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Aquaculture production relies heavily on stable water quality conditions, requiring
accurate and efficient assessment methods to support early environmental
monitoring and sustainable management. Although deep neural network models
have been widely applied to water quality classification, their high computational
complexity often limits their applicability in real-time and resource-constrained
aquaculture systems. This study aims to evaluate whether a systematically optimized
Multilayer Perceptron can outperform a reported deep neural network benchmark in
aquaculture water quality assessment while maintaining computational efficiency.
The study adopts a structured methodology involving dataset characterization,
extreme outlier removal, feature normalization, and stratified data partitioning. A
single-hidden-layer Multilayer Perceptron is trained using a feedforward
backpropagation learning process, with systematic exploration of hidden neuron
configurations and training epochs to identify the optimal architecture. Model
performance is evaluated using multiple classification metrics, including accuracy,
precision, recall, Fl-score, confusion matrix analysis, and receiver operating
characteristic and precision—recall curves. Results indicate that the optimal
Multilayer Perceptron configuration, consisting of 80 hidden neurons and 200
training epochs, achieves an accuracy of 96.62%, surpassing the deep neural network
benchmark accuracy of 95.69%. The proposed model demonstrates strong class-
level performance, clear separation between water quality categories, stable
convergence behavior, and reduced computational overhead compared to deeper
architectures. These findings highlight that increasing model depth does not
necessarily improve predictive performance for heterogeneous aquaculture datasets.
In conclusion, this study provides empirical evidence that a well-optimized shallow
neural network can outperform deeper models in aquaculture water quality
assessment. The results emphasize the importance of model parsimony and
systematic hyperparameter optimization, offering a practical and efficient solution
for real-time aquaculture water quality monitoring applications.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Water quality is at the forefront of international
environmental management initiatives because it is essential
to maintaining human health, agricultural production, and
industrial development. [1]. Accurate and timely monitoring
of water conditions has become increasingly important as

water systems continue to be under strain from urbanization,
population increase, and industrial activity. Global
development agendas like the Sustainable Development
Goals (SDGs), where Goal 3 emphasizes the need to ensure
human well-being and Goal 14 highlights the protection of
aquatic habitats, also reflect this relevance. [2]. In these
contexts, the assessment of Water Quality Indices (WQI) has
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become a crucial method for figuring out if water is suitable
for various ecological and socioeconomic uses. [3]. Water
quality is a key factor in determining organism survival,
growth rates, and overall production efficiency in
aquaculture, an industry that depends on the stability of
physicochemical and biological factors. [4]. The deterioration
of water quality, particularly in regions impacted by mining,
industrial discharge, and intense human activity, is still being
documented by numerous environmental studies. This leads
to increased pollution levels and ongoing ecological stress.
[5], [6]. These difficulties underscore the need for
dependable, effective, and data-driven  prediction
technologies that can spot changes in water conditions before
they become harmful occurrences.

To evaluate water quality in aquaculture systems,
practitioners rely on a wide range of indicators representing
complex environmental dynamics. Core physicochemical
parameters include temperature, turbidity, dissolved oxygen
(DO), biochemical oxygen demand (BOD), pH, carbon
dioxide (CO.), alkalinity, hardness, calcium, ammonia,
nitrite, phosphorus, and hydrogen sulfide (H.S), along with
biological indicators such as plankton abundance [7], [8], [9],
[10], [11]. These wvariables collectively offer a
multidimensional representation of environmental states but
also introduce analytical challenges due to their nonlinear
interactions, differing scales, and susceptibility to seasonal or
anthropogenic disturbances. Traditional approaches to water-
quality assessment often struggle to model such nonlinear and
heterogeneous data effectively. Consequently, machine
learning (ML) has been increasingly embraced as a robust
analytical paradigm for capturing complex environmental
relationships and generating predictive insights that support
early intervention and sustainable management practices.
Recent developments in ML have expanded the range of
available classification and prediction techniques, making it
possible to model water-quality dynamics with improved
accuracy and interpretability.

Despite these advancements, several limitations remain
apparent in the application of machine learning to aquaculture
water-quality prediction. A key challenge concerns the
reliance on deep neural networks (DNNs), which, although
capable of modeling highly nonlinear patterns, typically
require significant computational resources, extensive
hyperparameter tuning, and long experimentation cycles. For
example, prior work employing a DNN with four hidden
layers of 17 neurons each reported an accuracy of 95.69% in
aquaculture water-quality assessment [12]. While this result
demonstrates the feasibility of deep-learning approaches, the
computational demands of such architectures limit their
practicality for real-time monitoring or deployment in
resource-constrained environments, where rapid retraining
and efficient energy consumption are essential. Moreover,
DNNs often exhibit sensitivity to initialization, optimizer
configurations, and layer depth, making them less accessible
for practitioners seeking lightweight solutions that maintain
high predictive capability without excessive complexity.

These issues suggest that simpler alternatives may offer more
promising pathways for environmental classification tasks.
In response to these concerns, growing attention has been
directed toward the Multilayer Perceptron (MLP), one of the
foundational models in artificial neural networks (ANNS).
MLPs are characterized by their relatively simple
architecture—consisting of an input layer, one or more hidden
layers, and an output layer—and their ability to approximate
nonlinear  functional relationships  through layered
transformations [13], [14]. Although MLPs are often viewed
as less sophisticated than deep models, numerous studies have
shown that when appropriately configured, they are capable
of achieving high accuracy in classification and prediction
tasks across domains such as hydrological forecasting,
medical diagnosis [15], and behavioral analysis [16], [17].
Their  performance depends heavily on critical
hyperparameters, including the number of hidden neurons, the
number of layers, and the number of training epochs, each
influencing representational capacity, convergence behavior,
and computational efficiency [15], [16]. Because these
elements determine the balance between overfitting and
generalization, tuning them systematically is essential for
uncovering optimal architectures tailored to specific datasets.
At the same time, advancements in aguaculture monitoring
have introduced a wide variety of machine-learning
frameworks beyond MLPs and DNNSs. Studies combining ML
with loT-based sensing infrastructures have enabled
continuous and intelligent water-quality monitoring systems
capable of supporting sustainable aquaculture operations [7],
[8]. Other research has focused on field-based assessment of
environmental conditions to understand the ecological
impacts of aquaculture systems [9], [10]. More sophisticated
ML approaches, such as XGBoost optimized through the
Honey Badger Algorithm with SHAP and DiCE explanations,
have been proposed to enhance interpretability while
maintaining high predictive performance [11]. Additional
works utilizing Gradient Boosting, Decision Trees, and
CatBoost have provided comparative baselines that
demonstrate the diversity of available methods and the
potential of ensemble-based classifiers [18], [19], [20].
Meanwhile, beyond aquaculture applications, the broader
literature reinforces the flexibility and computational
advantages of MLPs, highlighting their effective use in
various predictive contexts [13], [14], [15], [16], [17].
Collectively, these studies illustrate both the diversity of
techniques available for water-quality modeling and the
ongoing need to evaluate the trade-offs between model
complexity, interpretability, and computational cost.
Although this growing body of work offers valuable
insights, significant research gaps persist. First, while deep-
learning frameworks have demonstrated competitive
accuracy in water-quality classification, there is limited
evidence evaluating whether simpler neural architectures can
outperform them when optimally tuned. Second, existing
MLP-based studies rarely investigate the combined effects of
hidden-neuron counts and epoch settings specifically for
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aquaculture datasets, which often contain heterogeneous
feature distributions and substantial outliers. Third, the
literature tends to prioritize accuracy as the primary metric
without sufficiently addressing practical considerations such
as model parsimony, interpretability, and efficiency—
attributes that are critical for real-world system integration.
These gaps underscore the need for systematic research that
rigorously explores the potential of lightweight neural
architectures to achieve or surpass deep-learning benchmarks
while reducing computational burdens.

Motivated by these considerations, the present study aims
to determine whether a well-designed MLP can outperform
the previously reported DNN model in aquaculture water-
quality classification. The research introduces a systematic
experimental framework that evaluates a range of hidden-
neuron configurations (10-100) and epoch settings (100—
1000) to identify the architecture that maximizes predictive
accuracy, stabilization, and computational efficiency. While
previous studies have reported that shallow models may
outperform deep architectures on limited tabular datasets, this
work contributes novel insights by providing a systematic and
domain-specific evaluation within aquaculture water-quality
assessment. Unlike prior studies, this research conducts a
structured exploration of hidden-neuron and epoch
configurations, integrates outlier handling and normalization
tailored to heterogeneous environmental indicators, and
demonstrates practical efficiency gains relevant to real-time
aquaculture monitoring systems. The novelty of this study lies
in its empirical demonstration that a simpler, single-hidden-
layer MLP can exceed the performance of a deeper four-layer
DNN, challenging the common assumption that deeper
architectures inherently yield superior results. Furthermore,
by presenting a comprehensive analysis that includes
accuracy, precision, recall, F1-score, ROC-AUC, and PR-
curve evaluation, the study provides a rigorous foundation for
assessing the trade-offs between model performance and
computational cost. The scope of this research includes data
preprocessing, outlier handling, normalization, model
training, hyperparameter tuning, and performance evaluation.
Through this investigation, the study contributes to the
advancement of practical, efficient, and easily deployable
machine-learning solutions for aquaculture water-quality
assessment.

Il. METHODOLOGY

This study employed a structured methodological
framework designed to evaluate the performance of a
Multilayer Perceptron (MLP) model in classifying
aquaculture water quality. The methodology consists of four
principal components as shown in Figure 1 below: (1) dataset
description, (2) preprocessing procedures, (3) model
architecture and training process, and (4) evaluation strategy.
Each component is formulated to ensure reproducibility,
methodological rigor, and alignment with established
machine-learning standards.

\L"

Preprocess Dataset

L5

MLP Experiment

IR

Result and Best Model

=Q

‘Compare and Analysis
Feiching Dataset

Figure 1. Research Methodology

A. Dataset
The dataset used in this study was obtained from a publicly
available Mendeley Data repository

(https://data.mendeley.com/datasets/y78ty2g293/1) and
consists of 4,300 records representing aquaculture water-
quality  observations. Each record includes 14
physicochemical and biological features, namely temperature,
turbidity, dissolved oxygen, biochemical oxygen demand,
carbon dioxide, pH, alkalinity, hardness, calcium, ammonia,
nitrite, phosphorus, hydrogen sulfide, and plankton
abundance.

Distribution of Water Quality Categories

Excellent
Poor

Good
Figure 2. Distribution of water quality class

Figure 2 shows The samples are categorized into three
classes: Excellent (1,400 samples, 32.6%), Good (1,400
samples, 32.6%), and Poor (1,500 samples, 34.9%). The
dataset is cross-sectional in nature and does not contain
explicit temporal or spatial identifiers, which motivates the
use of stratified sampling strategies during model evaluation.
Fourteen features comprise the input variables: temperature,
turbidity, dissolved oxygen (DO), biochemical oxygen
demand (BOD), carbon dioxide (CO:), pH, alkalinity,
hardness, calcium, ammonia, nitrite, phosphorus, hydrogen
sulfide (H2S), and plankton abundance. These parameters are
widely recognized in the aquaculture domain due to their
influence on ecosystem balance and organism health [7]-[11].
However, the dataset presents significant heterogeneity across
its variables, including widely varying numeric scales and the
presence of extreme values, conditions that necessitate careful
preprocessing to ensure stable and unbiased model training

[71-111].
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B. Data Preprocessing
Given the importance of data quality in machine-learning

applications, preprocessing was conducted through a
structured sequence consisting of outlier handling,
normalization, and data partitioning.

1) Outlier  Detection and Removal:  Outlier

identification and removal constituted the first stage of
preprocessing. Outliers in environmental datasets often arise
from instrument errors, sampling inconsistencies, or naturally
occurring variations [21]. Their presence may distort
statistical relationships, mislead gradient-based learning
algorithms, and reduce model generalization capability.
Accordingly, this study applied systematic outlier removal
procedures recommended in contemporary data-mining
literature to minimize noise while preserving essential data
characteristics.

2) Feature Normalization: Following outlier removal,
the remaining features were standardized using z-score
normalization, which transforms each feature according to
Eq. (2).

z==F 1)

where x is the original value, u is the mean, and ois the
standard deviation [22]. This method was chosen due to the
substantial disparities in feature scales. For example, plankton
counts range into the thousands, while contaminants such as
ammonia and H:S appear in near-zero ranges. Standardization
ensures proportional influence of all features during weight
updates and improves convergence stability during training
where x denotes the original feature value, uthe mean, and
athe standard deviation [22].

3) Stratified Training-Testing Split: The dataset was
subsequently divided into training and testing subsets using
stratified holdout sampling, preserving class proportions
across partitions [23]. To align with common practice in
machine learning, an 80:20 split was applied, following
established recommendations that balance generalization
evaluation with training sufficiency [24], [25]. Considering
the distributional changes brought forth by outlier removal,
stratification was very crucial. This situation is based on the
Pareto principle, which is the best approach in a lot of studies
[26], [27].

C. MLP Model Architecture and Training Procedure

The core methodological component involved desgining
and training the MLP architecture while systematically testing
the influence of different hyperparameter configurations.

1) Model Architecture: The MLP foundation model is
shown at Figure 3 below. The MLP model comprises three
layers: an input layer, a single hidden layer, and an output
layer [14]. The MLP model used in this research consists of
three layers: an input layer with 14 normalized features, a
single hidden layer, and an output layer for producing

predictions across the three water-quality classes. The
structure reflects the architecture commonly associated with
classical feedforward neural networks.

Input Layer

Hidden Layer Quiput Layer

Figure 3. The illustration of MLP architecture foundation.

To evaluate the effects of architectural capacity, the
number of neurons in the hidden layer was varied. Each
hidden neuron performs a nonlinear transformation of the
weighted input signals, guided by the ReLU activation
function—selected for its computational efficiency and
ability to mitigate vanishing gradients [26], [27]. The ReLU
function follows Eq. (2):

feedforward = max(0,%;w;; X; + b;) @)

2) Training Algorithm: Training was Training was
conducted via the standard feedforward—backpropagation
procedure. In feedforward propagation, weighted inputs are
transformed through the activation function to produce class
logits. Backpropagation then computes gradients of the loss
function with respect to every weight and bias. To ensure
effective parameter updates, the Adam optimizer was
employed, consistent with its documented advantages in
adaptability and convergence efficiency [28]. Parameter
updates follow Eq. (3):

0, =0, , — a— ®3)

Vet €

where 7, and ¥, denote bias-corrected first and second
moment estimates, respectively.

3) Hyperparameter Tuning Framework: Because MLP
performance depends critically on hyperparameters [15],
[16], the study implemented a structured experiment to
determine the best MLP model. Two hyperparameter
dimensions were explored:

e Hidden neurons: 10 to 100 (step size: 10)

e Epochs: 100 to 1000 (step size: 100)

This approach ensured balanced exploration of model
complexity and learning duration, enabling identification of
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an architecture that maximizes accuracy while minimizing
computational overhead. The systematic combination of these
parameters allowed the study to evaluate trends in
convergence, generalization, and training efficiency.

D. Evaluation Metrics and Analytical Procedures

Model performance was assessed using a comprehensive
set of widely accepted classification metrics to ensure robust
evaluation across classes.

1) Accuracy: Overall classification accuracy was
computed using Eqg. (4)
TP+ TN
accuracy = — (@)

where TP denotes true positives, T Ntrue negatives, and Nthe
total number of samples.

2) Precision, Recall and F1-score: Precision, recall,
and Fl-score were calculated to assess class-level
performance, especially important due to class imbalance
after outlier removal. The metrics follow Egs. (5)-(7):

Precision = —— ©)
TP+FP
Recall = —= ©
TP+FN N
F1 — score = 2 - Frecision x Recall @

Precision + Recall

These indicators help evaluate the model’s sensitivity to false
positives and false negatives, a critical requirement for
environmental classification tasks [29], [30].

3) ROC-AUC and Precision-Recall Curves: To
evaluate discriminatory ability across threshold settings.
Receiver Operating Characteristic (ROC) curves and the Area
Under the Curve (AUC) were generated for all three classes.
AUC values approaching 1.0 signify strong separability [31],
[32]. Precision—Recall (PR) curves were also analyzed due to
their suitability for imbalanced datasets [33].

4) Confusion Matrix Visualization: Confusion matrices
were computed to quantify misclassification and identify
class paris with overlapping feature space. This visualization
supports diagnostic interpretation of model behavior and error
patterns [34].

I1l. RESULTS AND DISCUSSION

The results of this study provide a comprehensive
evaluation of the performance of the Multilayer Perceptron
(MLP) model in classifying aquaculture water quality and
demonstrate how an optimized MLP configuration can
surpass the accuracy achieved by a previously reported Deep
Neural Network (DNN). The findings are presented through a
systematic analysis encompassing descriptive statistics,
effects of preprocessing, hyperparameter exploration,

computational efficiency, and performance interpretation
using multiple evaluation metrics. Together, these analyses
offer compelling evidence supporting the viability of a
parsimonious neural architecture for environmental
classification tasks.

A. Descriptive Statistical Analysis of Water Quality Features

ptive Statistics for DataFrame Columns

- 7000
Tursidity em)

5000

3000

2000

- 1000

o

Statistical Measure

Figure 4. Dataset Descriptive

Initial  descriptive analysis revealed substantial
heterogeneity across the fourteen physicochemical and
biological indicators included in the dataset. The descriptive
heatmap showed that features such as plankton abundance
exhibit extremely wide ranges—for instance, values span
from approximately 78.60 to 7,460.42—while others, such as
ammonia and HzS, cluster near zero with narrow distributions.
This discrepancy in scale indicates the intrinsic complexity of
environmental datasets and underscores the necessity of
normalization to prevent high-magnitude features from
dominating gradient-based optimization during model
training. Without such preprocessing, neural networks may
experience unstable convergence or biased learning
trajectories.

B. Outlier Removal

The violin plots further illustrated the presence of extreme
values in several indicators as shown at Figure 5. Particularly
ammonia, nitrite, and H.S. These elongated density shapes
suggest that a significant number of observations fall far from
the main distribution body. As documented in the literature,
such outliers can compromise the generalization capability of
machine-learning models by introducing noise and distorting
feature—label relationships during training. Accordingly,
systematic outlier removal was implemented as a critical
preprocessing step.
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Figure 5. Violin plot of dataset to check for outliers

Before and after removing Outlier
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Figure 6. Dataset distribution after removing outlier

Shown at Figure 6, outlier removal substantially altered
the class distribution within the dataset. While the Excellent
class remained largely stable at around 1,400 samples, the
Poor class experienced a dramatic reduction from 1,500

samples to approximately 500. This result suggests that many
Poor-class observations exhibited extreme or atypical feature
values. The resulting imbalance has implications for
classification difficulty, as boundary distinction between the
Good and Poor classes becomes more challenging when
sample representation is unequal. This effect is reflected in
certain misclassification patterns observed later in the
analysis. Nonetheless, removing outliers improved feature
homogeneity and contributed to more reliable training
behavior.

C. Hyperparameter Analysis:
Configurations

Accuracy Across MLP

Accuracy Comparison
1.000

w10 =20 w30 mm 40 wm 50 wmm 60 |m 70 wm 80 - 90w 100
0975
09%0 %ﬂ‘&_
0.925 //
0.900
0875
200 400 600 800 1000

Epoch

Figure 7. Accuracy comparison on each parameter test

A core component of the investigation involved assessing
how variations in hidden-neuron counts and training epochs
influence MLP performance. According to Figure 7, accuracy
trends demonstrated that the model reached strong
classification performance even at early stages of learning,
surpassing 0.94 after approximately 400 epochs in most
configurations. This rapid convergence reflects the
separability of the dataset and the MLP’s inherent capability
to model nonlinear relationships in water-quality indicators.
At 200 epochs, several noteworthy patterns emerged. The
configuration with 80 hidden neurons yielded an accuracy of
approximately 0.95, while the configuration with 20 hidden
neurons momentarily achieved an accuracy near 0.9662
before exhibiting stagnation suggestive of convergence to a
suboptimal local minimum. By contrast, the 80-neuron model
maintained stable performance across training durations,
indicating a more robust representational capacity. In general,
smaller models occasionally produced high early accuracy but
failed to maintain consistent performance with further
training, whereas larger models demonstrated smoother
accuracy trajectories but incurred higher computational costs.
These findings illustrate the importance of balancing model
complexity with adaptive capacity.
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D. Optimal Model and Computational Efficiency
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Figure 8. Computational time in each experiment

Comparative  analysis across all  hyperparameter
combinations identified the optimal architecture: a single
hidden layer with 80 neurons trained over 200 epochs,
achieving an accuracy of 96.62%. This result exceeds the
previously reported DNN accuracy of 95.69%, providing
strong evidence that deeper architectures are not inherently
superior for this task. Computational efficiency was also
examined. The optimal model required only 1.89 units of
computation time, significantly less than larger models
trained for extended epochs. Models with 100 neurons trained
for 600-1000 epochs exhibited no improvement in accuracy
beyond approximately 0.9549, yet incurred training times
exceeding 5-6 units. This demonstrates diminishing returns
in neural-network complexity: increasing the number of
neurons or epochs beyond certain thresholds does not enhance
predictive capability but instead introduces unnecessary
computational overhead. The optimal configuration thus
aligns with principles of Pareto optimality: minimal
complexity for maximal performance.

E. Final MLP Architecture

TABEL |
COMPARISON MODEL IN EACH EPOCH
Epoch Hidden Accuracy Execution
Neuron Time (second)
100 90 0.9516908213 1.04
200 80 0.9661835749 1.89
300 60 0.9533011272 2.36
400 60 0.9549114332 3.87
500 60 0.9549114332 4.78
600 100 0.9549114332 5.43
700 100 0.9549114332 6.57
800 100 0.9549114332 5.36
900 100 0.9549114332 6.02
1000 100 0.9549114332 5.99

The Table 1 decisively confirms the superiority of the
proposed method (MLP with a single hidden layer, 80
neurons, and 200 epochs) over the prior approach (Deep
Neural Network with 4 hidden layers and 17 neurons). The
proposed MLP achieved an accuracy of 96.62%, representing

a significant increase of 0.93% compared to the prior DNN's
95.69%. Academically, this enhanced performance, despite
using a simpler, shallower architecture, argues that precise
hyperparameter optimization (80 neurons, 200 epochs) was
more effective in accurately classifying water quality features
than merely increasing the network’s depth.

MLP Classifier Training Loss Curve

0.8 1

0.6 1

Loss.

0.44

0.24

0.0 1

o 50 100 150 200
Epochs

Figure 9. The Classifier training loss curve

The presented Figure 9 illustrates the training loss
trajectory of a Multilayer Perceptron (MLP) classifier, which
is characterized by a sharp initial decline from a loss value of
approximately 0.9. Subsequently, the rate of descent
diminishes significantly, with the curve demonstrating a
gradual convergence towards a near-zero loss value as the
number of epochs exceeds 150.

Temperature

Turbidity
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Nitrite:
hidden |
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H2s
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Figure 10. The best MLP model with hidden neuron = 80 and epoch = 200

The optimal model comprises 14 input features feeding
into a single hidden layer of 80 neurons, followed by a three-
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node output layer corresponding to the Poor, Good, and
Excellent water-quality classes shown at Figure 10. This
architecture achieves a balance between expressive capacity
and computational simplicity, reinforcing the broader premise
that shallow networks can outperform deeper ones when
hyperparameters are systematically optimized.

F. Confusion Matrix Analysis

Confusion Matrix for MLP Classifier

Excellent

Good

True Label

- 100

Poor

| ! .
Excellent Good Poor
Predicted Label

Figure 11. Confusion matrix of the model

The confusion matrix for the optimal MLP model
indicates excellent classification performance across all
classes represent in Figure 11. The Excellent class achieved
100% correct classification, reflecting strong separability in
feature space. The Good and Poor classes also attained high
accuracy, with the majority of samples assigned correctly
(226 Good, 94 Poor). Misclassifications primarily occurred
between the Good and Poor classes, consistent with earlier
observations about distribution shifts following outlier
removal. Specifically, 4 Good samples were misclassified as
Poor, while 13 Poor samples were misclassified as Good. A
small number of Poor samples (4) were misclassified as
Excellent. Despite these discrepancies, total
misclassifications remained low (17), demonstrating robust
overall performance

G. ROC-AUC And Precision-Recall Performance

The Receiver Operating Characteristic (ROC) curves and
their corresponding Area Under the Curve (AUC) scores were
used to assess the model's discriminative power, with the
results confirming its effectiveness in distinguishing between
classes across various threshold settings. AUC values were
exceptionally high, registering 1.00 for the Excellent class,
0.99 for Good, and 0.97 for Poor.

Receiver Operating Characteristic (ROC) Curve for MLP Classifier

08 -

06 -

True Positive Mate
\

Falsa Positive Rate

Figure 12. ROC and AUC score

While the Poor class exhibited a slightly lower AUC
score, likely due to class imbalance and reduced sample
representation, the value of 0.97 remains strong enough to
indicate reliable separability between the classes.

Precision-Recall Curve for MLP Classifier

Precision
o
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— Precision-Recall curve of class Peor (AP = 0.92)

oo 0.2 04 06 0.8 Lo
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Figure 13. PR-Curve of the Model

A Precision-Recall (PR) analysis was performed to
evaluate the model's performance specifically under
conditions of class imbalance, vyielding high Average
Precision (AP) values. The AP scores were 1.00 for the
Excellent class, 0.97 for Good, and 0.92 for Poor. The PR
curves for the Excellent and Good classes remained near the
upper region across all recall ranges, demonstrating consistent
high precision. Although the Poor class curve showed an
expected decline in precision at extreme recall values due to
its reduced sample representation, its AP score of 0.92 still
signifies strong performance for practical classification
scenarios.
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H. Comparative Evaluation and Discussion

TABEL 2
COMPARISON MODEL IN EACH EPOCH

Method Parameters Accuracy
Deep Neural | Hidden layer = 4; hidden 95.69%
Network: [12] neurons = 17
Proposed method Hidden neurons = 80; 96.62%
using MLP epoch =200

Table 2 shows the comparison between prior research
and this research. The optimized Multilayer Perceptron
(MLP) configuration demonstrated clear superiority over the
previously reported Deep Neural Network (DNN)
benchmark. The Deep Neural Network (DNN) used as a
benchmark in this study follows the architecture reported in
[12] which consists of four hidden layers with 17 neurons per
layer and was trained using a supervised learning framework
on the same dataset. The objective of this study is not to
redesign or further optimize the DNN architecture, but to
evaluate whether a systematically tuned shallow MLP can
surpass a commonly referenced deep-learning baseline under
comparable data conditions. Specifically, the proposed
single-hidden-layer MLP achieved 96.62% accuracy,
surpassing the 95.69% accuracy of the DNN, which utilized
four hidden layers of 17 neurons each. This improvement is
significant both numerically and conceptually, reinforcing
that model depth does not necessarily correlate with
predictive performance in environmental classification tasks.

The overall findings underscore several key insights:
effective preprocessing (normalization and outlier removal) is
essential for stabilizing training on heterogeneous
environmental datasets; model parsimony (minimal
complexity with strong performance) is both attainable and
advantageous in real-world aquaculture monitoring;
hyperparameter optimization is more critical than model
depth, particularly in MLP architectures; and generalization
performance is robust across all water-quality classes, as
confirmed by ROC-AUC and Precision-Recall curves.
Collectively, the results establish that a carefully tuned MLP
can surpass deeper models while maintaining computational
efficiency, making it a highly compelling solution for real-
time and resource-constrained aquaculture water-quality
assessment applications.

IV. CONCLUSION

This study demonstrates that a carefully configured
Multilayer Perceptron can surpass the performance of a
previously reported Deep Neural Network in aquaculture
water-quality classification while substantially reducing
computational demands. Through systematic experimentation
on hidden-neuron sizes and training epochs, the optimal MLP
architecture comprising a single hidden layer with 80 neurons
trained for 200 epochs achieved an accuracy of 96.62%,
exceeding the DNN benchmark of 95.69%. The model also
exhibited strong class separability, high precision across all

categories, and stable learning behavior, despite challenges
introduced by heterogeneous feature scales and class
imbalance after outlier removal. These findings indicate that
architectural depth is not always a prerequisite for achieving
high predictive capability. Instead, model parsimony,
supported by rigorous hyperparameter optimization, can
provide an effective and computationally efficient alternative
for environmental classification tasks. This contributes to
current knowledge by offering empirical evidence that
shallow neural architectures can outperform deeper models
when aligned with the characteristics of the dataset. Future
work may explore automated hyperparameter-search
methods, integration with real-time sensor data, and
validation across more diverse aquaculture environments.
Such extensions would further establish the practical utility of
lightweight neural models for sustainable and responsive
water-quality monitoring.
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