Journal of Applied Informatics and Computing (JAIC)
Vol.10, No.1, February 2026, pp. 224~231
e-ISSN: 2548-6861

224

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for
Precision Bug Detection and Dynamic Error Localization

Surni Erniwati 1", Bahtiar Imran 2, Zumratul Muahidin ¥, Zaeniah ", Juhartini >™
* Manajemen Informatika, Universitas Teknologi Mataram
** Rekayasa Sistem Komputer, Universitas Teknologi Mataram

ok

Sistem Informasi, Universitas Teknologi Mataram
Teknik Informatika, Universitas Teknologi Mataram

Fkkk

mentari1990@gmail.com ?, bahtiarimranlombok@gmail.com 2, muahidinzumratul @gmail.com 3, zaen1989@gmail.com *,

juhartini8815@gmail.com ®

Article Info

ABSTRACT

Article history:

Received 2025-11-24
Revised 2025-12-22
Accepted 2026-01-07

Keyword:

Bug Detection,
Machine Learning,
Python,

Random Forest,
Abstract Syntax Tree.

Bug detection in Python programming is a crucial challenge in software
development. This research proposes SemetonBug, a machine learning-based system
for automatically detecting bugs in Python code. The system utilizes a Random
Forest Classifier as the main model, with features extracted from the syntactic
structure of the code using an Abstract Syntax Tree (AST). The dataset consists of
200 Python files, divided into 100 files with bugs and 100 files without bugs. The
model is optimized using Grid Search Cross Validation, with the best combination
of n_estimators = 300, max_depth = 20, min_samples split = 5, and
min_samples_leaf = 2. Evaluation results show that the model achieves 85%
accuracy, 0.84 precision, 0.87 recall, and 0.86 F1-score. The detected bugs are stored
in an Excel file for further analysis. By leveraging machine learning, SemetonBug
enhances efficiency and accuracy in bug identification compared to traditional rule-
based methods. These findings highlight the potential of machine learning models in

improving software quality and reducing coding errors automatically.

This is an open access article under the CC-BY-SA license.

I. INTRODUCTION

Bug detection in Python programming is one of the most
critical challenges in software development. Various studies
have demonstrated that bugs can be minimized through
appropriate tools and techniques. For instance, PYBUGLAB,
an implementation designed for the Python language, is
developed to detect and fix various types of simple bugs that
significantly impact code accuracy. By focusing on simple
bugs, this tool illustrates that minor corrections can lead to
substantial improvements in overall code quality, reducing
errors and enhancing software reliability [1]. Empirical
analysis of code modifications after bug fixes in Python
reveals specific patterns, indicating that changes are not made
randomly but occur within a particular coding context [2].
This finding underscores the importance of understanding
code context for further advancements in bug detection tools.
In the modern era, advanced techniques are increasingly
employed, including machine learning models for bug

detection and duplicate bug report identification. Research
indicates that attention-based models can improve accuracy in
detecting duplicate bug reports, which often pose challenges
in large-scale software management [3]. In software
development, manual bug identification is often time-
consuming, prone to human error, and inefficient, particularly
when dealing with large-scale codebases. This manual
approach relies on programmers' expertise to review and test
code directly, which may result in undetected bugs or issues
only discovered during the final testing phase. Therefore,
automated methods that enable faster, more accurate, and
consistent bug detection are essential.

Several previous studies have been conducted to detect
bugs in program code, employing both static approaches such
as code analysis and machine learning-based methods to
enhance detection accuracy. Among them, [4] explores
machine learning techniques for software bug prediction,
demonstrating that ensemble algorithms outperform
individual approaches. Study [5] investigates the application

http://jurnal.polibatam.ac.id/index.php/JAIC

mailto:mentari1990@gmail.com
mailto:bahtiarimranlombok@gmail.com
mailto:mail2@polibatam.ac.id
mailto:zaen1989@gmail.com
mailto:juhartini8815@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/

JAIC

e-1SSN: 2548-6861 225

of Al in software development practices, including bug
detection, which improves efficiency and software quality.
Meanwhile, [6] focuses on understanding bugs within a
multilingual deep learning framework, forming a crucial
foundation for detecting and resolving bugs in Al-based
applications. Study [7] introduces APIScanner, a tool that
automates the detection of deprecated APIs in Python
libraries, contributing to improved code quality. Research [8]
discusses machine learning techniques for software bug
prediction, showcasing the development of several effective
prediction models. In [9] artificial immune networks are
applied to optimize hyperparameters in bug prediction
classification models, aiming to enhance the software testing
process. Study [10] compares cellular automata
implementations using image processing and machine
learning for code validation, albeit with a broader focus on
general verification methods. Meanwhile, [1] develops
BUGLAB, a self-supervised approach for bug detection and
repair, highlighting the potential of machine learning-based
methods in software development. Study [11] examines the
use of code embeddings and transformers to assist
programming tasks, including bug detection, underscoring
Al’s critical role in software development. Meanwhile, [12]
describes a Python package called sstar, though its focus is
more on genetic analysis rather than software bug detection.
In [13], an automated bug report detection and classification
system using deep learning techniques is introduced,
demonstrating improvements in software management speed.
Study [14] investigates entropy-based machine learning
models for assessing bug severity, emphasizing the
importance of bug descriptions in predicting other attributes.
Meanwhile, [15] utilizes large datasets to train models for
filtering code warnings, relevant to static code analysis and
bug detection. Research [16] conducts an empirical study on
bugs in COVID-19 software projects, identifying the need for
better detection tools for security monitoring. Study [17]
proposes BPDET, a bug prediction model leveraging deep
representation techniques and ensemble learning, offering an
in-depth analysis of bug detection improvements. Study [18]
examines user interface design in Al-based Python visual
applications, though its focus lies in Ul design rather than bug
detection. Lastly, [19] evaluates smart contract analysis tools
for bug detection, serving as an example of static techniques
for identifying software errors.

This study aims to develop a bug detection system for
Python code, named SemetonBug. The system is designed to
enhance efficiency in automatically identifying code errors
using machine learning methods, specifically Random Forest
as the primary classification model. Unlike traditional rule-
based static analysis approaches, SemetonBug employs
machine learning based on abstract features extracted from
the syntactic structure of the code to detect various types of
bugs. The source code used in this study was manually
collected, comprising 200 Python files, evenly divided into
100 files containing bugs and 100 bug-free files. Each file was
analyzed using the Abstract Syntax Tree (AST) library to
extract relevant features such as the number of statements

within loops, the depth of if-else structures, variable usage,
and function call patterns. SemetonBug is designed to detect
bugs simultaneously, enabling the identification of multiple
errors in a single analysis without requiring manual inspection
of each instance. In training the model, Random Forest was
chosen for its ability to handle complex features and provide
stable classification results. The model was optimized using
hyperparameter tuning via Grid Search, with explored
parameters including n_estimators: [10, 50, 100, 200],
max_depth: [None, 10, 20, 30], min_samples_split: [2, 5, 10],
and min_samples_leaf: [1, 2, 4]. Model evaluation was
conducted using multiple metrics, including accuracy,
precision, recall, and F1-score. Additionally, performance
analysis was carried out using a Confusion Matrix, ROC
Curve, and Learning Curve to assess how the model learns as
the training data increases. The bug detection results from
SemetonBug are stored in Excel format, allowing software
developers to perform further analysis on the identified errors.
Through this approach, the study introduces an innovative
machine learning-based bug detection method, replacing
traditional rule-based static analysis techniques commonly
used in conventional bug detection systems.

Il. METHOD

A. Dataset Preparation

The dataset in this study consists of 200 Python code
files, comprising 100 bugged files (containing bugs) and 100
non-bugged files (bug-free). The dataset was manually
collected from various sources, including self-written code,
open-source projects, and programming forums. Bugged code
contains syntax errors (e.g., unbalanced parentheses), logical
errors (algorithmic mistakes), or runtime errors (such as
division by zero), whereas non-bugged code executes without
errors. Before use, the dataset undergoes preprocessing,
which includes three main stages. First, Python code
tokenization is performed to convert the code into tokens
according to Python syntax. Second, comments and excessive
whitespace are removed to ensure that the model analyzes
only the relevant code. Third, variable and function name
normalization replaces variable and function names with
generic tokens (e.g., varl, funcl, etc.) to prevent bias caused
by naming patterns. With this preprocessing, the dataset
becomes cleaner and more structured for feature extraction,
where various Python code characteristics are extracted as
input for the machine learning model to detect bugs
automatically.

B. Feature Extraction

In this study, feature extraction is performed to obtain a
numerical representation of Python code characteristics that
may indicate the presence of bugs. These features are selected
based on structural aspects of the code that potentially
influence complexity and the likelihood of errors. One of the
primary features used is the number of functions within the
code, as a higher number of defined functions increases the
structural complexity, thereby elevating the risk of bugs.

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

226

e-ISSN: 2548-6861

Additionally, the number of classes is also considered,
particularly in Object-Oriented Programming (OOP)-based
code, where interclass relationships can complicate code
comprehension and maintenance. Moreover, the number of
declared variables serves as a crucial feature, as inconsistent
variable usage may lead to execution errors. The total lines of
code are also taken into account as an indicator of complexity,
with longer code generally having more bug-prone points.
Another important feature is the count of conditional
statements, such as if, elif, and else, which are frequently used
to control program execution flow. A higher number of
conditions increases the likelihood of logical errors due to
improper condition handling. Additionally, this study
considers the number of exception-handling statements,
determined by counting occurrences of try-except blocks.
Excessive or insufficient exception handling may indicate
potential bugs within the code. All these features are
automatically extracted using Abstract Syntax Tree (AST)
[20], which enables the analysis of code structure without
requiring program execution. The data obtained from these
features is then used as input for the machine learning model
to distinguish between bugged and non-bugged code.

C. Machine Learning Model

In this study, the Random Forest Classifier algorithm is
employed to develop a bug detection model for Python code.
Random Forest is chosen due to its ability to handle datasets
with complex features and its robustness against overfitting.
This algorithm constructs multiple decision trees and
aggregates their results to enhance prediction accuracy [20]-
[23]. The preprocessed dataset is split into two subsets: a
training set (70%) and a testing set (30%), using stratified
splitting to maintain class balance. The model is trained using
Grid Search with cross-validation (cv=5) to optimize
hyperparameters such as the number of trees in the forest
(n_estimators), maximum tree depth (max_depth), minimum
samples required for node splitting (min_samples_split),
minimum samples per leaf (min_samples_leaf), and the best
feature selection method at each split (max_features). After
training, the model’s performance is evaluated using
accuracy, precision, recall, and F1-score metrics to assess the
balance between true positive and negative predictions.
Additionally, a confusion matrix is utilized to analyze the
distribution of model errors. With this approach, the resulting
model is expected to detect bugs in Python code with optimal
accuracy.

The primary function in Random Forest:
Prediction based on majority voting from decision trees.

y = mode{h,(x), h,(x),..., hy(x)} @))

with h; (x) The prediction result from the -i tree, and T is
the total number of trees in the model.

Node splitting function in Decision Tree using Gini
Impurity:

Gini =1 — ZPZi (2)
i=1
where p; is the probability of a class within the node.

D. Hyperparameter Optimization
To achieve optimal performance of the Random Forest
Classifier model, hyperparameter optimization is conducted
using the Grid Search method with 5-fold cross-validation
(cv=b). Grid Search systematically evaluates various
combinations of hyperparameter values to identify the best
configuration that yields the highest accuracy. The adjusted
hyperparameters include:
1. n_estimators (number of trees in the forest): [100, 300,
500, 1000]
2. max_depth (maximum depth of decision trees): [None,
10, 20, 30, 50, 100]

3. min_samples_split (minimum number of samples
required to split a node): [2, 5, 10, 20]
4. min_samples_leaf (minimum number of samples

required at each leaf node): [1, 2, 4, 10]
5. max_features (number of features considered for each
split): ['sqrt’, 'log2', None]

During the optimization process, Grid Search
systematically evaluates all combinations of the above
parameters and selects the configuration that provides the best
performance based on the average accuracy obtained from
cross-validation. By employing 5-fold cross-validation, the
dataset is divided into five parts, where the model is trained
on four parts and tested on the remaining part in an iterative
manner until the entire dataset is utilized for validation.

The formula used is[24], [25]:

Number of Correct Predictions

A =
ccuracy Total Number of Samples
B TP +TN 3
“TprIN+FP+EN O
Where:
e TP = True Positives (correct predictions for the
bugged class).

e TN = True Negatives (correct predictions for the
non-bugged class).
e FP = False Positives (incorrect predictions for the
bugged class).
FN = False Negatives (incorrect predictions for the non-
bugged class).

I11. RESULTS AND DISCUSSION

A. Best Model Selection

In the process of selecting the best model, an exploration
of various hyperparameter combinations was conducted using
the Grid Search Cross Validation (GridSearchCV) method on
the Random Forest Classifier model. The parameter grid
tested includes variations in the number of decision trees
(n_estimators), the maximum depth of the trees (max_depth),
the minimum number of samples required to split a node

JAIC Vol. 10, No. 1, February 2026: 224 — 231

JAIC

e-1SSN: 2548-6861 227

(min_samples_split), and the minimum number of samples
required at a leaf node (min_samples_leaf). After performing
five-fold cross-validation, the best model was obtained with
an accuracy of 85% on the test data. This high-performing
model utilizes the hyperparameter combination n_estimators
= 300, max_depth = 20, min_samples_split = 5, and
min_samples_leaf = 2. The model selection was based on the
mean_test score, where this specific hyperparameter
configuration yielded the highest accuracy compared to other
combinations. With 300 decision trees, the model effectively
captures complex patterns in the data without overfitting.
Restricting the maximum depth of the trees to 20 levels helps
control model complexity, while min_samples_split = 5 and
min_samples_leaf = 2 ensure that node splitting and the
number of samples in leaf nodes remain optimal for
improving model generalization on new data. Beyond
accuracy, the model was also evaluated using Precision,
Recall, and F1-score to provide a more comprehensive
assessment of its classification performance. The selected
model achieved a Precision of 0.84, Recall of 0.87, and F1-
score of 0.86. Precision indicates that 84% of all positive
predictions made by the model were correct, meaning the
model has a relatively low false positive rate. High precision
is particularly crucial in scenarios where incorrect positive
classifications have serious consequences, such as fraud
detection or disease diagnosis. Meanwhile, Recall of 87%
suggests that 87% of actual positive instances were correctly
identified by the model. A high recall is essential in situations
where missing positive cases could be critical, such as in
security systems or intrusion detection. The F1-score of 0.86,
which represents the harmonic mean of precision and recall,
demonstrates that the model achieves a well-balanced trade-
off between detecting positive cases and ensuring prediction
accuracy. With an accuracy of 85%, along with high
precision, recall, and F1-score, the model exhibits strong
classification performance with relatively low error rates.
This indicates that the model is highly reliable in identifying
and classifying data correctly, making it a suitable approach
for tasks requiring accurate and robust classification
capabilities.

Figure 1 presents the Confusion Matrix of the model’s
classification performance in distinguishing between two
categories: Non-Bugged and Bugged. This matrix provides
insights into the number of correct and incorrect predictions
made by the model. Within the matrix, 24 samples were
correctly classified as Non-Bugged (True Negative), while 5
Non-Bugged samples were misclassified as Bugged (False
Positive). For the Bugged category, the model successfully
identified 27 samples correctly (True Positive), but 4 Bugged
samples were incorrectly classified as Non-Bugged (False
Negative). Based on this confusion matrix, key evaluation
metrics were computed. Precision, which quantifies the
model’s accuracy in identifying the Bugged class, is
calculated as 27 / (27 + 5) = 0.84 (84%), indicating that 84%
of the positive predictions were correct. Recall, reflecting the
model’s ability to capture all truly Bugged samples, is 27/ (27

+ 4) = 0.87 (87%), signifying that 87% of the total Bugged
samples were correctly identified.

Confusion Matrix

25

20

Non-Bugged

Actual

-15

-10

Bugged
'

I
Non-Bugged Bugged

Predicted

Figure. 1. Confusion Matrix of Testing Results

The F1-score, which represents the harmonic mean of
precision and recall, is 0.86, demonstrating a well-balanced
trade-off between model precision and sensitivity. Overall,
the model exhibits strong classification performance with a
relatively low error rate, indicating its reliability in
distinguishing between Bugged and Non-Bugged samples.

B. Bug Detection Results

The evaluation results of the bug detection system
demonstrate a satisfactory performance in identifying errors
within the code. With an accuracy rate of 85%, the system
effectively detects bugs with a precision of 0.84, recall of
0.87, and an F1-score of 0.86. The higher recall compared to
precision indicates that the system is proficient in identifying
most of the existing bugs, although some false positives are
still present. Overall, these results suggest that the applied
method is reasonably reliable in detecting and classifying
bugs. However, there remains room for improvement,
particularly in reducing misclassification errors and
enhancing the system’s efficiency. A representative example
of the bug detection results is illustrated in Figure 2.

Figure 2 illustrates an example of the bug detection
results performed by SemetonBug in classifying Python code
files containing errors. Each output line generated by the
system provides information regarding the analyzed file, the
model’s prediction, and the actual condition of the file. Each
entry follows a structured format, including the file name, the
system's prediction, the actual condition of the file, and the
specific lines of code that contain bugs. For instance, in the
case of filebug (87).py, the system predicts that the file
contains a bug (Bug Detected), which aligns with its actual
condition (bugged). The specific lines identified as containing
errors in this file are lines 11, 12, 13, 15, and 17.

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

228

e-ISSN: 2548-6861

Bug Detection Results:
Fi

. 14]
3, 14]

12, 14, 15, 17, 18, 19]
3, 16, 19, 20]

(20) , 17
(41) , 13, 15]
g P .3, 4,5, 6,8, 10, 12, 13]
ug (44).py : - Actual: d - Bu s: [12, 14, 16]
ebug (45).py - Predicted: al: bugged - Bug Lines: [11, 14, 17, 18]

(46).py - Predictsd: Bug Detected - d - Bug Lines: [11, 13, 14, 18, 12, 20]

Figure. 2. Example of Python Bug Detection

The detection results indicate that the system is capable of
identifying bugs across multiple files simultaneously, while
also providing the corresponding line numbers where the
errors occur. This feature facilitates a more systematic review
and debugging process for developers. Additionally, an edge
case is observed in filebug (45).py, where the system predicts
the absence of bugs (No Bug Detected), while in reality, the
file still contains errors. This discrepancy suggests the
presence of false negatives, indicating that certain bugs might
remain undetected by the model. The complete detection
results can be further examined in Table 1

TABLE 1.
BUG DETECTION TESTING RESULTS

No Filename Predicted | Actual Bug

Label Label Lines

1 | filebug (87).py Bug bugged 11,

Detected 12,

13,

15, 17

2 | filebug Bug bugged 2,3,

(100).py Detected 4,5,

7,9,

10

3 | filebug (17).py Bug bugged 10, 11
Detected

4 | filebug (18).py Bug bugged 11,12
Detected

5 | filebug (19).py Bug bugged 11,12
Detected

6 | filebug (20).py Bug bugged 11,

Detected 12,13

7 | filebug (21).py Bug bugged 12,13
Detected

8 | filebug (22).py Bug bugged 11,

Detected 12,14

9 | filebug (23).py Bug bugged 11,

Detected 13,14

10 | filebug (24).py Bug bugged 11,14
Detected

11 | filebug (25).py Bug bugged 11,

Detected 12,

14,

15,

17,
18, 19
12 | filebug (26).py Bug bugged 11,
Detected 13,
16,
19, 20
200 filenobug(4).py | No Bug non_bugged | None
Detected

The bug detection testing results are presented in Table 1,
illustrating the system’s performance in identifying errors
across various code files. The table consists of four primary
columns: Filename, Predicted Label, Actual Label, and Bug
Lines. The Filename column lists the names of the tested files.
The Predicted Label column indicates the system's
classification, where "Bug Detected" is assigned if the system
identifies an error and "No Bug Detected" if no issues are
found. The Actual Label column provides the ground truth for
each file, where "bugged" indicates the presence of a bug,
while "non-bugged" confirms the absence of errors. The Bug
Lines column specifies the exact lines of code where the
detected errors occur. If a file is classified as bugged, the
system provides the corresponding line numbers where issues
are found. Conversely, for non-bugged files, the system
returns "No Bug Detected" without listing any lines. The
results indicate that the system effectively identifies bugs
across multiple files, accurately pinpointing the specific lines
where errors occur. Furthermore, in cases where no bugs are
present, the system successfully classifies the files,
demonstrating its ability to distinguish between buggy and
non-buggy files. However, further analysis is required to
assess potential misclassifications, particularly false positives
and false negatives, which may impact the system’s overall
effectiveness.

C. ROC Curve Analysis

The Receiver Operating Characteristic (ROC) Curve is
an evaluation tool used to analyze the performance of the bug
detection system by considering the trade-off between the
True Positive Rate (TPR) and the False Positive Rate (FPR).
The ROC Curve provides insights into the model’s ability to
distinguish between files that contain bugs (bugged) and those
that do not (non-bugged).

Figure 3 illustrates the Receiver Operating
Characteristic (ROC) Curve, which is used to evaluate the
performance of the bug detection system. The ROC Curve
visualizes the relationship between the True Positive Rate
(TPR) and the False Positive Rate (FPR) across different
decision thresholds. The blue curve in the graph represents the
performance of the bug detection model, while the gray
diagonal line serves as a reference baseline for a random
model with AUC =0.5.

JAIC Vol. 10, No. 1, February 2026: 224 — 231

JAIC

e-1SSN: 2548-6861 229

Receiver Operating Characteristic (ROC) Curve

0.8

True Positive Rate
°
Y

°
=

—— ROC Curve (area = 0.90)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure. 3. Receiver Operating Characteristic (ROC)

Based on the evaluation results, the model achieves an
Area Under the Curve (AUC) of 0.90, indicating a highly
effective classification capability in distinguishing between
bugged and non-bugged files. A higher AUC value suggests
superior model performance, with strong discriminative
power. This AUC score demonstrates that the system
maintains a well-balanced trade-off between sensitivity and
specificity, making it a reliable tool for bug detection in
program code.

D. Learning Curve and Model Generalization

A learning curve is a graphical representation that
illustrates how a model's performance evolves as the amount
of training data increases. This curve is used to assess whether
the model suffers from overfitting, underfitting, or has a good
generalization capability. By analyzing the learning curve, it
is possible to determine whether the model benefits from
additional training data or if adjustments to hyperparameters
are necessary to enhance its performance.

Learning Curve: Random Forest Model

1.0 4 —8— Training Accuracy
—8— Validation Accuracy
0.9 1

0.8 4

Accuracy

0.7

0.6 4

0.5 1

T T T T T T T T
20 40 60 80 100 120 140 160
Training Size

Figure. 4. Learning Curve of Random Forest

Figure 4 illustrates the learning curve of the Random Forest
model, depicting the relationship between the training dataset
size and the model's accuracy on both training and validation
data. The blue curve represents training accuracy, while the
red curve represents validation accuracy. In the initial phase,

when the training dataset is small, the model exhibits high
training accuracy (close to 100%), whereas the validation
accuracy remains relatively low (around 50%). This
phenomenon indicates overfitting, where the model overly
adapts to the training data but struggles to generalize to
unseen data. As the training dataset grows, validation
accuracy starts to improve, while training accuracy slightly
decreases, reaching a balance of approximately 90% for
training and 80% for validation. This suggests that the model
is achieving better generalization, where its performance on
unseen data becomes more stable. However, a large variance
in the validation curve is observed, particularly during the
increasing phase of the training data. This variability may be
attributed to model complexity or data imbalance. Further
adjustments, such as regularization techniques or increasing
the training dataset size, could help mitigate this fluctuation
and enhance the model's stability in bug detection.

Effect of Number of Trees on Accuracy

0.94

0.92

0.90 —e— Training Accuracy
—&— Vvalidation Accuracy

Accuracy

0.88 1

0.86 1 ’_/—\

] 100 200 300 400 500
Number of Trees in Random Forest

Figure. 5. Analysis of the Effect of the Number of Trees in the Random
Forest Algorithm on Model Accuracy

Figure 5 illustrates the impact of the number of trees in the
Random Forest model on accuracy for both training and
validation data. The blue curve represents training accuracy,
while the red curve represents validation accuracy. It can be
observed that the training accuracy remains consistently high
and stable at approximately 94%, with no significant changes
despite the increase in the number of trees. This indicates that
the model learns effectively from the training data without
experiencing performance degradation. However,
fluctuations are observed in the validation accuracy. When the
number of trees is within the range of 100 to 200, validation
accuracy reaches its peak value of approximately 86%.
Beyond this point, a gradual decline is noticeable. For tree
counts exceeding 300, validation accuracy tends to stabilize
around 85%, suggesting that increasing the number of trees
does not necessarily enhance the model’s generalization
ability. This decline in validation accuracy may be attributed
to overfitting, where the model becomes overly complex,
adapting too closely to the training data while failing to
capture meaningful patterns for unseen data.

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

230

e-ISSN: 2548-6861

E. Discussion

The Receiver Operating Characteristic (ROC) curve
generated illustrates the model's ability to distinguish between
positive and negative classes based on predicted probabilities.
From the displayed graph, it is evident that the model's ROC
curve is positioned well above the diagonal line (baseline
random classifier), indicating superior classification
performance compared to random guessing. The Area Under
the Curve (AUC) value of 0.90 suggests that the model has a
high accuracy in differentiating between classes, although
there is still room for improvement. The closer the AUC value
is to 1, the better the model performs in classification with
minimal false positives.

The learning curve provides further insight into the model's
generalization capacity on new data. From the graph, the
training accuracy (blue line) is initially high, while the
validation accuracy (red line) gradually increases as the
training dataset expands. Initially, a significant gap exists
between the training and validation accuracy, indicating
potential overfitting when the model is trained with limited
data. However, as the training data increases, this gap begins
to narrow, showing that the model becomes better at learning
patterns without overly relying on training data. In other
words, the model's generalization ability improves, although
fluctuations in validation accuracy suggest further
optimization potential, such as hyperparameter tuning or
regularization techniques.

Furthermore, the analysis of the number of trees in the
Random Forest algorithm reveals that while training accuracy
remains consistently high, validation accuracy exhibits slight
fluctuations as the number of trees increases. This indicates
that increasing the number of trees in a Random Forest model
does not always significantly enhance its performance,
particularly beyond a certain threshold. The graph suggests
that after reaching a certain number of trees, validation
accuracy stagnates or even declines, which may be attributed
to the diminishing returns effect. Beyond this point, additional
trees provide little performance improvement while
increasing computational complexity without a proportional
accuracy gain. Thus, determining the optimal number of trees
is crucial for balancing accuracy and computational
efficiency.

Overall, the results indicate that the model demonstrates
strong classification performance, yet several aspects can still
be improved. Further optimization efforts should focus on
minimizing overfitting, balancing bias and variance, and fine-
tuning hyperparameters to achieve better results.
Additionally, techniques such as ensemble learning, feature
selection, or increasing the training dataset size can further
enhance the model’s performance, particularly in more
complex scenarios.

1VV. CONCLUSION

In this study, the Random Forest Classifier model was
explored for bug detection, utilizing Grid Search Cross-
Validation to select the optimal hyperparameters. The
selected model achieved an accuracy of 85% with the
following hyperparameter configuration: n_estimators = 300,
max_depth = 20, min_samples_split = 5, and
min_samples_leaf = 2. Performance evaluation indicated that
the model achieved a precision of 0.84, recall of 0.87, and an
F1-score of 0.86, demonstrating a well-balanced trade-off
between precision and sensitivity in bug classification.

The confusion matrix analysis revealed that the model was
able to identify bugs effectively, although some
misclassifications (false positives and false negatives) were
still present. The ROC Curve with an AUC of 0.90 further
indicated that the model exhibited strong discrimination
capability between buggy and non-buggy files. Additionally,
the learning curve analysis suggested that the model
generalized well as the training data increased, despite a slight
indication of overfitting when the number of trees became
excessively large.

Overall, the proposed approach proved to be effective in
detecting bugs in source code with a high performance level.
However, there is still room for improvement, such as further
hyperparameter optimization, exploring other ensemble
methods, or applying regularization techniques to mitigate
overfitting. Future research could also consider the
integration of deep learning techniques to enhance bug
detection accuracy while reducing classification errors.

REFERENCES

[1] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-
Supervised Bug Detection and Repair,” in Journal of Mathematical
Sciences, 2021. doi: 10.48550/arxiv.2105.12787.

[2] D. Cotroneo, L. De Simone, A. K. lannillo, R. Natella, S. Rosiello,
and N. Bidokhti, “Analyzing the Context of Bug-Fixing Changes
in the OpenStack Cloud Computing Platform,” in 2019 IEEE 30th
International Symposium on Software Reliability Engineering
(ISSRE), 2019. doi: 10.1109/issre.2019.00041.

[3] M. Ben Messaoud, A. Miladi, 1. Jenhani, M. W. Mkaouer, and L.
Ghadhab, “Duplicate Bug Report Detection Using an Attention-
Based Neural Language Model,” leee Trans. Reliab., 2023, doi:
10.1109/tr.2022.3193645.

[4] S. N. Saharudin, T. W. Koh, and S. N. Kew, “Machine Learning
Techniques for Software Bug Prediction: A Systematic Review,”
J. Comput. Sci., 2020, doi: 10.3844/jcssp.2020.1558.1569.

[5] D. Ajiga, P. A. Okeleke, S. O. Folorunsho, and C. Ezeigweneme,
“Enhancing Software Development Practices With Al Insights in
High-Tech Companies,” Comput. Sci. \& It Res. J., 2024, doi:
10.51594/csitrj.v5i8.1450.

[6] Z. Li, S. Wang, W. Wang, P. Liang, R. Mo, and B. Li,
“Understanding Bugs in Multi-Language Deep Learning
Frameworks,” leee Access, 2023, doi: 10.48550/arxiv.2303.02695.

[71 A. Vadlamani, R. Kalicheti, and S. Chimalakonda, “APIScanner --
Towards Automated Detection of Deprecated APIs in Python
Libraries,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), 2021. doi: 10.48550/arxiv.2102.09251.

[8] N. A. Adam Khleel and K. Nehéz, “Comprehensive Study on
Machine Learning Techniques for Software Bug Prediction,” Int.
J. Adv. Comput. Sci. Appl., 2021, doi:

JAIC Vol. 10, No. 1, February 2026: 224 — 231

JAIC e-1SSN: 2548-6861 231

10.14569/ijacsa.2021.0120884.

[9] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-Parameter
Optimization of Classifiers, Using an Artificial Immune Network
and Its Application to Software Bug Prediction,” leee Access, 2020,
doi: 10.1109/access.2020.2968362.

[10] M. K. Wozniak and P. J. Giabbanelli “Comparing
Implementations of Cellular Automata as Images: A Novel
Approach to Verification by Combining Image Processing and
Machine Learning,” in SIGSIM-PADS 21, 2021. doi:
10.1145/3437959.3459256.

[11] S. Kotsiantis, V. S. Verykios, and M. Tzagarakis, “Al-Assisted
Programming Tasks Using Code Embeddings and Transformers,”
Electronics, 2024, doi: 10.3390/electronics13040767.

[12] X. Huang, P. Kruisz, and M. Kuhlwilm, “Sstar: A Python Package
for Detecting Archaic Introgression From Population Genetic Data
With S*,” Mol. Biol. Evol., 2022, doi: 10.1101/2022.03.10.483765.

[13] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and K. S.
Kwak, “Duplicate Bug Report Detection and Classification System
Based on Deep Learning Technique,” IEEE Access, vol. 8, pp.
200749-200763, 2020, doi: 10.1109/ACCESS.2020.3033045.

[14] M. Kumari, U. K. Singh, and M. Sharma, “Entropy Based Machine
Learning Models for Software Bug Severity Assessment in Cross
Project Context,” Comput. Sci. Its Appl., 2020, doi: 10.1007/978-
3-030-58817-5_66.

[15] P. Hegedts and R. Feren¢, “Static Code Analysis Alarms Filtering
Reloaded: A New Real-World Dataset and Its ML-Based
Utilization,” leee Access, 2022, doi:
10.1109/access.2022.3176865.

[16] A. Rahman and E. Farhana, “An Empirical Study of Bugs in
COVID-19 Software Projects,” J. Softw. Eng. Res. Dev., 2021, doi:
10.5753/jserd.2021.827.

[17] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An
Effective Software Bug Prediction Model Using Deep
Representation and Ensemble Learning Techniques,” Expert Syst.
Appl., 2020, doi: 10.1016/j.eswa.2019.113085.

[18] U. Dikme, “Industrial User Interface Software Design for Visual
Python AI Applications Using Embedded Linux Based Systems,”
J. Appl. Phys. Sci., 2021, doi: 10.20474/japs-7.1.

[19] A. Ghaleb and K. Pattabiraman, “How Effective Are Smart
Contract Analysis Tools? Evaluating Smart Contract Static
Analysis Tools Using Bug Injection,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2020. doi: 10.1145/3395363.3397385.

[20] K. Bharath and P. Jagadeesh, “An Innovative Software Bug
Prediction System using Random Forest Algorithm for Enhanced
Accuracy in Comparison with Logistic Regression Algorithm,” in
2023 Intelligent Computing and Control for Engineering and
Business Systems (ICCEBS), 2023.

[21] S. T. Cynthia, B. Roy, and D. Mondal, “Feature transformation for
improved software bug detection models,” in ACM International
Conference Proceeding Series, Association for Computing
Machinery, 2022. doi: 10.1145/3511430.3511444.

[22] B. Imran, E. Wahyudi, S. Riadi, Z. Muahidin, S. Erniwati, and W.
A. Wahyuni, “A Comparative Hybrid Approach for Python Bug
Detection Using Syntactic Features, Random Forest, and Neural
Network,” CommIT J., vol. 19, no. 2, pp. 141-150, 2025.

[23] B. Imran, S. Riadi, E. Suryadi, M. Zulpahmi, and E. Wahyudi,
“SemetonBug : A Machine Learning Model for Automatic Bug
Detection in Python Code Based on Syntactic Analysis,” J. Inform.,
vol. 11, no. 2, pp. 75-80, 2025.

[24] H. M. Tran, S. T. Le, S. Van Nguyen, and P. T. Ho, “An Analysis
of Software Bug Reports Using Machine Learning Techniques,”
SN Comput. Sci., vol. 1, no. 1, 2020, doi: 10.1007/s42979-019-
0004-1.

[25] W. Albattah and M. Alzahrani, “Software Defect Prediction based
on Machine Learning and Deep Learning,” Al, pp. 116-122, 2024,
doi: 10.1109/ICICT54344.2022.9850643.

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

