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 Seasonal dynamics make inflation forecasting challenging in emerging economies 

where holiday effects, regulated prices, and supply shocks interact. This study 

models Indonesia’s monthly consumer price inflation (CPI) using official data from 

Statistics Indonesia (May 2006–April 2025) and evaluates three forecasting 

paradigms: a classical seasonal baseline (SARIMA), a decomposable model with 

trend–seasonality components (Prophet), and a neural sequence learner (GRU). A 

10-fold sliding window design is employed to preserve temporal order. Performance 

is assessed with RMSE, MAE, and MASE, summarized across folds with boxplots 
and statistical descriptives (means, standard deviations, and 95% confidence 

intervals). Across folds and metrics, Prophet consistently achieves the lowest error 

and the tightest dispersion, GRU ranks second with competitive accuracy and stable 

variance, and SARIMA remains a transparent yet weaker benchmark. MASE values 

below one for Prophet (and generally for GRU) indicate improvements over a naïve 

baseline. Practically, Prophet’s decompositions support policy communication by 

linking forecast movements to interpretable components (e.g., Ramadan/Eid and 

year-end effects), while GRU is useful during more nonlinear or volatile periods; 

SARIMA remains valuable for diagnostics in stable regimes. 
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I. INTRODUCTION 

Seasonal patterns in economic time series pose persistent 

challenges for accurate modeling and forecasting. The 

interaction between recurring patterns, nonlinear trends, and 

structural breaks often leads to model instability and biased 

forecasts, especially in macroeconomic data such as 

consumer price inflation (CPI). Traditional approaches such 

as the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model have long served as robust benchmarks for 

seasonally dependent data due to their interpretability and 

clear parameterization [1], [2]. However, SARIMA’s 
assumptions of fixed periodicity and linear dynamics can 

limit its performance when the seasonal structure evolves or 

when exogenous calendar effects play a major role [3], [4]. 

Recent studies emphasize that seasonal time series often 

exhibit multiple, overlapping, or time-varying seasonalities, 

which require more flexible frameworks such as Multiple 

Seasonal-Trend Decomposition (MSTL) or TBATS [4], [5]. 

For business and policy applications, decomposable models 

like Prophet have become increasingly popular due to their 

ability to capture complex patterns using additive components 

of trend, seasonality, and holiday effects [6]–[9]. Prophet’s 

explicit inclusion of holiday and calendar regressors makes it 
especially suitable for economies like Indonesia, where 

inflation cycles often correspond to festive seasons such as 

Ramadan and Eid al-Fitr [10], [11]. Comparative studies 

show that Prophet and its hybrid forms (e.g., Prophet-SVR, 

Prophet-EMD) can outperform traditional methods when 

nonlinear or irregular seasonal patterns are present [6], [7], 

[12], [13]. 

Parallel to these developments, advances in deep learning 

have reshaped the landscape of time-series forecasting. 

Neural-network architectures such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRU) can learn 

long-range temporal dependencies without explicit feature 
engineering [14]–[16]. Among these, GRU has received 

increasing attention because of its computational efficiency 
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and comparable accuracy to LSTM, particularly for economic 

and financial forecasting [17]–[19]. Researchers have also 

proposed hybrid and enhanced GRU variants—such as eGRU 

or Bi-GRU architectures—that improve performance under 

extreme events or multivariate setups [16], [18], [19]. 

Empirical comparisons consistently demonstrate that deep-

learning methods can capture nonlinear dynamics in inflation 

and energy-price series more effectively than traditional 
statistical models [13], [20]–[22]. 

Within the inflation-forecasting literature, results remain 

mixed. Classical models like SARIMA or Holt-Winters often 

perform well under stable conditions [23], [24], whereas 

neural and hybrid models excel when seasonality interacts 

with policy shocks or high volatility [25]–[27]. Studies in 

emerging markets show that inflation data frequently contain 

irregular periodicities, suggesting that flexible decomposable 

or learning-based models may better adapt to structural breaks 

and shifts [10], [25]. However, the performance of these 

models depends heavily on data characteristics, tuning, and 
cross-validation strategy—issues that remain under-explored 

for Indonesian inflation. 

This study contributes to that gap by comparing SARIMA, 

Prophet, and GRU models on Indonesia’s monthly CPI. The 

dataset provides an ideal environment to evaluate seasonal 

modeling because it combines recurring within-year patterns 

with evolving macroeconomic conditions. By systematically 

evaluating three contrasting approaches—a statistical 

benchmark, a decomposable machine-learning model, and a 

neural-network sequence model—this study assesses how 

each captures seasonal complexity and temporal 

dependencies. Similar comparative frameworks have proven 
valuable in prior forecasting studies across domains including 

energy, retail, and tourism [5], [12], [13]. 

Ultimately, this research aims to offer both empirical and 

methodological contributions. Empirically, it provides an 

updated evaluation of seasonal forecasting models in the 

context of Indonesian inflation—a critical variable for 

monetary and fiscal policy. Methodologically, it extends prior 

comparative analyses by jointly considering interpretability, 

stability, and accuracy under seasonal complexity. The 

findings are expected to guide statistical agencies, financial 

institutions, and researchers in selecting forecasting tools that 
balance robustness, transparency, and adaptability in 

modeling seasonal time series [3], [15], [21]. 

II. METHOD 

A. Data 

This study employs monthly CPI data for Indonesia 

covering the period May 2006 to April 2025, obtained from 
Statistics Indonesia (Badan Pusat Statistik) through its official 

website https://www.bps.go.id. The CPI series represents 

percentage changes in the consumer price index, which 

reflects the general movement of consumer goods and service 

prices across the country. 

The selected time span provides a sufficiently long horizon 

to capture multiple economic cycles, structural shifts, and 

seasonal patterns within the Indonesian economy. It includes 

periods of major policy adjustments, global economic crises, 

the COVID-19 pandemic, and post-pandemic recovery phases 

– allowing the models to learn from diverse macroeconomic 

conditions and to identify both stable and evolving seasonal 

structures. Using data up to April 2025 ensures that the 

analysis incorporates the most recent and comprehensive 

information available, enhancing the relevance of the 
forecasting evaluation. The monthly frequency further allows 

detailed examination of intra-annual variations, which are 

essential for modeling seasonal inflation dynamics in 

Indonesia’s consumer price behavior. 

B. SARIMA 

The Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model extends the traditional ARIMA framework 

by incorporating both non-seasonal and seasonal components 

to account for recurring patterns in time-series data. It is 

particularly suitable for modeling and forecasting economic 

indicators that exhibit seasonal fluctuations, such as consumer 

price inflation. The general form of a SARIMA model is 

denoted as SARIMA(p, d, q)(P, D, Q)s, where (p, d, q) 

represents the non-seasonal autoregressive, differencing, and 

moving-average orders, and (P, D, Q)s corresponds to their 

seasonal counterparts with a periodicity s (e.g., s = 12 for 

monthly data). The general equation for a SARIMA process 
can be expressed as: 

Φ𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = Θ𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝜀𝑡   (1) 

where 𝑦𝑡 denotes the observed time series at time 𝑡, 𝐵 is the 

backshift operator (𝐵𝑦𝑡 = 𝑦𝑡−1), 𝜙𝑝(𝐵) and Φ𝑃(𝐵𝑠) are the 

non-seasonal and seasonal autoregressive polynomials, 𝜃𝑞(𝐵) 

and Θ𝑄(𝐵𝑠) are the corresponding moving-average 

polynomials, and 𝜀𝑡  represents a white-noise error term with 

zero mean and constant variance [28]–[30]. 

The SARIMA modeling process generally involves four 

main stages: (1) data visualization and stationarity 

assessment, (2) identification of model orders, (3) parameter 

estimation and model fitting, and (4) diagnostic checking and 

model selection. First, the data are visually inspected to detect 

trends and seasonality. Stationarity is then evaluated using 

unit-root tests such as the Augmented Dickey–Fuller (ADF) 

or Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests [31], 
[32]. If the series is non-stationary, differencing (both regular 

and seasonal) is applied to stabilize the mean and variance. 

Next, candidate models are identified by analyzing the 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots, which help determine appropriate 

values of p, q, P, and Q. After potential models are specified, 

parameters are estimated using maximum likelihood, and the 

best-fitting model is chosen based on statistical criteria such 

as the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and diagnostic measures from 

residual analysis [33]–[35]. 
In this study, to improve efficiency and avoid manual trial-

and-error, the model specification was selected automatically 

https://www.bps.go.id/


774               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  772 – 781 

using the Auto ARIMA algorithm. Auto ARIMA 

systematically searches through multiple combinations of (p, 

d, q)(P, D, Q)s and evaluates each model’s fit according to 

AIC or BIC values [36]. The procedure combines unit-root 

testing for differencing order selection with a stepwise search 

algorithm that iteratively adds or removes parameters to 

identify the optimal configuration [37]. This approach is 

particularly advantageous for long seasonal economic time 

series, such as monthly inflation data, because it reduces 
subjectivity in model identification and ensures 

computational consistency [38]. 

C. Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit (GRU) is a recurrent neural 

network (RNN) architecture designed to efficiently model 

sequential data by overcoming the vanishing gradient 
problem inherent in traditional RNNs. The GRU offers a 

simplified, yet powerful structure compared to the Long 

Short-Term Memory (LSTM) network, making it 

computationally efficient while maintaining comparable 

predictive performance [14], [39]. The GRU architecture 

operates through two gating mechanisms—an update gate and 

a reset gate—that control how much past information is 

carried forward and how much is discarded at each time step. 

These gates are mathematically defined as: 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡])                              (2) 
and  

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡])                              (3) 

where 𝑧𝑡 and 𝑟𝑡  denote the update and reset gates, 

respectively; ℎ𝑡−1 is the previous hidden state; 𝑥𝑡 is the 

current input; and 𝜎(⋅) is the sigmoid activation function. The 

candidate hidden state is then computed as: 

ℎ̃𝑡 = tanh(𝑊ℎ[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])                    (4) 
and the final hidden state at time t is updated as: 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡                   (5) 
Through this mechanism, GRU can adaptively retain or forget 

information over time, allowing them to effectively capture 

both short- and long-term dependencies that characterize 

inflation time series [18], [40], [41]. 

The GRU modeling process followed three main stages: 

preprocessing, model training, and optimization. The 

preprocessing stage involved data reconstruction into data 
that is suitable for supervised learning methods (i.e., data with 

predictors and respons variables). Next, the GRU network 

was constructed as a sequential model comprising one GRU 

layer followed by a dropout layer 10%, and dense output 

layer. Lastly, hyperparameter tuning was performed to 

identify the most effective configuration of the GRU model. 

The tuning process aimed to balance accuracy, 

computational cost, and generalization capability. Three key 

hyperparameters were optimized through a grid search: 

number of neurons in the GRU layer, batch size, and learning 

rate. The tested and selected values are summarized in Table 

1. The model was trained using the Adam optimizer over 500 
epochs. 

 

TABLE 1 

THE SELECTED HYPERPARAMETER VALUES FOR TUNING 

GRU PROPHET 

Hyper-

parameter 

Tested 

values 

Hyper-

parameter 

Tested 

values 

Number of 

neurons (n) 

32, 64, 

128 

Changepoint 

prior scale 

(cps) 

0.05, 0.1, 

0.5 

Batch size (bs) 2, 4, 6, 8, 

10, 12 

Seasonality 

prior scale 

(sps) 

5, 10, 20 

Learning rate 
(lr) 

0.01, 
0.001, 

0.001 

Seasonality 
mode (sm) 

Additive, 
multipli-

cative 

  Yearly 

seasonality 

(ys) 

5, 10 

This systematic hyperparameter tuning process enabled the 

GRU to effectively generalize across different seasonal 

regimes and inflation shocks. By adaptively learning long-

term dependencies through its gating mechanisms, the final 

model achieved stable convergence and accurate inflation 

forecasts on both training and testing sets. These results are 

consistent with recent findings demonstrating that GRU-

based models can outperform traditional statistical methods 
and even more complex deep learning architectures in terms 

of forecasting accuracy, computational efficiency, and 

robustness to structural changes in macroeconomic data [21], 

[42]. 

D. Prophet 

The Prophet model represents a flexible and interpretable 
forecasting framework that combines time-series 

decomposition with additive regression modeling. It is 

designed to handle complex seasonal structures, missing data, 

trend shifts, and holiday effects. Prophet decomposes a time 

series 𝑦(𝑡) into three main components—trend 𝑔(𝑡), 

seasonality 𝑠(𝑡), and holiday effects ℎ(𝑡)—plus an error term 

𝜀𝑡 , expressed as: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡                      (6) 

where 𝑔(𝑡) captures long-term growth or decline, 𝑠(𝑡) 

models periodic patterns such as annual or monthly 

seasonality, and ℎ(𝑡) accounts for known external events that 

may influence prices. Prophet assumes an additive structure, 

which makes it intuitive for interpretation and robust to 

outliers [43], [44]. 

The trend component 𝑔(𝑡) can take either a piecewise 

linear or logistic growth form (in this study linear form is 

used). The piecewise linear trend allows changes in slope at 

specified changepoints, making it well-suited for inflation 
data characterized by abrupt shifts due to policy changes, 

global economic shocks, or structural transitions. It is 

formulated as: 

𝑔(𝑡) = (𝑘 + 𝑎(𝑡)⊤𝛿)𝑡 + (𝑚 + 𝑎(𝑡)⊤𝛾)            (7) 

where 𝑘 is the initial growth rate, 𝑚 is the offset parameter, 

𝑎(𝑡) is a vector of indicators showing whether each 
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changepoint has been passed, and 𝛿 and 𝛾 represent rate and 

offset adjustments at changepoints, respectively [43]. Prophet 

automatically determines changepoints and adjusts the 

flexibility of the trend using a hyperparameter known as the 

changepoint prior scale, which balances model adaptability 

and generalization [18]. 

The seasonal term 𝑠(𝑡) is modeled using a Fourier series 
expansion, which captures periodic patterns of arbitrary 

complexity. The model approximates seasonality with: 

𝑠(𝑡) = ∑ (𝑎𝑛 cos (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 sin (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

        (8) 

where 𝑃 is the seasonal period (e.g., 12 for monthly data), and 

𝑁 determines the number of harmonics used. This 
representation allows Prophet to flexibly approximate 

complex seasonal effects that are not strictly sinusoidal, 

which is crucial for modeling Indonesia’s consumer price 

inflation given its multi-peak patterns linked to Ramadan, 

Eid, and agricultural cycles [6]–[8]. Meanwhile, the holiday 

and event component ℎ(𝑡) captures short-term variations 

associated with specific calendar events. 

Hyperparameter tuning was conducted to refine Prophet’s 

performance by adjusting several key parameters (Table 1): 

the seasonality mode (additive vs. multiplicative), 
changepoint prior scale, seasonality prior scale, and yearly 

seasonality. The changepoint prior scale was varied among 

0.05, 0.1 and 0.5, with smaller values producing smoother 

trends and larger values allowing more flexibility. The 

seasonality prior scale, controlling the smoothness of the 

seasonal curve, was tuned between 5, 10 and 20 [7], [8]. The 

yearly seasonality was tuned between 5 and 10, controlling 

whether and how Prophet models repeating yearly (12-month) 

patterns in the data. 

E. Model Evaluation 

To evaluate the predictive performance and generalization 

ability of the forecasting models, this study employed a 10-

fold cross-validation procedure based on a sliding window 

scheme (Figure 1). In this approach, the time series data were 

divided sequentially to preserve their temporal structure. For 

each fold, approximately 90% of the data were used for model 

training and the remaining 10% for testing, with the window 
moving forward chronologically across the dataset. This 

design ensures that each observation is used for both training 

and validation while preventing data leakage from future to 

past, thereby mimicking realistic forecasting conditions. The 

sliding window cross-validation approach is particularly 

appropriate for non-stationary and seasonal economic data 

such as inflation, as it allows performance evaluation across 

different time regimes and structural patterns [45]. 

 
Figure 1. Time series cross validation sliding window illustration.  

Model performance was assessed using three 

complementary error metrics: Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Scaled Error (MASE). These metrics capture different aspects 

of forecasting accuracy and are widely used in time-series 
evaluation [36]. RMSE measures the square root of the 

average squared difference between predicted and actual 

values, placing greater emphasis on large errors and thus 

reflecting the model’s sensitivity to outliers. It is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑡 − 𝑦𝑡)2

𝑛

𝑡=1

                          (9) 

where 𝑦𝑡and 𝑦̂𝑡represent the actual and forecasted values, 
respectively, and n is the number of test observations. Lower 

RMSE values indicate better model performance. 

The MAE quantifies the average absolute deviation 

between predicted and actual values, providing a 

straightforward interpretation of forecast accuracy in the same 

units as the data: 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦̂𝑡 − 𝑦𝑡 ∣

𝑛

𝑡=1

                          (10) 

Unlike RMSE, MAE treats all errors equally and is less 

sensitive to extreme deviations. Because of its interpretability 

and robustness, MAE is especially useful for comparing 

models across different datasets or inflation regimes [46]. 

The MASE metric was also included to provide a scale-

independent measure that facilitates model comparison across 

datasets or forecasting horizons. MASE is defined as: 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑

|𝑦̂𝑡 − 𝑦𝑡|

1
𝑛 − 1

∑ |𝑦𝑡 − 𝑦𝑡−1|𝑛
𝑡=2

𝑛

𝑡=1

             (11) 

where the denominator represents the in-sample MAE of a 

naive one-step-ahead forecast. The MASE value below one 

indicates that the model outperforms the naive benchmark, 
while values greater than one suggest inferior performance 

[47]. Together, RMSE, MAE, and MASE provide a 

comprehensive evaluation of model accuracy by balancing 

sensitivity to large deviations, interpretability, and 

comparability. 

III. RESULTS AND DISCUSSION 

Figure 2 presents the monthly CPI inflation rate of 

Indonesia from May 2006 to April 2025, figuring the temporal 

evolution and inherent seasonal fluctuations of consumer 

prices over nearly two decades. The series exhibits clear 

cyclical behavior characterized by recurring peaks and 
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troughs within each year. In the early period between 2006 

and 2009, the inflation rate shows substantial volatility, 

reaching its highest recorded level—exceeding 10%—around 

2008, which coincides with the global financial and 

commodity price crisis that affected Indonesia’s domestic 

price stability. Following this peak, inflation experienced a 

temporary decline but remained unstable with pronounced 

annual fluctuations. Between 2010 and 2015, the series 

continues to show recurrent sharp increases, reflecting 

structural price adjustments and seasonal shocks, particularly 

those linked to Ramadan–Eid al-Fitr demand surges and fuel 

price policy reforms. Notably, there are several spikes around 

2013–2014, aligning with government-led fuel subsidy 

reductions that contributed to sudden price hikes. 

 
Figure 2. Time series plot of CPI rate at Indonesia.  

The evaluation of the forecasting models in this study 

employed a sliding window cross-validation scheme, which 

is illustrated in Figure 3. In this approach, the CPI time series 

was divided sequentially into multiple overlapping training 

and testing subsets to ensure that the temporal order of the 

data was preserved throughout the evaluation process. Each 

panel in Figure 3 represents one of the folds, where the black 

line indicates the training data used to fit the model and the 

blue line represents the testing portion used for out-of-sample 

validation. The procedure follows a 10-fold configuration, 

where each fold uses approximately 90% of the observations 
(108) for training and 10% (12) for testing. After each 

iteration, the window slides forward by one testing segment, 

discarding the earliest portion of data and incorporating newer 

observations into the training set. This method ensures that 

each observation is used for both training and testing across 

different folds while maintaining the chronological integrity 

of the time series. The sliding window design also helps 

assess how well each model adapts to structural changes and 

evolving seasonal dynamics in Indonesia’s inflation pattern, 

providing a more realistic and comprehensive evaluation of 

predictive performance. 

Across the 10 sliding-window folds, the selected SARIMA 

specifications show a consistent pattern: seasonal 

differencing is never required (𝐷 = 0), and regular 

differencing is rarely needed (most folds use 𝑑 = 0, with 𝑑 =
1 only in a few windows), indicating stable seasonal means 

once seasonal dynamics are modeled explicitly. The seasonal 

component is dominated by autoregressive terms, most 

frequently SAR (1) or SAR (2) with period 12—sometimes 
paired with a mild seasonal MA (1)—which reflects strong 

annual persistence in Indonesia’s CPI inflation. On the non-

seasonal side, models are typically parsimonious AR (1), with 

occasional ARMA structures (e.g., ARMA (2,1) or ARMA 

(2,2)) appearing when short-run volatility is more 

pronounced. Overall, these outcomes suggest that the 

inflation process is driven by recurrent yearly inertia plus 

intermittent transitory shocks, so simple seasonal AR terms 

capture most of the structure, while MA terms and occasional 

first differencing are only invoked in folds that include 

localized drifts or higher short-horizon noise. The detail 

results are presented in Table 2.
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Figure 3. Sliding window scheme of CPI with 10 windows.  

For the GRU, the tuned settings display a stable pattern 

across folds that balances capacity with training stability. 

Hidden units concentrate at 32 and 128 (each appearing in 

four folds) with 64 selected twice, suggesting that the series 

alternates between calmer windows—where a compact 32-

unit layer suffices—and more complex regimes requiring a 
richer 128-unit representation, while 64 units serves as an 

intermediate capacity. Batch sizes are small to moderate—

most often 6 or 12 (with occasional 2, 4, 8, 10)—which injects 

enough gradient noise to regularize without destabilizing 

training and fits the relatively short monthly sequence length. 

The most frequent learning rate is 0.0001 (six folds), 

indicating that conservative steps are generally needed to 

achieve smooth convergence on CPI data; 0.01 appears in 

three folds and 0.001 in one fold, typically paired with smaller 

batches and/or larger neuron counts when the window 

contains stronger local nonlinearity and the optimizer benefits 
from slightly faster progress. Taken together, these results 

indicate that GRU performance is most reliable with small 

learning rates and small-to-moderate batches, while model 

capacity adapts to regime complexity—favoring 32 units in 

stable periods and 128 units when seasonal patterns interact 

with short-run shocks. 

For Prophet, the tuned settings show a clear pattern across 

folds: the model most often preferred multiplicative 

seasonality (8/10 folds), consistent with CPI inflation 

exhibiting seasonal amplitudes that scale with the level, while 
additive seasonality appeared only in two calmer windows 

where seasonal swings were more level-invariant. The yearly 

seasonality order concentrated at 10 Fourier terms (with 

occasional 5), indicating that a relatively flexible annual curve 

is needed to capture Indonesia’s multi-peak within-year 

structure (e.g., Ramadan/Eid, year-end effects), with 𝑁 = 5 

chosen when a smoother seasonal shape sufficed. The 

changepoint prior scale ranged from 0.05 to 0.5: lower values 

(0.05–0.1) dominated—favoring smoother trends—while 0.5 

was selected in a few folds that contained sharper post-shock 
adjustments, allowing greater trend flexibility. The 

seasonality prior scale clustered around 10 (spanning 5–20), 

balancing fit and overfitting risk; higher settings (20) were 

chosen when the seasonal component needed more “wiggle 

room,” and lower settings (5) when parsimony was 
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preferable. Overall, these outcomes suggest that Prophet 

captures CPI dynamics best with a moderately flexible trend 

and a relatively rich annual seasonal basis, typically in 

multiplicative mode, while adapting its smoothness 

parameters to the volatility regime present in each rolling 

window.

 
TABLE 2 

THE BEST HYPERPARAMETER EACH FOLD 

Fold 

SARIMA GRU PROPHET 

(p,d,q)(P,D,Q)s Neuron 
Batch 

size 

Learning 

rate 

Changepoint 

prior scale 

Seasonality 

prior scale 

Seasonality 

mode 

Yearly 

seasonality 

1 (2,0,1)×(2,0,0)12  64 10 0.0001 0.5 20 multiplicative 5 

2 (1,0,1)×(2,0,0)12 128 2 0.01 0.05 5 multiplicative 10 

3 (1,0,0)×(2,0,0)12 128 6 0.001 0.1 10 multiplicative 10 

4 (1,0,0)×(1,0,0)12 128 6 0.0001 0.05 10 multiplicative 10 

5 (1,0,0)×(1,0,1)12 32 2 0.0001 0.5 5 multiplicative 5 

6 (1,0,0)×(1,0,0)12 32 12 0.0001 0.05 10 multiplicative 10 

7 (0,1,0)×(1,0,0)12 32 8 0.0001 0.1 20 multiplicative 10 

8 (2,1,2)×(1,0,1)12 128 6 0.01 0.5 20 additive 5 

9 (1,0,0)×(1,0,1)12  64 4 0.01 0.05 5 additive 10 

10 (2,0,2)×(2,0,0)12  32 12 0.0001 0.5 10 multiplicative 10 

 

As the model evaluation, the boxplots in Figure 4 

summarize out-of-sample accuracy across folds for the three 

metrics—RMSE, MAE, and MASE—and they show a 

consistent ranking of models. Prophet (green) exhibits the 
lowest central tendency and the tightest interquartile ranges in 

all three panels, indicating both superior accuracy and high 

stability across windows; its MASE distribution lies well 

below 1 for most folds, outperforming the naïve benchmark. 

GRU (orange) typically sits in the middle, with medians 

above Prophet but below SARIMA and comparatively 

compact boxes, suggesting reliable performance and limited 

sensitivity to regime changes; its MASE cluster hovers 

around (often just below) the threshold of 1. SARIMA (blue) 

shows the highest medians and the widest dispersion, 

including several high outliers—most visible for MASE—
implying larger and more variable errors when the window 

contains shocks or shifts points. The alignment of these 

patterns across RMSE, MAE, and MASE reinforces the 

conclusion that Prophet provides the most accurate and stable 

forecasts in this setting, GRU offers competitive second-best 

performance with moderate variability, and SARIMA trails 

with higher error levels and greater fold-to-fold volatility.

 
Figure. 4 Boxplot of model performance evaluation.  
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TABLE 3 

STATISTICAL SUMMARY OF METRIC EVALUATION 

Model RMSE MAE MASE 

SARIMA 
0.990 ± 0.763 
(0.444, 1.537) 

0.811 ± 0.632 
(0.358, 1.263) 

1.164 ± 1.015 
(0.438, 1.890) 

GRU 
0.820 ± 0.546 
(0.429, 1.210) 

0.646 ± 0.453 
(0.322, 0.970) 

0.942 ± 0.766 
(0.394, 1.490) 

PROPHET 
𝟎. 𝟕𝟐𝟖 ± 𝟎. 𝟓𝟏𝟔 
(𝟎. 𝟑𝟓𝟖, 𝟏. 𝟎𝟗𝟕) 

𝟎. 𝟔𝟎𝟗 ± 𝟎. 𝟒𝟖𝟔 
(𝟎. 𝟐𝟔𝟐, 𝟎. 𝟗𝟓𝟕) 

𝟎. 𝟖𝟕𝟒 ± 𝟎. 𝟕𝟗𝟐 
(𝟎. 𝟑𝟎𝟖, 𝟏. 𝟒𝟒𝟏) 

Table 3 synthesizes the fold-level accuracy into means ± 

SD with 95% confidence intervals and shows a consistent 

ordering across metrics. Prophet attains the lowest average 

errors—RMSE 0.728 ± 0.516 (0.358, 1.097), MAE 0.609 ± 

0.486 (0.262, 0.957), MASE 0.874 ± 0.792 (0.308, 1.441)—

indicating both strong central performance and relatively tight 

uncertainty bands. GRU ranks second—RMSE 0.820 ± 0.546 

(0.429, 1.210), MAE 0.646 ± 0.453 (0.322, 0.970), MASE 
0.942 ± 0.766 (0.394, 1.490)—with dispersion comparable to 

Prophet and slightly smaller SDs for MAE/MASE. SARIMA 

records the highest means and broadest intervals—RMSE 

0.990 ± 0.763 (0.444, 1.537), MAE 0.811 ± 0.632 (0.358, 

1.263), MASE 1.164 ± 1.015 (0.438, 1.890)—signaling larger 

and more variable errors across windows. Relative to 

SARIMA, Prophet reduces average error by ~26.6% (RMSE), 

24.9% (MAE), and 24.9% (MASE); GRU yields ~17.2%, 

20.3%, and 19.1% reductions, respectively, while Prophet 

improves over GRU by ~11.2% (RMSE), 5.7% (MAE), and 

7.2% (MASE). Notably, MASE highlights practical 
relevance: SARIMA’s mean > 1 suggests, on average, it 

underperforms the naïve benchmark, whereas Prophet and 

GRU means < 1 indicate consistent benchmark-beating 

forecasts. Although the confidence intervals overlap, the 

pattern of lower means and tighter spread for Prophet—and, 

to a lesser extent, GRU—corroborates the boxplot evidence 

of superior and more stable performance. 

To further examine whether the performance differences 

observed across models are statistically meaningful, the 

analysis of variance (ANOVA) was conducted. The analysis 

produced a p-value of 0.2169, indicating that the null 

hypothesis of equal mean performance across SARIMA, 
GRU, and Prophet cannot be rejected at conventional 

significance levels. Accordingly, while Prophet consistently 

exhibits lower average errors and more stable distributions in 

descriptive analyses, these advantages do not translate into 

statistically significant differences. This result reinforces the 

interpretation that the observed superiority of Prophet is 

practically relevant and empirically robust across windows, 

but not statistically conclusive under the ANOVA framework 

employed in this study. 

From a practical standpoint, these findings provide clear 

guidance for decision making in financial and 
macroeconomic policy contexts, even in the absence of 

statistically significant differences under ANOVA. For 

instance, central banks, fiscal authorities, and financial 

institutions that rely on short-term CPI forecasts for inflation 

targeting, budget planning, or interest rate setting can adopt 

Prophet as a default operational model due to its consistently 

lower errors, stability across rolling windows, and transparent 

decomposition of trend and seasonality. The ability to 

explicitly identify seasonal components—such as 

Ramadan/Eid effects or year-end demand pressures—enables 

policymakers to distinguish between transitory and persistent 

inflation movements, reducing the risk of overreacting to 
seasonal shocks. In financial markets, asset managers and risk 

analysts can incorporate Prophet-based CPI projections into 

inflation-linked bond valuation, real return forecasts, and 

stress-testing scenarios, while using GRU as a 

complementary tool during periods of heightened volatility 

when nonlinear dynamics dominate. Meanwhile, SARIMA 

remains useful as a benchmark model for model validation 

and regulatory reporting, where interpretability and 

methodological familiarity are essential. Overall, the study 

demonstrates how model selection informed by empirical 

stability and interpretability can enhance the credibility and 
effectiveness of inflation-related decisions, even when formal 

statistical tests do not establish a definitive performance 

hierarchy. 

IV. CONCLUSION 

Using nearly two decades of Indonesian CPI data and a 10-

fold sliding-window evaluation, this study finds that Prophet 

delivers the lowest and most stable forecasting errors (RMSE, 

MAE, MASE) across folds, with GRU a consistent runner-up 

and SARIMA serving as a transparent but weaker baseline. 

However, the subsequent ANOVA indicates that these 

differences are not statistically significant at conventional 

levels, implying that no single model can be declared superior 
in a strict inferential sense. Nevertheless, MASE values below 

1 for Prophet (and generally for GRU) indicate performance 

superior to a naïve benchmark. Beyond accuracy, Prophet’s 

decomposable structure enhances interpretability, allowing 

agencies to trace forecast movements to recognizable events 

(e.g., Ramadan/Eid, year-end demand) and communicate 

policy narratives clearly. Overall, the results support adopting 

Prophet as the default operational forecaster for CPI 

monitoring, with GRU reserved for periods of heightened 

nonlinearity and SARIMA maintained as a diagnostic 

reference. 
This study acknowledges the limitations.  Future work can 

build on three priority directions. First, extend from univariate 

to multivariate models by incorporating macro-financial and 
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sectoral covariates—e.g., exchange rates (USD/IDR), import 

prices, core vs. volatile foods, and policy/calendar dummies 

(VAT changes, fuel price adjustments, Ramadan/Eid, school 

holidays). Second, evaluate multi-horizon forecasting (1, 3, 6, 

12 months ahead) and probabilistic outputs (prediction 

intervals, CRPS) to quantify risk. Third, investigate 

hybrid/ensemble strategies that combine Prophet, GRU, and 

SARIMA or use regime-aware weighting. Collectively, these 

enhancements would strengthen both explanatory power and 
operational reliability, yielding forecasts that are more 

accurate, better calibrated, and easier to trust in policy and 

market settings. 
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