (ViT) encoder is employed as the
backbone network during the SSL pretraining stage.
Depending on the SSL paradigm, such as contrastive learning
or masked image modelling, the encoder is optimized to either
maximize agreement between different augmented views of
the same image or reconstruct missing image patches from
partial observations. This process allows the ViT encoder to
learn contextual relationships and global dependencies within
medical images more effectively than purely supervised
learning approaches. After the SSL pretraining phase, the
learned encoder weights are transferred to the supervised
learning stage. The pretrained ViT encoder is then fine-tuned
using labelled data for the target classification task. This
transfer learning strategy significantly improves convergence
speed, generalization performance, and robustness,
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particularly when the labelled dataset is limited. The
integration of SSL thus strengthens the overall learning
framework by providing a well-initialized representation
space that enhances downstream classification accuracy and
reduces overfitting.

F. ViT Modelling

The model training process in this study utilizes the Vision
Transformer (ViT) architecture, which has demonstrated
strong effectiveness in image processing tasks. ViT operates
by dividing an input image into small patches and converting
them into vector representations (embeddings) that are
processed through a self-attention mechanism. This
mechanism enables the model to capture global relationships
among different regions of an image, allowing it to learn
complex patterns in chest X-ray data. ViT model can illustrate
show in Figure 3.

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder
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Figure 3. illustrates the model ViT

Each image patch is transformed into a vector through an
embedding process and augmented with positional encoding
to preserve spatial ordering. The resulting sequence of patches
is then processed by a transformer encoder composed of
multi-head self-attention and feed-forward network layers.
The final output token serves as a global image representation
for classification purposes. Through this approach, the model
is expected to provide a more comprehensive understanding
of pulmonary disease indicators compared with conventional
CNN-based methods. A fine-tuning stage is then performed
by adapting the pre-trained model weights using the pre-
processed research dataset following a data-splitting
procedure. In this stage, all ViT layers are re-optimized to
better align with the characteristics of medical imaging data.
The fine-tuning configuration is designed to support multi-
label classification, given that a single chest X-ray may
indicate more than one type of lung disease. A sigmoid
activation function is applied in the output layer to allow the
model to generate independent probability scores for each
disease class. The training process employs the vit-small-
patch16-224 model from HuggingFace, which was previously
pre-trained by Google on the ImageNet-21k dataset. The

output layer is modified to detect twelve pulmonary disease
labels included in the CheXpert dataset.

G. Evaluations Metrics

Evaluation is a critical stage in the development and
validation of machine learning and deep learning models,
particularly in the context of multi-label medical image
classification. The primary objective of evaluation is to assess
how well the model performs in solving the assigned task
based on validation and testing datasets that were not
observed during the training process. The evaluation results
are used to determine whether the model is reliable for real
world applications and to compare the performance of
different approaches or algorithms. In  multi-label
classification tasks, conventional accuracy metrics are
insufficient because each sample may contain more than one
correct label. Therefore, specific evaluation metrics such as
precision, recall, F1-score, and Area Under the Curve (AUC)
are utilized to comprehensively measure  model
performance[20]. Precision indicates the correctness of
positive predictions made by the model, where a high
precision score implies a low false-positive rate, which is
essential in medical applications requiring high accuracy:

TP (D)

p . . —
recision —TP TFP

where TP represents True Positive and FP represents False
Positive. Recall (sensitivity) measures the model’s ability to
correctly identify all positive samples, which is crucial for
minimizing false-negative predictions in disease detection:

TP 2

Recall = TP+—FN

where FN denotes False Negative. The F1-score is the
harmonic mean between precision and recall, and it is
employed to establish a balance between detecting all positive
cases and maintaining prediction accuracy:

Precision X Recall ?3)

F1=2X%
Precision + Recall

AUC describes the ability of the model to discriminate
between positive and negative classes across various decision
thresholds, representing multi-label classification
performance more effectively. In multi-label medical
classification research, such as the CheXpert benchmark,
AUC is considered more representative than accuracy, F1-
score, precision, and recall for several reasons. First, AUC is
more robust to class imbalance, which frequently occurs in
medical datasets where disease label distributions are highly
uneven. While accuracy may produce misleading results by
favoring majority classes, AUC evaluates class discrimination
independently of the distribution of positive and negative
labels[21].
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Second, AUC assesses model performance across multiple
decision thresholds, providing a more comprehensive
evaluation compared to metrics that operate only at a single
threshold, such as precision, recall, and F1-score[22]. Finally,
in multi-label scenarios, each instance includes multiple
binary decisions, and both macro and micro-averaged AUC
offer consistent evaluation across labels despite significant
disparities in positive and negative sample counts.
Comprehensive evaluation provides a realistic understanding
of the strengths and limitations of a model, as well as its
readiness for deployment in actual medical environments.
Therefore, this stage must not be overlooked and should be
carefully designed to align with the specific objectives and
characteristics of the addressed problem.

I11. RESULTS AND DISCUSSION

The object of this study is chest X-ray images contained in
the CheXpert-v1.0-small dataset, a large-scale medical image
collection widely used for pulmonary disease detection
through radiological imaging. The primary objective of this
research is to develop a multi-label classification framework
based on the Vision Transformer (ViT) that is capable of
identifying one or more lung conditions simultaneously
within a single image. To enhance feature representation
learning and reduce reliance on labeled data, a Self-
Supervised Learning (SSL) stage is incorporated prior to the
supervised fine-tuning process.In the proposed framework,
the ViT encoder is first pretrained using an SSL paradigm on
the training images without utilizing label information. This
pretraining stage enables the model to learn robust and
generalizable visual representations from chest X-ray images
by exploiting intrinsic image structures through a pretext task.
The SSL-pretrained encoder weights are subsequently
transferred to the supervised learning stage and fine-tuned for
multi-label lung disease classification. The supervised fine-
tuning process employs the vit-small-patch16-224
architecture[23], which is initialized using both ImageNet-
21k pretrained weights provided by Google and the SSL-
pretrained representations learned from the CheXpert training
data. The training configuration is implemented using the
TrainingArguments framework with a learning rate of 3 x
1073, a cosine decay learning rate scheduler, and a warm-up
ratio of 0.1. The AdamW optimizer is utilized to update model
parameters. A batch size of 32 is applied consistently for both
training and evaluation. The model is trained for a maximum
of 10 epochs, with early stopping activated if no performance
improvement is observed over three consecutive evaluation
cycles. Model evaluation is conducted at the end of each
epoch, and the best-performing model checkpoint is
automatically restored based on the highest validation
accuracy achieved during training. The fine-tuning process is
carried out using the HuggingFace Trainer framework, where
the model is trained on the training set and validated on the
validation set, with evaluation metrics computed at each
evaluation step. Upon completion of training, both the final

model and the associated image processor are saved in the
chexpert-vit-model directory (the directory name is
configurable) to support future deployment and inference.
Table 2 presents the training performance tracked across
checkpoints, indicating that the entire training process 20
epochs required approximately 2 hours and 18 minutes.

TABLE 3.
TRAINING PERFORMANCE PROCESS

Train Val F1-

Epoch Loss Loss Precision | Recall Score AUC
1 1.0915 | 1.0739 0.2286 0.7181 | 0.2815 | 0.7165
2 1.0703 | 1.0729 0.2468 0.5916 | 0.3022 | 0.7181
3 1.0470 | 1.0370 0.2296 0.7264 | 0.3038 | 0.7317
4 1.0295 | 1.0349 0.2340 0.6717 | 0.3117 | 0.7334
5 1.0197 | 1.0352 0.2309 0.7091 | 0.3143 | 0.7395
6 1.0066 | 1.0328 0.2475 0.6290 | 0.3190 | 0.7417
7 0.9961 | 1.0309 0.2433 0.6493 | 0.3224 | 0.7432
8 1.0279 | 1.0991 0.2076 0.7919 | 0.2822 | 0.7099
9 1.0214 | 1.0272 0.2272 0.7316 | 0.3067 | 0.7419
10 0.9852 | 1.0312 0.2435 0.6648 | 0.3167 | 0.7437
11 0.9677 | 1.0297 0.2517 0.6592 | 0.3227 | 0.7465
12 0.9490 | 1.0237 0.2388 0.7121 | 0.3164 | 0.7477
13 0.9321 | 1.0475 0.2451 0.6732 | 0.3218 | 0.7478
14 0.9118 | 1.0446 0.2467 0.6877 | 0.3224 | 0.7510
15 0.8920 | 1.0564 0.2441 0.6872 | 0.3227 | 0.7509
16 0.8710 | 1.1194 0.2479 0.6794 | 0.3252 | 0.7496
17 0.8539 | 1.1616 0.2498 0.6631 | 0.3259 | 0.7493
18 0.8365 | 1.2135 0.2514 0.6524 | 0.3284 | 0.7492
19 0.8270 | 1.2717 0.2515 0.6377 | 0.3304 | 0.7491

20 0.8187 | 1.2772 0.2521 0.6436 | 0.3299 | 0.7484

Table 3 presents the training performance of the SSL-VIiT
model across 20 epochs. The results demonstrate stable
convergence, high recall performance, and a peak AUC of
0.7510, highlighting the effectiveness of SSL pretraining in
enhancing model sensitivity for multi-label chest X-ray
classification.

Precision, Recall, and F1-Score (SSL-VIT)
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Figure 4. Precision, Recall, and F1-Score (SSL-ViT)

Figure 4 The experimental results reveal a consistent recall-
oriented behavior throughout the training process.
Specifically, the recall values remain relatively high, ranging
approximately from 0.63 to 0.79 across epochs, indicating the
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model’s strong sensitivity in identifying positive lung disease
cases. In contrast, precision remains comparatively low but
stable, fluctuating within the range of 0.22 to 0.25, while the
F1-score demonstrates a gradual and stable improvement as
training progresses. This performance pattern is highly
consistent with the theoretical characteristics of Self-
Supervised Learning (SSL), which encourages the learning of
broad and inclusive feature representations rather than highly
restrictive decision boundaries. Such recall-dominant
performance is particularly relevant in chest X-ray screening
applications, where false-negative predictions may lead to
missed diagnoses and delayed clinical intervention. From a
clinical perspective, false negatives are considerably more
critical than false positives, as undetected pathological
conditions pose greater risks to patient outcomes. Therefore,
although the SSL-VIiT model sacrifices precision to some
extent, its ability to consistently achieve high recall
underscores its suitability for medical screening and decision-
support systems, where maximizing sensitivity is a primary
objective. These findings further confirm the recall-oriented
nature of the SSL-VIT framework and highlight its practical
relevance in safety-critical medical imaging tasks. The best-
performing trained model was assessed using Area Under the
Curve (AUC) metrics, as illustrated in Figure 5.

ROC Curves per Class on Test Set (SSL-VIT)

10

0.0

False Positive Rate

Figure 5. ROC Curves all label in test set

Figure 5 presents the Receiver Operating Characteristic
(ROC) curves for each thoracic disease class evaluated on the
test set using the SSL-ViT model. Overall, the ROC curves
demonstrate that the proposed SSL-VIiT framework achieves
robust discriminative performance across multiple disease
categories, with Area Under the Curve (AUC) values
consistently exceeding random chance for all classes. Several
disease categories exhibit strong classification capability,
notably Pleural Other (AUC = 0.856), Cardiomegaly (AUC
= 0.847), Enlarged Cardiomediastinum (AUC = 0.823), and
Pleural Effusion (AUC = 0.811). These conditions typically
present distinctive global structural or intensity patterns in
chest X-ray images, which are effectively captured by the
transformer-based representations learned through self-

supervised pretraining. Moderate performance is observed for
classes such as Pneumonia (AUC = 0.778), Edema (AUC =
0.741), Pneumothorax (AUC = 0.736), Fracture (AUC =
0.726), and Consolidation (AUC = 0.713). The ROC curves
of these classes indicate a favorable trade-off between
sensitivity and specificity, suggesting that SSL-VIiT can learn
clinically relevant features despite inter-class visual overlap
and label ambiguity commonly found in chest X-ray datasets.
Lower AUC values are observed for Atelectasis (AUC =
0.657), Lung Opacity (AUC =0.670), and Lung Lesion (AUC
= 0.703). These findings are consistent with prior studies, as
these conditions often exhibit subtle or diffuse radiographic
patterns that are challenging to distinguish even for human
experts. Nevertheless, the ROC curves for these classes
remain substantially above the diagonal baseline, confirming
that the model retains meaningful discriminative power.
Importantly, the ROC characteristics align with the study’s
primary objective of maximizing recall for screening-oriented
applications. The SSL-ViT model demonstrates strong true
positive rates at relatively low false positive rates across most
classes, which is particularly desirable in clinical screening
scenarios where false negatives are more critical than false
positives. This behavior supports the suitability of self-
supervised pretraining for enhancing sensitivity in multi-label
chest X-ray classification tasks. The evaluation results
obtained using the classification report on the test set
demonstrate consistent misclassification patterns across
several labels, as illustrated in Table. 4.

TABLE 4.
CLASSIFICATION REPORT OF SSL-VIT
Disease Class Precision | Recall Fl- Support
score
Enlarged 0.07 0.58 0.13 2,061
Cardiomediastinum
Cardiomegaly 0.36 0.70 0.47 5,367
Lung Opacity 0.62 0.70 0.66 21,063
Lung Lesion 0.08 0.71 0.14 1,843
Edema 0.46 0.76 0.57 10,505
Consolidation 0.12 0.69 0.20 2,969
Pneumonia 0.05 0.59 0.09 1,146
Atelectasis 0.21 0.75 0.32 6,689
Pneumothorax 0.21 0.74 0.33 3,919
Pleural Effusion 0.68 0.79 0.73 17,303
Pleural Other 0.04 0.64 0.08 710
Fracture 0.08 0.63 0.14 1,769
Micro Average 0.28 0.73 0.40 75,344
Macro Average 0.25 0.69 0.32 75,344
Weighted Average | 0.46 0.73 0.53 75,344

The class-wise classification report indicates that the
proposed SSL-ViT model consistently achieves high recall
across most thoracic disease categories, with recall values
ranging from 0.58 to 0.79. Notably, Pleural Effusion
demonstrates the strongest overall performance, achieving the
highest precision (0.68), recall (0.79), and F1-score (0.73),
suggesting that the model effectively captures its distinctive
radiographic patterns. Diseases such as Edema, Lung Opacity,
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Atelectasis, and Pneumothorax also exhibit strong recall
performance (>0.70), confirming the model’s sensitivity in
identifying clinically relevant abnormalities. Conversely,
lower precision is observed for classes with subtle or
overlapping visual characteristics, including Pleural Other,
Pneumonia, and Lung Lesion. This trade-off reflects the
model’s emphasis on sensitivity, which is desirable in
screening-oriented applications. Overall, the micro-averaged
recall of 0.73 further highlights the effectiveness of self-
supervised pretraining in enhancing detection sensitivity
across multiple disease categories. The observed performance
profile high recall with moderate precision is well aligned
with clinical screening requirements, where false negatives
pose a greater risk than false positives. The Grad-CAM
heatmap demonstrates that the SSL-ViT model primarily
focuses on the bilateral lower lung regions in Figure 6, with
pronounced activation observed along the right lung field.
These regions are commonly associated with radiographic
manifestations of lung opacity, including alveolar infiltration
and increased parenchymal density. Importantly, the model’s
attention is largely confined within anatomically relevant
pulmonary areas, rather than being distracted by non-
diagnostic regions such as the background or image borders.

Grad CAM: Lung Opacity Top' Prdiction Probabites

aobatity

Figure 6. Grad-Cam Result of SSL-VIT

The observed Grad-CAM patterns reflect one of the key
advantages of self-supervised learning in medical imaging:
the ability to learn robust and transferable visual
representations without relying solely on labeled data. By
pretraining on unlabeled chest X-ray images, the SSL-ViT
model develops a global understanding of lung anatomy,
which translates into focused and clinically interpretable
attention maps during downstream classification. From a
screening perspective, this behavior is particularly desirable.
The model’s emphasis on lung parenchymal regions supports
its strong recall performance reported in earlier experiments,
reinforcing its suitability for early detection scenarios where
minimizing false negatives is critical. The comparison results
with the baseline ViT model without self-supervised learning
are presented in Table 5.

TABLE 5.
COMPARISON VIT VS SSL-VIT

Model Precision | Recall F1-Score AUC
ViT-Baseline 0.66 0.49 0.56 0.77
SSL-ViT (proposed) | 0.28 0.73 0.40 0.75

Table 5 presents a comparative evaluation between the
baseline Vision Transformer (ViT) model and the proposed
Self-Supervised Learning Vision Transformer (SSL-ViT)
model. The results highlight a clear trade-off between
precision and recall across the two approaches. The baseline
ViT model achieves a higher precision (0.66) and moderate
recall (0.49), resulting in an F1-score of 0.56 and an AUC of
0.77. This indicates that the baseline model is more
conservative in predicting positive cases, producing fewer
false positives but at the cost of missing a substantial portion
of true pathological cases. Such behavior is more aligned with
confirmatory or diagnostic settings, where higher precision is
prioritized.

In contrast, the proposed SSL-ViT model demonstrates a
substantially higher recall (0.73), indicating improved
sensitivity in  detecting pathological findings. This
improvement comes with a decrease in precision (0.28),
reflecting an increased number of false-positive predictions.
Consequently, the F1-score is lower (0.40), while the AUC
remains comparable (0.75), suggesting that the overall
discriminative ability of the model is preserved despite the
shift in prediction behavior. Importantly, the performance
profile of SSL-VIiT is particularly suitable for screening-
oriented clinical applications, such as chest X-ray analysis,
where minimizing false negatives is critical. The higher recall
achieved by SSL-VIiT ensures that fewer diseased cases are
overlooked, which is a key requirement in early detection and
triage systems. The comparable AUC values further indicate
that self-supervised pretraining enhances sensitivity without
significantly compromising the model’s overall ranking
capability. Overall, these results demonstrate that
incorporating self-supervised learning into the Vision

* Transformer framework effectively shifts the model toward a

high-sensitivity regime, making SSL-ViT a robust alternative
for large-scale chest X-ray screening, while the baseline ViT
may be better suited for scenarios requiring higher precision.

1V. CONCLUSION

This study presents an SSL-ViT framework for multi-label
lung disease classification on chest X-ray images using the
CheXpert dataset. By incorporating a self-supervised learning
stage prior to supervised fine-tuning, the proposed approach
effectively addresses the limitations of labeled data scarcity
in medical imaging. The experimental results demonstrate
that SSL pretraining significantly enhances the model’s
sensitivity, as reflected by consistently high recall values
across most disease categories and a peak AUC of 0.7510.
Although the precision of the SSL-VIiT model is lower than
that of the baseline VIT, the recall-oriented behavior aligns
well with the primary objective of clinical screening, where
false-negative predictions pose a greater risk than false
positives.

The class-wise evaluation reveals that the model performs
particularly well on diseases with distinct radiographic
patterns, such as Pleural Effusion and Cardiomegaly, while
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still maintaining meaningful discriminative capability for
conditions with subtle or overlapping features. Grad-CAM
analysis further confirms that the model attends to clinically
relevant lung regions, supporting the interpretability and
reliability of the proposed approach. Comparative analysis
with a baseline ViT model highlights a clear trade-off
between precision and recall, demonstrating that SSL-VIiT is
more suitable for early detection and triage scenarios, whereas
the baseline model may be preferable in confirmatory
diagnostic settings. Overall, this research confirms that
integrating self-supervised learning with Vision Transformers
provides a powerful and practical solution for multi-label
chest X-ray classification. Future work will explore
alternative uncertainty-handling strategies, advanced SSL
paradigms, and external dataset validation to further improve
model robustness, calibration, and clinical applicability.
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