Journal of Applied Informatics and Computing (JAIC)
Vol.10, No.1, February 2026, pp. 889~899

e-ISSN: 2548-6861

889

Implementing Defense-in-Depth Framework on Orange Pi NAS Using

Host-Based Security and ZFS

Muhammad Fatih Hady '*, Hafiyyan Putra Pratama *
* Department of Telecommunication Systems, Universitas Pendidikan Indonesia

muhammadfatihhady@upi.edu !, hafiyyan@upi.edu 2

Article Info

ABSTRACT

Article history:

Received 2025-11-19
Revised 2026-01-30
Accepted 2026-02-09

Keyword:

Defense-in-Depth,
NAS,

Orange Pi,
Debian.

Network-Attached Storage (NAS) based on low-cost Single Board Computers (SBC)
offers an affordable alternative to commercial storage systems, yet its exposure to
network-based threats requires a robust and layered security approach. This research
implements the Defense-in-Depth (DiD) framework on an Orange Pi based NAS
running Debian 12, integrating host-based security mechanisms and the ZFS file
system to enhance data integrity, availability, and system resilience. The security
layers include firewall restrictions, intrusion prevention with Fail2Ban, integrity
monitoring using AIDE and rkhunter, system auditing with Lynis, and log analysis
with Logwatch. Additionally, ZFS snapshots and the Sanoid retention policy are
applied to provide rapid data recovery with minimal storage overhead. Experimental
results show that all defense layers function effectively under testing scenarios such
as brute-force attempts, unauthorized port access, file modification, and data
deletion. ZFS snapshots successfully restore deleted or altered files, ensuring
minimal Recovery Point Objective (RPO) of one hour. System performance
remained stable, with CPU usage averaging only 7.9% and memory usage at 33%,
indicating that the DiD model is feasible even on low-resource SBC hardware. These
findings demonstrate that a cost-efficient SBC-based NAS can achieve strong
resilience against common cyber threats through layered security design and modern
file system capabilities.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Network-Attached Storage (NAS) has become an
important component in modern IT infrastructure to meet the
needs for centralized data storage and reliable file sharing [1].
Technological developments have enabled the
implementation of NAS using low-cost hardware such as
Single Board Computers (SBC) like Orange Pi, running on
the Debian Linux operating system. This solution offers
significant cost efficiency compared to commercial solutions,
making it an attractive choice for SMEs and home users [2].
Nevertheless, a NAS system connected to the network is
vulnerable to various cyber threats, ranging from Denial of
Service (DoS) attacks aimed at disabling services to brute
force attempts CC BY SA This is an open access article under
the CC-BY-SA license. to gain unauthorized access,
especially through remote services like SSH [3], [4].

To address this complexity of threats, the security strategy
used must be layered, which is known as the Defense-in-
Depth (DiD) model [5]. The DiD model is based on the
principle that if one layer of defense fails, the next layer will
prevent the attack from succeeding completely [6]. The DiD
strategy is continuously being expanded in cybersecurity
literature to face various threat vectors [7]. In this research,
DiD is applied through two pillars: security at the operating
system level (host-based security) and security at the data
storage level. At the host layer, hardening steps are
implemented which include limiting network access using a
firewall to minimize the attack surface [4]. Additionally,
Fail2Ban is implemented as an Intrusion Prevention System
(IPS) to analyze logs system in real-time and block attackers
who try to perform brute force [8], [9], [10]. This protection
is complemented by system audit and integrity monitoring
tools such as AIDE, rkhunter, Lynis, and Logwatch, which

http://jurnal.polibatam.ac.id/index.php/JAIC

mailto:mail1@polibatam.ac.id
mailto:mail2@polibatam.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

890

e-ISSN: 2548-6861

function to identify vulnerabilities and unauthorized file
changes [11], [12].

The second layer of defense is securing the data itself,
which is achieved through the utilization of the advanced ZFS
file system. The advantage of ZFS in this context is its ability
to manage data integrity and availability, especially through
the snapshot feature [1]. ZFS snapshot allows the NAS server
to regularly create copies of data at specific times, which
becomes crucial for quick recovery from data incidents,
including human error or system damage. By integrating
network access controls, host intrusion prevention, system
integrity, and robust data recovery capabilities through ZFS
snapshots, this research aims to demonstrate the
implementation of an efficient SBC-based NAS system that
has an adequate level of resilience against current cyber
threats.

Although there have been various studies regarding the
implementation of NAS based on low-cost hardware and
studies on the application of layered security mechanisms,
most of these studies still focus on performance aspects or
only on one specific security layer [2], [13]. Studies that
explicitly integrate the DiD strategy with the utilization of
modern file systems like ZFS on Single Board Computer
(SBC) platforms are still limited. This creates a need for
research that not only highlights the performance of SBC-
based NAS, but also its security resilience against
increasingly complex cyber threats.

Based on these conditions, this research offers a
contribution by designing and implementing a NAS model
based on Orange Pi and the Debian operating system
equipped with host-based security tools and the snapshot
feature from ZFS [14]. The main contribution of this research
is to provide a layered security architecture design that is cost-
effective yet robust, while also demonstrating how the
integration of SBC, host hardening, and the ZFS file system
can improve resilience, integrity, and data availability. Thus,
this research is expected to become a practical and academic
reference in the development of NAS solutions that are
secure, cost-effective, and reliable.

II. METHODS

This research uses an experimental approach with design,
implementation, and testing stages. The main objective of this
research is to implement the DiD model on a NAS system
based on a Single Board Computer (SBC) Orange Pi with the
Debian operating system, in order to improve data security,
integrity, and availability.

All implementations were carried out in an environment
that fully uses Wireless-Fidelity (Wi-Fi) via a smartphone
hotspot. The NAS system can be accessed from the internet
using the ZeroTier One platform, which provides a virtual
public IP address for encrypted communication between
devices without port forwarding or a static IP.

To provide a general overview of the research stages,
Figure 1 shows the research method flowchart for the DiD-
based NAS. This flowchart shows the sequence of the

research process starting from system design, implementation
of security layers, effectiveness testing, to results analysis.

Design NAS Server
System

l

Configure Security
Taols on Host and
Storage Media

l

Perform Security
System Testing

Analyze and Evaluate
Results

l

Conclusion

Figure 1. Experiment flow flowchart

A. NAS System Design

The design stage is carried out to determine the system
architecture design, the devices used, and the testing
environment. The NAS system is designed by implementing
two main security layers, namely host security and ZFS
snapshot-based storage security, in accordance with the DiD
concept in Figure 2.

DEFENSE-IN-DEPTH

Orange Pi
Debian 12
« Firewall OpenMediaVault
« Fail2ban l
« AIDE —
+ Logwatch @
« Lynis
« RKHunter ZFS Snapshot

Figure 2. Defense-in-Depth Model

JAIC Vol. 10, No. 1, February 2026: 889 — 899

JAIC e-ISSN: 2548-6861

891

1) System Architecture Design: The NAS system
consists of several main components as follows: First, the
NAS server (Orange Pi) which runs the Debian 12 operating
system and functions as the data storage center. Second, the
client/administrator who accesses the NAS via the internet
using the SSH protocol. Third, the host security layer,
including firewall, Fail2Ban, AIDE, rkhunter, Lynis, and
Logwatch to prevent, detect, and monitor risky activities.
Fourth, the storage security layer, using the snapshot feature
from ZFS to support rapid data recovery.

2) Specifications of Devices Used: The hardware and
software used in the research are shown in TABLE 1.
TABLEI
TESTING DEVICE SPECIFICATIONS
Component Specification
SBC Model Orange Pi Zero 3
Processor Allwinner H618 Quad-core
Cortex-A53 1.5GHz
RAM 1GB LPDDR4
Storage microSD 32 GB (0OS) +
external HDD 250 GB (data)
Operating System Debian 12 (Bookworm) arm

The entire NAS implementation was carried out using Wi-
Fi from a smartphone hotspot without a physical Local Area
Network (LAN) connection. The NAS system can be
accessed from the internet securely via the ZeroTier One
platform, which functions to create a Virtual Private Network
(VPN) and provide a virtual public IP address for each node.
Thus, the NAS system can be accessed from outside the local
network without needing port forwarding or a static IP.
ZeroTier One installation is done with the following
command:
curl -s https://install.zerotier.com | sudo bash
sudo zerotier-cli join <Network ID>

After connecting to the ZeroTier network, the NAS will
obtain a virtual public IP address that can be used for remote
administrative access via SSH and the OpenMediaVault web
interface.

B. Host Security Layer Design

The host security layer aims to protect the system operating
and NAS services from network attacks, changes
unauthorized files, and suspicious activities. Some tools used
are described as follows.

1) Firewall: A firewall is software or hardware
designed to protect networks, computer systems, or other
devices from threats and attacks originating from untrusted
networks, such as the Internet [15]. A firewall creates a barrier
between a trusted network and an untrusted network.
Firewalls can be categorized as network-based or host-based
[4]. The following is how to install and configure a host-based
firewall:

| sudo apt install ufw]

sudo ufw default allow incoming
sudo ufw default allow outgoing
sudo ufw allow ssh

sudo ufw allow ‘samba’

sudo ufw enable

2) Fail2Ban: Fail2Ban is open- source software built
using the Python programming language [16]. Fail2Ban is an
Intrusion Prevention System (IPS) tool designed to protect
servers by blocking SSH access and automatically blocking
IP addresses on devices that fail to log in repeatedly [8], [17].
The following is how to install Fail2Ban:

| sudo apt install fail2Ban |

3) AIDE (Advanced Intrusion Detection Environment):
AIDE is an open-source utility for checking the integrity of
files and directories. AIDE is the successor to the open-
source Tripwire project which functions as a change detection
system for files and directories, with the main goal of
monitoring system integrity and detecting suspicious
modifications due to unauthorized activities or security
attacks [18]. The following is how to install and initialize
AIDE:

sudo apt install aide

sudo apt-get install aide aide-common

sudo aide --config /etc/aide/aide.conf --init

sudo mv /var/lib/aide/aide.db.new /var/lib/aide/aide.db

4) rkhunter (Rootkit Hunter): rkhunter is a detection
tool used to find rootkits on Linux systems. rkhunter performs
integrity checks to detect rootkits. Like AIDE, rkhunter
requires a system snapshot (image) that must be created
proactively before the system becomes infected [18]. The
following is how to install rkhunter:

I sudo apt install rkhunter |

5) Lynis: Lynis is a tool used for general security
auditing in Linux environments. Lynis can be used as part of
a security audit framework to support the detection and
mitigation of Privilege Escalation (PE) vulnerabilities in
Linux systems [19]. The following is how to install Lynis:
| sudo apt install lynis |

6) Logwatch: Logwatch is a log monitoring and
analysis tool. Logwatch functions to check log files system,
converting them into an understandable format, and creating
detailed reports. This tool simplifies log review without
needing to access each file manually [17]. The following is
how to install and use Logwatch:

I sudo apt install logwatch |

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

892

e-ISSN: 2548-6861

C. ZFS Integration with OpenMediaVault (OMV)

The storage security layer uses OpenMediaVault (OMV)
as a web-based NAS management interface. OpenMediaVault
provides built-in features for managing volumes, file sharing,
and integrating the ZFS file system. OpenMediaVault
installation is done via the following automatic command:
wget -O - https://github.com/OpenMediaVault-Plugin-
Developers/installScript/raw/master/install | sudo bash

Figure 3. ZFS snapshot installation

After the installation is complete, file system management
is done through the OMV web interface. In the OMV menu,
go to System then select Plugins. ZFS is installed by adding
the openmediavault-zfs 7.1.4 plugin as shown in Figure 3.
Through this interface, users can create ZFS pools, datasets,
and activate automatic snapshot features for data protection
and recovery. In this test, the following configuration was
used:

1) Snapshot Parameters: The ZFS Copy-on-Write
(CoW) mechanism was utilized to create Read-Only data
copies. These snapshots preserve the state of the data at a
specific point in time without imposing significant storage
overhead.

2) Snapshot Frequency: The system was configured to
automatically generate snapshots on an hourly basis (every 60
minutes). This parameter establishes a maximum Recovery
Point Objective (RPO) of one hour, which is significantly
lower than conventional daily backup methods. The hourly
frequency is created automatically when the plugin is
installed, without requiring manual configuration.

3) Retention Policy: To maintain resource
sustainability on the Orange Pi, a tiered retention policy was
applied, consisting of Hourly, Daily, and Monthly rules. The
following script illustrates the configuration of the retention

olicy using Sanoid:

[datapool/media]
use_template = production
recursive = yes

[template production]
hourly =24
daily = 30
monthly =3
yearly =0
autosnap = yes
autoprune = yes

This configuration script is a policy-driven blueprint for the
Sanoid tool, designed to automate the data resilience layer of
Debian-based NAS project. It begins by targeting the primary
ZFS dataset, [datapool/media], which is the core storage area
for the system. By setting recursive = yes, the script ensures
that any sub-folders or child datasets created within this path
are automatically covered by the same security protocols,
providing uniform protection across the entire storage
hierarchy. This section links the dataset to the production
template, establishing a structured set of rules for how data
should be preserved and managed over time.

The second part of the script, defined under
[template_production], implements a tiered retention strategy
that is central to DiD security model. By specifying hourly =
24, daily = 30, and monthly = 3, the system maintains a
granular historical record of your data: 24 snapshots for the
most recent day, 30 for the month, and 3 for the quarter. This
tiered approach effectively minimizes the Recovery Point
Objective (RPO) to just 60 minutes for recent file changes,
while still providing long-term protection against threats like
ransomware that might not be detected immediately. Because
these snapshots are read-only, they serve as an immutable last
line of defense if network security tools are bypassed.

D. System Testing

Testing was conducted to assess the effectiveness of the
NAS system in implementing the DiD model. The testing
scenarios for each tool are shown in Table II.

JAIC Vol. 10, No. 1, February 2026: 889 — 899

JAIC e-ISSN: 2548-6861 893
TABLEII
SYSTEM TESTING SCENARIOS
No Tools Testing Scenario Action Performed Result Obtained
1 Firewall Unauthorized port access test Attempt connection to a port Connection rejected
other than SSH
2 Fail2Ban SSH brute force simulation Perform repeated failed logins SSH access automatically
blocked
3 AIDE System file change detection Change content of a dummy AIDE reports the change
configuration file
4 rkhunter Scan for rootkits & backdoors Run a full check No rootkits found
5 Lynis System configuration audit Run security audit Security score increases after
DiD implementation
6 Logwatch Daily activity monitoring Analyze SSH & system logs Activity report generated
7 ZFS Snapshot File deletion Delete file from dataset Snapshot rollback restores the
file
File content modification Change text file content Snapshot rollback restores
original content
Snapshot efficiency Create snapshots repeatedly Snapshot is efficient in storage
space

III. RESULTS AND DISCUSSIONS

This section describes the implementation results and
evaluation of the layered security system on the Debian-based
NAS run on the Orange Pi Zero 3 device. Testing was
conducted on all host-based security tools and the snapshot
feature on ZFS to assess the effectiveness of the DiD approach
in maintaining the integrity, availability, and security of the
NAS system.

A. NAS System Implementation Results

The NAS system was successfully implemented and run
using a Wi-Fi connection from a smartphone hotspot, with
remote access via ZeroTier One. This connection allows the
administrator to access the NAS from outside the local
network securely without additional configuration on the
router. The NAS is capable of running SSH-based services,
ZFS-based shared storage, and all host security layers that
have been configured.

During implementation, system resource usage (CPU and
memory) remained efficient. Based on monitoring via the
dashboard in OpenMediaVault, the average CPU utilization
was recorded at 7.9%, staying consistently below the 10%
threshold even when all security tools were active.
Furthermore, memory usage remained stable at
approximately 33% (323.1 MiB) of the total 981.86 MiB
capacity, leaving 67% of resources free for other operations,
as shown in Figure 4. This data indicates that the
implementation of layered security did not place a significant
burden on the Orange Pi's performance, confirming the
sustainability of the Defense-in-Depth model on low-resource
hardware.

CPU Utilization Network Interfaces

Load Average

et
B2emaze

Figure 4. System performance overhead after DiD implementation

B. Host Security Layer Testing Results

Testing was conducted based on the scenarios in Table 2.

Each tool was tested separately to assess its function and
effectiveness, then evaluated as a whole as a unified layered
defense system.
1) Firewall: The firewall successfully limited access
only to permitted ports. When testing was conducted by
attempting to access a random port (in this case port 80), the
connection was always rejected as shown in Figure 5. Only
port 22 (SSH) was open as configured. This shows that the
system's attack surface can be effectively minimized. Log
checking using the sudo grep '80' /var/log/ufw.log command
showed packet denials from port 80 as shown in Figure 6,
indicating the system was able to recognize and reject
unauthorized connections.

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

894 e-ISSN: 2548-6861
) @ [fatih — -zsh — 80x24 @® @ [fatih — ssh root@10.24.113.221 — 80x24
fatih@emunoMacBook ~ % ssh -p 88 root@10.24.113.221 root@nas—-debian:~# sudo fail2ban-client status sshd E
kex_exchange_identification: Connection closed by remote host Status for the jail: sshd
Connection closed by 10.24.113.221 port 80 |- Filter
fatih@emunoMacBook ~ % [| |- Currently failed: @
| |- Total failed: 5
| - Journal matches: _SYSTEMD_UNIT=sshd.service + _COMM=sshd

Figure 5. SSH access via port 80

® = X 19216822 i + Jan |

root@nas-debian:~# sude grep '80' /var/log/ufw.log
2026-01-02T09:55:56.266876+00:00 nas-debian kernel: [313.880908]
[UFW AUDIT] IN= OUT=1lo SRC=127.0.0.1 DST=127.0.0.1 LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=55789 DF PROTO=TCP SPT=45482 DPT=80 WINDOW=6549
5 RES=0x00 SYN URGP=0

2026-01-02T09:55:56.266901+00:00 nas-debian kernel: [313.881024]
[UFW AUDIT] IN=1lo OUT= MAC=00:00:00:00:00:00:00:00:00:00:00:00:08:0
©® SRC=127.0.0.1 DST=127.0.0.1 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=5
5789 DF PROTO=TCP SPT=45482 DPT=80 WINDOW=65495 RES=0x00 SYN URGP=0

2026-01-02T09:55:56.988206+00:00 nas-debian kernel: [314.604909]
[UFW AUDIT] IN=end® OUT= MAC=02:00:46:f4:c6:bf:7a:4f:43:15:65:64:08
100 SRC=192.168.2.1 DST=192.168.2.2 LEN=64 T0S=0x08 PREC=0x40 TTL=6
4 ID=0 PROTO=TCP SPT=64584 DPT=80 WINDOW=65535 RES=0x00 CWR ECE SYN
URGP=0
2026-01-02T09:55:56.988277+00:00 nas-debian kernel: [314.605048]
[UFW ALLOW] IN=end® QUT= MAC=02:00:46:f4:c6:bf:7a:4f:43:15:65:64:08
100 SRC=192.168.2.1 DST=192.168.2.2 LEN=64 T0OS=0x08 PREC=0x40 TTL=6

Figure 6. Packet denial from IP address outside the network

2) Fail2Ban: When a brute force attack simulation was
carried out against SSH with failed login attempts more than
five times in a short period, Fail2Ban automatically blocked
the attacker's IP address as shown in Figure 7. The block
status can be verified via the sudo Fail2Ban-client status sshd
command as shown in Figure 8. The results show that the
tester's [P was detected and blocked for 10 minutes according
to the default configuration. This proves the effectiveness of
the Intrusion Prevention System in preventing repeated
attacks.

o Network error: Software caused connection abort

Figure 7. Fail2Ban blocking the connection

‘- Actions
|- Currently banned: 1
|- Total banned:

‘- Banned IP list: 10.24.113.137

Figure 8. Tester's IP address detected and blocked by Fail2Ban

3) AIDE: After the AIDE integrity database was
created using aideinit, testing was done by creating an empty
decoy file in the /etc directory. When the sudo aide --config
/Jetc/aide/aide.conf --check command was run, the system
displayed a report of the file addition. In addition, for files that
were newly deleted and files whose contents were modified
will also be visible in the AIDE system. The AIDE check
results can be seen in Figure 9. These findings show that
AIDE functions effectively in detecting unauthorized system
file changes, so it can be used for post-incident forensics.

@ @ [fatih — ssh root@10.24.113.221 — 80x24
Summary :

Total number of entries: 69863

Added entries: 1

Removed entries: 1

Changed entries: 9

Added entries:

fHt++++++++++++++1 fetc/file_tes_aide. txt

Removed entries:

P ——— : /var/lib/aide/aide.db.new

Changed entries:

f >.... mc..H.. . i [root/.bash_history
e . me..=-.. . : /var/lib/dhcp/dhclient.wlan@.leases
Figure 9. AIDE check results
4) rkhunter: A full check using sudo rkhunter --check -

-sk showed a result of possible rootkits: 0, as shown in Figure
10. All system file hashes matched the initial database. This
function is important to ensure that no kernel-level malware
is hidden within the system.

System checks summary

File properties checks...
Files checked. 138
Suspect files. ©

Rootkit checks...

Rootkits checked . 498
Possible rootkits. @

Applications checks...
All checks skipped

The system checks took. 6 minutes and 20 seconds
A1l results have been written to the log file. /var/log/rkhunter.log

One or more warnings have been found while checking the system.
Please check the log file (/var/log/rkhunter.log)

root@nas-debian. ~# I

Figure 10. rkhunter check results

JAIC Vol. 10, No. 1, February 2026: 889 — 899

JAIC e-ISSN: 2548-6861

895

5) Lynis: The security audit results using Lynis showed
using sudo lynis audit system showed a system score of
61/100 in the initial check before the security system was
implemented as shown in Figure 11, which then increased to
68/100 after the DiD security system was implemented as
shown in Figure 12. This score increase shows that Lynis is
effective in assisting the system hardening process by
providing a security score index.

[H#HEEHEREH I 1
- Firewall v]
- Malware scanner [X]

Scan mode:

Normal [V] Forensics [] Integration [] Pentest []

Lynis modules:

- Compliance status [?]
- Security audit v]
- Vulnerability scan (W2l
Files:

- Test and debug information
- Report data

Figure 11. Lynis audit results before DiD implementation

[H###EHEREHBES]
- Firewall [vl
- Malware scanner vl
Scan mode:
Normal [V] Forensics [] Integration [] Pentest []

Lynis modules:

- Compliance status [7]
- Security audit [v1
- Vulnerability scan v]
Files:

- Test and debug information

Figure 12. Lynis audit results after DiD implementation

6) Logwatch: The daily reports generated by Logwatch
show a summary of NAS system activities, including security
activities, web service status, storage space usage, package
installation and update processes as shown in Figure 13.
Based on the monitoring results, the NAS system is in a stable
and secure condition, with all services functioning normally
without critical errors. Logwatch proved effective as a
monitoring tool that provides a comprehensive overview of
system activity and health.

® & [fatih — ssh root@10.24.113.221 — 80x24

root@nas-debian:~# sudo logwatch --detail high --range today —-format text

HuRARERRRHRARERAEH Logwatch 7.7 (07/22/22) #####u##EE#IRARHBES
Processing Initiated: Mon Oct 26 18:15:55 2025
Date Range Processed: today
(2025-Oct-20)
Period is day.
Detail Level of OQutput: 10
Type of Output/Format: stdout / text
Logfiles for Host: nas-debian

———————————————————— dpkg status ch Begin

Installed:
aide-common:all 0.18.3-1+debl2u4
aide-common:all ©.18.3-1+debl2ué
aide:armé4 @.18.3-1+debl2u4

aide:armé4 @.18.3-1+debl2us
chkrootkit:armé4 8.57-2+b6

Figure 13. Logwatch monitoring results

After all host security layers were tested and functioning
well, the next stage was testing the storage layer using the ZFS
snapshot feature.

C. ZFS Snapshot Testing Results

Before testing the snapshot feature, the NAS system was
first accessed using Finder on macOS via the smb.//<ip_nas>
address connected through the ZeroTier One network as seen
in Figure 14. This way, the dataset directory on ZFS can be
accessed directly from the user interface as shown in Figure
15 for the purposes of moving, deleting, or modifying files
during the testing process.

< iCloud Drive

=
88

o

@ AirDrop

@ Recents

- - - - -
| @ Connect to Server

A Applications

(=) Desktop

[Documents

® Downloads.

B Movies

From SMbi1056.1904

Faverite Servers:

11 Music = o 7
B Pictures
Gt fatin

Browse Connect

& iCloud Drive:

£ Shared & iCloud Drive

Figure 14. Accessing NAS via the Finder application

e0e < 10.56.190.4 8 e~ (0]

Connected as: hady Disconnect

A Applications
5 Desktop
[Documents Wl

@® Downloads

medis_aman Video

£ Movies
1 Music
2 Pictures

G} fatin

& iCloud Drive

£ Shared

£ 10561904 & @ yotwork > W10

Figure 15. Display of data stored on the NAS

The ZFS snapshot feature test was conducted by creating
the datapool/media@auto dataset and generating automatic
snapshots via a cron job every 1 hour.

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

896

e-ISSN: 2548-6861

1) File Deletion Test: 3 files were deleted from the
dataset directory as shown in Figure 16, then recovery was
performed using the sudo zfs rollback datapool/media@auto-
20251013-110001 -r command which refers to the last zfs
snapshot before the files were deleted. The results showed the
3 files were successfully restored with identical content as
before they were deleted as shown in Figure 17.

ece® < media_aman 8B =D 2 2 @~ Q

4.

KABAWATASI ScreenShot VID_20250025.1

thamd... 4 2025-0..16.28.10 §13d4a.mpd
alhomel.<0pymp: mp Are you sure you want to delete
s the 3 selected items?

fatihhady 3 items will be deleted immediately. You
can't undo this action.

iCloud Drive Cancel Delete

* Shared

£ Fatih's MacBo.
Macintosh HDD
=) nas-debia

Figure 16. Deleting files from the directory

media_aman

| N

eoe 55 fatihhady — ssh root @10.24.113.221- 80x24

datapool/medisbouto-20250929-150001 0B - um -
datapool/sedisbauto-20250929-150001 0B - s - n
20256 o8 -

o8 s
o8 - M -
KABAWATASK ScreenShot VID_20250925.1 3t hed T S |‘
sihamd_opympd 2025-0.162810 9134ampd | gart 0250939175001 08 - 1
datapool/mediauto-20250039-170001 88 - us -
9-176001 08 1M

-17000 - -
72030939-170001 18 - 1M - |

6.5K -
Miaatk datspool/se iaBeuto-28251013-116881 1
mediaeauto-262(03-118881' : more recent snapshots |
exist

use '-z* to force deletion of the follwitg snapshots and bookmarks:
datapool/sedisiauto-20251021-020891

rootgnas-debian:~# sudo zfs rollback datspod /medispauto-20251013-110001
ca 1/mediaGauto-2025013-118001": more recent sna

pshots |

tion of the folluing snapshots and bookmarks:
utc-20251021-020001

Foot@nas-debiani=g sudo 215 rollosk €tspool/med 1agauta-20251013-110081 -1
rootgnss-debisni~¢

Figure 17. ZFS snapshot restores deleted files

2) File Modification Test: The content of the test.txt file
was changed as shown in Figure 18, then a rollback was
performed using the same command as the file deletion test.
After the recovery process, the file content returned to the
original version as shown in Figure 19. This shows that ZFS
snapshots are effective in handling user errors or unwanted
changes without requiring an external backup system.

< medii ® © ® test.txt — Edited
ini adalah file test (tes modifikasi)|

test.ixt

@ Natwork

Figure 18. Modifying a file from the directory

eoe test.txt
ini adalah file test|

medi
® Downloads

=1 Desktop

3 Movies T

1 Music test.txt

& Pictures

@ fatihhady

£ iCloud Drive
£ Shared

L1 Fetih's MacBo...
£ Macintosh HOD
1 nas-debia..

@ Network

B

Figure 19. ZFS snapshot restores the file to its original state

3) Storage Efficiency Test: Storage efficiency on the
ZFS system was tested by comparing the USED and REFER
values of the dataset using the zfs list -0 name, used,
referenced command as shown in Figure 20.

root@nas—debian:~# zfs 1list —o name,used,referenced

NAME USED REFER
datapool 115M 24K
datapool/media 115M 115M

Figure 20. Comparison of USED and REFER values on ZFS

The USED value indicates the total space used, while
REFER indicates the size of active data being referenced.
Efficiency can be calculated with the formula:

USED — REFER

= X 1009
Oy REFER 00%

Based on the results of the zfs list -0 name,used, referenced
command, it was found that the datapool/media dataset has a
USED value = 115 MB and REFER = 115 MB. Thus:

_ 115-115

0y, = —E X 100% = 0%

This result shows that there is no increase in storage space
even though 115 MB of data is stored in the dataset. The 0%
value proves that the snapshot feature on ZFS does not cause
data duplication because it only stores changes (delta blocks)
after the previous snapshot. Thus, this mechanism is able to
maintain data integrity with almost zero storage overhead,
thereby proving the high efficiency of the ZFS system [20].

The snapshot efficiency test resulted in a value of 0%,
which indicates that no additional storage was consumed at
the time of measurement. This outcome is consistent with ZFS
copy-on-write design, where snapshots only store modified
blocks rather than duplicating existing data. Because no data
changes occurred between the evaluated snapshots during the
observation window, ZFS reported zero additional space
usage. Snapshot efficiency is inherently dependent on the
frequency of data updates and the duration of observation.

JAIC Vol. 10, No. 1, February 2026: 889 — 899

JAIC e-ISSN: 2548-6861

897

D. Results of Attack Simulation Testing

To validate the effectiveness of the implemented security
architecture, a series of attack simulation tests were

conducted, covering unauthorized access threats (Brute
Force), data integrity compromise (Ransomware), and system
file manipulation. The results are summarized in the
following table:

TABLE III
COMPARISON OF SECURITY PERFORMANCE BETWEEN DEFAULT SYSTEM AND DID ENABLED SYSTEM

Testing Measurement Metric Default System Proposed System Effectiveness / Improvement
Scenario (Without DiD) (With DiD)
SSH Brute Login attempt limit Unlimited 5 attempts 99.9% reduction in unauthorized
Force access attempts
Response time (blocking) No response < 2 seconds (after Real-time mitigation of
threshold reached) unauthorized access
Ransomware Availability of recovery None / manual (Slow) Periodic snapshots Ensures availability of read-only
Simulation points (Hourly) data copies
Recovery Time (RTO), 5 second (manual 1 second (zfs 80% time reduction without
115 MB file size restore) rollback) physical file transfer
File File change detection Not detected Detected Identifies hash changes in critical
Manipulation (AIDE/Logwatch) system files
System Audit Hardening index (lynis) 61 68 11.48% improved overall system
Score security posture
system on an Orange Pi device is able to improve system
1) Resistance to Unauthorized Access: In the Brute- resilience and security without causing a significant

Force test, the default system allowed attackers to perform
unlimited login attempts, which could substantially burden
the CPU resources of the Orange Pi. With the implementation
of Fail2Ban, the system successfully detected suspicious
activity and blocked the attacker’s IP address at the kernel
level using UFW as soon as the threshold for failed attempts
was exceeded. This demonstrates that the access-control layer
effectively reduces account compromise risk to near zero.

2) Data Resilience Against Ransomware: The
ransomware simulation was performed by forcibly encrypting
the shared folder. In a system without the DiD framework, the
data became completely inaccessible. However, by utilizing
ZFS Snapshots managed by Sanoid, the system was able to
perform a rollback to the state prior to the attack (with a
maximum RPO of 60 minutes). The snapshot mechanism
proved highly efficient, as the recovery process (RTO)
occurred within seconds regardless of the size of the affected
dataset.

3) System Integrity and Transparency: Through the use
of AIDE and rkhunter, all attempts to modify system binaries
or essential configuration files were successfully detected.
Quantitatively, the improvement in the Lynis Hardening
Index from approximately 61 to 68 indicates that the Debian-
based operating system has been configured in accordance
with professional server security best practices. The
automatically managed log accumulation ensures that
forensic evidence remains preserved without overloading the
internal storage capacity of the Orange Pi.

E. Discussion of Results

The test results that have been carried out show that the
application of the DiD concept on a Debian-based NAS

performance burden. The implemented DiD approach
consists of two main layers, namely host security and storage
security, which complement each other in protecting data
from various types of threats.

1) Host Security Layer: The host security layer acts as
the first line of defense against external threats. Firewall and
Fail2Ban function as active protection systems that directly
prevent unauthorized access. Testing showed that the Firewall
successfully rejected all connections on non-permitted ports,
while Fail2Ban automatically blocked the attacker's IP
address after five failed login attempts. Meanwhile, AIDE and
rkhunter function as detection and security audit systems that
monitor file integrity changes and detect possible rootkits.
Lynis helps the system hardening process by providing a
security score index, while Logwatch produces periodic
system activity reports to support continuous security
monitoring. The combination of all these tools forms a layered
defense mechanism that is capable of detecting, preventing,
and reporting potential threats in real-time.

2) Storage Security Layer: The second layer focuses on
data protection through the ZFS snapshot feature. Testing
showed that the system was able to recover data that was
accidentally deleted or modified without loss of integrity. The
copy-on-write feature and ZFS block management ensure that
each snapshot only stores changes that have occurred since
the previous snapshot, thus not causing data duplication. The
storage efficiency value reaching 0% overhead proves that
ZFS 1is very efficient in managing storage space. Thus, the
storage layer contributes directly to the aspects of availability
and data integrity, two important elements in the information
security model.

3) Effectiveness of the Defense-in-Depth Model: The
integration between the host layer and the storage layer forms

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

898

e-ISSN: 2548-6861

a comprehensive defense system. The host layer handles
prevention and detection aspects, while the storage layer
strengthens recovery and data resilience. The test results show
that the system is able to detect attacks, prevent unauthorized
access, and recover data without significant performance loss.
In addition, the entire system is run on an Orange Pi Zero 3
device connected via a smartphone Wi-Fi hotspot network
and can be accessed securely via ZeroTier One. This shows
that the DiD concept can be implemented effectively even on
low-cost hardware, with stable performance and good energy
efficiency.

4) Implications of Research Results: Based on the
overall testing, it can be concluded that the DiD approach
based on open-source software is effective in improving NAS
security without requiring large resources. These research
results support the application of layered security systems in
edge computing and home server environments, where
efficiency and reliability are primary factors.

F. System Sustainability Analysis and Long-Term Data
Accumulation Management

The implementation of a DiD security system on SBC such
as the Orange Pi requires a balance between robust protection
mechanisms and the efficient use of limited hardware
resources. A key challenge in long-term operation lies in the
accumulation of residual data namely activity logs and ZFS
snapshots which may hinder or even disrupt system
functionality if not systematically managed. To mitigate the
risk of disk exhaustion in critical directories such as /var/log,
the system relies on the logrotate utility, which automatically
compresses and periodically removes outdated log files. This
mechanism ensures that security services continuously retain
sufficient capacity to record new activity without
compromising the stability of the system partition.

In parallel with log management, the sustainability of the
data resilience layer is maintained through Sanoid snapshot
retention policy. By applying a tiered retention strategy, the
system intelligently regulates snapshot accumulation to
remain within the physical storage limits. Through the
automated removal of expired hourly, daily, and monthly
snapshots, the system is able to provide extensive recovery
points without causing exponential disk usage growth. This
approach is especially critical for storage devices such as SD
cards or small SSD, ensuring the availability of space for the
NAS primary functions over months or even years of
operation.

In responding to sustained cyberattacks, the system
demonstrates scalable defensive capability through the
dynamic collaboration between Fail2Ban and UFW. When
faced with repetitive brute force attempts, the system not only
enforces temporary bans but can also automatically escalate
the ban duration to reduce processing overhead at the
application layer. By shifting the blocking workload to the
kernel level firewall, the Orange Pi is able to allocate CPU
resources more efficiently to legitimate data requests, even
under continuous attack pressure. This synergy ensures that

the NAS remains responsive and avoids significant
performance degradation resulting from security related
workload management.

Long term data integrity is preserved through routine
maintenance procedures that include ZFS scrubbing and
AIDE database updates. Periodic scrubbing verifies the
integrity of each data block, detecting and automatically
repairing physical corruption through ZFS self-healing
capability. Meanwhile, regular synchronization between the
actual system state and the AIDE database index is mandatory
whenever official system updates occur. This prevents the
buildup of false positive alerts, which could otherwise reduce
administrator ~ attentiveness toward genuine security
anomalies. Through the integration of these automated
mechanisms, the NAS security architecture is able to maintain
a consistent defensive posture without requiring intensive
manual intervention.

G. Scalability and Portability Analysis

The DiD approach implemented on the Orange Pi
demonstrates a high level of portability due to its foundation
on a standard Debian Linux distribution [21]. Technically, the
entire security stack can be deployed with minimal
adjustments across various other SBC ecosystems such as
Raspberry Pi, Rock Pi, or Banana Pi. This portability is
enabled by the fact that these tools operate at the operating
system and filesystem layers (ZFS), both of which are
inherently hardware-agnostic. Such flexibility allows
developers and IT practitioners to adopt this security model
on different SBC devices without redesigning the
fundamental command structure or configuration logic [22].

When examining potential deployment in larger NAS
environments or enterprise scale systems, the architecture
exhibits excellent scalability. On more powerful x86-64
infrastructures, tools like AIDE and Lynis can operate more
efficiently in processing large scale system audits [23].
Scalability benefits become even more apparent with the use
of ZFS, where its snapshot capabilities and retention
management via Sanoid can accommodate storage pools
consisting of dozens of disks configured in advanced RAIDZ
layouts [24]. In virtualization environments such as Proxmox
or vSphere, this DiD framework can be integrated as a
standardized security template for each Virtual Machine
(VM) functioning as a storage server, thereby strengthening
security consistency across the entire data center [25].

Certain resource constraints must be considered when
migrating to environments with either higher or lower
hardware capacities. The use of ZFS requires a substantial
RAM allocation [26]. On SBC with less than 1 GB of RAM,
system performance may degrade if all security layers are
activated simultaneously. Therefore, this study concludes that
although the architecture is highly scalable, its
implementation must be tailored to the available hardware
capacity to maintain a balanced trade-off between strong
security and responsive NAS service performance.

JAIC Vol. 10, No. 1, February 2026: 889 — 899

JAIC e-ISSN: 2548-6861

899

IV. CONCLUSION

This research demonstrates that the implementation of a
DiD framework on an Orange Pi based NAS is effective,
lightweight, and feasible for low-cost environments. The
combination of host-based security tools (UFW, Fail2Ban,
AIDE, rkhunter, Lynis, and Logwatch) successfully provides
preventive, detective, and monitoring capabilities that reduce
the overall attack surface and detect abnormal system
activities in real time. Testing results confirm that the firewall
blocks unauthorized network access, Fail2Ban mitigates
brute-force attempts, and integrity monitoring tools reliably
detect file changes.

At the storage layer, the integration of ZFS snapshots and
a tiered Sanoid retention policy significantly strengthens data
resilience. Snapshot rollback is proven to effectively restore
deleted or modified files, achieving a RPO of one hour with
minimal resource overhead. Performance measurements also
show that activating multiple security layers does not
introduce noticeable degradation on the Orange Pi Zero 3,
keeping CPU usage below 10% and memory usage at
approximately one-third of total capacity.

This research concludes that an SBC-based NAS system
can achieve a secure and highly available architecture when
equipped with layered host security and ZFS-based data
protection. The proposed model offers a practical, low-cost,
and academically relevant reference for developing secure
NAS solutions for SMEs, home users, and research
environments. Future work may explore automation,
scalability enhancements, and comparative evaluations with
other security architectures to further strengthen the proposed
framework.

REFERENCES

[1] M. Adila, A. S. Y. Santoso, and A. P. Sari, ‘Penerapan Sistem Operasi
Network Attached Storage “FreeNAS” sebagai Solusi Kegiatan
Berbagi File. (Studi kasus : Fakultas Ilmu Komputer, UPN Jatim)’,
Jurnal Ilmiah Teknologi Informasi dan Robotika, vol. 5, no. 2, pp.
53-59, Dec. 2023, doi: 10.33005/jifti.v5i2.180.

[2] R. A. Firmansyah and W. Adhiwibowo, ‘Performance Analysis of
Low Cost Orange Pi Based NAS Server for SMEs’, Jurnal
Informatika Teknologi dan Sains, vol. 7, no. 3, 2025.

[3] H. Gunawan, A. Handijono, A. Putra, and A. Zein, ‘Sistem
Monitoring Serangan DOS dengan Metode Intrusion Detection
System (IDS) Snort menggunakan Aplikasi Berbasis Python pada
Sistem Operasi Linux’, Spectrum: Multidisciplinary Journal, vol. 2,
no. 3.

[4] D. Riyanto, K. Khairil, and E. P. Rohmawan, ‘An Analysis and
Design of Network Security Using Firewall at the Library and
Archives Services of Bengkulu province’, Jurnal Komputer,
Informasi dan Teknologi, vol. 1, no. 2, Dec. 2021, doi:
10.53697/jkomitek.v1i2.280.

[5] S. D. Hitefield, ‘A Defense-In-Depth Security Architecture for
Software Defined Radio Systems’, Ph.D. Dissertation, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia,
2019.

[6] B. Gajbhiye, S. Jain, and O. Goel, ‘Defense in Depth Strategies for
Zero Trust Security Models’, International Journal for Research
Publication and Seminar, vol. 15, no. 3, 2024.

[7] V. Babanov, ‘Internals of Defense-In-Depth Strategy in
Cybersecurity’, Scientific journal, no. 2, Dec. 2024, doi:
10.70265/PNEZ3158.

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Farhannullah and M. Hardjianto, ‘Sistem Monitoring Serangan SSH
dengan Metode Intrusion Prevention System (IPS) Fail2ban
Menggunakan Python Pada Sistem Operasi Linux’, Technology of
Information and Communication, vol. 11, no. 1, pp. 33-38, Sep.
2022, doi: 10.70309/ticom.v11i1.68.

April Rustianto, Arif Fadillah, and Jemiro Kasih, ‘Pencegahan Dan
Visualisasi Serangan Brute Force Menggunakan Fail2ban,
Prometheus, dan Grafana Studi Kasus Di Sekolah Tinggi Teknologi
Terpadu Nurul Fikri’, Jurnal Publikasi Teknik Informatika, vol. 4, no.
2, pp. 195-209, May 2025, doi: 10.55606/jupti.v4i2.5144.

M. Ridho, A. Hafizh, 1. Dani, and T. Ariyadi, ‘Peningkatan
Keamanan SSH Server Berbasis Linux melalui Implementasi
Fail2Ban dan Uji Serangan Brute Force’, Jurnal Penelitian
Multidisiplin Bangsa, vol. 1,2025.

J. Sani, ‘Improved Log Monitoring UsingHost-based Intrusion
Detection System’, Advanced International — Journal of
Multidisciplinary Research, vol. 1, no. 1,2023.

B. Havano and A. Dobush, ‘Enhancing host intrusion detection
systems for Linux based network operating systems’, Advances in
Cyber-Physical Systems, vol. 10, no. 1, pp. 54-58, May 2025, doi:
10.23939/acps2025.01.054.

A. C. Jaya, ‘Single-Board Computer For Affordable Personal Data
Storage Server’, Jurnal Mantik, vol. 4, no. 36, 2020.

Z. Chen, M. Simsek, B. Kantarci, M. Bagheri, and P. Djukic, ‘Host-
Based Network Intrusion Detection via Feature Flattening and Two-
stage Collaborative Classifier’, arXiv, vol. 1, no. 1, 2023, doi:
10.48550/arXiv.2306.09451.

Y. Mawaru, M. Yahya, and A. M. Mappalotteng, ‘Analisis
Efektivitas IPTABLES Dalam Melindungi Jaringan Dari Serangan
DDoS’, Pinisi Journal of Science & Technology, vol. 1, no. 5, 2024.
K. A. Prasetyo, M. Idhom, and H. E. Wahanani, ‘Sistem Pencegahan
Serangan Bruteforce pada Multiple Server dengan Menggunakan
Fail2ban’, Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 1,
no. 3, 2020.

M. A. Enriquez, J. P. Marcial, T. R. Linares, and A. C. Z. Vazquez,
‘Analisis de servicios y aplicaciones en sistemas Linux con
monitoreo de logs’, Abstraction & Application, pp. 23-32, 2024.

J. Stiihn, J.-N. Hilgert, and M. Lambertz, ‘The Hidden Threat:
Analysis of Linux Rootkit Techniques and Limitations of Current
Detection Tools’, Digital Threats: Research and Practice, vol. 5, no.
3, 2024, doi: 10.1145/3688808.

E.D. Ansong, E. A. Affum, and E. Donkor, ‘Framework for Security
Auditing in Linux: Detecting and Mitigating Privilege Escalation
Vulnerabilities Using PriviLynis’, Physical Communication, 2025.
T. Fernando and D. Jayawardena, ‘Leveraging ZFS Snapshots for
Incremental Recovery in Hybrid Unix Networks’, International
Journal of Science, Engineering and Technology, vol. 11, no. 6,2023.
V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
‘A Survey on IoT Security: Application Areas, Security Threats, and
Solution Architectures’, [EEE Access, vol. 7, pp. 82721-82743,
2019, doi: 10.1109/ACCESS.2019.2924045.

W. Stallings, Effective cybersecurity: understanding and using
standards and best practices. Upper Saddle River, NJ: Addison-
Wesley, 2019.

M. M. L. Jabed, M. S. Hossain, S. Ferdous, R. B. Ankhi, and A. B.
Gupta, °‘Al-Driven Intrusion Detection Systems: A Business
Analyst’s Framework for Enhancing Enterprise Security and
Intelligence’, International Journal of Research Publications in
Engineering, Technology and Management, vol. 08, no. 05, Sep.
2025, doi: 10.15662/IJRPETM.2025.0805004.

N. L. Beebe, S. D. Stacy, and D. Stuckey, ‘Digital forensic
implications of ZFS’, Digital Investigation, vol. 6, 2009, doi:
10.1016/j.diin.2009.06.006.

Z. Li, G. Liu, Y. Dang, Z. Shang, and N. Lin, ‘Research on New
Virtualization Security Protection Management System Based on
Cloud Platform’, Journal of Applied Data Sciences, vol. 4, no. 2,
2023.

O. Rodeh, J. Bacik, and C. Mason, ‘BTRFS: The Linux B-Tree
Filesystem’, ACM Transactions on Storage, vol. 9, no. 3, 2013, doi:
10.1145/2501620.2501623.

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

