
Journal of Applied Informatics and Computing (JAIC) 

Vol.10, No.1, February 2026, pp. 224~231 

e-ISSN: 2548-6861    224 

  

  

http://jurnal.polibatam.ac.id/index.php/JAIC  

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for 

Precision Bug Detection and Dynamic Error Localization 
 

 

Surni Erniwati 1*, Bahtiar Imran 2**, Zumratul Muahidin 3***, Zaeniah 4***, Juhartini 5**** 
* Manajemen Informatika, Universitas Teknologi Mataram 

** Rekayasa Sistem Komputer, Universitas Teknologi Mataram 
*** Sistem Informasi, Universitas Teknologi Mataram 

**** Teknik Informatika, Universitas Teknologi Mataram 

mentari1990@gmail.com 1, bahtiarimranlombok@gmail.com 2, muahidinzumratul@gmail.com 3, zaen1989@gmail.com 4, 

juhartini8815@gmail.com 5  

 

 

Article Info  ABSTRACT  

Article history: 

Received 2025-11-24 

Revised 2025-12-22 

Accepted 2026-01-07 

 Bug detection in Python programming is a crucial challenge in software 

development. This research proposes SemetonBug, a machine learning-based system 

for automatically detecting bugs in Python code. The system utilizes a Random 

Forest Classifier as the main model, with features extracted from the syntactic 

structure of the code using an Abstract Syntax Tree (AST). The dataset consists of 

200 Python files, divided into 100 files with bugs and 100 files without bugs. The 

model is optimized using Grid Search Cross Validation, with the best combination 

of n_estimators = 300, max_depth = 20, min_samples_split = 5, and 

min_samples_leaf = 2. Evaluation results show that the model achieves 85% 

accuracy, 0.84 precision, 0.87 recall, and 0.86 F1-score. The detected bugs are stored 
in an Excel file for further analysis. By leveraging machine learning, SemetonBug 

enhances efficiency and accuracy in bug identification compared to traditional rule-

based methods. These findings highlight the potential of machine learning models in 

improving software quality and reducing coding errors automatically. 
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I. INTRODUCTION 

Bug detection in Python programming is one of the most 

critical challenges in software development. Various studies 

have demonstrated that bugs can be minimized through 
appropriate tools and techniques. For instance, PYBUGLAB, 

an implementation designed for the Python language, is 

developed to detect and fix various types of simple bugs that 

significantly impact code accuracy. By focusing on simple 

bugs, this tool illustrates that minor corrections can lead to 

substantial improvements in overall code quality, reducing 

errors and enhancing software reliability [1]. Empirical 

analysis of code modifications after bug fixes in Python 

reveals specific patterns, indicating that changes are not made 

randomly but occur within a particular coding context [2]. 

This finding underscores the importance of understanding 
code context for further advancements in bug detection tools. 

In the modern era, advanced techniques are increasingly 

employed, including machine learning models for bug 

detection and duplicate bug report identification. Research 

indicates that attention-based models can improve accuracy in 

detecting duplicate bug reports, which often pose challenges 

in large-scale software management [3]. In software 

development, manual bug identification is often time-

consuming, prone to human error, and inefficient, particularly 

when dealing with large-scale codebases. This manual 

approach relies on programmers' expertise to review and test 

code directly, which may result in undetected bugs or issues 
only discovered during the final testing phase. Therefore, 

automated methods that enable faster, more accurate, and 

consistent bug detection are essential. 

Several previous studies have been conducted to detect 

bugs in program code, employing both static approaches such 

as code analysis and machine learning-based methods to 

enhance detection accuracy. Among them, [4] explores 

machine learning techniques for software bug prediction, 

demonstrating that ensemble algorithms outperform 

individual approaches. Study  [5] investigates the application 
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of AI in software development practices, including bug 

detection, which improves efficiency and software quality. 

Meanwhile, [6] focuses on understanding bugs within a 

multilingual deep learning framework, forming a crucial 

foundation for detecting and resolving bugs in AI-based 

applications. Study [7] introduces APIScanner, a tool that 

automates the detection of deprecated APIs in Python 

libraries, contributing to improved code quality. Research [8] 
discusses machine learning techniques for software bug 

prediction, showcasing the development of several effective 

prediction models. In [9] artificial immune networks are 

applied to optimize hyperparameters in bug prediction 

classification models, aiming to enhance the software testing 

process. Study [10] compares cellular automata 

implementations using image processing and machine 

learning for code validation, albeit with a broader focus on 

general verification methods. Meanwhile, [1] develops 

BUGLAB, a self-supervised approach for bug detection and 

repair, highlighting the potential of machine learning-based 
methods in software development. Study [11] examines the 

use of code embeddings and transformers to assist 

programming tasks, including bug detection, underscoring 

AI’s critical role in software development. Meanwhile, [12] 

describes a Python package called sstar, though its focus is 

more on genetic analysis rather than software bug detection. 

In [13], an automated bug report detection and classification 

system using deep learning techniques is introduced, 

demonstrating improvements in software management speed. 

Study [14] investigates entropy-based machine learning 

models for assessing bug severity, emphasizing the 

importance of bug descriptions in predicting other attributes. 
Meanwhile, [15] utilizes large datasets to train models for 

filtering code warnings, relevant to static code analysis and 

bug detection. Research [16] conducts an empirical study on 

bugs in COVID-19 software projects, identifying the need for 

better detection tools for security monitoring. Study [17] 

proposes BPDET, a bug prediction model leveraging deep 

representation techniques and ensemble learning, offering an 

in-depth analysis of bug detection improvements. Study [18] 

examines user interface design in AI-based Python visual 

applications, though its focus lies in UI design rather than bug 

detection. Lastly, [19] evaluates smart contract analysis tools 
for bug detection, serving as an example of static techniques 

for identifying software errors. 

This study aims to develop a bug detection system for 

Python code, named SemetonBug. The system is designed to 

enhance efficiency in automatically identifying code errors 

using machine learning methods, specifically Random Forest 

as the primary classification model. Unlike traditional rule-

based static analysis approaches, SemetonBug employs 

machine learning based on abstract features extracted from 

the syntactic structure of the code to detect various types of 

bugs. The source code used in this study was manually 

collected, comprising 200 Python files, evenly divided into 
100 files containing bugs and 100 bug-free files. Each file was 

analyzed using the Abstract Syntax Tree (AST) library to 

extract relevant features such as the number of statements 

within loops, the depth of if-else structures, variable usage, 

and function call patterns. SemetonBug is designed to detect 

bugs simultaneously, enabling the identification of multiple 

errors in a single analysis without requiring manual inspection 

of each instance. In training the model, Random Forest was 

chosen for its ability to handle complex features and provide 

stable classification results. The model was optimized using 

hyperparameter tuning via Grid Search, with explored 
parameters including n_estimators: [10, 50, 100, 200], 

max_depth: [None, 10, 20, 30], min_samples_split: [2, 5, 10], 

and min_samples_leaf: [1, 2, 4]. Model evaluation was 

conducted using multiple metrics, including accuracy, 

precision, recall, and F1-score. Additionally, performance 

analysis was carried out using a Confusion Matrix, ROC 

Curve, and Learning Curve to assess how the model learns as 

the training data increases. The bug detection results from 

SemetonBug are stored in Excel format, allowing software 

developers to perform further analysis on the identified errors. 

Through this approach, the study introduces an innovative 
machine learning-based bug detection method, replacing 

traditional rule-based static analysis techniques commonly 

used in conventional bug detection systems. 

 

II. METHOD 

A. Dataset Preparation 

The dataset in this study consists of 200 Python code 

files, comprising 100 bugged files (containing bugs) and 100 

non-bugged files (bug-free). The dataset was manually 

collected from various sources, including self-written code, 

open-source projects, and programming forums. Bugged code 

contains syntax errors (e.g., unbalanced parentheses), logical 
errors (algorithmic mistakes), or runtime errors (such as 

division by zero), whereas non-bugged code executes without 

errors. Before use, the dataset undergoes preprocessing, 

which includes three main stages. First, Python code 

tokenization is performed to convert the code into tokens 

according to Python syntax. Second, comments and excessive 

whitespace are removed to ensure that the model analyzes 

only the relevant code. Third, variable and function name 

normalization replaces variable and function names with 

generic tokens (e.g., var1, func1, etc.) to prevent bias caused 

by naming patterns. With this preprocessing, the dataset 
becomes cleaner and more structured for feature extraction, 

where various Python code characteristics are extracted as 

input for the machine learning model to detect bugs 

automatically. 

 

B. Feature Extraction 

In this study, feature extraction is performed to obtain a 

numerical representation of Python code characteristics that 

may indicate the presence of bugs. These features are selected 

based on structural aspects of the code that potentially 

influence complexity and the likelihood of errors. One of the 

primary features used is the number of functions within the 

code, as a higher number of defined functions increases the 

structural complexity, thereby elevating the risk of bugs. 
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Additionally, the number of classes is also considered, 

particularly in Object-Oriented Programming (OOP)-based 

code, where interclass relationships can complicate code 

comprehension and maintenance. Moreover, the number of 

declared variables serves as a crucial feature, as inconsistent 

variable usage may lead to execution errors. The total lines of 

code are also taken into account as an indicator of complexity, 

with longer code generally having more bug-prone points. 

Another important feature is the count of conditional 
statements, such as if, elif, and else, which are frequently used 

to control program execution flow. A higher number of 

conditions increases the likelihood of logical errors due to 

improper condition handling. Additionally, this study 

considers the number of exception-handling statements, 

determined by counting occurrences of try-except blocks. 

Excessive or insufficient exception handling may indicate 

potential bugs within the code. All these features are 

automatically extracted using Abstract Syntax Tree (AST) 

[20], which enables the analysis of code structure without 

requiring program execution. The data obtained from these 
features is then used as input for the machine learning model 

to distinguish between bugged and non-bugged code.  

 

C. Machine Learning Model 

In this study, the Random Forest Classifier algorithm is 

employed to develop a bug detection model for Python code. 

Random Forest is chosen due to its ability to handle datasets 

with complex features and its robustness against overfitting. 

This algorithm constructs multiple decision trees and 

aggregates their results to enhance prediction accuracy [20]–

[23]. The preprocessed dataset is split into two subsets: a 

training set (70%) and a testing set (30%), using stratified 

splitting to maintain class balance. The model is trained using 

Grid Search with cross-validation (cv=5) to optimize 
hyperparameters such as the number of trees in the forest 

(n_estimators), maximum tree depth (max_depth), minimum 

samples required for node splitting (min_samples_split), 

minimum samples per leaf (min_samples_leaf), and the best 

feature selection method at each split (max_features). After 

training, the model’s performance is evaluated using 

accuracy, precision, recall, and F1-score metrics to assess the 

balance between true positive and negative predictions. 

Additionally, a confusion matrix is utilized to analyze the 

distribution of model errors. With this approach, the resulting 

model is expected to detect bugs in Python code with optimal 
accuracy. 

 

The primary function in Random Forest: 

Prediction based on majority voting from decision trees. 

𝑦 = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑇(𝑥)}            (1) 

 

with 𝒉𝒊 (𝒙) The prediction result from the -i tree, and 𝑻 is 

the total number of trees in the model. 

Node splitting function in Decision Tree using Gini 

Impurity: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝2𝑖                                          (2)

𝑛

𝑖=1

 

where 𝑝𝑖 is the probability of a class within the node. 

 

D. Hyperparameter Optimization 

To achieve optimal performance of the Random Forest 

Classifier model, hyperparameter optimization is conducted 

using the Grid Search method with 5-fold cross-validation 

(cv=5). Grid Search systematically evaluates various 

combinations of hyperparameter values to identify the best 

configuration that yields the highest accuracy. The adjusted 

hyperparameters include: 
1. n_estimators (number of trees in the forest): [100, 300, 

500, 1000]  

2. max_depth (maximum depth of decision trees): [None, 

10, 20, 30, 50, 100]  

3. min_samples_split (minimum number of samples 

required to split a node): [2, 5, 10, 20]  

4. min_samples_leaf (minimum number of samples 

required at each leaf node): [1, 2, 4, 10]  

5. max_features (number of features considered for each 

split): ['sqrt', 'log2', None] 

During the optimization process, Grid Search 
systematically evaluates all combinations of the above 

parameters and selects the configuration that provides the best 

performance based on the average accuracy obtained from 

cross-validation. By employing 5-fold cross-validation, the 

dataset is divided into five parts, where the model is trained 

on four parts and tested on the remaining part in an iterative 

manner until the entire dataset is utilized for validation. 

The formula used is[24], [25]: 

Accuracy =  
Number of Correct Predictions

Total Number of Samples
 

=  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
         (3) 

 

Where: 

 TP = True Positives (correct predictions for the 

bugged class). 

 TN = True Negatives (correct predictions for the 

non-bugged class). 

 FP = False Positives (incorrect predictions for the 

bugged class). 

FN = False Negatives (incorrect predictions for the non-

bugged class). 

III. RESULTS AND DISCUSSION 

 

A. Best Model Selection 

In the process of selecting the best model, an exploration 

of various hyperparameter combinations was conducted using 

the Grid Search Cross Validation (GridSearchCV) method on 
the Random Forest Classifier model. The parameter grid 

tested includes variations in the number of decision trees 

(n_estimators), the maximum depth of the trees (max_depth), 

the minimum number of samples required to split a node 
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(min_samples_split), and the minimum number of samples 

required at a leaf node (min_samples_leaf). After performing 

five-fold cross-validation, the best model was obtained with 

an accuracy of 85% on the test data. This high-performing 

model utilizes the hyperparameter combination n_estimators 

= 300, max_depth = 20, min_samples_split = 5, and 

min_samples_leaf = 2. The model selection was based on the 

mean_test_score, where this specific hyperparameter 
configuration yielded the highest accuracy compared to other 

combinations. With 300 decision trees, the model effectively 

captures complex patterns in the data without overfitting. 

Restricting the maximum depth of the trees to 20 levels helps 

control model complexity, while min_samples_split = 5 and 

min_samples_leaf = 2 ensure that node splitting and the 

number of samples in leaf nodes remain optimal for 

improving model generalization on new data. Beyond 

accuracy, the model was also evaluated using Precision, 

Recall, and F1-score to provide a more comprehensive 

assessment of its classification performance. The selected 
model achieved a Precision of 0.84, Recall of 0.87, and F1-

score of 0.86. Precision indicates that 84% of all positive 

predictions made by the model were correct, meaning the 

model has a relatively low false positive rate. High precision 

is particularly crucial in scenarios where incorrect positive 

classifications have serious consequences, such as fraud 

detection or disease diagnosis. Meanwhile, Recall of 87% 

suggests that 87% of actual positive instances were correctly 

identified by the model. A high recall is essential in situations 

where missing positive cases could be critical, such as in 

security systems or intrusion detection. The F1-score of 0.86, 

which represents the harmonic mean of precision and recall, 
demonstrates that the model achieves a well-balanced trade-

off between detecting positive cases and ensuring prediction 

accuracy. With an accuracy of 85%, along with high 

precision, recall, and F1-score, the model exhibits strong 

classification performance with relatively low error rates. 

This indicates that the model is highly reliable in identifying 

and classifying data correctly, making it a suitable approach 

for tasks requiring accurate and robust classification 

capabilities. 

Figure 1 presents the Confusion Matrix of the model’s 

classification performance in distinguishing between two 
categories: Non-Bugged and Bugged. This matrix provides 

insights into the number of correct and incorrect predictions 

made by the model. Within the matrix, 24 samples were 

correctly classified as Non-Bugged (True Negative), while 5 

Non-Bugged samples were misclassified as Bugged (False 

Positive). For the Bugged category, the model successfully 

identified 27 samples correctly (True Positive), but 4 Bugged 

samples were incorrectly classified as Non-Bugged (False 

Negative). Based on this confusion matrix, key evaluation 

metrics were computed. Precision, which quantifies the 

model’s accuracy in identifying the Bugged class, is 

calculated as 27 / (27 + 5) = 0.84 (84%), indicating that 84% 
of the positive predictions were correct. Recall, reflecting the 

model’s ability to capture all truly Bugged samples, is 27 / (27 

+ 4) = 0.87 (87%), signifying that 87% of the total Bugged 

samples were correctly identified. 

 

 
Figure. 1. Confusion Matrix of Testing Results 

 

The F1-score, which represents the harmonic mean of 

precision and recall, is 0.86, demonstrating a well-balanced 

trade-off between model precision and sensitivity. Overall, 

the model exhibits strong classification performance with a 

relatively low error rate, indicating its reliability in 
distinguishing between Bugged and Non-Bugged samples. 

 

B. Bug Detection Results 

The evaluation results of the bug detection system 

demonstrate a satisfactory performance in identifying errors 

within the code. With an accuracy rate of 85%, the system 

effectively detects bugs with a precision of 0.84, recall of 

0.87, and an F1-score of 0.86. The higher recall compared to 

precision indicates that the system is proficient in identifying 

most of the existing bugs, although some false positives are 

still present. Overall, these results suggest that the applied 

method is reasonably reliable in detecting and classifying 

bugs. However, there remains room for improvement, 

particularly in reducing misclassification errors and 
enhancing the system’s efficiency. A representative example 

of the bug detection results is illustrated in Figure 2. 

Figure 2 illustrates an example of the bug detection 

results performed by SemetonBug in classifying Python code 

files containing errors. Each output line generated by the 

system provides information regarding the analyzed file, the 

model’s prediction, and the actual condition of the file. Each 

entry follows a structured format, including the file name, the 

system's prediction, the actual condition of the file, and the 

specific lines of code that contain bugs. For instance, in the 

case of filebug (87).py, the system predicts that the file 
contains a bug (Bug Detected), which aligns with its actual 

condition (bugged). The specific lines identified as containing 

errors in this file are lines 11, 12, 13, 15, and 17. 
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Figure. 2. Example of Python Bug Detection 

 

The detection results indicate that the system is capable of 

identifying bugs across multiple files simultaneously, while 

also providing the corresponding line numbers where the 

errors occur. This feature facilitates a more systematic review 

and debugging process for developers. Additionally, an edge 

case is observed in filebug (45).py, where the system predicts 

the absence of bugs (No Bug Detected), while in reality, the 

file still contains errors. This discrepancy suggests the 

presence of false negatives, indicating that certain bugs might 
remain undetected by the model. The complete detection 

results can be further examined in Table 1 

TABLE 1.  

BUG DETECTION TESTING RESULTS 

No Filename Predicted 

Label 
Actual 

Label 
Bug 

Lines 

1 filebug  (87).py Bug 
Detected 

bugged 11, 
12, 

13, 
15, 17 

2 filebug 
(100).py 

Bug 
Detected 

bugged 2, 3, 
4, 5, 
7, 9, 
10 

3 filebug (17).py Bug 

Detected 

bugged 10, 11 

4 filebug (18).py Bug 
Detected 

bugged 11, 12 

5 filebug (19).py Bug 
Detected 

bugged 11, 12 

6 filebug (20).py Bug 

Detected 

bugged 11, 

12, 13 

7 filebug (21).py Bug 
Detected 

bugged 12, 13 

8 filebug (22).py Bug 
Detected 

bugged 11, 
12, 14 

9 filebug (23).py Bug 

Detected 

bugged 11, 

13, 14 

10 filebug (24).py Bug 
Detected 

bugged 11, 14 

11 filebug (25).py Bug 
Detected 

bugged 11, 
12, 
14, 
15, 

17, 
18, 19 

12 filebug (26).py Bug 
Detected 

bugged 11, 
13, 
16, 
19, 20 

… … … … … 

… … … … … 

200 filenobug(4).py No Bug 
Detected 

non_bugged None 

 

The bug detection testing results are presented in Table 1, 

illustrating the system’s performance in identifying errors 

across various code files. The table consists of four primary 

columns: Filename, Predicted Label, Actual Label, and Bug 

Lines. The Filename column lists the names of the tested files. 
The Predicted Label column indicates the system's 

classification, where "Bug Detected" is assigned if the system 

identifies an error and "No Bug Detected" if no issues are 

found. The Actual Label column provides the ground truth for 

each file, where "bugged" indicates the presence of a bug, 

while "non-bugged" confirms the absence of errors. The Bug 

Lines column specifies the exact lines of code where the 

detected errors occur. If a file is classified as bugged, the 

system provides the corresponding line numbers where issues 

are found. Conversely, for non-bugged files, the system 

returns "No Bug Detected" without listing any lines. The 
results indicate that the system effectively identifies bugs 

across multiple files, accurately pinpointing the specific lines 

where errors occur. Furthermore, in cases where no bugs are 

present, the system successfully classifies the files, 

demonstrating its ability to distinguish between buggy and 

non-buggy files. However, further analysis is required to 

assess potential misclassifications, particularly false positives 

and false negatives, which may impact the system’s overall 

effectiveness. 

 

C. ROC Curve Analysis 

The Receiver Operating Characteristic (ROC) Curve is 

an evaluation tool used to analyze the performance of the bug 

detection system by considering the trade-off between the 
True Positive Rate (TPR) and the False Positive Rate (FPR). 

The ROC Curve provides insights into the model’s ability to 

distinguish between files that contain bugs (bugged) and those 

that do not (non-bugged). 

Figure 3 illustrates the Receiver Operating 

Characteristic (ROC) Curve, which is used to evaluate the 

performance of the bug detection system. The ROC Curve 

visualizes the relationship between the True Positive Rate 

(TPR) and the False Positive Rate (FPR) across different 

decision thresholds. The blue curve in the graph represents the 

performance of the bug detection model, while the gray 
diagonal line serves as a reference baseline for a random 

model with AUC = 0.5. 
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Figure. 3. Receiver Operating Characteristic (ROC) 

 
Based on the evaluation results, the model achieves an 

Area Under the Curve (AUC) of 0.90, indicating a highly 

effective classification capability in distinguishing between 

bugged and non-bugged files. A higher AUC value suggests 

superior model performance, with strong discriminative 

power. This AUC score demonstrates that the system 

maintains a well-balanced trade-off between sensitivity and 

specificity, making it a reliable tool for bug detection in 

program code. 

 

D. Learning Curve and Model Generalization 

A learning curve is a graphical representation that 

illustrates how a model's performance evolves as the amount 

of training data increases. This curve is used to assess whether 
the model suffers from overfitting, underfitting, or has a good 

generalization capability. By analyzing the learning curve, it 

is possible to determine whether the model benefits from 

additional training data or if adjustments to hyperparameters 

are necessary to enhance its performance. 

 
Figure. 4. Learning Curve of Random Forest 

 

Figure 4 illustrates the learning curve of the Random Forest 
model, depicting the relationship between the training dataset 

size and the model's accuracy on both training and validation 

data. The blue curve represents training accuracy, while the 

red curve represents validation accuracy. In the initial phase, 

when the training dataset is small, the model exhibits high 

training accuracy (close to 100%), whereas the validation 

accuracy remains relatively low (around 50%). This 

phenomenon indicates overfitting, where the model overly 

adapts to the training data but struggles to generalize to 

unseen data. As the training dataset grows, validation 

accuracy starts to improve, while training accuracy slightly 

decreases, reaching a balance of approximately 90% for 
training and 80% for validation. This suggests that the model 

is achieving better generalization, where its performance on 

unseen data becomes more stable. However, a large variance 

in the validation curve is observed, particularly during the 

increasing phase of the training data. This variability may be 

attributed to model complexity or data imbalance. Further 

adjustments, such as regularization techniques or increasing 

the training dataset size, could help mitigate this fluctuation 

and enhance the model's stability in bug detection. 

 
Figure. 5. Analysis of the Effect of the Number of Trees in the Random 

Forest Algorithm on Model Accuracy 

 

Figure 5 illustrates the impact of the number of trees in the 

Random Forest model on accuracy for both training and 

validation data. The blue curve represents training accuracy, 

while the red curve represents validation accuracy. It can be 

observed that the training accuracy remains consistently high 

and stable at approximately 94%, with no significant changes 

despite the increase in the number of trees. This indicates that 

the model learns effectively from the training data without 

experiencing performance degradation. However, 

fluctuations are observed in the validation accuracy. When the 
number of trees is within the range of 100 to 200, validation 

accuracy reaches its peak value of approximately 86%. 

Beyond this point, a gradual decline is noticeable. For tree 

counts exceeding 300, validation accuracy tends to stabilize 

around 85%, suggesting that increasing the number of trees 

does not necessarily enhance the model’s generalization 

ability. This decline in validation accuracy may be attributed 

to overfitting, where the model becomes overly complex, 

adapting too closely to the training data while failing to 

capture meaningful patterns for unseen data. 
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E. Discussion 

The Receiver Operating Characteristic (ROC) curve 

generated illustrates the model's ability to distinguish between 

positive and negative classes based on predicted probabilities. 

From the displayed graph, it is evident that the model's ROC 

curve is positioned well above the diagonal line (baseline 

random classifier), indicating superior classification 

performance compared to random guessing. The Area Under 

the Curve (AUC) value of 0.90 suggests that the model has a 

high accuracy in differentiating between classes, although 

there is still room for improvement. The closer the AUC value 
is to 1, the better the model performs in classification with 

minimal false positives. 

The learning curve provides further insight into the model's 

generalization capacity on new data. From the graph, the 

training accuracy (blue line) is initially high, while the 

validation accuracy (red line) gradually increases as the 

training dataset expands. Initially, a significant gap exists 

between the training and validation accuracy, indicating 

potential overfitting when the model is trained with limited 

data. However, as the training data increases, this gap begins 

to narrow, showing that the model becomes better at learning 

patterns without overly relying on training data. In other 
words, the model's generalization ability improves, although 

fluctuations in validation accuracy suggest further 

optimization potential, such as hyperparameter tuning or 

regularization techniques. 

Furthermore, the analysis of the number of trees in the 

Random Forest algorithm reveals that while training accuracy 

remains consistently high, validation accuracy exhibits slight 

fluctuations as the number of trees increases. This indicates 

that increasing the number of trees in a Random Forest model 

does not always significantly enhance its performance, 

particularly beyond a certain threshold. The graph suggests 
that after reaching a certain number of trees, validation 

accuracy stagnates or even declines, which may be attributed 

to the diminishing returns effect. Beyond this point, additional 

trees provide little performance improvement while 

increasing computational complexity without a proportional 

accuracy gain. Thus, determining the optimal number of trees 

is crucial for balancing accuracy and computational 

efficiency. 

Overall, the results indicate that the model demonstrates 

strong classification performance, yet several aspects can still 

be improved. Further optimization efforts should focus on 
minimizing overfitting, balancing bias and variance, and fine-

tuning hyperparameters to achieve better results. 

Additionally, techniques such as ensemble learning, feature 

selection, or increasing the training dataset size can further 

enhance the model’s performance, particularly in more 

complex scenarios. 

 

 

 

 

 

IV. CONCLUSION 

In this study, the Random Forest Classifier model was 

explored for bug detection, utilizing Grid Search Cross-
Validation to select the optimal hyperparameters. The 

selected model achieved an accuracy of 85% with the 

following hyperparameter configuration: n_estimators = 300, 

max_depth = 20, min_samples_split = 5, and 

min_samples_leaf = 2. Performance evaluation indicated that 

the model achieved a precision of 0.84, recall of 0.87, and an 

F1-score of 0.86, demonstrating a well-balanced trade-off 

between precision and sensitivity in bug classification. 

The confusion matrix analysis revealed that the model was 

able to identify bugs effectively, although some 

misclassifications (false positives and false negatives) were 

still present. The ROC Curve with an AUC of 0.90 further 
indicated that the model exhibited strong discrimination 

capability between buggy and non-buggy files. Additionally, 

the learning curve analysis suggested that the model 

generalized well as the training data increased, despite a slight 

indication of overfitting when the number of trees became 

excessively large. 

Overall, the proposed approach proved to be effective in 

detecting bugs in source code with a high performance level. 

However, there is still room for improvement, such as further 

hyperparameter optimization, exploring other ensemble 

methods, or applying regularization techniques to mitigate 
overfitting. Future research could also consider the 

integration of deep learning techniques to enhance bug 

detection accuracy while reducing classification errors. 
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