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 Chest X-ray imaging is one of the most widely used modalities for lung disease 
screening; however, manual interpretation remains challenging due to overlapping 

pathological patterns and the frequent presence of multiple coexisting abnormalities. 

In recent years, Vision Transformer (ViT) models have demonstrated strong potential 

for medical image analysis by capturing global contextual relationships. 

Nevertheless, their performance is highly dependent on large-scale labeled datasets, 

which are costly and difficult to obtain in clinical settings. To address this limitation, 

this study proposes a Self-Supervised Learning Vision Transformer (SSL-ViT) 

framework for multi-label lung disease classification using the CheXpert-v1.0-small 

dataset. The proposed approach leverages self-supervised pretraining to learn robust 

and transferable visual representations from unlabeled chest X-ray images prior to 

supervised fine-tuning. A total of twelve clinically relevant thoracic disease labels are 
retained, while non-disease labels are excluded to enhance interpretability and reduce 

confounding effects. Experimental results demonstrate that SSL-ViT achieves a high 

recall of 0.73 and a peak AUC of 0.75 on the test set, indicating strong sensitivity in 

detecting pathological cases. Compared to the baseline ViT model, SSL-ViT exhibits 

a recall-oriented performance profile that is particularly suitable for screening 

applications, where minimizing false negatives is critical. Furthermore, Grad-CAM 

visualizations confirm that the model focuses on anatomically meaningful lung 

regions, supporting its clinical relevance. These findings suggest that SSL-enhanced 

Vision Transformers provide a robust and effective solution for multi-label chest X-

ray screening tasks. 
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I. INTRODUCTION 

Lung diseases represent one of the leading causes of 

mortality worldwide, with the prevalence continuing to 

increase annually[1]. According to the World Health 

Organization (WHO) and various journal studies, diseases 

such as pneumonia, tuberculosis, and Chronic Obstructive 

Pulmonary Disease (COPD) remain a significant global 

health burden [2] and are projected to continue rising until 
2050. Early detection plays a vital role in improving patient 

prognoses and reducing fatality rates. Chest radiography (X-

ray) is one of the primary diagnostic modalities used for lung 

disease screening[3]. However, the interpretation of chest X-

ray images requires considerable clinical expertise and is 

susceptible to human error, particularly in cases involving 

multiple concurrent thoracic pathologies (multi-label 

classification)[4].  
In this study, pulmonary X-ray image classification is 

defined as an automated analysis procedure aimed at 

identifying one or more lung diseases in chest radiographs 

using deep learning-based approaches. Such classification 

belongs to the category of multi-label image classification, 

where a single radiograph may contain multiple disease 

labels. Automated decision-support systems developed from 

this classification approach are intended to assist clinicians in 

providing faster and more accurate diagnoses, and they have 

the potential to be integrated into clinical workflows in 

hospitals and healthcare facilities[5]. Convolutional Neural 

Networks (CNNs) have traditionally dominated medical 
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image analysis tasks due to their strong inductive biases 

toward local spatial features.  

However, CNN-based approaches often rely on 

hierarchical receptive fields and local convolution operations, 

which may limit their ability to capture long-range global 

dependencies across an entire image. In chest X-ray analysis, 

pathological patterns frequently span multiple anatomical 

regions, making global contextual understanding particularly 
important. To address these limitations, this study adopts the 

Vision Transformer (ViT) architecture[6] (ViT) a 

transformer-based model originally developed for natural 

language processing and later adapted to computer vision. 

Unlike CNNs, ViT represents an image as a sequence of non-

overlapping patches and processes them using self-attention 

mechanisms. This design enables ViT to model global 

relationships between distant image regions, which is 

particularly beneficial for detecting diffuse or overlapping 

lung abnormalities. Recent studies have demonstrated that 

ViT achieves competitive or even superior performance 
compared to CNNs in large-scale image classification 

challenges such as ImageNet. Chen et al[7] further evaluated 

fine-tuned ViT models for COVID-19 detection using chest 

radiographs and benchmarked them against EfficientNet, 

MViT, and EfficientViT, utilizing a public dataset comprising 

3,616 COVID-19 samples, 10,192 normal images, 6,012 lung 

opacity cases, and 1,345 pneumonia images. Their results 

indicated that the ViT-based model achieved the highest 

accuracy of 95.79% in four-class classification and 99.57% in 

three-class classification, with an AUC of 0.9993 for the 

COVID-19 category. Ko et al[8]. investigated the impact of 

six optimization algorithms on three ViT architectures for 
detecting seven pulmonary diseases from a dataset of 19,003 

chest X-ray images. Optimizers based on Adam, particularly 

RAdam and NAdam, produced the best performance. FastViT 

with NAdam achieved the highest accuracy of 97.63% under 

imbalanced conditions, while RAdam performed best on 

balanced datasets with 95.87% accuracy. Although the 

models effectively recognized Normal and Tuberculosis 

classes, they struggled with minority diseases such as MERS 

and SARS.  

This work underscores the importance of selecting suitable 

optimization strategies and addressing data imbalance to 
improve ViT-based pulmonary disease classification. 

Marikkar et al[9]. introduced LT-ViT, a lightweight Vision 

Transformer architecture enhanced with label tokens for 

multi-label chest X-ray classification. Unlike prior methods 

such as C-Tran and Query2Label, LT-ViT enables direct 

interaction between label tokens and image tokens through 

cross- and self-attention mechanisms, effectively capturing 

inter-label relationships and multi-scale visual features. 

Evaluations on NIH-CXR14 and CheXpert datasets showed 

improved AUC performance while adding minimal 

parameters to the ViT-S baseline. The model supports both 

random and domain-specific pre-training and enables 
inherent interpretability, as label tokens directly attend to 

pathological regions. These findings demonstrate LT-ViT as 

an efficient and accurate solution for multi-label medical 

image classification using ViTs. Despite the advantages of 

Vision Transformers, their performance is highly dependent 

on the availability of large-scale labeled datasets. In medical 

imaging, acquiring high-quality annotations is expensive, 

time-consuming, and requires expert radiologists.  

Moreover, datasets such as CheXpert[10] contain a 

significant proportion of uncertain or missing labels, which 
can negatively impact fully supervised training. To mitigate 

these challenges, this study incorporates Self-Supervised 

Learning (SSL)[11] as a pretraining strategy. Self-Supervised 

Learning (SSL) enables models to learn meaningful visual 

representations from large amounts of unlabeled data by 

solving carefully designed pretext tasks, thereby reducing 

reliance on annotated samples. Beyond improving general 

feature learning, SSL has been shown to enhance model 

sensitivity by encouraging the learning of more 

comprehensive and inclusive feature representations, which is 

particularly beneficial for detecting subtle or less frequent 
pathological patterns in medical images. As a result, SSL-

pretrained models often demonstrate improved recall, 

reflecting a reduced rate of false-negative predictions an 

essential requirement in clinical screening and diagnostic 

support systems.  

When combined with Vision Transformers (ViT), SSL 

becomes especially effective, as transformer-based 

architectures strongly benefit from large-scale representation 

learning and global contextual modeling. SSL pretraining 

allows ViT encoders to capture long-range dependencies and 

latent disease-related patterns across chest X-ray images, 

facilitating improved sensitivity during downstream fine-
tuning. This characteristic is particularly advantageous in 

multi-label medical classification tasks, where multiple 

coexisting abnormalities may present with varying visual 

prominence. In this study, the Vision Transformer (ViT) is 

implemented for multi-lung disease classification using the 

CheXpert-v1.0-small dataset, which consists of thousands of 

chest X-ray images annotated with 12 thoracic disease labels. 

One label represents the normal condition, while a device-

related label is excluded from the classification targets. The 

primary objective of this research is to evaluate the 

effectiveness of SSL-enhanced ViT models in simultaneously 
identifying multiple lung diseases, with a particular emphasis 

on improving recall performance, and to assess their potential 

as a robust and recall-oriented alternative to conventional 

CNN-based diagnostic systems. 

 

II. METHODS 

This study was conducted through a series of systematic 

stages, including data collection, exploratory data analysis 

(EDA), preprocessing, self-supervised learning (SSL) using a 

Vision Transformer (ViT) model, model evaluation, and 

deployment. The overall workflow is illustrated in Figure 1. 
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Figure 1. Pipeline research 

 

A. Data Collecting 

Data collection in this study utilized the publicly available 

CheXpert-v1.0-small dataset[10], which is accessible through 

the Kaggle platform. This dataset contains the latest updated 

chest X-ray images collected from patient samples between 

2002 and 2017 has been widely employed in research related 
to lung disease detection using machine learning and deep 

learning approaches. The CheXpert-v1.0-small dataset 

consists of 223,414 data entries representing patients and their 

radiological examinations in the form of chest X-ray images. 

Each entry is accompanied by labels representing 14 lung 

conditions, including No Finding, Enlarged 

Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung 

Lesion, Edema, Consolidation, Pneumonia, Atelectasis, 

Pneumothorax, Pleural Effusion, Pleural Other, Fracture, and 

Support Devices. All images in this dataset are provided in 

JPEG format and include metadata in the form of diagnostic 

labels. These labels are stored in a .csv file containing 
diagnosis values for each corresponding image. Figure 2 

illustrates the comparison of the dataset across each class, 

while Table 3 presents the distribution of the data. 
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Figure 2. illustrates the comparison of the dataset across each class 

TABLE 1.  

DISTRIBUTION OF THE DATA ACROSS EACH CLASS 

No Diseases Positive 

{1.0} 

Negative 

{0.0} 

Uncertain 

{-1.0} 

1 No Finding 22419 196 0 

2 Enlarged 
Cardiomediastinum 

10907 21763 12403 

3 Cardiomegaly 27068 11282 8087 

4 Lung Opacity 105707 6707 5598 

5 Lung Lesion 9187 1503 1488 

6 Edema 52291 20915 12984 

7 Consolidation 14816 28298 27742 

8 Pneumonia 6047 3025 18770 

9 Atelectasis 33456 1482 33739 

10 Pneumothorax 19456 56567 3145 

11 Pleural Effusion 86254 35563 11628 

12 Pleural Other 3524 549 2653 

13 Fracture 9040 2746 642 

14 Support Devices 116108 6264 1079 

 

Based on the visual analysis of the comparisons presented 

in Figure 3 and Table 1, including images with labels –1, 0, 

and 1 across all disease categories, it is observed that images 

labeled –1 tend to exhibit higher similarity to those labeled 1 

(positive) than to those labeled 0 (negative). In many 

instances, images assigned the –1 (uncertain) label contain 

subtle abnormal patterns resembling early pathological 
indicators. Several diseases, such as Edema, Consolidation, 

Lung Opacity, and Atelectasis, present overlapping 

radiological characteristics, making it difficult to distinguish 

between labels –1 and 1, even for professional radiologists. 

Similar conditions are found in diseases such as 

Cardiomegaly and Enlarged Cardiomediastinum, where 

cardiac enlargement frequently correlates with mediastinal 

widening, resulting in uncertain labels due to the interrelated 

nature of the conditions. These findings reinforce the 

argument that, in clinical practice, the –1 (uncertain) label 

more closely represents a weakly positive indication rather 
than a truly neutral or negative state. This study adopts the U-

ones approach, in which the –1 label is treated as positive.  

This decision is motivated by the visual evidence 

indicating that images labeled –1 show closer resemblance to 

positive cases, making it more consistent to handle them as 

weak positives. While the U-Ones strategy is adopted in this 

study to handle uncertain labels in the CheXpert dataset, it is 

important to acknowledge the potential biases associated with 

this approach. Treating uncertain labels as positive instances 

may introduce a tendency toward overestimation of disease 

prevalence, potentially increasing the false positive rate and 

biasing the model toward higher sensitivity. However, prior 

studies have shown that, in screening-oriented medical 

applications, this bias is often acceptable when the primary 

objective is to minimize false negatives, which pose greater 

clinical risks than false positive[12].  

Alternative strategies such as U-Zeros, which treat 

uncertain labels as negative, may reduce false positives but 
risk suppressing subtle pathological patterns, particularly in 

diseases with ambiguous radiographic manifestations. This 

can lead to systematic under-detection and degraded recall, 

especially for conditions with overlapping visual 

characteristics such as Edema and Consolidation[13]. 

Another approach, soft labeling, assigns probabilistic values 

to uncertain labels and has been explored to mitigate hard 

decision bias; however, it introduces additional complexity in 

optimization and requires careful calibration to ensure stable 

training, which may not be feasible in all practical 

settings[14]. Given these considerations, the U-Ones strategy 
is selected as a deliberate design choice aligned with the 

screening-oriented goal of this study. By prioritizing 

sensitivity and encouraging the model to learn inclusive 

representations of pathological patterns, U-Ones supports 

early detection scenarios where uncertain findings should 

prompt further clinical evaluation rather than dismissal. 

Nonetheless, future work will investigate comparative 

analyses across uncertainty-handling strategies, including U-

Zeros and soft-labeling, to further assess their impact on 

model calibration, bias, and generalization performance. 

B. Feature Selection 

The initial step involves selecting only the disease-related 

labels that are directly relevant to the objective of this study, 

which focuses on multi-label lung disease detection from 

chest X-ray images. Non-disease labels such as Sex, Age, 

Frontal/Lateral, AP/PA, No Finding, and Support Devices are 

deliberately excluded from the learning process. This 

exclusion is based on the methodological consideration that 

such labels either represent demographic or acquisition 

metadata, or correspond to non-pathological conditions, and 
therefore do not contribute to the extraction of radiological 

features associated with pulmonary abnormalities. From a 

clinical and radiological perspective, lung disease 

manifestations in chest X-ray images are determined by 

pathological changes in pulmonary structures rather than by 

patients’ personal information or imaging acquisition 

parameters. Several prior studies on the CheXpert dataset 

have adopted a similar label selection strategy, focusing 

exclusively on disease-related findings to improve model 

interpretability and clinical relevance while reducing 

potential confounding factors. By excluding non-disease 

labels, the model is encouraged to learn visual representations 
that are directly attributable to pathological patterns rather 

than spurious correlations. Furthermore, the exclusion of the 

No Finding label is consistent with established practices in 

multi-label chest X-ray classification, as this label represents 
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the absence of disease rather than a specific pathological 

category and may introduce ambiguity in multi-label learning 

settings. Similarly, labels related to imaging devices and 

acquisition views are removed to ensure that the learned 

features are not biased toward non-anatomical artifacts, which 

has been shown to negatively affect generalization 

performance in medical imaging models[15]. As a result of 

this label selection process, a total of 12 disease labels are 

retained for model training and evaluation: Enlarged 
Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung 

Lesion, Edema, Consolidation, Pneumonia, Atelectasis, 

Pneumothorax, Pleural Effusion, Pleural Other, and Fracture. 

This selection aligns with the primary goal of capturing 

clinically meaningful thoracic abnormalities while 

maintaining transparency and reproducibility in the 

experimental design. By clearly defining the criteria for 

disease label inclusion, the proposed methodology ensures 

that the resulting model performance can be reliably 

interpreted and fairly compared with prior CheXpert-based 

studies. 

C. Splitting Dataset 

After the data pre-processing stage is completed, the next 

step involves data splitting to ensure that the model is trained, 

validated, and tested effectively. In this study, the dataset is 

not only divided into training and testing subsets as in 

conventional approaches but also includes a validation subset 

as an essential component in the deep learning training 

process. The dataset is partitioned into 60% for the training 

set, 20% for the validation set, and 20% for the testing set[16]. 
The training data are utilized to adjust the model weights in 

order to learn the patterns from the X-ray images, while the 

validation data are employed to monitor model performance 

during training and to prevent overfitting. The testing data are 

used exclusively to evaluate the model’s generalization 

capability on unseen samples. With this well-controlled data 

separation, the training process of the Vision Transformer can 

be objectively assessed, ensuring reliable and trustworthy 

performance results. The dataset was divided into three 

subsets, resulting in 134,048 data instances in the training set 

and 44,683 data instances each in the validation and test sets. 

D. Image Transformations & Data Augmentation 

The image transformation process is conducted to meet the 

input requirements of the Vision Transformer (ViT) model, 

which operates with a fixed image resolution. Initially, a 

cropping operation is applied to enlarge the lung region, 

ensuring that the model focuses on the most relevant area. The 

images are then resized to 224×224 pixels, normalized, and 

converted into tensor format to comply with the ViT input 

specifications. Furthermore, each data frame undergoes a 
specific transformation procedure. To enhance the model’s 

robustness against data variability and to reduce the risk of 

overfitting, data augmentation is applied to the training set. 

Several augmentation techniques are listed in Table 2. 

 

TABLE 2.  

DATA AUGMENTATION TECHNIQUES 

No Data Augmentation Values 

1 Random Resized Crop 0.85-1.0 

2 Random Horizontal Flip True 

3 Random Rotation 10 

4 Color Jitter Brightness = 0.15, contrast = 
0.15 

 

To improve the model’s generalization capability and 

increase robustness against variations in image data, several 

augmentation techniques are applied during training. Random 

Resized Crop is utilized by randomly cropping a portion of 

the image with a scale range of 0.85–1.0. A Random 

Horizontal Flip[17] is performed enhancing sensitivity to left-

right orientation differences. Random Rotation up to ±10 

degrees is applied to account for slight rotational changes that 
may occur during image acquisition. Additionally, Color 

Jitter[18] is incorporated by adjusting the image brightness 

and contrast by a factor of 0.15, enabling the model to remain 

robust under varying lighting conditions. 

E. Self-Supervised Learning (SSL) 

To enhance feature representations learning and reduce 

dependency on large amounts of labelled data, a Self-

Supervised Learning (SSL)[19] stage was incorporated prior 

to the supervised training phase. SSL enables the model to 
learn meaningful and transferable representations by 

exploiting intrinsic structures within unlabelled data through 

carefully designed pretext tasks. This approach is particularly 

beneficial in medical imaging domains, where labelled data 

are often scarce, expensive, and time-consuming to obtain. In 

this study, SSL is applied during a pretraining phase using 

only the training images without label information. Multiple 

stochastic data augmentations are performed to generate 

different views of the same input image. These augmented 

views are then used to define a pretext task that encourages 

the model to learn invariant and discriminative 
representations. By learning from unlabelled data, the model 

captures low-level and high-level visual patterns that are 

robust to variations in illumination, orientation, and noise.  

The Vision Transformer (ViT) encoder is employed as the 

backbone network during the SSL pretraining stage. 

Depending on the SSL paradigm, such as contrastive learning 

or masked image modelling, the encoder is optimized to either 

maximize agreement between different augmented views of 

the same image or reconstruct missing image patches from 

partial observations. This process allows the ViT encoder to 

learn contextual relationships and global dependencies within 

medical images more effectively than purely supervised 
learning approaches. After the SSL pretraining phase, the 

learned encoder weights are transferred to the supervised 

learning stage. The pretrained ViT encoder is then fine-tuned 

using labelled data for the target classification task. This 

transfer learning strategy significantly improves convergence 

speed, generalization performance, and robustness, 
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particularly when the labelled dataset is limited. The 

integration of SSL thus strengthens the overall learning 

framework by providing a well-initialized representation 

space that enhances downstream classification accuracy and 

reduces overfitting. 

F. ViT Modelling 

The model training process in this study utilizes the Vision 

Transformer (ViT) architecture, which has demonstrated 

strong effectiveness in image processing tasks. ViT operates 

by dividing an input image into small patches and converting 

them into vector representations (embeddings) that are 

processed through a self-attention mechanism. This 

mechanism enables the model to capture global relationships 

among different regions of an image, allowing it to learn 

complex patterns in chest X-ray data. ViT model can illustrate 

show in Figure 3. 

 
Figure 3. illustrates the model ViT 

 

Each image patch is transformed into a vector through an 

embedding process and augmented with positional encoding 

to preserve spatial ordering. The resulting sequence of patches 

is then processed by a transformer encoder composed of 

multi-head self-attention and feed-forward network layers. 

The final output token serves as a global image representation 

for classification purposes. Through this approach, the model 

is expected to provide a more comprehensive understanding 

of pulmonary disease indicators compared with conventional 

CNN-based methods. A fine-tuning stage is then performed 
by adapting the pre-trained model weights using the pre-

processed research dataset following a data-splitting 

procedure. In this stage, all ViT layers are re-optimized to 

better align with the characteristics of medical imaging data. 

The fine-tuning configuration is designed to support multi-

label classification, given that a single chest X-ray may 

indicate more than one type of lung disease. A sigmoid 

activation function is applied in the output layer to allow the 

model to generate independent probability scores for each 

disease class. The training process employs the vit-small-

patch16-224 model from HuggingFace, which was previously 

pre-trained by Google on the ImageNet-21k dataset. The 

output layer is modified to detect twelve pulmonary disease 

labels included in the CheXpert dataset. 

G. Evaluations Metrics 

Evaluation is a critical stage in the development and 

validation of machine learning and deep learning models, 
particularly in the context of multi-label medical image 

classification. The primary objective of evaluation is to assess 

how well the model performs in solving the assigned task 

based on validation and testing datasets that were not 

observed during the training process. The evaluation results 

are used to determine whether the model is reliable for real 

world applications and to compare the performance of 

different approaches or algorithms. In multi-label 

classification tasks, conventional accuracy metrics are 

insufficient because each sample may contain more than one 

correct label. Therefore, specific evaluation metrics such as 

precision, recall, F1-score, and Area Under the Curve (AUC) 
are utilized to comprehensively measure model 

performance[20]. Precision indicates the correctness of 

positive predictions made by the model, where a high 

precision score implies a low false-positive rate, which is 

essential in medical applications requiring high accuracy: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

 

where TP represents True Positive and FP represents False 

Positive. Recall (sensitivity) measures the model’s ability to 

correctly identify all positive samples, which is crucial for 

minimizing false-negative predictions in disease detection: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

 

where FN denotes False Negative. The F1-score is the 

harmonic mean between precision and recall, and it is 

employed to establish a balance between detecting all positive 

cases and maintaining prediction accuracy: 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 

AUC describes the ability of the model to discriminate 

between positive and negative classes across various decision 

thresholds, representing multi-label classification 

performance more effectively. In multi-label medical 

classification research, such as the CheXpert benchmark, 

AUC is considered more representative than accuracy, F1-

score, precision, and recall for several reasons. First, AUC is 

more robust to class imbalance, which frequently occurs in 

medical datasets where disease label distributions are highly 

uneven. While accuracy may produce misleading results by 

favoring majority classes, AUC evaluates class discrimination 
independently of the distribution of positive and negative 

labels[21].  
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Second, AUC assesses model performance across multiple 

decision thresholds, providing a more comprehensive 

evaluation compared to metrics that operate only at a single 

threshold, such as precision, recall, and F1-score[22]. Finally, 

in multi-label scenarios, each instance includes multiple 

binary decisions, and both macro and micro-averaged AUC 

offer consistent evaluation across labels despite significant 

disparities in positive and negative sample counts. 

Comprehensive evaluation provides a realistic understanding 
of the strengths and limitations of a model, as well as its 

readiness for deployment in actual medical environments. 

Therefore, this stage must not be overlooked and should be 

carefully designed to align with the specific objectives and 

characteristics of the addressed problem. 

 

III. RESULTS AND DISCUSSION 

The object of this study is chest X-ray images contained in 

the CheXpert-v1.0-small dataset, a large-scale medical image 

collection widely used for pulmonary disease detection 

through radiological imaging. The primary objective of this 
research is to develop a multi-label classification framework 

based on the Vision Transformer (ViT) that is capable of 

identifying one or more lung conditions simultaneously 

within a single image. To enhance feature representation 

learning and reduce reliance on labeled data, a Self-

Supervised Learning (SSL) stage is incorporated prior to the 

supervised fine-tuning process.In the proposed framework, 

the ViT encoder is first pretrained using an SSL paradigm on 

the training images without utilizing label information. This 

pretraining stage enables the model to learn robust and 

generalizable visual representations from chest X-ray images 

by exploiting intrinsic image structures through a pretext task. 
The SSL-pretrained encoder weights are subsequently 

transferred to the supervised learning stage and fine-tuned for 

multi-label lung disease classification. The supervised fine-

tuning process employs the vit-small-patch16-224 

architecture[23], which is initialized using both ImageNet-

21k pretrained weights provided by Google and the SSL-

pretrained representations learned from the CheXpert training 

data. The training configuration is implemented using the 

TrainingArguments framework with a learning rate of 3 ×
10−5, a cosine decay learning rate scheduler, and a warm-up 
ratio of 0.1. The AdamW optimizer is utilized to update model 

parameters. A batch size of 32 is applied consistently for both 

training and evaluation. The model is trained for a maximum 

of 10 epochs, with early stopping activated if no performance 

improvement is observed over three consecutive evaluation 

cycles. Model evaluation is conducted at the end of each 

epoch, and the best-performing model checkpoint is 

automatically restored based on the highest validation 

accuracy achieved during training. The fine-tuning process is 

carried out using the HuggingFace Trainer framework, where 
the model is trained on the training set and validated on the 

validation set, with evaluation metrics computed at each 

evaluation step. Upon completion of training, both the final 

model and the associated image processor are saved in the 

chexpert-vit-model directory (the directory name is 

configurable) to support future deployment and inference. 

Table 2 presents the training performance tracked across 

checkpoints, indicating that the entire training process 20 

epochs required approximately 2 hours and 18 minutes. 

TABLE 3.  

TRAINING PERFORMANCE PROCESS 

Epoch 
Train 

Loss 

Val 

Loss 
Precision Recall 

F1-

Score 
AUC 

1 1.0915 1.0739 0.2286 0.7181 0.2815 0.7165 

2 1.0703 1.0729 0.2468 0.5916 0.3022 0.7181 

3 1.0470 1.0370 0.2296 0.7264 0.3038 0.7317 

4 1.0295 1.0349 0.2340 0.6717 0.3117 0.7334 

5 1.0197 1.0352 0.2309 0.7091 0.3143 0.7395 

6 1.0066 1.0328 0.2475 0.6290 0.3190 0.7417 

7 0.9961 1.0309 0.2433 0.6493 0.3224 0.7432 

8 1.0279 1.0991 0.2076 0.7919 0.2822 0.7099 

9 1.0214 1.0272 0.2272 0.7316 0.3067 0.7419 

10 0.9852 1.0312 0.2435 0.6648 0.3167 0.7437 

11 0.9677 1.0297 0.2517 0.6592 0.3227 0.7465 

12 0.9490 1.0237 0.2388 0.7121 0.3164 0.7477 

13 0.9321 1.0475 0.2451 0.6732 0.3218 0.7478 

14 0.9118 1.0446 0.2467 0.6877 0.3224 0.7510 

15 0.8920 1.0564 0.2441 0.6872 0.3227 0.7509 

16 0.8710 1.1194 0.2479 0.6794 0.3252 0.7496 

17 0.8539 1.1616 0.2498 0.6631 0.3259 0.7493 

18 0.8365 1.2135 0.2514 0.6524 0.3284 0.7492 

19 0.8270 1.2717 0.2515 0.6377 0.3304 0.7491 

20 0.8187 1.2772 0.2521 0.6436 0.3299 0.7484 

 

Table 3 presents the training performance of the SSL-ViT 

model across 20 epochs. The results demonstrate stable 

convergence, high recall performance, and a peak AUC of 

0.7510, highlighting the effectiveness of SSL pretraining in 

enhancing model sensitivity for multi-label chest X-ray 

classification. 

 
Figure 4. Precision, Recall, and F1-Score (SSL-ViT) 

 

Figure 4 The experimental results reveal a consistent recall-

oriented behavior throughout the training process. 

Specifically, the recall values remain relatively high, ranging 
approximately from 0.63 to 0.79 across epochs, indicating the 
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model’s strong sensitivity in identifying positive lung disease 

cases. In contrast, precision remains comparatively low but 

stable, fluctuating within the range of 0.22 to 0.25, while the 

F1-score demonstrates a gradual and stable improvement as 

training progresses. This performance pattern is highly 

consistent with the theoretical characteristics of Self-

Supervised Learning (SSL), which encourages the learning of 

broad and inclusive feature representations rather than highly 
restrictive decision boundaries. Such recall-dominant 

performance is particularly relevant in chest X-ray screening 

applications, where false-negative predictions may lead to 

missed diagnoses and delayed clinical intervention. From a 

clinical perspective, false negatives are considerably more 

critical than false positives, as undetected pathological 

conditions pose greater risks to patient outcomes. Therefore, 

although the SSL-ViT model sacrifices precision to some 

extent, its ability to consistently achieve high recall 

underscores its suitability for medical screening and decision-

support systems, where maximizing sensitivity is a primary 
objective. These findings further confirm the recall-oriented 

nature of the SSL-ViT framework and highlight its practical 

relevance in safety-critical medical imaging tasks. The best-

performing trained model was assessed using Area Under the 

Curve (AUC) metrics, as illustrated in Figure 5.  

 
Figure 5. ROC Curves all label in test set 

 

Figure 5 presents the Receiver Operating Characteristic 

(ROC) curves for each thoracic disease class evaluated on the 

test set using the SSL-ViT model. Overall, the ROC curves 

demonstrate that the proposed SSL-ViT framework achieves 

robust discriminative performance across multiple disease 

categories, with Area Under the Curve (AUC) values 

consistently exceeding random chance for all classes. Several 

disease categories exhibit strong classification capability, 

notably Pleural Other (AUC = 0.856), Cardiomegaly (AUC 

= 0.847), Enlarged Cardiomediastinum (AUC = 0.823), and 
Pleural Effusion (AUC = 0.811). These conditions typically 

present distinctive global structural or intensity patterns in 

chest X-ray images, which are effectively captured by the 

transformer-based representations learned through self-

supervised pretraining. Moderate performance is observed for 

classes such as Pneumonia (AUC = 0.778), Edema (AUC = 

0.741), Pneumothorax (AUC = 0.736), Fracture (AUC = 

0.726), and Consolidation (AUC = 0.713). The ROC curves 

of these classes indicate a favorable trade-off between 

sensitivity and specificity, suggesting that SSL-ViT can learn 

clinically relevant features despite inter-class visual overlap 

and label ambiguity commonly found in chest X-ray datasets. 
Lower AUC values are observed for Atelectasis (AUC = 

0.657), Lung Opacity (AUC = 0.670), and Lung Lesion (AUC 

= 0.703). These findings are consistent with prior studies, as 

these conditions often exhibit subtle or diffuse radiographic 

patterns that are challenging to distinguish even for human 

experts. Nevertheless, the ROC curves for these classes 

remain substantially above the diagonal baseline, confirming 

that the model retains meaningful discriminative power. 

Importantly, the ROC characteristics align with the study’s 

primary objective of maximizing recall for screening-oriented 

applications. The SSL-ViT model demonstrates strong true 
positive rates at relatively low false positive rates across most 

classes, which is particularly desirable in clinical screening 

scenarios where false negatives are more critical than false 

positives. This behavior supports the suitability of self-

supervised pretraining for enhancing sensitivity in multi-label 

chest X-ray classification tasks. The evaluation results 

obtained using the classification report on the test set 

demonstrate consistent misclassification patterns across 

several labels, as illustrated in Table. 4.  

TABLE 4.  

CLASSIFICATION REPORT OF SSL-VIT 

Disease Class Precision Recall 
F1-

score 
Support 

Enlarged 
Cardiomediastinum 

0.07 0.58 0.13 2,061 

Cardiomegaly 0.36 0.70 0.47 5,367 

Lung Opacity 0.62 0.70 0.66 21,063 

Lung Lesion 0.08 0.71 0.14 1,843 

Edema 0.46 0.76 0.57 10,505 

Consolidation 0.12 0.69 0.20 2,969 

Pneumonia 0.05 0.59 0.09 1,146 

Atelectasis 0.21 0.75 0.32 6,689 

Pneumothorax 0.21 0.74 0.33 3,919 

Pleural Effusion 0.68 0.79 0.73 17,303 

Pleural Other 0.04 0.64 0.08 710 

Fracture 0.08 0.63 0.14 1,769 

Micro Average 0.28 0.73 0.40 75,344 

Macro Average 0.25 0.69 0.32 75,344 

Weighted Average 0.46 0.73 0.53 75,344 

 

The class-wise classification report indicates that the 

proposed SSL-ViT model consistently achieves high recall 

across most thoracic disease categories, with recall values 

ranging from 0.58 to 0.79. Notably, Pleural Effusion 

demonstrates the strongest overall performance, achieving the 
highest precision (0.68), recall (0.79), and F1-score (0.73), 

suggesting that the model effectively captures its distinctive 

radiographic patterns. Diseases such as Edema, Lung Opacity, 
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Atelectasis, and Pneumothorax also exhibit strong recall 

performance (≥0.70), confirming the model’s sensitivity in 

identifying clinically relevant abnormalities. Conversely, 

lower precision is observed for classes with subtle or 

overlapping visual characteristics, including Pleural Other, 

Pneumonia, and Lung Lesion. This trade-off reflects the 

model’s emphasis on sensitivity, which is desirable in 

screening-oriented applications. Overall, the micro-averaged 

recall of 0.73 further highlights the effectiveness of self-
supervised pretraining in enhancing detection sensitivity 

across multiple disease categories. The observed performance 

profile high recall with moderate precision is well aligned 

with clinical screening requirements, where false negatives 

pose a greater risk than false positives. The Grad-CAM 

heatmap demonstrates that the SSL-ViT model primarily 

focuses on the bilateral lower lung regions in Figure 6, with 

pronounced activation observed along the right lung field. 

These regions are commonly associated with radiographic 

manifestations of lung opacity, including alveolar infiltration 

and increased parenchymal density. Importantly, the model’s 
attention is largely confined within anatomically relevant 

pulmonary areas, rather than being distracted by non-

diagnostic regions such as the background or image borders. 

 

 
Figure 6. Grad-Cam Result of SSL-VIT 

 

The observed Grad-CAM patterns reflect one of the key 

advantages of self-supervised learning in medical imaging: 

the ability to learn robust and transferable visual 

representations without relying solely on labeled data. By 

pretraining on unlabeled chest X-ray images, the SSL-ViT 

model develops a global understanding of lung anatomy, 

which translates into focused and clinically interpretable 

attention maps during downstream classification. From a 

screening perspective, this behavior is particularly desirable. 

The model’s emphasis on lung parenchymal regions supports 

its strong recall performance reported in earlier experiments, 
reinforcing its suitability for early detection scenarios where 

minimizing false negatives is critical. The comparison results 

with the baseline ViT model without self-supervised learning 

are presented in Table 5. 

TABLE 5.  

COMPARISON VIT VS SSL-VIT 

Model Precision Recall F1-Score AUC 

ViT-Baseline 0.66 0.49 0.56 0.77 

SSL-ViT (proposed) 0.28 0.73 0.40 0.75 

Table 5 presents a comparative evaluation between the 

baseline Vision Transformer (ViT) model and the proposed 

Self-Supervised Learning Vision Transformer (SSL-ViT) 

model. The results highlight a clear trade-off between 

precision and recall across the two approaches. The baseline 

ViT model achieves a higher precision (0.66) and moderate 

recall (0.49), resulting in an F1-score of 0.56 and an AUC of 

0.77. This indicates that the baseline model is more 

conservative in predicting positive cases, producing fewer 
false positives but at the cost of missing a substantial portion 

of true pathological cases. Such behavior is more aligned with 

confirmatory or diagnostic settings, where higher precision is 

prioritized.  

In contrast, the proposed SSL-ViT model demonstrates a 

substantially higher recall (0.73), indicating improved 

sensitivity in detecting pathological findings. This 

improvement comes with a decrease in precision (0.28), 

reflecting an increased number of false-positive predictions. 

Consequently, the F1-score is lower (0.40), while the AUC 

remains comparable (0.75), suggesting that the overall 
discriminative ability of the model is preserved despite the 

shift in prediction behavior. Importantly, the performance 

profile of SSL-ViT is particularly suitable for screening-

oriented clinical applications, such as chest X-ray analysis, 

where minimizing false negatives is critical. The higher recall 

achieved by SSL-ViT ensures that fewer diseased cases are 

overlooked, which is a key requirement in early detection and 

triage systems. The comparable AUC values further indicate 

that self-supervised pretraining enhances sensitivity without 

significantly compromising the model’s overall ranking 

capability. Overall, these results demonstrate that 

incorporating self-supervised learning into the Vision 
Transformer framework effectively shifts the model toward a 

high-sensitivity regime, making SSL-ViT a robust alternative 

for large-scale chest X-ray screening, while the baseline ViT 

may be better suited for scenarios requiring higher precision. 

 

IV. CONCLUSION 

This study presents an SSL-ViT framework for multi-label 

lung disease classification on chest X-ray images using the 

CheXpert dataset. By incorporating a self-supervised learning 

stage prior to supervised fine-tuning, the proposed approach 

effectively addresses the limitations of labeled data scarcity 
in medical imaging. The experimental results demonstrate 

that SSL pretraining significantly enhances the model’s 

sensitivity, as reflected by consistently high recall values 

across most disease categories and a peak AUC of 0.7510. 

Although the precision of the SSL-ViT model is lower than 

that of the baseline ViT, the recall-oriented behavior aligns 

well with the primary objective of clinical screening, where 

false-negative predictions pose a greater risk than false 

positives.  

The class-wise evaluation reveals that the model performs 

particularly well on diseases with distinct radiographic 

patterns, such as Pleural Effusion and Cardiomegaly, while 
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still maintaining meaningful discriminative capability for 

conditions with subtle or overlapping features. Grad-CAM 

analysis further confirms that the model attends to clinically 

relevant lung regions, supporting the interpretability and 

reliability of the proposed approach. Comparative analysis 

with a baseline ViT model highlights a clear trade-off 

between precision and recall, demonstrating that SSL-ViT is 

more suitable for early detection and triage scenarios, whereas 
the baseline model may be preferable in confirmatory 

diagnostic settings. Overall, this research confirms that 

integrating self-supervised learning with Vision Transformers 

provides a powerful and practical solution for multi-label 

chest X-ray classification. Future work will explore 

alternative uncertainty-handling strategies, advanced SSL 

paradigms, and external dataset validation to further improve 

model robustness, calibration, and clinical applicability. 
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