
Journal of Applied Informatics and Computing (JAIC)

Vol.10, No.1, February 2026, pp. 224~231

e-ISSN: 2548-6861 224

http://jurnal.polibatam.ac.id/index.php/JAIC

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for

Precision Bug Detection and Dynamic Error Localization

Surni Erniwati 1*, Bahtiar Imran 2**, Zumratul Muahidin 3***, Zaeniah 4***, Juhartini 5****
* Manajemen Informatika, Universitas Teknologi Mataram

** Rekayasa Sistem Komputer, Universitas Teknologi Mataram
*** Sistem Informasi, Universitas Teknologi Mataram

**** Teknik Informatika, Universitas Teknologi Mataram

mentari1990@gmail.com 1, bahtiarimranlombok@gmail.com 2, muahidinzumratul@gmail.com 3, zaen1989@gmail.com 4,

juhartini8815@gmail.com 5

Article Info ABSTRACT

Article history:

Received 2025-11-24

Revised 2025-12-22

Accepted 2026-01-07

 Bug detection in Python programming is a crucial challenge in software

development. This research proposes SemetonBug, a machine learning-based system

for automatically detecting bugs in Python code. The system utilizes a Random

Forest Classifier as the main model, with features extracted from the syntactic

structure of the code using an Abstract Syntax Tree (AST). The dataset consists of

200 Python files, divided into 100 files with bugs and 100 files without bugs. The

model is optimized using Grid Search Cross Validation, with the best combination

of n_estimators = 300, max_depth = 20, min_samples_split = 5, and

min_samples_leaf = 2. Evaluation results show that the model achieves 85%

accuracy, 0.84 precision, 0.87 recall, and 0.86 F1-score. The detected bugs are stored
in an Excel file for further analysis. By leveraging machine learning, SemetonBug

enhances efficiency and accuracy in bug identification compared to traditional rule-

based methods. These findings highlight the potential of machine learning models in

improving software quality and reducing coding errors automatically.

Keyword:

Bug Detection,

Machine Learning,

Python,

Random Forest,
Abstract Syntax Tree.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Bug detection in Python programming is one of the most

critical challenges in software development. Various studies

have demonstrated that bugs can be minimized through
appropriate tools and techniques. For instance, PYBUGLAB,

an implementation designed for the Python language, is

developed to detect and fix various types of simple bugs that

significantly impact code accuracy. By focusing on simple

bugs, this tool illustrates that minor corrections can lead to

substantial improvements in overall code quality, reducing

errors and enhancing software reliability [1]. Empirical

analysis of code modifications after bug fixes in Python

reveals specific patterns, indicating that changes are not made

randomly but occur within a particular coding context [2].

This finding underscores the importance of understanding
code context for further advancements in bug detection tools.

In the modern era, advanced techniques are increasingly

employed, including machine learning models for bug

detection and duplicate bug report identification. Research

indicates that attention-based models can improve accuracy in

detecting duplicate bug reports, which often pose challenges

in large-scale software management [3]. In software

development, manual bug identification is often time-

consuming, prone to human error, and inefficient, particularly

when dealing with large-scale codebases. This manual

approach relies on programmers' expertise to review and test

code directly, which may result in undetected bugs or issues
only discovered during the final testing phase. Therefore,

automated methods that enable faster, more accurate, and

consistent bug detection are essential.

Several previous studies have been conducted to detect

bugs in program code, employing both static approaches such

as code analysis and machine learning-based methods to

enhance detection accuracy. Among them, [4] explores

machine learning techniques for software bug prediction,

demonstrating that ensemble algorithms outperform

individual approaches. Study [5] investigates the application

mailto:mentari1990@gmail.com
mailto:bahtiarimranlombok@gmail.com
mailto:mail2@polibatam.ac.id
mailto:zaen1989@gmail.com
mailto:juhartini8815@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861 225

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

of AI in software development practices, including bug

detection, which improves efficiency and software quality.

Meanwhile, [6] focuses on understanding bugs within a

multilingual deep learning framework, forming a crucial

foundation for detecting and resolving bugs in AI-based

applications. Study [7] introduces APIScanner, a tool that

automates the detection of deprecated APIs in Python

libraries, contributing to improved code quality. Research [8]
discusses machine learning techniques for software bug

prediction, showcasing the development of several effective

prediction models. In [9] artificial immune networks are

applied to optimize hyperparameters in bug prediction

classification models, aiming to enhance the software testing

process. Study [10] compares cellular automata

implementations using image processing and machine

learning for code validation, albeit with a broader focus on

general verification methods. Meanwhile, [1] develops

BUGLAB, a self-supervised approach for bug detection and

repair, highlighting the potential of machine learning-based
methods in software development. Study [11] examines the

use of code embeddings and transformers to assist

programming tasks, including bug detection, underscoring

AI’s critical role in software development. Meanwhile, [12]

describes a Python package called sstar, though its focus is

more on genetic analysis rather than software bug detection.

In [13], an automated bug report detection and classification

system using deep learning techniques is introduced,

demonstrating improvements in software management speed.

Study [14] investigates entropy-based machine learning

models for assessing bug severity, emphasizing the

importance of bug descriptions in predicting other attributes.
Meanwhile, [15] utilizes large datasets to train models for

filtering code warnings, relevant to static code analysis and

bug detection. Research [16] conducts an empirical study on

bugs in COVID-19 software projects, identifying the need for

better detection tools for security monitoring. Study [17]

proposes BPDET, a bug prediction model leveraging deep

representation techniques and ensemble learning, offering an

in-depth analysis of bug detection improvements. Study [18]

examines user interface design in AI-based Python visual

applications, though its focus lies in UI design rather than bug

detection. Lastly, [19] evaluates smart contract analysis tools
for bug detection, serving as an example of static techniques

for identifying software errors.

This study aims to develop a bug detection system for

Python code, named SemetonBug. The system is designed to

enhance efficiency in automatically identifying code errors

using machine learning methods, specifically Random Forest

as the primary classification model. Unlike traditional rule-

based static analysis approaches, SemetonBug employs

machine learning based on abstract features extracted from

the syntactic structure of the code to detect various types of

bugs. The source code used in this study was manually

collected, comprising 200 Python files, evenly divided into
100 files containing bugs and 100 bug-free files. Each file was

analyzed using the Abstract Syntax Tree (AST) library to

extract relevant features such as the number of statements

within loops, the depth of if-else structures, variable usage,

and function call patterns. SemetonBug is designed to detect

bugs simultaneously, enabling the identification of multiple

errors in a single analysis without requiring manual inspection

of each instance. In training the model, Random Forest was

chosen for its ability to handle complex features and provide

stable classification results. The model was optimized using

hyperparameter tuning via Grid Search, with explored
parameters including n_estimators: [10, 50, 100, 200],

max_depth: [None, 10, 20, 30], min_samples_split: [2, 5, 10],

and min_samples_leaf: [1, 2, 4]. Model evaluation was

conducted using multiple metrics, including accuracy,

precision, recall, and F1-score. Additionally, performance

analysis was carried out using a Confusion Matrix, ROC

Curve, and Learning Curve to assess how the model learns as

the training data increases. The bug detection results from

SemetonBug are stored in Excel format, allowing software

developers to perform further analysis on the identified errors.

Through this approach, the study introduces an innovative
machine learning-based bug detection method, replacing

traditional rule-based static analysis techniques commonly

used in conventional bug detection systems.

II. METHOD

A. Dataset Preparation

The dataset in this study consists of 200 Python code

files, comprising 100 bugged files (containing bugs) and 100

non-bugged files (bug-free). The dataset was manually

collected from various sources, including self-written code,

open-source projects, and programming forums. Bugged code

contains syntax errors (e.g., unbalanced parentheses), logical
errors (algorithmic mistakes), or runtime errors (such as

division by zero), whereas non-bugged code executes without

errors. Before use, the dataset undergoes preprocessing,

which includes three main stages. First, Python code

tokenization is performed to convert the code into tokens

according to Python syntax. Second, comments and excessive

whitespace are removed to ensure that the model analyzes

only the relevant code. Third, variable and function name

normalization replaces variable and function names with

generic tokens (e.g., var1, func1, etc.) to prevent bias caused

by naming patterns. With this preprocessing, the dataset
becomes cleaner and more structured for feature extraction,

where various Python code characteristics are extracted as

input for the machine learning model to detect bugs

automatically.

B. Feature Extraction

In this study, feature extraction is performed to obtain a

numerical representation of Python code characteristics that

may indicate the presence of bugs. These features are selected

based on structural aspects of the code that potentially

influence complexity and the likelihood of errors. One of the

primary features used is the number of functions within the

code, as a higher number of defined functions increases the

structural complexity, thereby elevating the risk of bugs.

226 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 224 – 231

Additionally, the number of classes is also considered,

particularly in Object-Oriented Programming (OOP)-based

code, where interclass relationships can complicate code

comprehension and maintenance. Moreover, the number of

declared variables serves as a crucial feature, as inconsistent

variable usage may lead to execution errors. The total lines of

code are also taken into account as an indicator of complexity,

with longer code generally having more bug-prone points.

Another important feature is the count of conditional
statements, such as if, elif, and else, which are frequently used

to control program execution flow. A higher number of

conditions increases the likelihood of logical errors due to

improper condition handling. Additionally, this study

considers the number of exception-handling statements,

determined by counting occurrences of try-except blocks.

Excessive or insufficient exception handling may indicate

potential bugs within the code. All these features are

automatically extracted using Abstract Syntax Tree (AST)

[20], which enables the analysis of code structure without

requiring program execution. The data obtained from these
features is then used as input for the machine learning model

to distinguish between bugged and non-bugged code.

C. Machine Learning Model

In this study, the Random Forest Classifier algorithm is

employed to develop a bug detection model for Python code.

Random Forest is chosen due to its ability to handle datasets

with complex features and its robustness against overfitting.

This algorithm constructs multiple decision trees and

aggregates their results to enhance prediction accuracy [20]–

[23]. The preprocessed dataset is split into two subsets: a

training set (70%) and a testing set (30%), using stratified

splitting to maintain class balance. The model is trained using

Grid Search with cross-validation (cv=5) to optimize
hyperparameters such as the number of trees in the forest

(n_estimators), maximum tree depth (max_depth), minimum

samples required for node splitting (min_samples_split),

minimum samples per leaf (min_samples_leaf), and the best

feature selection method at each split (max_features). After

training, the model’s performance is evaluated using

accuracy, precision, recall, and F1-score metrics to assess the

balance between true positive and negative predictions.

Additionally, a confusion matrix is utilized to analyze the

distribution of model errors. With this approach, the resulting

model is expected to detect bugs in Python code with optimal
accuracy.

The primary function in Random Forest:

Prediction based on majority voting from decision trees.

𝑦 = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑇(𝑥)} (1)

with 𝒉𝒊 (𝒙) The prediction result from the -i tree, and 𝑻 is

the total number of trees in the model.

Node splitting function in Decision Tree using Gini

Impurity:

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝2𝑖 (2)

𝑛

𝑖=1

where 𝑝𝑖 is the probability of a class within the node.

D. Hyperparameter Optimization

To achieve optimal performance of the Random Forest

Classifier model, hyperparameter optimization is conducted

using the Grid Search method with 5-fold cross-validation

(cv=5). Grid Search systematically evaluates various

combinations of hyperparameter values to identify the best

configuration that yields the highest accuracy. The adjusted

hyperparameters include:
1. n_estimators (number of trees in the forest): [100, 300,

500, 1000]

2. max_depth (maximum depth of decision trees): [None,

10, 20, 30, 50, 100]

3. min_samples_split (minimum number of samples

required to split a node): [2, 5, 10, 20]

4. min_samples_leaf (minimum number of samples

required at each leaf node): [1, 2, 4, 10]

5. max_features (number of features considered for each

split): ['sqrt', 'log2', None]

During the optimization process, Grid Search
systematically evaluates all combinations of the above

parameters and selects the configuration that provides the best

performance based on the average accuracy obtained from

cross-validation. By employing 5-fold cross-validation, the

dataset is divided into five parts, where the model is trained

on four parts and tested on the remaining part in an iterative

manner until the entire dataset is utilized for validation.

The formula used is[24], [25]:

Accuracy =
Number of Correct Predictions

Total Number of Samples

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3)

Where:

 TP = True Positives (correct predictions for the

bugged class).

 TN = True Negatives (correct predictions for the

non-bugged class).

 FP = False Positives (incorrect predictions for the

bugged class).

FN = False Negatives (incorrect predictions for the non-

bugged class).

III. RESULTS AND DISCUSSION

A. Best Model Selection

In the process of selecting the best model, an exploration

of various hyperparameter combinations was conducted using

the Grid Search Cross Validation (GridSearchCV) method on
the Random Forest Classifier model. The parameter grid

tested includes variations in the number of decision trees

(n_estimators), the maximum depth of the trees (max_depth),

the minimum number of samples required to split a node

JAIC e-ISSN: 2548-6861 227

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

(min_samples_split), and the minimum number of samples

required at a leaf node (min_samples_leaf). After performing

five-fold cross-validation, the best model was obtained with

an accuracy of 85% on the test data. This high-performing

model utilizes the hyperparameter combination n_estimators

= 300, max_depth = 20, min_samples_split = 5, and

min_samples_leaf = 2. The model selection was based on the

mean_test_score, where this specific hyperparameter
configuration yielded the highest accuracy compared to other

combinations. With 300 decision trees, the model effectively

captures complex patterns in the data without overfitting.

Restricting the maximum depth of the trees to 20 levels helps

control model complexity, while min_samples_split = 5 and

min_samples_leaf = 2 ensure that node splitting and the

number of samples in leaf nodes remain optimal for

improving model generalization on new data. Beyond

accuracy, the model was also evaluated using Precision,

Recall, and F1-score to provide a more comprehensive

assessment of its classification performance. The selected
model achieved a Precision of 0.84, Recall of 0.87, and F1-

score of 0.86. Precision indicates that 84% of all positive

predictions made by the model were correct, meaning the

model has a relatively low false positive rate. High precision

is particularly crucial in scenarios where incorrect positive

classifications have serious consequences, such as fraud

detection or disease diagnosis. Meanwhile, Recall of 87%

suggests that 87% of actual positive instances were correctly

identified by the model. A high recall is essential in situations

where missing positive cases could be critical, such as in

security systems or intrusion detection. The F1-score of 0.86,

which represents the harmonic mean of precision and recall,
demonstrates that the model achieves a well-balanced trade-

off between detecting positive cases and ensuring prediction

accuracy. With an accuracy of 85%, along with high

precision, recall, and F1-score, the model exhibits strong

classification performance with relatively low error rates.

This indicates that the model is highly reliable in identifying

and classifying data correctly, making it a suitable approach

for tasks requiring accurate and robust classification

capabilities.

Figure 1 presents the Confusion Matrix of the model’s

classification performance in distinguishing between two
categories: Non-Bugged and Bugged. This matrix provides

insights into the number of correct and incorrect predictions

made by the model. Within the matrix, 24 samples were

correctly classified as Non-Bugged (True Negative), while 5

Non-Bugged samples were misclassified as Bugged (False

Positive). For the Bugged category, the model successfully

identified 27 samples correctly (True Positive), but 4 Bugged

samples were incorrectly classified as Non-Bugged (False

Negative). Based on this confusion matrix, key evaluation

metrics were computed. Precision, which quantifies the

model’s accuracy in identifying the Bugged class, is

calculated as 27 / (27 + 5) = 0.84 (84%), indicating that 84%
of the positive predictions were correct. Recall, reflecting the

model’s ability to capture all truly Bugged samples, is 27 / (27

+ 4) = 0.87 (87%), signifying that 87% of the total Bugged

samples were correctly identified.

Figure. 1. Confusion Matrix of Testing Results

The F1-score, which represents the harmonic mean of

precision and recall, is 0.86, demonstrating a well-balanced

trade-off between model precision and sensitivity. Overall,

the model exhibits strong classification performance with a

relatively low error rate, indicating its reliability in
distinguishing between Bugged and Non-Bugged samples.

B. Bug Detection Results

The evaluation results of the bug detection system

demonstrate a satisfactory performance in identifying errors

within the code. With an accuracy rate of 85%, the system

effectively detects bugs with a precision of 0.84, recall of

0.87, and an F1-score of 0.86. The higher recall compared to

precision indicates that the system is proficient in identifying

most of the existing bugs, although some false positives are

still present. Overall, these results suggest that the applied

method is reasonably reliable in detecting and classifying

bugs. However, there remains room for improvement,

particularly in reducing misclassification errors and
enhancing the system’s efficiency. A representative example

of the bug detection results is illustrated in Figure 2.

Figure 2 illustrates an example of the bug detection

results performed by SemetonBug in classifying Python code

files containing errors. Each output line generated by the

system provides information regarding the analyzed file, the

model’s prediction, and the actual condition of the file. Each

entry follows a structured format, including the file name, the

system's prediction, the actual condition of the file, and the

specific lines of code that contain bugs. For instance, in the

case of filebug (87).py, the system predicts that the file
contains a bug (Bug Detected), which aligns with its actual

condition (bugged). The specific lines identified as containing

errors in this file are lines 11, 12, 13, 15, and 17.

228 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 224 – 231

Figure. 2. Example of Python Bug Detection

The detection results indicate that the system is capable of

identifying bugs across multiple files simultaneously, while

also providing the corresponding line numbers where the

errors occur. This feature facilitates a more systematic review

and debugging process for developers. Additionally, an edge

case is observed in filebug (45).py, where the system predicts

the absence of bugs (No Bug Detected), while in reality, the

file still contains errors. This discrepancy suggests the

presence of false negatives, indicating that certain bugs might
remain undetected by the model. The complete detection

results can be further examined in Table 1

TABLE 1.

BUG DETECTION TESTING RESULTS

No Filename Predicted

Label
Actual

Label
Bug

Lines

1 filebug (87).py Bug
Detected

bugged 11,
12,

13,
15, 17

2 filebug
(100).py

Bug
Detected

bugged 2, 3,
4, 5,
7, 9,
10

3 filebug (17).py Bug

Detected

bugged 10, 11

4 filebug (18).py Bug
Detected

bugged 11, 12

5 filebug (19).py Bug
Detected

bugged 11, 12

6 filebug (20).py Bug

Detected

bugged 11,

12, 13

7 filebug (21).py Bug
Detected

bugged 12, 13

8 filebug (22).py Bug
Detected

bugged 11,
12, 14

9 filebug (23).py Bug

Detected

bugged 11,

13, 14

10 filebug (24).py Bug
Detected

bugged 11, 14

11 filebug (25).py Bug
Detected

bugged 11,
12,
14,
15,

17,
18, 19

12 filebug (26).py Bug
Detected

bugged 11,
13,
16,
19, 20

… … … … …

… … … … …

200 filenobug(4).py No Bug
Detected

non_bugged None

The bug detection testing results are presented in Table 1,

illustrating the system’s performance in identifying errors

across various code files. The table consists of four primary

columns: Filename, Predicted Label, Actual Label, and Bug

Lines. The Filename column lists the names of the tested files.
The Predicted Label column indicates the system's

classification, where "Bug Detected" is assigned if the system

identifies an error and "No Bug Detected" if no issues are

found. The Actual Label column provides the ground truth for

each file, where "bugged" indicates the presence of a bug,

while "non-bugged" confirms the absence of errors. The Bug

Lines column specifies the exact lines of code where the

detected errors occur. If a file is classified as bugged, the

system provides the corresponding line numbers where issues

are found. Conversely, for non-bugged files, the system

returns "No Bug Detected" without listing any lines. The
results indicate that the system effectively identifies bugs

across multiple files, accurately pinpointing the specific lines

where errors occur. Furthermore, in cases where no bugs are

present, the system successfully classifies the files,

demonstrating its ability to distinguish between buggy and

non-buggy files. However, further analysis is required to

assess potential misclassifications, particularly false positives

and false negatives, which may impact the system’s overall

effectiveness.

C. ROC Curve Analysis

The Receiver Operating Characteristic (ROC) Curve is

an evaluation tool used to analyze the performance of the bug

detection system by considering the trade-off between the
True Positive Rate (TPR) and the False Positive Rate (FPR).

The ROC Curve provides insights into the model’s ability to

distinguish between files that contain bugs (bugged) and those

that do not (non-bugged).

Figure 3 illustrates the Receiver Operating

Characteristic (ROC) Curve, which is used to evaluate the

performance of the bug detection system. The ROC Curve

visualizes the relationship between the True Positive Rate

(TPR) and the False Positive Rate (FPR) across different

decision thresholds. The blue curve in the graph represents the

performance of the bug detection model, while the gray
diagonal line serves as a reference baseline for a random

model with AUC = 0.5.

JAIC e-ISSN: 2548-6861 229

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

Figure. 3. Receiver Operating Characteristic (ROC)

Based on the evaluation results, the model achieves an

Area Under the Curve (AUC) of 0.90, indicating a highly

effective classification capability in distinguishing between

bugged and non-bugged files. A higher AUC value suggests

superior model performance, with strong discriminative

power. This AUC score demonstrates that the system

maintains a well-balanced trade-off between sensitivity and

specificity, making it a reliable tool for bug detection in

program code.

D. Learning Curve and Model Generalization

A learning curve is a graphical representation that

illustrates how a model's performance evolves as the amount

of training data increases. This curve is used to assess whether
the model suffers from overfitting, underfitting, or has a good

generalization capability. By analyzing the learning curve, it

is possible to determine whether the model benefits from

additional training data or if adjustments to hyperparameters

are necessary to enhance its performance.

Figure. 4. Learning Curve of Random Forest

Figure 4 illustrates the learning curve of the Random Forest
model, depicting the relationship between the training dataset

size and the model's accuracy on both training and validation

data. The blue curve represents training accuracy, while the

red curve represents validation accuracy. In the initial phase,

when the training dataset is small, the model exhibits high

training accuracy (close to 100%), whereas the validation

accuracy remains relatively low (around 50%). This

phenomenon indicates overfitting, where the model overly

adapts to the training data but struggles to generalize to

unseen data. As the training dataset grows, validation

accuracy starts to improve, while training accuracy slightly

decreases, reaching a balance of approximately 90% for
training and 80% for validation. This suggests that the model

is achieving better generalization, where its performance on

unseen data becomes more stable. However, a large variance

in the validation curve is observed, particularly during the

increasing phase of the training data. This variability may be

attributed to model complexity or data imbalance. Further

adjustments, such as regularization techniques or increasing

the training dataset size, could help mitigate this fluctuation

and enhance the model's stability in bug detection.

Figure. 5. Analysis of the Effect of the Number of Trees in the Random

Forest Algorithm on Model Accuracy

Figure 5 illustrates the impact of the number of trees in the

Random Forest model on accuracy for both training and

validation data. The blue curve represents training accuracy,

while the red curve represents validation accuracy. It can be

observed that the training accuracy remains consistently high

and stable at approximately 94%, with no significant changes

despite the increase in the number of trees. This indicates that

the model learns effectively from the training data without

experiencing performance degradation. However,

fluctuations are observed in the validation accuracy. When the
number of trees is within the range of 100 to 200, validation

accuracy reaches its peak value of approximately 86%.

Beyond this point, a gradual decline is noticeable. For tree

counts exceeding 300, validation accuracy tends to stabilize

around 85%, suggesting that increasing the number of trees

does not necessarily enhance the model’s generalization

ability. This decline in validation accuracy may be attributed

to overfitting, where the model becomes overly complex,

adapting too closely to the training data while failing to

capture meaningful patterns for unseen data.

230 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 224 – 231

E. Discussion

The Receiver Operating Characteristic (ROC) curve

generated illustrates the model's ability to distinguish between

positive and negative classes based on predicted probabilities.

From the displayed graph, it is evident that the model's ROC

curve is positioned well above the diagonal line (baseline

random classifier), indicating superior classification

performance compared to random guessing. The Area Under

the Curve (AUC) value of 0.90 suggests that the model has a

high accuracy in differentiating between classes, although

there is still room for improvement. The closer the AUC value
is to 1, the better the model performs in classification with

minimal false positives.

The learning curve provides further insight into the model's

generalization capacity on new data. From the graph, the

training accuracy (blue line) is initially high, while the

validation accuracy (red line) gradually increases as the

training dataset expands. Initially, a significant gap exists

between the training and validation accuracy, indicating

potential overfitting when the model is trained with limited

data. However, as the training data increases, this gap begins

to narrow, showing that the model becomes better at learning

patterns without overly relying on training data. In other
words, the model's generalization ability improves, although

fluctuations in validation accuracy suggest further

optimization potential, such as hyperparameter tuning or

regularization techniques.

Furthermore, the analysis of the number of trees in the

Random Forest algorithm reveals that while training accuracy

remains consistently high, validation accuracy exhibits slight

fluctuations as the number of trees increases. This indicates

that increasing the number of trees in a Random Forest model

does not always significantly enhance its performance,

particularly beyond a certain threshold. The graph suggests
that after reaching a certain number of trees, validation

accuracy stagnates or even declines, which may be attributed

to the diminishing returns effect. Beyond this point, additional

trees provide little performance improvement while

increasing computational complexity without a proportional

accuracy gain. Thus, determining the optimal number of trees

is crucial for balancing accuracy and computational

efficiency.

Overall, the results indicate that the model demonstrates

strong classification performance, yet several aspects can still

be improved. Further optimization efforts should focus on
minimizing overfitting, balancing bias and variance, and fine-

tuning hyperparameters to achieve better results.

Additionally, techniques such as ensemble learning, feature

selection, or increasing the training dataset size can further

enhance the model’s performance, particularly in more

complex scenarios.

IV. CONCLUSION

In this study, the Random Forest Classifier model was

explored for bug detection, utilizing Grid Search Cross-
Validation to select the optimal hyperparameters. The

selected model achieved an accuracy of 85% with the

following hyperparameter configuration: n_estimators = 300,

max_depth = 20, min_samples_split = 5, and

min_samples_leaf = 2. Performance evaluation indicated that

the model achieved a precision of 0.84, recall of 0.87, and an

F1-score of 0.86, demonstrating a well-balanced trade-off

between precision and sensitivity in bug classification.

The confusion matrix analysis revealed that the model was

able to identify bugs effectively, although some

misclassifications (false positives and false negatives) were

still present. The ROC Curve with an AUC of 0.90 further
indicated that the model exhibited strong discrimination

capability between buggy and non-buggy files. Additionally,

the learning curve analysis suggested that the model

generalized well as the training data increased, despite a slight

indication of overfitting when the number of trees became

excessively large.

Overall, the proposed approach proved to be effective in

detecting bugs in source code with a high performance level.

However, there is still room for improvement, such as further

hyperparameter optimization, exploring other ensemble

methods, or applying regularization techniques to mitigate
overfitting. Future research could also consider the

integration of deep learning techniques to enhance bug

detection accuracy while reducing classification errors.

REFERENCES

[1] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-

Supervised Bug Detection and Repair,” in Journal of Mathematical

Sciences, 2021. doi: 10.48550/arxiv.2105.12787.

[2] D. Cotroneo, L. De Simone, A. K. Iannillo, R. Natella, S. Rosiello,

and N. Bidokhti, “Analyzing the Context of Bug-Fixing Changes

in the OpenStack Cloud Computing Platform,” in 2019 IEEE 30th

International Symposium on Software Reliability Engineering

(ISSRE), 2019. doi: 10.1109/issre.2019.00041.

[3] M. Ben Messaoud, A. Miladi, I. Jenhani, M. W. Mkaouer, and L.

Ghadhab, “Duplicate Bug Report Detection Using an Attention-

Based Neural Language Model,” Ieee Trans. Reliab., 2023, doi:

10.1109/tr.2022.3193645.

[4] S. N. Saharudin, T. W. Koh, and S. N. Kew, “Machine Learning

Techniques for Software Bug Prediction: A Systematic Review,”

J. Comput. Sci., 2020, doi: 10.3844/jcssp.2020.1558.1569.

[5] D. Ajiga, P. A. Okeleke, S. O. Folorunsho, and C. Ezeigweneme,

“Enhancing Software Development Practices With AI Insights in

High-Tech Companies,” Comput. Sci. \& It Res. J., 2024, doi:

10.51594/csitrj.v5i8.1450.

[6] Z. Li, S. Wang, W. Wang, P. Liang, R. Mo, and B. Li,

“Understanding Bugs in Multi-Language Deep Learning

Frameworks,” Ieee Access, 2023, doi: 10.48550/arxiv.2303.02695.

[7] A. Vadlamani, R. Kalicheti, and S. Chimalakonda, “APIScanner --

Towards Automated Detection of Deprecated APIs in Python

Libraries,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Companion Proceedings (ICSE-

Companion), 2021. doi: 10.48550/arxiv.2102.09251.

[8] N. A. Adam Khleel and K. Nehéz, “Comprehensive Study on

Machine Learning Techniques for Software Bug Prediction,” Int.

J. Adv. Comput. Sci. Appl., 2021, doi:

JAIC e-ISSN: 2548-6861 231

SemetonBug: Next-Generation Machine Learning-Powered Code Analyzer for Precision Bug Detection and Dynamic Error
Localization (Surni Erniwati, Bahtiar Imran, Zumratul Muahidin, Zaeniah, Juhartini)

10.14569/ijacsa.2021.0120884.

[9] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-Parameter

Optimization of Classifiers, Using an Artificial Immune Network

and Its Application to Software Bug Prediction,” Ieee Access, 2020,

doi: 10.1109/access.2020.2968362.

[10] M. K. Wozniak and P. J. Giabbanelli, “Comparing

Implementations of Cellular Automata as Images: A Novel

Approach to Verification by Combining Image Processing and

Machine Learning,” in SIGSIM-PADS ’21, 2021. doi:

10.1145/3437959.3459256.

[11] S. Kotsiantis, V. S. Verykios, and M. Tzagarakis, “AI-Assisted

Programming Tasks Using Code Embeddings and Transformers,”

Electronics, 2024, doi: 10.3390/electronics13040767.

[12] X. Huang, P. Kruisz, and M. Kuhlwilm, “Sstar: A Python Package

for Detecting Archaic Introgression From Population Genetic Data

With S*,” Mol. Biol. Evol., 2022, doi: 10.1101/2022.03.10.483765.

[13] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and K. S.

Kwak, “Duplicate Bug Report Detection and Classification System

Based on Deep Learning Technique,” IEEE Access, vol. 8, pp.

200749–200763, 2020, doi: 10.1109/ACCESS.2020.3033045.

[14] M. Kumari, U. K. Singh, and M. Sharma, “Entropy Based Machine

Learning Models for Software Bug Severity Assessment in Cross

Project Context,” Comput. Sci. Its Appl., 2020, doi: 10.1007/978-

3-030-58817-5_66.

[15] P. Hegedűs and R. Ferenć, “Static Code Analysis Alarms Filtering

Reloaded: A New Real-World Dataset and Its ML-Based

Utilization,” Ieee Access, 2022, doi:

10.1109/access.2022.3176865.

[16] A. Rahman and E. Farhana, “An Empirical Study of Bugs in

COVID-19 Software Projects,” J. Softw. Eng. Res. Dev., 2021, doi:

10.5753/jserd.2021.827.

[17] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “BPDET: An

Effective Software Bug Prediction Model Using Deep

Representation and Ensemble Learning Techniques,” Expert Syst.

Appl., 2020, doi: 10.1016/j.eswa.2019.113085.

[18] U. Dikme, “Industrial User Interface Software Design for Visual

Python AI Applications Using Embedded Linux Based Systems,”

J. Appl. Phys. Sci., 2021, doi: 10.20474/japs-7.1.

[19] A. Ghaleb and K. Pattabiraman, “How Effective Are Smart

Contract Analysis Tools? Evaluating Smart Contract Static

Analysis Tools Using Bug Injection,” in Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2020. doi: 10.1145/3395363.3397385.

[20] K. Bharath and P. Jagadeesh, “An Innovative Software Bug

Prediction System using Random Forest Algorithm for Enhanced

Accuracy in Comparison with Logistic Regression Algorithm,” in

2023 Intelligent Computing and Control for Engineering and

Business Systems (ICCEBS), 2023.

[21] S. T. Cynthia, B. Roy, and D. Mondal, “Feature transformation for

improved software bug detection models,” in ACM International

Conference Proceeding Series, Association for Computing

Machinery, 2022. doi: 10.1145/3511430.3511444.

[22] B. Imran, E. Wahyudi, S. Riadi, Z. Muahidin, S. Erniwati, and W.

A. Wahyuni, “A Comparative Hybrid Approach for Python Bug

Detection Using Syntactic Features, Random Forest, and Neural

Network,” CommIT J., vol. 19, no. 2, pp. 141–150, 2025.

[23] B. Imran, S. Riadi, E. Suryadi, M. Zulpahmi, and E. Wahyudi,

“SemetonBug : A Machine Learning Model for Automatic Bug

Detection in Python Code Based on Syntactic Analysis,” J. Inform.,

vol. 11, no. 2, pp. 75–80, 2025.

[24] H. M. Tran, S. T. Le, S. Van Nguyen, and P. T. Ho, “An Analysis

of Software Bug Reports Using Machine Learning Techniques,”

SN Comput. Sci., vol. 1, no. 1, 2020, doi: 10.1007/s42979-019-

0004-1.

[25] W. Albattah and M. Alzahrani, “Software Defect Prediction based

on Machine Learning and Deep Learning,” AI, pp. 116–122, 2024,

doi: 10.1109/ICICT54344.2022.9850643.

