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 Aquaculture production relies heavily on stable water quality conditions, requiring 

accurate and efficient assessment methods to support early environmental 

monitoring and sustainable management. Although deep neural network models 

have been widely applied to water quality classification, their high computational 

complexity often limits their applicability in real-time and resource-constrained 

aquaculture systems. This study aims to evaluate whether a systematically optimized 

Multilayer Perceptron can outperform a reported deep neural network benchmark in 

aquaculture water quality assessment while maintaining computational efficiency. 

The study adopts a structured methodology involving dataset characterization, 

extreme outlier removal, feature normalization, and stratified data partitioning. A 
single-hidden-layer Multilayer Perceptron is trained using a feedforward 

backpropagation learning process, with systematic exploration of hidden neuron 

configurations and training epochs to identify the optimal architecture. Model 

performance is evaluated using multiple classification metrics, including accuracy, 

precision, recall, F1-score, confusion matrix analysis, and receiver operating 

characteristic and precision–recall curves. Results indicate that the optimal 

Multilayer Perceptron configuration, consisting of 80 hidden neurons and 200 

training epochs, achieves an accuracy of 96.62%, surpassing the deep neural network 

benchmark accuracy of 95.69%. The proposed model demonstrates strong class-

level performance, clear separation between water quality categories, stable 

convergence behavior, and reduced computational overhead compared to deeper 
architectures. These findings highlight that increasing model depth does not 

necessarily improve predictive performance for heterogeneous aquaculture datasets. 

In conclusion, this study provides empirical evidence that a well-optimized shallow 

neural network can outperform deeper models in aquaculture water quality 

assessment. The results emphasize the importance of model parsimony and 

systematic hyperparameter optimization, offering a practical and efficient solution 

for real-time aquaculture water quality monitoring applications. 
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I. INTRODUCTION 

Water quality is at the forefront of international 

environmental management initiatives because it is essential 

to maintaining human health, agricultural production, and 

industrial development. [1]. Accurate and timely monitoring 

of water conditions has become increasingly important as 

water systems continue to be under strain from urbanization, 

population increase, and industrial activity. Global 

development agendas like the Sustainable Development 

Goals (SDGs), where Goal 3 emphasizes the need to ensure 

human well-being and Goal 14 highlights the protection of 

aquatic habitats, also reflect this relevance. [2]. In these 

contexts, the assessment of Water Quality Indices (WQI) has 
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become a crucial method for figuring out if water is suitable 

for various ecological and socioeconomic uses. [3]. Water 

quality is a key factor in determining organism survival, 

growth rates, and overall production efficiency in 

aquaculture, an industry that depends on the stability of 

physicochemical and biological factors. [4]. The deterioration 

of water quality, particularly in regions impacted by mining, 

industrial discharge, and intense human activity, is still being 

documented by numerous environmental studies. This leads 
to increased pollution levels and ongoing ecological stress. 

[5], [6]. These difficulties underscore the need for 

dependable, effective, and data-driven prediction 

technologies that can spot changes in water conditions before 

they become harmful occurrences. 

To evaluate water quality in aquaculture systems, 

practitioners rely on a wide range of indicators representing 

complex environmental dynamics. Core physicochemical 

parameters include temperature, turbidity, dissolved oxygen 

(DO), biochemical oxygen demand (BOD), pH, carbon 

dioxide (CO₂), alkalinity, hardness, calcium, ammonia, 

nitrite, phosphorus, and hydrogen sulfide (H₂S), along with 

biological indicators such as plankton abundance [7], [8], [9], 

[10], [11]. These variables collectively offer a 

multidimensional representation of environmental states but 
also introduce analytical challenges due to their nonlinear 

interactions, differing scales, and susceptibility to seasonal or 

anthropogenic disturbances. Traditional approaches to water-

quality assessment often struggle to model such nonlinear and 

heterogeneous data effectively. Consequently, machine 

learning (ML) has been increasingly embraced as a robust 

analytical paradigm for capturing complex environmental 

relationships and generating predictive insights that support 

early intervention and sustainable management practices. 

Recent developments in ML have expanded the range of 

available classification and prediction techniques, making it 

possible to model water-quality dynamics with improved 
accuracy and interpretability. 

Despite these advancements, several limitations remain 

apparent in the application of machine learning to aquaculture 

water-quality prediction. A key challenge concerns the 

reliance on deep neural networks (DNNs), which, although 

capable of modeling highly nonlinear patterns, typically 

require significant computational resources, extensive 

hyperparameter tuning, and long experimentation cycles. For 

example, prior work employing a DNN with four hidden 

layers of 17 neurons each reported an accuracy of 95.69% in 

aquaculture water-quality assessment [12]. While this result 
demonstrates the feasibility of deep-learning approaches, the 

computational demands of such architectures limit their 

practicality for real-time monitoring or deployment in 

resource-constrained environments, where rapid retraining 

and efficient energy consumption are essential. Moreover, 

DNNs often exhibit sensitivity to initialization, optimizer 

configurations, and layer depth, making them less accessible 

for practitioners seeking lightweight solutions that maintain 

high predictive capability without excessive complexity. 

These issues suggest that simpler alternatives may offer more 

promising pathways for environmental classification tasks. 

In response to these concerns, growing attention has been 

directed toward the Multilayer Perceptron (MLP), one of the 

foundational models in artificial neural networks (ANNs). 

MLPs are characterized by their relatively simple 

architecture—consisting of an input layer, one or more hidden 

layers, and an output layer—and their ability to approximate 

nonlinear functional relationships through layered 
transformations [13], [14]. Although MLPs are often viewed 

as less sophisticated than deep models, numerous studies have 

shown that when appropriately configured, they are capable 

of achieving high accuracy in classification and prediction 

tasks across domains such as hydrological forecasting, 

medical diagnosis [15], and behavioral analysis [16], [17]. 

Their performance depends heavily on critical 

hyperparameters, including the number of hidden neurons, the 

number of layers, and the number of training epochs, each 

influencing representational capacity, convergence behavior, 

and computational efficiency [15], [16]. Because these 
elements determine the balance between overfitting and 

generalization, tuning them systematically is essential for 

uncovering optimal architectures tailored to specific datasets. 

At the same time, advancements in aquaculture monitoring 

have introduced a wide variety of machine-learning 

frameworks beyond MLPs and DNNs. Studies combining ML 

with IoT-based sensing infrastructures have enabled 

continuous and intelligent water-quality monitoring systems 

capable of supporting sustainable aquaculture operations [7], 

[8]. Other research has focused on field-based assessment of 

environmental conditions to understand the ecological 

impacts of aquaculture systems [9], [10]. More sophisticated 
ML approaches, such as XGBoost optimized through the 

Honey Badger Algorithm with SHAP and DiCE explanations, 

have been proposed to enhance interpretability while 

maintaining high predictive performance [11]. Additional 

works utilizing Gradient Boosting, Decision Trees, and 

CatBoost have provided comparative baselines that 

demonstrate the diversity of available methods and the 

potential of ensemble-based classifiers [18], [19], [20]. 

Meanwhile, beyond aquaculture applications, the broader 

literature reinforces the flexibility and computational 

advantages of MLPs, highlighting their effective use in 
various predictive contexts [13], [14], [15], [16], [17]. 

Collectively, these studies illustrate both the diversity of 

techniques available for water-quality modeling and the 

ongoing need to evaluate the trade-offs between model 

complexity, interpretability, and computational cost. 

Although this growing body of work offers valuable 

insights, significant research gaps persist. First, while deep-

learning frameworks have demonstrated competitive 

accuracy in water-quality classification, there is limited 

evidence evaluating whether simpler neural architectures can 

outperform them when optimally tuned. Second, existing 

MLP-based studies rarely investigate the combined effects of 
hidden-neuron counts and epoch settings specifically for 
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aquaculture datasets, which often contain heterogeneous 

feature distributions and substantial outliers. Third, the 

literature tends to prioritize accuracy as the primary metric 

without sufficiently addressing practical considerations such 

as model parsimony, interpretability, and efficiency—

attributes that are critical for real-world system integration. 

These gaps underscore the need for systematic research that 

rigorously explores the potential of lightweight neural 
architectures to achieve or surpass deep-learning benchmarks 

while reducing computational burdens. 

Motivated by these considerations, the present study aims 

to determine whether a well-designed MLP can outperform 

the previously reported DNN model in aquaculture water-

quality classification. The research introduces a systematic 

experimental framework that evaluates a range of hidden-

neuron configurations (10–100) and epoch settings (100–

1000) to identify the architecture that maximizes predictive 

accuracy, stabilization, and computational efficiency. While 

previous studies have reported that shallow models may 
outperform deep architectures on limited tabular datasets, this 

work contributes novel insights by providing a systematic and 

domain-specific evaluation within aquaculture water-quality 

assessment. Unlike prior studies, this research conducts a 

structured exploration of hidden-neuron and epoch 

configurations, integrates outlier handling and normalization 

tailored to heterogeneous environmental indicators, and 

demonstrates practical efficiency gains relevant to real-time 

aquaculture monitoring systems. The novelty of this study lies 

in its empirical demonstration that a simpler, single-hidden-

layer MLP can exceed the performance of a deeper four-layer 

DNN, challenging the common assumption that deeper 
architectures inherently yield superior results. Furthermore, 

by presenting a comprehensive analysis that includes 

accuracy, precision, recall, F1-score, ROC–AUC, and PR-

curve evaluation, the study provides a rigorous foundation for 

assessing the trade-offs between model performance and 

computational cost. The scope of this research includes data 

preprocessing, outlier handling, normalization, model 

training, hyperparameter tuning, and performance evaluation. 

Through this investigation, the study contributes to the 

advancement of practical, efficient, and easily deployable 

machine-learning solutions for aquaculture water-quality 
assessment. 

II. METHODOLOGY  

This study employed a structured methodological 

framework designed to evaluate the performance of a 

Multilayer Perceptron (MLP) model in classifying 

aquaculture water quality. The methodology consists of four 

principal components as shown in Figure 1 below: (1) dataset 

description, (2) preprocessing procedures, (3) model 

architecture and training process, and (4) evaluation strategy. 

Each component is formulated to ensure reproducibility, 

methodological rigor, and alignment with established 

machine-learning standards.  
 

 
Figure 1. Research Methodology 

A. Dataset 

The dataset used in this study was obtained from a publicly 

available Mendeley Data repository 

(https://data.mendeley.com/datasets/y78ty2g293/1) and 

consists of 4,300 records representing aquaculture water-

quality observations. Each record includes 14 

physicochemical and biological features, namely temperature, 

turbidity, dissolved oxygen, biochemical oxygen demand, 

carbon dioxide, pH, alkalinity, hardness, calcium, ammonia, 
nitrite, phosphorus, hydrogen sulfide, and plankton 

abundance.  

 
Figure 2. Distribution of water quality class 

 

Figure 2 shows The samples are categorized into three 

classes: Excellent (1,400 samples, 32.6%), Good (1,400 

samples, 32.6%), and Poor (1,500 samples, 34.9%). The 

dataset is cross-sectional in nature and does not contain 
explicit temporal or spatial identifiers, which motivates the 

use of stratified sampling strategies during model evaluation. 

Fourteen features comprise the input variables: temperature, 

turbidity, dissolved oxygen (DO), biochemical oxygen 

demand (BOD), carbon dioxide (CO₂), pH, alkalinity, 

hardness, calcium, ammonia, nitrite, phosphorus, hydrogen 

sulfide (H₂S), and plankton abundance. These parameters are 

widely recognized in the aquaculture domain due to their 

influence on ecosystem balance and organism health [7]–[11]. 

However, the dataset presents significant heterogeneity across 

its variables, including widely varying numeric scales and the 
presence of extreme values, conditions that necessitate careful 

preprocessing to ensure stable and unbiased model training 

[7]–[11]. 
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B. Data Preprocessing 

Given the importance of data quality in machine-learning 

applications, preprocessing was conducted through a 
structured sequence consisting of outlier handling, 

normalization, and data partitioning.  

1)   Outlier Detection and Removal: Outlier 

identification and removal constituted the first stage of 

preprocessing. Outliers in environmental datasets often arise 

from instrument errors, sampling inconsistencies, or naturally 

occurring variations [21]. Their presence may distort 

statistical relationships, mislead gradient-based learning 

algorithms, and reduce model generalization capability. 

Accordingly, this study applied systematic outlier removal 

procedures recommended in contemporary data-mining 

literature to minimize noise while preserving essential data 
characteristics. 

2)   Feature Normalization: Following outlier removal, 
the remaining features were standardized using z-score 

normalization, which transforms each feature according to 

Eq. (1). 

𝑧 =
𝑥−𝜇

𝜎
    (1) 

where 𝑥 is the original value, 𝜇 is the mean, and 𝜎is the 
standard deviation [22]. This method was chosen due to the 

substantial disparities in feature scales. For example, plankton 

counts range into the thousands, while contaminants such as 

ammonia and H₂S appear in near-zero ranges. Standardization 

ensures proportional influence of all features during weight 

updates and improves convergence stability during training 

where 𝑥 denotes the original feature value, 𝜇the mean, and 

𝜎the standard deviation [22]. 

3)   Stratified Training-Testing Split: The dataset was 
subsequently divided into training and testing subsets using 

stratified holdout sampling, preserving class proportions 

across partitions [23]. To align with common practice in 

machine learning, an 80:20 split was applied, following 

established recommendations that balance generalization 

evaluation with training sufficiency [24], [25]. Considering 

the distributional changes brought forth by outlier removal, 

stratification was very crucial. This situation is based on the 

Pareto principle, which is the best approach in a lot of studies 
[26], [27]. 

C. MLP Model Architecture and Training Procedure 

The core methodological component involved desgining 

and training the MLP architecture while systematically testing 

the influence of different hyperparameter configurations.  

1) Model Architecture: The MLP foundation model is 

shown at Figure 3 below. The MLP model comprises three 

layers: an input layer, a single hidden layer, and an output 

layer [14]. The MLP model used in this research consists of 

three layers: an input layer with 14 normalized features, a 

single hidden layer, and an output layer for producing 

predictions across the three water-quality classes. The 

structure reflects the architecture commonly associated with 

classical feedforward neural networks. 

 

Figure 3. The illustration of MLP architecture foundation. 

To evaluate the effects of architectural capacity, the 

number of neurons in the hidden layer was varied. Each 

hidden neuron performs a nonlinear transformation of the 

weighted input signals, guided by the ReLU activation 
function—selected for its computational efficiency and 

ability to mitigate vanishing gradients [26], [27]. The ReLU 

function follows Eq. (2): 

 

𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑚𝑎𝑥(0, ∑ 𝑤𝑖𝑗  𝑋𝑖 + 𝑏𝑖𝑖 )  (2) 

2) Training Algorithm: Training was Training was 

conducted via the standard feedforward–backpropagation 

procedure. In feedforward propagation, weighted inputs are 

transformed through the activation function to produce class 

logits. Backpropagation then computes gradients of the loss 

function with respect to every weight and bias. To ensure 

effective parameter updates, the Adam optimizer was 

employed, consistent with its documented advantages in 

adaptability and convergence efficiency [28]. Parameter 

updates follow Eq. (3): 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼
𝑚̂𝑡

√𝑣̂𝑡+ 𝜖
   (3) 

where 𝑚̂𝑡 and 𝑣𝑡 denote bias-corrected first and second 

moment estimates, respectively. 

3) Hyperparameter Tuning Framework: Because MLP 

performance depends critically on hyperparameters  [15], 

[16], the study implemented a structured experiment to 

determine the best MLP model. Two hyperparameter 

dimensions were explored: 

 Hidden neurons: 10 to 100 (step size: 10) 

 Epochs: 100 to 1000 (step size: 100) 

This approach ensured balanced exploration of model 
complexity and learning duration, enabling identification of 
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an architecture that maximizes accuracy while minimizing 

computational overhead. The systematic combination of these 

parameters allowed the study to evaluate trends in 

convergence, generalization, and training efficiency. 

D. Evaluation Metrics and Analytical Procedures 

Model performance was assessed using a comprehensive 

set of widely accepted classification metrics to ensure robust 

evaluation across classes. 

1) Accuracy: Overall classification accuracy was 

computed using Eq. (4) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑁
    (4) 

where 𝑇𝑃 denotes true positives, 𝑇𝑁true negatives, and 𝑁the 
total number of samples. 

2) Precision, Recall and F1-score: Precision, recall, 

and F1-score were calculated to assess class-level 

performance, especially important due to class imbalance 

after outlier removal. The metrics follow Eqs. (5)-(7): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

These indicators help evaluate the model’s sensitivity to false 

positives and false negatives, a critical requirement for 

environmental classification tasks [29], [30]. 

3) ROC-AUC and Precision-Recall Curves: To 

evaluate discriminatory ability across threshold settings. 

Receiver Operating Characteristic (ROC) curves and the Area 

Under the Curve (AUC) were generated for all three classes. 

AUC values approaching 1.0 signify strong separability [31], 

[32]. Precision–Recall (PR) curves were also analyzed due to 

their suitability for imbalanced datasets [33]. 

4) Confusion Matrix Visualization: Confusion matrices 

were computed to quantify misclassification and identify 

class paris with overlapping feature space. This visualization 

supports diagnostic interpretation of model behavior and error 

patterns [34].  

III. RESULTS AND DISCUSSION 

The results of this study provide a comprehensive 
evaluation of the performance of the Multilayer Perceptron 

(MLP) model in classifying aquaculture water quality and 

demonstrate how an optimized MLP configuration can 

surpass the accuracy achieved by a previously reported Deep 

Neural Network (DNN). The findings are presented through a 

systematic analysis encompassing descriptive statistics, 

effects of preprocessing, hyperparameter exploration, 

computational efficiency, and performance interpretation 

using multiple evaluation metrics. Together, these analyses 

offer compelling evidence supporting the viability of a 

parsimonious neural architecture for environmental 

classification tasks. 

A. Descriptive Statistical Analysis of Water Quality Features 

 
Figure 4. Dataset Descriptive 

 

Initial descriptive analysis revealed substantial 

heterogeneity across the fourteen physicochemical and 

biological indicators included in the dataset. The descriptive 

heatmap showed that features such as plankton abundance 

exhibit extremely wide ranges—for instance, values span 

from approximately 78.60 to 7,460.42—while others, such as 

ammonia and H₂S, cluster near zero with narrow distributions. 
This discrepancy in scale indicates the intrinsic complexity of 

environmental datasets and underscores the necessity of 

normalization to prevent high-magnitude features from 

dominating gradient-based optimization during model 

training. Without such preprocessing, neural networks may 

experience unstable convergence or biased learning 

trajectories. 

B. Outlier Removal 

The violin plots further illustrated the presence of extreme 

values in several indicators as shown at Figure 5. Particularly 

ammonia, nitrite, and H₂S. These elongated density shapes 
suggest that a significant number of observations fall far from 

the main distribution body. As documented in the literature, 

such outliers can compromise the generalization capability of 

machine-learning models by introducing noise and distorting 

feature–label relationships during training. Accordingly, 

systematic outlier removal was implemented as a critical 

preprocessing step.  
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Figure 5. Violin plot of dataset to check for outliers 

 

 
Figure 6. Dataset distribution after removing outlier 

 

Shown at Figure 6, outlier removal substantially altered 

the class distribution within the dataset. While the Excellent 

class remained largely stable at around 1,400 samples, the 

Poor class experienced a dramatic reduction from 1,500 

samples to approximately 500. This result suggests that many 

Poor-class observations exhibited extreme or atypical feature 

values. The resulting imbalance has implications for 

classification difficulty, as boundary distinction between the 

Good and Poor classes becomes more challenging when 

sample representation is unequal. This effect is reflected in 

certain misclassification patterns observed later in the 

analysis. Nonetheless, removing outliers improved feature 

homogeneity and contributed to more reliable training 
behavior. 

C. Hyperparameter Analysis: Accuracy Across MLP 

Configurations 

 
Figure 7. Accuracy comparison on each parameter test 

 

A core component of the investigation involved assessing 

how variations in hidden-neuron counts and training epochs 

influence MLP performance. According to Figure 7, accuracy 

trends demonstrated that the model reached strong 

classification performance even at early stages of learning, 

surpassing 0.94 after approximately 400 epochs in most 
configurations. This rapid convergence reflects the 

separability of the dataset and the MLP’s inherent capability 

to model nonlinear relationships in water-quality indicators. 

At 200 epochs, several noteworthy patterns emerged. The 

configuration with 80 hidden neurons yielded an accuracy of 

approximately 0.95, while the configuration with 20 hidden 

neurons momentarily achieved an accuracy near 0.9662 

before exhibiting stagnation suggestive of convergence to a 

suboptimal local minimum. By contrast, the 80-neuron model 

maintained stable performance across training durations, 

indicating a more robust representational capacity. In general, 

smaller models occasionally produced high early accuracy but 
failed to maintain consistent performance with further 

training, whereas larger models demonstrated smoother 

accuracy trajectories but incurred higher computational costs. 

These findings illustrate the importance of balancing model 

complexity with adaptive capacity. 

 

 

 

 



JAIC e-ISSN: 2548-6861    361 

 

Outperforming DNN Using MLP in Water Quality Assessment for Aquaculture 
(Mochammad Anshori, Mufid Musthofa) 

D. Optimal Model and Computational Efficiency 

 
Figure 8. Computational time in each experiment 

 

Comparative analysis across all hyperparameter 

combinations identified the optimal architecture: a single 

hidden layer with 80 neurons trained over 200 epochs, 

achieving an accuracy of 96.62%. This result exceeds the 

previously reported DNN accuracy of 95.69%, providing 

strong evidence that deeper architectures are not inherently 

superior for this task. Computational efficiency was also 
examined. The optimal model required only 1.89 units of 

computation time, significantly less than larger models 

trained for extended epochs. Models with 100 neurons trained 

for 600–1000 epochs exhibited no improvement in accuracy 

beyond approximately 0.9549, yet incurred training times 

exceeding 5–6 units. This demonstrates diminishing returns 

in neural-network complexity: increasing the number of 

neurons or epochs beyond certain thresholds does not enhance 

predictive capability but instead introduces unnecessary 

computational overhead. The optimal configuration thus 

aligns with principles of Pareto optimality: minimal 

complexity for maximal performance. 

E. Final MLP Architecture 

TABEL I 

COMPARISON MODEL IN EACH EPOCH 

Epoch Hidden 

Neuron 

Accuracy Execution 

Time (second) 

100 90 0.9516908213 1.04 

200 80 0.9661835749 1.89 

300 60 0.9533011272 2.36 

400 60 0.9549114332 3.87 

500 60 0.9549114332 4.78 

600 100 0.9549114332 5.43 

700 100 0.9549114332 6.57 

800 100 0.9549114332 5.36 

900 100 0.9549114332 6.02 

1000 100 0.9549114332 5.99 

 

The Table 1 decisively confirms the superiority of the 

proposed method (MLP with a single hidden layer, 80 

neurons, and 200 epochs) over the prior approach (Deep 

Neural Network with 4 hidden layers and 17 neurons). The 

proposed MLP achieved an accuracy of 96.62%, representing 

a significant increase of 0.93% compared to the prior DNN's 

95.69%. Academically, this enhanced performance, despite 

using a simpler, shallower architecture, argues that precise 

hyperparameter optimization (80 neurons, 200 epochs) was 

more effective in accurately classifying water quality features 

than merely increasing the network's depth.  

 

 
Figure 9. The Classifier training loss curve 

The presented Figure 9 illustrates the training loss 

trajectory of a Multilayer Perceptron (MLP) classifier, which 

is characterized by a sharp initial decline from a loss value of 
approximately 0.9. Subsequently, the rate of descent 

diminishes significantly, with the curve demonstrating a 

gradual convergence towards a near-zero loss value as the 

number of epochs exceeds 150. 

 

 
Figure 10. The best MLP model with hidden neuron = 80 and epoch = 200 

 

The optimal model comprises 14 input features feeding 

into a single hidden layer of 80 neurons, followed by a three-



362               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  355 – 364 

node output layer corresponding to the Poor, Good, and 

Excellent water-quality classes shown at Figure 10. This 

architecture achieves a balance between expressive capacity 

and computational simplicity, reinforcing the broader premise 

that shallow networks can outperform deeper ones when 

hyperparameters are systematically optimized. 

F. Confusion Matrix Analysis 

 
Figure 11. Confusion matrix of the model 

 

The confusion matrix for the optimal MLP model 

indicates excellent classification performance across all 

classes represent in Figure 11. The Excellent class achieved 

100% correct classification, reflecting strong separability in 

feature space. The Good and Poor classes also attained high 
accuracy, with the majority of samples assigned correctly 

(226 Good, 94 Poor). Misclassifications primarily occurred 

between the Good and Poor classes, consistent with earlier 

observations about distribution shifts following outlier 

removal. Specifically, 4 Good samples were misclassified as 

Poor, while 13 Poor samples were misclassified as Good. A 

small number of Poor samples (4) were misclassified as 

Excellent. Despite these discrepancies, total 

misclassifications remained low (17), demonstrating robust 

overall performance 

G. ROC-AUC And Precision-Recall Performance 

The Receiver Operating Characteristic (ROC) curves and 

their corresponding Area Under the Curve (AUC) scores were 

used to assess the model's discriminative power, with the 

results confirming its effectiveness in distinguishing between 

classes across various threshold settings. AUC values were 

exceptionally high, registering 1.00 for the Excellent class, 

0.99 for Good, and 0.97 for Poor.  

 
Figure 12. ROC and AUC score 

 

While the Poor class exhibited a slightly lower AUC 

score, likely due to class imbalance and reduced sample 

representation, the value of 0.97 remains strong enough to 

indicate reliable separability between the classes. 

 

 
Figure 13. PR-Curve of the Model 

 

A Precision-Recall (PR) analysis was performed to 

evaluate the model's performance specifically under 

conditions of class imbalance, yielding high Average 

Precision (AP) values. The AP scores were 1.00 for the 

Excellent class, 0.97 for Good, and 0.92 for Poor. The PR 

curves for the Excellent and Good classes remained near the 

upper region across all recall ranges, demonstrating consistent 

high precision. Although the Poor class curve showed an 

expected decline in precision at extreme recall values due to 
its reduced sample representation, its AP score of 0.92 still 

signifies strong performance for practical classification 

scenarios. 
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H. Comparative Evaluation and Discussion 

TABEL 2 

COMPARISON MODEL IN EACH EPOCH 

Method Parameters Accuracy 

Deep Neural 
Network: [12] 

Hidden layer = 4; hidden 
neurons = 17 

95.69% 

Proposed method 
using MLP 

Hidden neurons = 80; 
epoch = 200 

96.62% 

 

Table 2 shows the comparison between prior research 
and this research. The optimized Multilayer Perceptron 

(MLP) configuration demonstrated clear superiority over the 

previously reported Deep Neural Network (DNN) 

benchmark. The Deep Neural Network (DNN) used as a 

benchmark in this study follows the architecture reported in 

[12] which consists of four hidden layers with 17 neurons per 

layer and was trained using a supervised learning framework 

on the same dataset. The objective of this study is not to 

redesign or further optimize the DNN architecture, but to 

evaluate whether a systematically tuned shallow MLP can 

surpass a commonly referenced deep-learning baseline under 

comparable data conditions. Specifically, the proposed 
single-hidden-layer MLP achieved 96.62% accuracy, 

surpassing the 95.69% accuracy of the DNN, which utilized 

four hidden layers of 17 neurons each. This improvement is 

significant both numerically and conceptually, reinforcing 

that model depth does not necessarily correlate with 

predictive performance in environmental classification tasks. 

The overall findings underscore several key insights: 

effective preprocessing (normalization and outlier removal) is 

essential for stabilizing training on heterogeneous 

environmental datasets; model parsimony (minimal 

complexity with strong performance) is both attainable and 
advantageous in real-world aquaculture monitoring; 

hyperparameter optimization is more critical than model 

depth, particularly in MLP architectures; and generalization 

performance is robust across all water-quality classes, as 

confirmed by ROC-AUC and Precision-Recall curves. 

Collectively, the results establish that a carefully tuned MLP 

can surpass deeper models while maintaining computational 

efficiency, making it a highly compelling solution for real-

time and resource-constrained aquaculture water-quality 

assessment applications. 

 

IV. CONCLUSION 
This study demonstrates that a carefully configured 

Multilayer Perceptron can surpass the performance of a 

previously reported Deep Neural Network in aquaculture 

water-quality classification while substantially reducing 

computational demands. Through systematic experimentation 

on hidden-neuron sizes and training epochs, the optimal MLP 
architecture comprising a single hidden layer with 80 neurons 

trained for 200 epochs achieved an accuracy of 96.62%, 

exceeding the DNN benchmark of 95.69%. The model also 

exhibited strong class separability, high precision across all 

categories, and stable learning behavior, despite challenges 

introduced by heterogeneous feature scales and class 

imbalance after outlier removal. These findings indicate that 

architectural depth is not always a prerequisite for achieving 

high predictive capability. Instead, model parsimony, 

supported by rigorous hyperparameter optimization, can 

provide an effective and computationally efficient alternative 

for environmental classification tasks. This contributes to 
current knowledge by offering empirical evidence that 

shallow neural architectures can outperform deeper models 

when aligned with the characteristics of the dataset. Future 

work may explore automated hyperparameter-search 

methods, integration with real-time sensor data, and 

validation across more diverse aquaculture environments. 

Such extensions would further establish the practical utility of 

lightweight neural models for sustainable and responsive 

water-quality monitoring. 
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