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Seasonal dynamics make inflation forecasting challenging in emerging economies
where holiday effects, regulated prices, and supply shocks interact. This study
models Indonesia’s monthly consumer price inflation (CPI) using official data from
Statistics Indonesia (May 2006-April 2025) and evaluates three forecasting
paradigms: a classical seasonal baseline (SARIMA), a decomposable model with
trend-seasonality components (Prophet), and a neural sequence learner (GRU). A
10-fold sliding window design is employed to preserve temporal order. Performance
is assessed with RMSE, MAE, and MASE, summarized across folds with boxplots
and statistical descriptives (means, standard deviations, and 95% confidence
intervals). Across folds and metrics, Prophet consistently achieves the lowest error
and the tightest dispersion, GRU ranks second with competitive accuracy and stable
variance, and SARIMA remains a transparent yet weaker benchmark. MASE values
below one for Prophet (and generally for GRU) indicate improvements over a naive
baseline. Practically, Prophet’s decompositions support policy communication by
linking forecast movements to interpretable components (e.g., Ramadan/Eid and
year-end effects), while GRU is useful during more nonlinear or volatile periods;
SARIMA remains valuable for diagnostics in stable regimes.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Seasonal patterns in economic time series pose persistent
challenges for accurate modeling and forecasting. The
interaction between recurring patterns, nonlinear trends, and
structural breaks often leads to model instability and biased
forecasts, especially in macroeconomic data such as
consumer price inflation (CPI). Traditional approaches such
as the Seasonal Autoregressive Integrated Moving Average
(SARIMA) model have long served as robust benchmarks for
seasonally dependent data due to their interpretability and
clear parameterization [1], [2]. However, SARIMA’s
assumptions of fixed periodicity and linear dynamics can
limit its performance when the seasonal structure evolves or
when exogenous calendar effects play a major role [3], [4].

Recent studies emphasize that seasonal time series often
exhibit multiple, overlapping, or time-varying seasonalities,
which require more flexible frameworks such as Multiple
Seasonal-Trend Decomposition (MSTL) or TBATS [4], [5].

For business and policy applications, decomposable models
like Prophet have become increasingly popular due to their
ability to capture complex patterns using additive components
of trend, seasonality, and holiday effects [6]-[9]. Prophet’s
explicit inclusion of holiday and calendar regressors makes it
especially suitable for economies like Indonesia, where
inflation cycles often correspond to festive seasons such as
Ramadan and Eid al-Fitr [10], [11]. Comparative studies
show that Prophet and its hybrid forms (e.g., Prophet-SVR,
Prophet-EMD) can outperform traditional methods when
nonlinear or irregular seasonal patterns are present [6], [7],
[12], [13].

Parallel to these developments, advances in deep learning
have reshaped the landscape of time-series forecasting.
Neural-network architectures such as Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) can learn
long-range temporal dependencies without explicit feature
engineering [14]-[16]. Among these, GRU has received
increasing attention because of its computational efficiency

http://jurnal.polibatam.ac.id/index.php/JAIC


mailto:lailyatul@apps.ipb.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC

e-1SSN: 2548-6861 773

and comparable accuracy to LSTM, particularly for economic
and financial forecasting [17]-[19]. Researchers have also
proposed hybrid and enhanced GRU variants—such as eGRU
or Bi-GRU architectures—that improve performance under
extreme events or multivariate setups [16], [18], [19].
Empirical comparisons consistently demonstrate that deep-
learning methods can capture nonlinear dynamics in inflation
and energy-price series more effectively than traditional
statistical models [13], [20]-[22].

Within the inflation-forecasting literature, results remain
mixed. Classical models like SARIMA or Holt-Winters often
perform well under stable conditions [23], [24], whereas
neural and hybrid models excel when seasonality interacts
with policy shocks or high volatility [25]-[27]. Studies in
emerging markets show that inflation data frequently contain
irregular periodicities, suggesting that flexible decomposable
or learning-based models may better adapt to structural breaks
and shifts [10], [25]. However, the performance of these
models depends heavily on data characteristics, tuning, and
cross-validation strategy—issues that remain under-explored
for Indonesian inflation.

This study contributes to that gap by comparing SARIMA,
Prophet, and GRU models on Indonesia’s monthly CPIl. The
dataset provides an ideal environment to evaluate seasonal
modeling because it combines recurring within-year patterns
with evolving macroeconomic conditions. By systematically
evaluating three contrasting approaches—a statistical
benchmark, a decomposable machine-learning model, and a
neural-network sequence model—this study assesses how
each captures seasonal complexity and temporal
dependencies. Similar comparative frameworks have proven
valuable in prior forecasting studies across domains including
energy, retail, and tourism [5], [12], [13].

Ultimately, this research aims to offer both empirical and
methodological contributions. Empirically, it provides an
updated evaluation of seasonal forecasting models in the
context of Indonesian inflation—a critical variable for
monetary and fiscal policy. Methodologically, it extends prior
comparative analyses by jointly considering interpretability,
stability, and accuracy under seasonal complexity. The
findings are expected to guide statistical agencies, financial
institutions, and researchers in selecting forecasting tools that
balance robustness, transparency, and adaptability in
modeling seasonal time series [3], [15], [21].

Il. METHOD
A. Data

This study employs monthly CPl data for Indonesia
covering the period May 2006 to April 2025, obtained from
Statistics Indonesia (Badan Pusat Statistik) through its official
website https://www.bps.go.id. The CPI series represents
percentage changes in the consumer price index, which
reflects the general movement of consumer goods and service
prices across the country.

The selected time span provides a sufficiently long horizon
to capture multiple economic cycles, structural shifts, and

seasonal patterns within the Indonesian economy. It includes
periods of major policy adjustments, global economic crises,
the COVID-19 pandemic, and post-pandemic recovery phases
— allowing the models to learn from diverse macroeconomic
conditions and to identify both stable and evolving seasonal
structures. Using data up to April 2025 ensures that the
analysis incorporates the most recent and comprehensive
information available, enhancing the relevance of the
forecasting evaluation. The monthly frequency further allows
detailed examination of intra-annual variations, which are
essential for modeling seasonal inflation dynamics in
Indonesia’s consumer price behavior.

B. SARIMA

The Seasonal Autoregressive Integrated Moving Average
(SARIMA) model extends the traditional ARIMA framework
by incorporating both non-seasonal and seasonal components
to account for recurring patterns in time-series data. It is
particularly suitable for modeling and forecasting economic
indicators that exhibit seasonal fluctuations, such as consumer
price inflation. The general form of a SARIMA model is
denoted as SARIMA(p, d, q)(P, D, Q)s, where (p, d, Q)
represents the non-seasonal autoregressive, differencing, and
moving-average orders, and (P, D, Q)s corresponds to their
seasonal counterparts with a periodicity s (e.g., s = 12 for
monthly data). The general equation for a SARIMA process
can be expressed as:

Pp(B*)¢,(B)(1 — B)* (1 — B*)PY, = 04(B*)8,(B)e; (1)

where y, denotes the observed time series at time ¢, B is the
backshift operator (By, = y;_1), ¢,(B) and ®,(B*) are the
non-seasonal and seasonal autoregressive polynomials, 6, (B)
and 0,(B*) are the corresponding moving-average
polynomials, and &, represents a white-noise error term with
zero mean and constant variance [28]-[30].

The SARIMA modeling process generally involves four
main stages: (1) data visualization and stationarity
assessment, (2) identification of model orders, (3) parameter
estimation and model fitting, and (4) diagnostic checking and
model selection. First, the data are visually inspected to detect
trends and seasonality. Stationarity is then evaluated using
unit-root tests such as the Augmented Dickey—Fuller (ADF)
or Kwiatkowski—Phillips—Schmidt-Shin (KPSS) tests [31],
[32]. If the series is non-stationary, differencing (both regular
and seasonal) is applied to stabilize the mean and variance.

Next, candidate models are identified by analyzing the
autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots, which help determine appropriate
values of p, g, P, and Q. After potential models are specified,
parameters are estimated using maximum likelihood, and the
best-fitting model is chosen based on statistical criteria such
as the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and diagnostic measures from
residual analysis [33]-[35].

In this study, to improve efficiency and avoid manual trial-
and-error, the model specification was selected automatically

Application of SARIMA, GRU, and Prophet for Capturing Seasonal Patterns in Consumer Price Inflation

(Laily Nissa Atul Mualifah)


https://www.bps.go.id/

774

e-ISSN: 2548-6861

using the Auto ARIMA algorithm. Auto ARIMA
systematically searches through multiple combinations of (p,
d, g)(P, D, Q)s and evaluates each model’s fit according to
AIC or BIC values [36]. The procedure combines unit-root
testing for differencing order selection with a stepwise search
algorithm that iteratively adds or removes parameters to
identify the optimal configuration [37]. This approach is
particularly advantageous for long seasonal economic time
series, such as monthly inflation data, because it reduces
subjectivity in  model identification and ensures
computational consistency [38].

C. Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a recurrent neural
network (RNN) architecture designed to efficiently model
sequential data by overcoming the vanishing gradient
problem inherent in traditional RNNs. The GRU offers a
simplified, yet powerful structure compared to the Long
Short-Term  Memory (LSTM) network, making it
computationally efficient while maintaining comparable
predictive performance [14], [39]. The GRU architecture
operates through two gating mechanisms—an update gate and
a reset gate—that control how much past information is
carried forward and how much is discarded at each time step.
These gates are mathematically defined as:

z = o(W,[he—q, x,]) (2)

1, = oW [he_y, xc]) 3)
where z, and 7, denote the update and reset gates,
respectively; h,_, is the previous hidden state; x, is the
current input; and a(-) is the sigmoid activation function. The
candidate hidden state is then computed as:

and

h, = tanh(W,[r; © hy_q,%,]) 4
and the final hidden state at time t is updated as:
hh=1-2z)Oh_1+2zOh, )

Through this mechanism, GRU can adaptively retain or forget
information over time, allowing them to effectively capture
both short- and long-term dependencies that characterize
inflation time series [18], [40], [41].

The GRU maodeling process followed three main stages:
preprocessing, model training, and optimization. The
preprocessing stage involved data reconstruction into data
that is suitable for supervised learning methods (i.e., data with
predictors and respons variables). Next, the GRU network
was constructed as a sequential model comprising one GRU
layer followed by a dropout layer 10%, and dense output
layer. Lastly, hyperparameter tuning was performed to
identify the most effective configuration of the GRU model.

The tuning process aimed to balance accuracy,
computational cost, and generalization capability. Three key
hyperparameters were optimized through a grid search:
number of neurons in the GRU layer, batch size, and learning
rate. The tested and selected values are summarized in Table
1. The model was trained using the Adam optimizer over 500
epochs.

TABLE1
THE SELECTED HYPERPARAMETER VALUES FOR TUNING
GRU PROPHET
Hyper- Tested Hyper- Tested
parameter values parameter values
Number of 32, 64, Changepoint 0.05, 0.1,
neurons (n) 128 prior scale 0.5
(cps)
Batch size (bs) | 2,4, 6,8, | Seasonality 5, 10, 20
10, 12 prior scale
(sps)
Learning rate 0.01, Seasonality Additive,
(In 0.001, mode (sm) multipli-
0.001 cative
Yearly 5,10
seasonality
(ys)

This systematic hyperparameter tuning process enabled the
GRU to effectively generalize across different seasonal
regimes and inflation shocks. By adaptively learning long-
term dependencies through its gating mechanisms, the final
model achieved stable convergence and accurate inflation
forecasts on both training and testing sets. These results are
consistent with recent findings demonstrating that GRU-
based models can outperform traditional statistical methods
and even more complex deep learning architectures in terms
of forecasting accuracy, computational efficiency, and
robustness to structural changes in macroeconomic data [21],
[42].

D. Prophet

The Prophet model represents a flexible and interpretable
forecasting  framework that combines time-series
decomposition with additive regression modeling. It is
designed to handle complex seasonal structures, missing data,
trend shifts, and holiday effects. Prophet decomposes a time
series y(t) into three main components—trend g(t),
seasonality s(t), and holiday effects h(t)—plus an error term
&, expressed as:

y@) =g@®) +s(©) +h(®) +¢ (6)
where g(t) captures long-term growth or decline, s(t)
models periodic patterns such as annual or monthly
seasonality, and h(t) accounts for known external events that
may influence prices. Prophet assumes an additive structure,
which makes it intuitive for interpretation and robust to
outliers [43], [44].

The trend component g(t) can take either a piecewise
linear or logistic growth form (in this study linear form is
used). The piecewise linear trend allows changes in slope at
specified changepoints, making it well-suited for inflation
data characterized by abrupt shifts due to policy changes,
global economic shocks, or structural transitions. It is
formulated as:

g@®) = (k+a@®O)t+ m+al®)Ty) (7
where k is the initial growth rate, m is the offset parameter,
a(t) is a vector of indicators showing whether each
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changepoint has been passed, and & and y represent rate and
offset adjustments at changepoints, respectively [43]. Prophet
automatically determines changepoints and adjusts the
flexibility of the trend using a hyperparameter known as the
changepoint prior scale, which balances model adaptability
and generalization [18].

The seasonal term s(t) is modeled using a Fourier series
expansion, which captures periodic patterns of arbitrary
complexity. The model approximates seasonality with:

N

s(t) = Z (an cos (Zi;nt) + b, sin (@)) (8)

n=1
where P is the seasonal period (e.g., 12 for monthly data), and
N determines the number of harmonics used. This
representation allows Prophet to flexibly approximate
complex seasonal effects that are not strictly sinusoidal,
which is crucial for modeling Indonesia’s consumer price
inflation given its multi-peak patterns linked to Ramadan,
Eid, and agricultural cycles [6]-[8]. Meanwhile, the holiday
and event component h(t) captures short-term variations
associated with specific calendar events.

Hyperparameter tuning was conducted to refine Prophet’s
performance by adjusting several key parameters (Table 1):
the seasonality mode (additive vs. multiplicative),
changepoint prior scale, seasonality prior scale, and yearly
seasonality. The changepoint prior scale was varied among
0.05, 0.1 and 0.5, with smaller values producing smoother
trends and larger values allowing more flexibility. The
seasonality prior scale, controlling the smoothness of the
seasonal curve, was tuned between 5, 10 and 20 [7], [8]. The
yearly seasonality was tuned between 5 and 10, controlling
whether and how Prophet models repeating yearly (12-month)
patterns in the data.

E. Model Evaluation

To evaluate the predictive performance and generalization
ability of the forecasting models, this study employed a 10-
fold cross-validation procedure based on a sliding window
scheme (Figure 1). In this approach, the time series data were
divided sequentially to preserve their temporal structure. For
each fold, approximately 90% of the data were used for model
training and the remaining 10% for testing, with the window
moving forward chronologically across the dataset. This
design ensures that each observation is used for both training
and validation while preventing data leakage from future to
past, thereby mimicking realistic forecasting conditions. The
sliding window cross-validation approach is particularly
appropriate for non-stationary and seasonal economic data
such as inflation, as it allows performance evaluation across
different time regimes and structural patterns [45].

Figure 1. Time series cross validation sliding window illustration.

Model performance was assessed using three
complementary error metrics: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute
Scaled Error (MASE). These metrics capture different aspects
of forecasting accuracy and are widely used in time-series
evaluation [36]. RMSE measures the square root of the
average squared difference between predicted and actual
values, placing greater emphasis on large errors and thus
reflecting the model’s sensitivity to outliers. It is defined as:

n

1

RMSE = |~ @, - y)? ©)
t=1

where y.and y.represent the actual and forecasted values,

respectively, and n is the number of test observations. Lower

RMSE values indicate better model performance.

The MAE quantifies the average absolute deviation
between predicted and actual values, providing a
straightforward interpretation of forecast accuracy in the same
units as the data:

n

1
MAE=—E V. —
n [ Ve —ye

t=1

Unlike RMSE, MAE treats all errors equally and is less
sensitive to extreme deviations. Because of its interpretability
and robustness, MAE is especially useful for comparing
models across different datasets or inflation regimes [46].

The MASE metric was also included to provide a scale-
independent measure that facilitates model comparison across
datasets or forecasting horizons. MASE is defined as:

n

MA5E=lZ - 19 — vl

=1 n-1 Yoy — yeal
where the denominator represents the in-sample MAE of a
naive one-step-ahead forecast. The MASE value below one
indicates that the model outperforms the naive benchmark,
while values greater than one suggest inferior performance
[47]. Together, RMSE, MAE, and MASE provide a
comprehensive evaluation of model accuracy by balancing
sensitivity to large deviations, interpretability, and
comparability.

(10)

(11D

I11. RESULTS AND DISCUSSION

Figure 2 presents the monthly CPI inflation rate of
Indonesia from May 2006 to April 2025, figuring the temporal
evolution and inherent seasonal fluctuations of consumer
prices over nearly two decades. The series exhibits clear
cyclical behavior characterized by recurring peaks and
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troughs within each year. In the early period between 2006
and 2009, the inflation rate shows substantial volatility,
reaching its highest recorded level—exceeding 10%—around
2008, which coincides with the global financial and
commodity price crisis that affected Indonesia’s domestic
price stability. Following this peak, inflation experienced a
temporary decline but remained unstable with pronounced

= CPI Trend

10

CPI Inflation

2006 2008 2010 2012 2014

annual fluctuations. Between 2010 and 2015, the series
continues to show recurrent sharp increases, reflecting
structural price adjustments and seasonal shocks, particularly
those linked to Ramadan—Eid al-Fitr demand surges and fuel
price policy reforms. Notably, there are several spikes around
2013-2014, aligning with government-led fuel subsidy
reductions that contributed to sudden price hikes.

2016
Year

2018 2020 2022 2024 2026

Figure 2. Time series plot of CPI rate at Indonesia.

The evaluation of the forecasting models in this study
employed a sliding window cross-validation scheme, which
is illustrated in Figure 3. In this approach, the CPI time series
was divided sequentially into multiple overlapping training
and testing subsets to ensure that the temporal order of the
data was preserved throughout the evaluation process. Each
panel in Figure 3 represents one of the folds, where the black
line indicates the training data used to fit the model and the
blue line represents the testing portion used for out-of-sample
validation. The procedure follows a 10-fold configuration,
where each fold uses approximately 90% of the observations
(108) for training and 10% (12) for testing. After each
iteration, the window slides forward by one testing segment,
discarding the earliest portion of data and incorporating newer
observations into the training set. This method ensures that
each observation is used for both training and testing across
different folds while maintaining the chronological integrity
of the time series. The sliding window design also helps
assess how well each model adapts to structural changes and
evolving seasonal dynamics in Indonesia’s inflation pattern,
providing a more realistic and comprehensive evaluation of
predictive performance.

Across the 10 sliding-window folds, the selected SARIMA
specifications show a consistent pattern: seasonal
differencing is never required (D = 0), and regular
differencing is rarely needed (most folds use d = 0, withd =
1 only in a few windows), indicating stable seasonal means
once seasonal dynamics are modeled explicitly. The seasonal
component is dominated by autoregressive terms, most
frequently SAR (1) or SAR (2) with period 12—sometimes
paired with a mild seasonal MA (1)—which reflects strong
annual persistence in Indonesia’s CPI inflation. On the non-
seasonal side, models are typically parsimonious AR (1), with
occasional ARMA structures (e.g., ARMA (2,1) or ARMA
(2,2)) appearing when short-run volatility is more
pronounced. Overall, these outcomes suggest that the
inflation process is driven by recurrent yearly inertia plus
intermittent transitory shocks, so simple seasonal AR terms
capture most of the structure, while MA terms and occasional
first differencing are only invoked in folds that include
localized drifts or higher short-horizon noise. The detail
results are presented in Table 2.
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Figure 3. Sliding window scheme of CPI with 10 windows.

For the GRU, the tuned settings display a stable pattern
across folds that balances capacity with training stability.
Hidden units concentrate at 32 and 128 (each appearing in
four folds) with 64 selected twice, suggesting that the series
alternates between calmer windows—where a compact 32-
unit layer suffices—and more complex regimes requiring a
richer 128-unit representation, while 64 units serves as an
intermediate capacity. Batch sizes are small to moderate—
most often 6 or 12 (with occasional 2, 4, 8, 10)—which injects
enough gradient noise to regularize without destabilizing
training and fits the relatively short monthly sequence length.
The most frequent learning rate is 0.0001 (six folds),
indicating that conservative steps are generally needed to
achieve smooth convergence on CPI data; 0.01 appears in
three folds and 0.001 in one fold, typically paired with smaller
batches and/or larger neuron counts when the window
contains stronger local nonlinearity and the optimizer benefits
from slightly faster progress. Taken together, these results
indicate that GRU performance is most reliable with small
learning rates and small-to-moderate batches, while model
capacity adapts to regime complexity—favoring 32 units in

stable periods and 128 units when seasonal patterns interact
with short-run shocks.

For Prophet, the tuned settings show a clear pattern across
folds: the model most often preferred multiplicative
seasonality (8/10 folds), consistent with CPI inflation
exhibiting seasonal amplitudes that scale with the level, while
additive seasonality appeared only in two calmer windows
where seasonal swings were more level-invariant. The yearly
seasonality order concentrated at 10 Fourier terms (with
occasional 5), indicating that a relatively flexible annual curve
is needed to capture Indonesia’s multi-peak within-year
structure (e.g., Ramadan/Eid, year-end effects), with N =5
chosen when a smoother seasonal shape sufficed. The
changepoint prior scale ranged from 0.05 to 0.5: lower values
(0.05-0.1) dominated—favoring smoother trends—while 0.5
was selected in a few folds that contained sharper post-shock
adjustments, allowing greater trend flexibility. The
seasonality prior scale clustered around 10 (spanning 5-20),
balancing fit and overfitting risk; higher settings (20) were
chosen when the seasonal component needed more “wiggle
room,” and lower settings (5) when parsimony was
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preferable. Overall, these outcomes suggest that Prophet
captures CPI dynamics best with a moderately flexible trend
and a relatively rich annual seasonal basis, typically in

multiplicative mode, while adapting its smoothness
parameters to the volatility regime present in each rolling
window.

TABLE 2
THE BEST HYPERPARAMETER EACH FOLD
SARIMA GRU PROPHET
Fold (0.d.q)(P.D,Q)s | Neuron Bqtch Learning Cha}ngepoint Sea_lsonality Seasonality Yearly
size rate prior scale prior scale mode seasonality
1 | (2,0,1)%x(2,0,0)12 64 10 0.0001 0.5 20 multiplicative 5
2 | (1,0,1)x(2,0,0)12 128 2 0.01 0.05 5 multiplicative 10
3 | (1,0,00x(2,0,0)12 128 6 0.001 0.1 10 multiplicative 10
4 | (1,0,00x(1,0,0)12 128 6 0.0001 0.05 10 multiplicative 10
5 (1,0,0)x(1,0,1)12 32 2 0.0001 0.5 5 multiplicative 5
6 | (1,0,00x(1,0,0)12 32 12 0.0001 0.05 10 multiplicative 10
7 | (0,1,0)x(1,0,0)12 32 8 0.0001 0.1 20 multiplicative 10
8 |(2,1,2)x(1,0,1)1. 128 6 0.01 0.5 20 additive 5
9 | (1,0,00x(1,0,1)12 64 4 0.01 0.05 5 additive 10
10 | (2,0,2)x(2,0,0)12 32 12 0.0001 0.5 10 multiplicative 10

As the model evaluation, the boxplots in Figure 4
summarize out-of-sample accuracy across folds for the three
metrics—RMSE, MAE, and MASE—and they show a
consistent ranking of models. Prophet (green) exhibits the
lowest central tendency and the tightest interquartile ranges in
all three panels, indicating both superior accuracy and high
stability across windows; its MASE distribution lies well
below 1 for most folds, outperforming the naive benchmark.
GRU (orange) typically sits in the middle, with medians
above Prophet but below SARIMA and comparatively
compact boxes, suggesting reliable performance and limited

sensitivity to regime changes; its MASE cluster hovers
around (often just below) the threshold of 1. SARIMA (blue)
shows the highest medians and the widest dispersion,
including several high outliers—most visible for MASE—
implying larger and more variable errors when the window
contains shocks or shifts points. The alignment of these
patterns across RMSE, MAE, and MASE reinforces the
conclusion that Prophet provides the most accurate and stable
forecasts in this setting, GRU offers competitive second-best
performance with moderate variability, and SARIMA ftrails
with higher error levels and greater fold-to-fold volatility.

Model
[ SARIMA GRU I Prophet
C
o
3.0 o
2.5
o
L 50 °
T o o
A=
3151
L]
1.0 1 5 — T
=]
I —-— © | |
0.5 1 -+ ' | — . I_LI
L i B L
RMSE MAE MASE
Metric

Figure. 4 Boxplot of model performance evaluation.
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TABLE 3
STATISTICAL SUMMARY OF METRIC EVALUATION

Model RMSE MAE MASE
SARIMA 0.990 + 0.763 0.811 + 0.632 1.164 + 1.015
(0.444,1.537) (0.358,1.263) (0.438,1.890)
GRU 0.820 + 0.546 0.646 + 0.453 0.942 + 0.766
(0.429,1.210) (0.322,0.970) (0.394,1.490)
PROPHET | ©0:728£0.516 | 0.609+0.486 | 0.874+0.792
(0.358,1.097) | (0.262,0.957) | (0.308 1.441)

Table 3 synthesizes the fold-level accuracy into means +
SD with 95% confidence intervals and shows a consistent
ordering across metrics. Prophet attains the lowest average
errors—RMSE 0.728 + 0.516 (0.358, 1.097), MAE 0.609 +
0.486 (0.262, 0.957), MASE 0.874 + 0.792 (0.308, 1.441)—
indicating both strong central performance and relatively tight
uncertainty bands. GRU ranks second—RMSE 0.820 + 0.546
(0.429, 1.210), MAE 0.646 + 0.453 (0.322, 0.970), MASE
0.942 £ 0.766 (0.394, 1.490)—with dispersion comparable to
Prophet and slightly smaller SDs for MAE/MASE. SARIMA
records the highest means and broadest intervals—RMSE
0.990 + 0.763 (0.444, 1.537), MAE 0.811 + 0.632 (0.358,
1.263), MASE 1.164 + 1.015 (0.438, 1.890)—signaling larger
and more variable errors across windows. Relative to
SARIMA, Prophet reduces average error by ~26.6% (RMSE),
24.9% (MAE), and 24.9% (MASE); GRU vyields ~17.2%,
20.3%, and 19.1% reductions, respectively, while Prophet
improves over GRU by ~11.2% (RMSE), 5.7% (MAE), and
7.2% (MASE). Notably, MASE highlights practical
relevance: SARIMA’s mean > 1 suggests, on average, it
underperforms the naive benchmark, whereas Prophet and
GRU means < 1 indicate consistent benchmark-beating
forecasts. Although the confidence intervals overlap, the
pattern of lower means and tighter spread for Prophet—and,
to a lesser extent, GRU—corrohorates the boxplot evidence
of superior and more stable performance.

To further examine whether the performance differences
observed across models are statistically meaningful, the
analysis of variance (ANOVA) was conducted. The analysis
produced a p-value of 0.2169, indicating that the null
hypothesis of equal mean performance across SARIMA,
GRU, and Prophet cannot be rejected at conventional
significance levels. Accordingly, while Prophet consistently
exhibits lower average errors and more stable distributions in
descriptive analyses, these advantages do not translate into
statistically significant differences. This result reinforces the
interpretation that the observed superiority of Prophet is
practically relevant and empirically robust across windows,
but not statistically conclusive under the ANOVA framework
employed in this study.

From a practical standpoint, these findings provide clear
guidance for decision making in financial and
macroeconomic policy contexts, even in the absence of
statistically significant differences under ANOVA. For
instance, central banks, fiscal authorities, and financial
institutions that rely on short-term CPI forecasts for inflation

targeting, budget planning, or interest rate setting can adopt
Prophet as a default operational model due to its consistently
lower errors, stability across rolling windows, and transparent
decomposition of trend and seasonality. The ability to
explicitly  identify  seasonal = components—such  as
Ramadan/Eid effects or year-end demand pressures—enables
policymakers to distinguish between transitory and persistent
inflation movements, reducing the risk of overreacting to
seasonal shocks. In financial markets, asset managers and risk
analysts can incorporate Prophet-based CPI projections into
inflation-linked bond valuation, real return forecasts, and
stress-testing  scenarios, while using GRU as a
complementary tool during periods of heightened volatility
when nonlinear dynamics dominate. Meanwhile, SARIMA
remains useful as a benchmark model for model validation
and regulatory reporting, where interpretability and
methodological familiarity are essential. Overall, the study
demonstrates how model selection informed by empirical
stability and interpretability can enhance the credibility and
effectiveness of inflation-related decisions, even when formal
statistical tests do not establish a definitive performance
hierarchy.

IV. CONCLUSION

Using nearly two decades of Indonesian CPI data and a 10-
fold sliding-window evaluation, this study finds that Prophet
delivers the lowest and most stable forecasting errors (RMSE,
MAE, MASE) across folds, with GRU a consistent runner-up
and SARIMA serving as a transparent but weaker baseline.
However, the subsequent ANOVA indicates that these
differences are not statistically significant at conventional
levels, implying that no single model can be declared superior
in a strict inferential sense. Nevertheless, MASE values below
1 for Prophet (and generally for GRU) indicate performance
superior to a naive benchmark. Beyond accuracy, Prophet’s
decomposable structure enhances interpretability, allowing
agencies to trace forecast movements to recognizable events
(e.g., Ramadan/Eid, year-end demand) and communicate
policy narratives clearly. Overall, the results support adopting
Prophet as the default operational forecaster for CPI
monitoring, with GRU reserved for periods of heightened
nonlinearity and SARIMA maintained as a diagnostic
reference.

This study acknowledges the limitations. Future work can
build on three priority directions. First, extend from univariate
to multivariate models by incorporating macro-financial and
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sectoral covariates—e.g., exchange rates (USD/IDR), import
prices, core vs. volatile foods, and policy/calendar dummies
(VAT changes, fuel price adjustments, Ramadan/Eid, school
holidays). Second, evaluate multi-horizon forecasting (1, 3, 6,
12 months ahead) and probabilistic outputs (prediction
intervals, CRPS) to quantify risk. Third, investigate
hybrid/ensemble strategies that combine Prophet, GRU, and
SARIMA or use regime-aware weighting. Collectively, these
enhancements would strengthen both explanatory power and
operational reliability, yielding forecasts that are more
accurate, better calibrated, and easier to trust in policy and
market settings.
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