
Journal of Applied Informatics and Computing (JAIC)

Vol.10, No.1, February 2026, pp. 889~899

e-ISSN: 2548-6861 889

http://jurnal.polibatam.ac.id/index.php/JAIC

Implementing Defense-in-Depth Framework on Orange Pi NAS Using

Host-Based Security and ZFS

Muhammad Fatih Hady 1*, Hafiyyan Putra Pratama 2*
* Department of Telecommunication Systems, Universitas Pendidikan Indonesia

muhammadfatihhady@upi.edu 1, hafiyyan@upi.edu 2

Article Info ABSTRACT

Article history:

Received 2025-11-19

Revised 2026-01-30

Accepted 2026-02-09

 Network-Attached Storage (NAS) based on low-cost Single Board Computers (SBC)

offers an affordable alternative to commercial storage systems, yet its exposure to

network-based threats requires a robust and layered security approach. This research

implements the Defense-in-Depth (DiD) framework on an Orange Pi based NAS

running Debian 12, integrating host-based security mechanisms and the ZFS file

system to enhance data integrity, availability, and system resilience. The security

layers include firewall restrictions, intrusion prevention with Fail2Ban, integrity

monitoring using AIDE and rkhunter, system auditing with Lynis, and log analysis

with Logwatch. Additionally, ZFS snapshots and the Sanoid retention policy are

applied to provide rapid data recovery with minimal storage overhead. Experimental

results show that all defense layers function effectively under testing scenarios such

as brute-force attempts, unauthorized port access, file modification, and data

deletion. ZFS snapshots successfully restore deleted or altered files, ensuring

minimal Recovery Point Objective (RPO) of one hour. System performance

remained stable, with CPU usage averaging only 7.9% and memory usage at 33%,

indicating that the DiD model is feasible even on low-resource SBC hardware. These

findings demonstrate that a cost-efficient SBC-based NAS can achieve strong

resilience against common cyber threats through layered security design and modern

file system capabilities.

Keyword:

Defense-in-Depth,

NAS,

Orange Pi,

Debian.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Network-Attached Storage (NAS) has become an

important component in modern IT infrastructure to meet the

needs for centralized data storage and reliable file sharing [1].

Technological developments have enabled the

implementation of NAS using low-cost hardware such as

Single Board Computers (SBC) like Orange Pi, running on

the Debian Linux operating system. This solution offers

significant cost efficiency compared to commercial solutions,

making it an attractive choice for SMEs and home users [2].

Nevertheless, a NAS system connected to the network is

vulnerable to various cyber threats, ranging from Denial of

Service (DoS) attacks aimed at disabling services to brute

force attempts CC BY SA This is an open access article under

the CC-BY-SA license. to gain unauthorized access,

especially through remote services like SSH [3], [4].

To address this complexity of threats, the security strategy

used must be layered, which is known as the Defense-in-

Depth (DiD) model [5]. The DiD model is based on the

principle that if one layer of defense fails, the next layer will

prevent the attack from succeeding completely [6]. The DiD

strategy is continuously being expanded in cybersecurity

literature to face various threat vectors [7]. In this research,

DiD is applied through two pillars: security at the operating

system level (host-based security) and security at the data

storage level. At the host layer, hardening steps are

implemented which include limiting network access using a

firewall to minimize the attack surface [4]. Additionally,

Fail2Ban is implemented as an Intrusion Prevention System

(IPS) to analyze logs system in real-time and block attackers

who try to perform brute force [8], [9], [10]. This protection

is complemented by system audit and integrity monitoring

tools such as AIDE, rkhunter, Lynis, and Logwatch, which

mailto:mail1@polibatam.ac.id
mailto:mail2@polibatam.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 889 – 899

890

function to identify vulnerabilities and unauthorized file

changes [11], [12].

The second layer of defense is securing the data itself,

which is achieved through the utilization of the advanced ZFS

file system. The advantage of ZFS in this context is its ability

to manage data integrity and availability, especially through

the snapshot feature [1]. ZFS snapshot allows the NAS server

to regularly create copies of data at specific times, which

becomes crucial for quick recovery from data incidents,

including human error or system damage. By integrating

network access controls, host intrusion prevention, system

integrity, and robust data recovery capabilities through ZFS

snapshots, this research aims to demonstrate the

implementation of an efficient SBC-based NAS system that

has an adequate level of resilience against current cyber

threats.

Although there have been various studies regarding the

implementation of NAS based on low-cost hardware and

studies on the application of layered security mechanisms,

most of these studies still focus on performance aspects or

only on one specific security layer [2], [13]. Studies that

explicitly integrate the DiD strategy with the utilization of

modern file systems like ZFS on Single Board Computer

(SBC) platforms are still limited. This creates a need for

research that not only highlights the performance of SBC-

based NAS, but also its security resilience against

increasingly complex cyber threats.

Based on these conditions, this research offers a

contribution by designing and implementing a NAS model

based on Orange Pi and the Debian operating system

equipped with host-based security tools and the snapshot

feature from ZFS [14]. The main contribution of this research

is to provide a layered security architecture design that is cost-

effective yet robust, while also demonstrating how the

integration of SBC, host hardening, and the ZFS file system

can improve resilience, integrity, and data availability. Thus,

this research is expected to become a practical and academic

reference in the development of NAS solutions that are

secure, cost-effective, and reliable.

II. METHODS

This research uses an experimental approach with design,

implementation, and testing stages. The main objective of this

research is to implement the DiD model on a NAS system

based on a Single Board Computer (SBC) Orange Pi with the

Debian operating system, in order to improve data security,

integrity, and availability.

All implementations were carried out in an environment

that fully uses Wireless-Fidelity (Wi-Fi) via a smartphone

hotspot. The NAS system can be accessed from the internet

using the ZeroTier One platform, which provides a virtual

public IP address for encrypted communication between

devices without port forwarding or a static IP.

To provide a general overview of the research stages,

Figure 1 shows the research method flowchart for the DiD-

based NAS. This flowchart shows the sequence of the

research process starting from system design, implementation

of security layers, effectiveness testing, to results analysis.

Figure 1. Experiment flow flowchart

A. NAS System Design

The design stage is carried out to determine the system

architecture design, the devices used, and the testing

environment. The NAS system is designed by implementing

two main security layers, namely host security and ZFS

snapshot-based storage security, in accordance with the DiD

concept in Figure 2.

Figure 2. Defense-in-Depth Model

JAIC e-ISSN: 2548-6861

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

891

1) System Architecture Design: The NAS system

consists of several main components as follows: First, the

NAS server (Orange Pi) which runs the Debian 12 operating

system and functions as the data storage center. Second, the

client/administrator who accesses the NAS via the internet

using the SSH protocol. Third, the host security layer,

including firewall, Fail2Ban, AIDE, rkhunter, Lynis, and

Logwatch to prevent, detect, and monitor risky activities.

Fourth, the storage security layer, using the snapshot feature

from ZFS to support rapid data recovery.

2) Specifications of Devices Used: The hardware and

software used in the research are shown in TABLE I.

TABLE I

TESTING DEVICE SPECIFICATIONS

Component Specification

SBC Model Orange Pi Zero 3

Processor
Allwinner H618 Quad-core

Cortex-A53 1.5GHz

RAM 1GB LPDDR4

Storage
microSD 32 GB (OS) +

external HDD 250 GB (data)

Operating System Debian 12 (Bookworm) arm

The entire NAS implementation was carried out using Wi-

Fi from a smartphone hotspot without a physical Local Area

Network (LAN) connection. The NAS system can be

accessed from the internet securely via the ZeroTier One

platform, which functions to create a Virtual Private Network

(VPN) and provide a virtual public IP address for each node.

Thus, the NAS system can be accessed from outside the local

network without needing port forwarding or a static IP.

ZeroTier One installation is done with the following

command:

curl -s https://install.zerotier.com | sudo bash

sudo zerotier-cli join <Network_ID>

After connecting to the ZeroTier network, the NAS will

obtain a virtual public IP address that can be used for remote

administrative access via SSH and the OpenMediaVault web

interface.

B. Host Security Layer Design

The host security layer aims to protect the system operating

and NAS services from network attacks, changes

unauthorized files, and suspicious activities. Some tools used

are described as follows.

1) Firewall: A firewall is software or hardware

designed to protect networks, computer systems, or other

devices from threats and attacks originating from untrusted

networks, such as the Internet [15]. A firewall creates a barrier

between a trusted network and an untrusted network.

Firewalls can be categorized as network-based or host-based

[4]. The following is how to install and configure a host-based

firewall:

sudo apt install ufw

sudo ufw default allow incoming

sudo ufw default allow outgoing

sudo ufw allow ssh

sudo ufw allow ‘samba’

sudo ufw enable

2) Fail2Ban: Fail2Ban is open- source software built

using the Python programming language [16]. Fail2Ban is an

Intrusion Prevention System (IPS) tool designed to protect

servers by blocking SSH access and automatically blocking

IP addresses on devices that fail to log in repeatedly [8], [17].

The following is how to install Fail2Ban:

sudo apt install fail2Ban

3) AIDE (Advanced Intrusion Detection Environment):

AIDE is an open-source utility for checking the integrity of

files and directories. AIDE is the successor to the open-

source Tripwire project which functions as a change detection

system for files and directories, with the main goal of

monitoring system integrity and detecting suspicious

modifications due to unauthorized activities or security

attacks [18]. The following is how to install and initialize

AIDE:

sudo apt install aide

sudo apt-get install aide aide-common

sudo aide --config /etc/aide/aide.conf --init

sudo mv /var/lib/aide/aide.db.new /var/lib/aide/aide.db

4) rkhunter (Rootkit Hunter): rkhunter is a detection

tool used to find rootkits on Linux systems. rkhunter performs

integrity checks to detect rootkits. Like AIDE, rkhunter

requires a system snapshot (image) that must be created

proactively before the system becomes infected [18]. The

following is how to install rkhunter:

sudo apt install rkhunter

5) Lynis: Lynis is a tool used for general security

auditing in Linux environments. Lynis can be used as part of

a security audit framework to support the detection and

mitigation of Privilege Escalation (PE) vulnerabilities in

Linux systems [19]. The following is how to install Lynis:

sudo apt install lynis

6) Logwatch: Logwatch is a log monitoring and

analysis tool. Logwatch functions to check log files system,

converting them into an understandable format, and creating

detailed reports. This tool simplifies log review without

needing to access each file manually [17]. The following is

how to install and use Logwatch:

sudo apt install logwatch

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 889 – 899

892

C. ZFS Integration with OpenMediaVault (OMV)

The storage security layer uses OpenMediaVault (OMV)

as a web-based NAS management interface. OpenMediaVault

provides built-in features for managing volumes, file sharing,

and integrating the ZFS file system. OpenMediaVault

installation is done via the following automatic command:

wget -O - https://github.com/OpenMediaVault-Plugin-

Developers/installScript/raw/master/install | sudo bash

Figure 3. ZFS snapshot installation

After the installation is complete, file system management

is done through the OMV web interface. In the OMV menu,

go to System then select Plugins. ZFS is installed by adding

the openmediavault-zfs 7.1.4 plugin as shown in Figure 3.

Through this interface, users can create ZFS pools, datasets,

and activate automatic snapshot features for data protection

and recovery. In this test, the following configuration was

used:

1) Snapshot Parameters: The ZFS Copy-on-Write

(CoW) mechanism was utilized to create Read-Only data

copies. These snapshots preserve the state of the data at a

specific point in time without imposing significant storage

overhead.

2) Snapshot Frequency: The system was configured to

automatically generate snapshots on an hourly basis (every 60

minutes). This parameter establishes a maximum Recovery

Point Objective (RPO) of one hour, which is significantly

lower than conventional daily backup methods. The hourly

frequency is created automatically when the plugin is

installed, without requiring manual configuration.

3) Retention Policy: To maintain resource

sustainability on the Orange Pi, a tiered retention policy was

applied, consisting of Hourly, Daily, and Monthly rules. The

following script illustrates the configuration of the retention

policy using Sanoid:

[datapool/media]

 use_template = production

 recursive = yes

[template_production]

 hourly = 24

 daily = 30

 monthly = 3

 yearly = 0

 autosnap = yes

 autoprune = yes

This configuration script is a policy-driven blueprint for the

Sanoid tool, designed to automate the data resilience layer of

Debian-based NAS project. It begins by targeting the primary

ZFS dataset, [datapool/media], which is the core storage area

for the system. By setting recursive = yes, the script ensures

that any sub-folders or child datasets created within this path

are automatically covered by the same security protocols,

providing uniform protection across the entire storage

hierarchy. This section links the dataset to the production

template, establishing a structured set of rules for how data

should be preserved and managed over time.

The second part of the script, defined under

[template_production], implements a tiered retention strategy

that is central to DiD security model. By specifying hourly =

24, daily = 30, and monthly = 3, the system maintains a

granular historical record of your data: 24 snapshots for the

most recent day, 30 for the month, and 3 for the quarter. This

tiered approach effectively minimizes the Recovery Point

Objective (RPO) to just 60 minutes for recent file changes,

while still providing long-term protection against threats like

ransomware that might not be detected immediately. Because

these snapshots are read-only, they serve as an immutable last

line of defense if network security tools are bypassed.

D. System Testing

Testing was conducted to assess the effectiveness of the

NAS system in implementing the DiD model. The testing

scenarios for each tool are shown in Table II.

JAIC e-ISSN: 2548-6861

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

893

TABLE II

SYSTEM TESTING SCENARIOS

No Tools Testing Scenario Action Performed Result Obtained

1 Firewall Unauthorized port access test Attempt connection to a port

other than SSH

Connection rejected

2 Fail2Ban SSH brute force simulation Perform repeated failed logins SSH access automatically

blocked

3 AIDE System file change detection Change content of a dummy

configuration file

AIDE reports the change

4 rkhunter Scan for rootkits & backdoors Run a full check No rootkits found

5 Lynis System configuration audit Run security audit Security score increases after

DiD implementation

6 Logwatch Daily activity monitoring Analyze SSH & system logs Activity report generated

7 ZFS Snapshot File deletion Delete file from dataset Snapshot rollback restores the

file

File content modification Change text file content Snapshot rollback restores

original content

Snapshot efficiency Create snapshots repeatedly Snapshot is efficient in storage

space

III. RESULTS AND DISCUSSIONS

This section describes the implementation results and

evaluation of the layered security system on the Debian-based

NAS run on the Orange Pi Zero 3 device. Testing was

conducted on all host-based security tools and the snapshot

feature on ZFS to assess the effectiveness of the DiD approach

in maintaining the integrity, availability, and security of the

NAS system.

A. NAS System Implementation Results

The NAS system was successfully implemented and run

using a Wi-Fi connection from a smartphone hotspot, with

remote access via ZeroTier One. This connection allows the

administrator to access the NAS from outside the local

network securely without additional configuration on the

router. The NAS is capable of running SSH-based services,

ZFS-based shared storage, and all host security layers that

have been configured.

During implementation, system resource usage (CPU and

memory) remained efficient. Based on monitoring via the

dashboard in OpenMediaVault, the average CPU utilization

was recorded at 7.9%, staying consistently below the 10%

threshold even when all security tools were active.

Furthermore, memory usage remained stable at

approximately 33% (323.1 MiB) of the total 981.86 MiB

capacity, leaving 67% of resources free for other operations,

as shown in Figure 4. This data indicates that the

implementation of layered security did not place a significant

burden on the Orange Pi's performance, confirming the

sustainability of the Defense-in-Depth model on low-resource

hardware.

Figure 4. System performance overhead after DiD implementation

B. Host Security Layer Testing Results

Testing was conducted based on the scenarios in Table 2.

Each tool was tested separately to assess its function and

effectiveness, then evaluated as a whole as a unified layered

defense system.

1) Firewall: The firewall successfully limited access

only to permitted ports. When testing was conducted by

attempting to access a random port (in this case port 80), the

connection was always rejected as shown in Figure 5. Only

port 22 (SSH) was open as configured. This shows that the

system's attack surface can be effectively minimized. Log

checking using the sudo grep '80' /var/log/ufw.log command

showed packet denials from port 80 as shown in Figure 6,

indicating the system was able to recognize and reject

unauthorized connections.

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 889 – 899

894

Figure 5. SSH access via port 80

Figure 6. Packet denial from IP address outside the network

2) Fail2Ban: When a brute force attack simulation was

carried out against SSH with failed login attempts more than

five times in a short period, Fail2Ban automatically blocked

the attacker's IP address as shown in Figure 7. The block

status can be verified via the sudo Fail2Ban-client status sshd

command as shown in Figure 8. The results show that the

tester's IP was detected and blocked for 10 minutes according

to the default configuration. This proves the effectiveness of

the Intrusion Prevention System in preventing repeated

attacks.

Figure 7. Fail2Ban blocking the connection

Figure 8. Tester's IP address detected and blocked by Fail2Ban

3) AIDE: After the AIDE integrity database was

created using aideinit, testing was done by creating an empty

decoy file in the /etc directory. When the sudo aide --config

/etc/aide/aide.conf --check command was run, the system

displayed a report of the file addition. In addition, for files that

were newly deleted and files whose contents were modified

will also be visible in the AIDE system. The AIDE check

results can be seen in Figure 9. These findings show that

AIDE functions effectively in detecting unauthorized system

file changes, so it can be used for post-incident forensics.

Figure 9. AIDE check results

4) rkhunter: A full check using sudo rkhunter --check -

-sk showed a result of possible rootkits: 0, as shown in Figure

10. All system file hashes matched the initial database. This

function is important to ensure that no kernel-level malware

is hidden within the system.

Figure 10. rkhunter check results

JAIC e-ISSN: 2548-6861

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

895

5) Lynis: The security audit results using Lynis showed

using sudo lynis audit system showed a system score of

61/100 in the initial check before the security system was

implemented as shown in Figure 11, which then increased to

68/100 after the DiD security system was implemented as

shown in Figure 12. This score increase shows that Lynis is

effective in assisting the system hardening process by

providing a security score index.

Figure 11. Lynis audit results before DiD implementation

Figure 12. Lynis audit results after DiD implementation

6) Logwatch: The daily reports generated by Logwatch

show a summary of NAS system activities, including security

activities, web service status, storage space usage, package

installation and update processes as shown in Figure 13.

Based on the monitoring results, the NAS system is in a stable

and secure condition, with all services functioning normally

without critical errors. Logwatch proved effective as a

monitoring tool that provides a comprehensive overview of

system activity and health.

Figure 13. Logwatch monitoring results

After all host security layers were tested and functioning

well, the next stage was testing the storage layer using the ZFS

snapshot feature.

C. ZFS Snapshot Testing Results

Before testing the snapshot feature, the NAS system was

first accessed using Finder on macOS via the smb://<ip_nas>

address connected through the ZeroTier One network as seen

in Figure 14. This way, the dataset directory on ZFS can be

accessed directly from the user interface as shown in Figure

15 for the purposes of moving, deleting, or modifying files

during the testing process.

Figure 14. Accessing NAS via the Finder application

Figure 15. Display of data stored on the NAS

The ZFS snapshot feature test was conducted by creating

the datapool/media@auto dataset and generating automatic

snapshots via a cron job every 1 hour.

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 889 – 899

896

1) File Deletion Test: 3 files were deleted from the

dataset directory as shown in Figure 16, then recovery was

performed using the sudo zfs rollback datapool/media@auto-

20251013-110001 -r command which refers to the last zfs

snapshot before the files were deleted. The results showed the

3 files were successfully restored with identical content as

before they were deleted as shown in Figure 17.

Figure 16. Deleting files from the directory

Figure 17. ZFS snapshot restores deleted files

2) File Modification Test: The content of the test.txt file

was changed as shown in Figure 18, then a rollback was

performed using the same command as the file deletion test.

After the recovery process, the file content returned to the

original version as shown in Figure 19. This shows that ZFS

snapshots are effective in handling user errors or unwanted

changes without requiring an external backup system.

Figure 18. Modifying a file from the directory

Figure 19. ZFS snapshot restores the file to its original state

3) Storage Efficiency Test: Storage efficiency on the

ZFS system was tested by comparing the USED and REFER

values of the dataset using the zfs list -o name, used,

referenced command as shown in Figure 20.

Figure 20. Comparison of USED and REFER values on ZFS

The USED value indicates the total space used, while

REFER indicates the size of active data being referenced.

Efficiency can be calculated with the formula:

𝑂% =
𝑈𝑆𝐸𝐷 − 𝑅𝐸𝐹𝐸𝑅

𝑅𝐸𝐹𝐸𝑅
× 100%

Based on the results of the zfs list -o name,used,referenced

command, it was found that the datapool/media dataset has a

USED value = 115 MB and REFER = 115 MB. Thus:

𝑂% =
115 − 115

115
× 100% = 0%

This result shows that there is no increase in storage space

even though 115 MB of data is stored in the dataset. The 0%

value proves that the snapshot feature on ZFS does not cause

data duplication because it only stores changes (delta blocks)

after the previous snapshot. Thus, this mechanism is able to

maintain data integrity with almost zero storage overhead,

thereby proving the high efficiency of the ZFS system [20].

The snapshot efficiency test resulted in a value of 0%,

which indicates that no additional storage was consumed at

the time of measurement. This outcome is consistent with ZFS

copy-on-write design, where snapshots only store modified

blocks rather than duplicating existing data. Because no data

changes occurred between the evaluated snapshots during the

observation window, ZFS reported zero additional space

usage. Snapshot efficiency is inherently dependent on the

frequency of data updates and the duration of observation.

JAIC e-ISSN: 2548-6861

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

897

D. Results of Attack Simulation Testing

To validate the effectiveness of the implemented security

architecture, a series of attack simulation tests were

conducted, covering unauthorized access threats (Brute

Force), data integrity compromise (Ransomware), and system

file manipulation. The results are summarized in the

following table:

TABLE III

COMPARISON OF SECURITY PERFORMANCE BETWEEN DEFAULT SYSTEM AND DID ENABLED SYSTEM

Testing

Scenario

Measurement Metric Default System

(Without DiD)

Proposed System

(With DiD)

Effectiveness / Improvement

SSH Brute

Force

Login attempt limit Unlimited 5 attempts 99.9% reduction in unauthorized

access attempts

Response time (blocking) No response < 2 seconds (after

threshold reached)

Real-time mitigation of

unauthorized access

Ransomware

Simulation

Availability of recovery

points

None / manual (Slow) Periodic snapshots

(Hourly)

Ensures availability of read-only

data copies

Recovery Time (RTO),

115 MB file size

5 second (manual

restore)

1 second (zfs

rollback)

80% time reduction without

physical file transfer

File

Manipulation

File change detection Not detected Detected

(AIDE/Logwatch)

Identifies hash changes in critical

system files

System Audit

Score

Hardening index (lynis) 61 68 11.48% improved overall system

security posture

1) Resistance to Unauthorized Access: In the Brute-

Force test, the default system allowed attackers to perform

unlimited login attempts, which could substantially burden

the CPU resources of the Orange Pi. With the implementation

of Fail2Ban, the system successfully detected suspicious

activity and blocked the attacker’s IP address at the kernel

level using UFW as soon as the threshold for failed attempts

was exceeded. This demonstrates that the access-control layer

effectively reduces account compromise risk to near zero.

2) Data Resilience Against Ransomware: The

ransomware simulation was performed by forcibly encrypting

the shared folder. In a system without the DiD framework, the

data became completely inaccessible. However, by utilizing

ZFS Snapshots managed by Sanoid, the system was able to

perform a rollback to the state prior to the attack (with a

maximum RPO of 60 minutes). The snapshot mechanism

proved highly efficient, as the recovery process (RTO)

occurred within seconds regardless of the size of the affected

dataset.

3) System Integrity and Transparency: Through the use

of AIDE and rkhunter, all attempts to modify system binaries

or essential configuration files were successfully detected.

Quantitatively, the improvement in the Lynis Hardening

Index from approximately 61 to 68 indicates that the Debian-

based operating system has been configured in accordance

with professional server security best practices. The

automatically managed log accumulation ensures that

forensic evidence remains preserved without overloading the

internal storage capacity of the Orange Pi.

E. Discussion of Results

The test results that have been carried out show that the

application of the DiD concept on a Debian-based NAS

system on an Orange Pi device is able to improve system

resilience and security without causing a significant

performance burden. The implemented DiD approach

consists of two main layers, namely host security and storage

security, which complement each other in protecting data

from various types of threats.

1) Host Security Layer: The host security layer acts as

the first line of defense against external threats. Firewall and

Fail2Ban function as active protection systems that directly

prevent unauthorized access. Testing showed that the Firewall

successfully rejected all connections on non-permitted ports,

while Fail2Ban automatically blocked the attacker's IP

address after five failed login attempts. Meanwhile, AIDE and

rkhunter function as detection and security audit systems that

monitor file integrity changes and detect possible rootkits.

Lynis helps the system hardening process by providing a

security score index, while Logwatch produces periodic

system activity reports to support continuous security

monitoring. The combination of all these tools forms a layered

defense mechanism that is capable of detecting, preventing,

and reporting potential threats in real-time.

2) Storage Security Layer: The second layer focuses on

data protection through the ZFS snapshot feature. Testing

showed that the system was able to recover data that was

accidentally deleted or modified without loss of integrity. The

copy-on-write feature and ZFS block management ensure that

each snapshot only stores changes that have occurred since

the previous snapshot, thus not causing data duplication. The

storage efficiency value reaching 0% overhead proves that

ZFS is very efficient in managing storage space. Thus, the

storage layer contributes directly to the aspects of availability

and data integrity, two important elements in the information

security model.

3) Effectiveness of the Defense-in-Depth Model: The

integration between the host layer and the storage layer forms

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 889 – 899

898

a comprehensive defense system. The host layer handles

prevention and detection aspects, while the storage layer

strengthens recovery and data resilience. The test results show

that the system is able to detect attacks, prevent unauthorized

access, and recover data without significant performance loss.

In addition, the entire system is run on an Orange Pi Zero 3

device connected via a smartphone Wi-Fi hotspot network

and can be accessed securely via ZeroTier One. This shows

that the DiD concept can be implemented effectively even on

low-cost hardware, with stable performance and good energy

efficiency.

4) Implications of Research Results: Based on the

overall testing, it can be concluded that the DiD approach

based on open-source software is effective in improving NAS

security without requiring large resources. These research

results support the application of layered security systems in

edge computing and home server environments, where

efficiency and reliability are primary factors.

F. System Sustainability Analysis and Long-Term Data

Accumulation Management

The implementation of a DiD security system on SBC such

as the Orange Pi requires a balance between robust protection

mechanisms and the efficient use of limited hardware

resources. A key challenge in long-term operation lies in the

accumulation of residual data namely activity logs and ZFS

snapshots which may hinder or even disrupt system

functionality if not systematically managed. To mitigate the

risk of disk exhaustion in critical directories such as /var/log,

the system relies on the logrotate utility, which automatically

compresses and periodically removes outdated log files. This

mechanism ensures that security services continuously retain

sufficient capacity to record new activity without

compromising the stability of the system partition.

In parallel with log management, the sustainability of the

data resilience layer is maintained through Sanoid snapshot

retention policy. By applying a tiered retention strategy, the

system intelligently regulates snapshot accumulation to

remain within the physical storage limits. Through the

automated removal of expired hourly, daily, and monthly

snapshots, the system is able to provide extensive recovery

points without causing exponential disk usage growth. This

approach is especially critical for storage devices such as SD

cards or small SSD, ensuring the availability of space for the

NAS primary functions over months or even years of

operation.

In responding to sustained cyberattacks, the system

demonstrates scalable defensive capability through the

dynamic collaboration between Fail2Ban and UFW. When

faced with repetitive brute force attempts, the system not only

enforces temporary bans but can also automatically escalate

the ban duration to reduce processing overhead at the

application layer. By shifting the blocking workload to the

kernel level firewall, the Orange Pi is able to allocate CPU

resources more efficiently to legitimate data requests, even

under continuous attack pressure. This synergy ensures that

the NAS remains responsive and avoids significant

performance degradation resulting from security related

workload management.

Long term data integrity is preserved through routine

maintenance procedures that include ZFS scrubbing and

AIDE database updates. Periodic scrubbing verifies the

integrity of each data block, detecting and automatically

repairing physical corruption through ZFS self-healing

capability. Meanwhile, regular synchronization between the

actual system state and the AIDE database index is mandatory

whenever official system updates occur. This prevents the

buildup of false positive alerts, which could otherwise reduce

administrator attentiveness toward genuine security

anomalies. Through the integration of these automated

mechanisms, the NAS security architecture is able to maintain

a consistent defensive posture without requiring intensive

manual intervention.

G. Scalability and Portability Analysis

The DiD approach implemented on the Orange Pi

demonstrates a high level of portability due to its foundation

on a standard Debian Linux distribution [21]. Technically, the

entire security stack can be deployed with minimal

adjustments across various other SBC ecosystems such as

Raspberry Pi, Rock Pi, or Banana Pi. This portability is

enabled by the fact that these tools operate at the operating

system and filesystem layers (ZFS), both of which are

inherently hardware-agnostic. Such flexibility allows

developers and IT practitioners to adopt this security model

on different SBC devices without redesigning the

fundamental command structure or configuration logic [22].

When examining potential deployment in larger NAS

environments or enterprise scale systems, the architecture

exhibits excellent scalability. On more powerful x86-64

infrastructures, tools like AIDE and Lynis can operate more

efficiently in processing large scale system audits [23].

Scalability benefits become even more apparent with the use

of ZFS, where its snapshot capabilities and retention

management via Sanoid can accommodate storage pools

consisting of dozens of disks configured in advanced RAIDZ

layouts [24]. In virtualization environments such as Proxmox

or vSphere, this DiD framework can be integrated as a

standardized security template for each Virtual Machine

(VM) functioning as a storage server, thereby strengthening

security consistency across the entire data center [25].

Certain resource constraints must be considered when

migrating to environments with either higher or lower

hardware capacities. The use of ZFS requires a substantial

RAM allocation [26]. On SBC with less than 1 GB of RAM,

system performance may degrade if all security layers are

activated simultaneously. Therefore, this study concludes that

although the architecture is highly scalable, its

implementation must be tailored to the available hardware

capacity to maintain a balanced trade-off between strong

security and responsive NAS service performance.

JAIC e-ISSN: 2548-6861

Implementing Defense-in-Depth Framework on Orange Pi NAS Using Host-Based Security and ZFS

(Muhammad Fatih Hady, Hafiyyan Putra Pratama)

899

IV. CONCLUSION

This research demonstrates that the implementation of a

DiD framework on an Orange Pi based NAS is effective,

lightweight, and feasible for low-cost environments. The

combination of host-based security tools (UFW, Fail2Ban,

AIDE, rkhunter, Lynis, and Logwatch) successfully provides

preventive, detective, and monitoring capabilities that reduce

the overall attack surface and detect abnormal system

activities in real time. Testing results confirm that the firewall

blocks unauthorized network access, Fail2Ban mitigates

brute-force attempts, and integrity monitoring tools reliably

detect file changes.

At the storage layer, the integration of ZFS snapshots and

a tiered Sanoid retention policy significantly strengthens data

resilience. Snapshot rollback is proven to effectively restore

deleted or modified files, achieving a RPO of one hour with

minimal resource overhead. Performance measurements also

show that activating multiple security layers does not

introduce noticeable degradation on the Orange Pi Zero 3,

keeping CPU usage below 10% and memory usage at

approximately one-third of total capacity.

This research concludes that an SBC-based NAS system

can achieve a secure and highly available architecture when

equipped with layered host security and ZFS-based data

protection. The proposed model offers a practical, low-cost,

and academically relevant reference for developing secure

NAS solutions for SMEs, home users, and research

environments. Future work may explore automation,

scalability enhancements, and comparative evaluations with

other security architectures to further strengthen the proposed

framework.

REFERENCES

[1] M. Adila, A. S. Y. Santoso, and A. P. Sari, ‘Penerapan Sistem Operasi

Network Attached Storage “FreeNAS” sebagai Solusi Kegiatan

Berbagi File. (Studi kasus : Fakultas Ilmu Komputer, UPN Jatim)’,
Jurnal Ilmiah Teknologi Informasi dan Robotika, vol. 5, no. 2, pp.

53–59, Dec. 2023, doi: 10.33005/jifti.v5i2.180.

[2] R. A. Firmansyah and W. Adhiwibowo, ‘Performance Analysis of
Low Cost Orange Pi Based NAS Server for SMEs’, Jurnal

Informatika Teknologi dan Sains, vol. 7, no. 3, 2025.

[3] H. Gunawan, A. Handijono, A. Putra, and A. Zein, ‘Sistem
Monitoring Serangan DOS dengan Metode Intrusion Detection

System (IDS) Snort menggunakan Aplikasi Berbasis Python pada

Sistem Operasi Linux’, Spectrum: Multidisciplinary Journal, vol. 2,
no. 3.

[4] D. Riyanto, K. Khairil, and E. P. Rohmawan, ‘An Analysis and

Design of Network Security Using Firewall at the Library and
Archives Services of Bengkulu province’, Jurnal Komputer,

Informasi dan Teknologi, vol. 1, no. 2, Dec. 2021, doi:

10.53697/jkomitek.v1i2.280.
[5] S. D. Hitefield, ‘A Defense-In-Depth Security Architecture for

Software Defined Radio Systems’, Ph.D. Dissertation, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia,
2019.

[6] B. Gajbhiye, S. Jain, and O. Goel, ‘Defense in Depth Strategies for

Zero Trust Security Models’, International Journal for Research
Publication and Seminar, vol. 15, no. 3, 2024.

[7] V. Babanov, ‘Internals of Defense-In-Depth Strategy in

Cybersecurity’, Scientific journal, no. 2, Dec. 2024, doi:
10.70265/PNEZ3158.

[8] Farhannullah and M. Hardjianto, ‘Sistem Monitoring Serangan SSH

dengan Metode Intrusion Prevention System (IPS) Fail2ban
Menggunakan Python Pada Sistem Operasi Linux’, Technology of

Information and Communication, vol. 11, no. 1, pp. 33–38, Sep.

2022, doi: 10.70309/ticom.v11i1.68.
[9] April Rustianto, Arif Fadillah, and Jemiro Kasih, ‘Pencegahan Dan

Visualisasi Serangan Brute Force Menggunakan Fail2ban,

Prometheus, dan Grafana Studi Kasus Di Sekolah Tinggi Teknologi
Terpadu Nurul Fikri’, Jurnal Publikasi Teknik Informatika, vol. 4, no.

2, pp. 195–209, May 2025, doi: 10.55606/jupti.v4i2.5144.

[10] M. Ridho, A. Hafizh, I. Dani, and T. Ariyadi, ‘Peningkatan
Keamanan SSH Server Berbasis Linux melalui Implementasi

Fail2Ban dan Uji Serangan Brute Force’, Jurnal Penelitian

Multidisiplin Bangsa, vol. 1, 2025.
[11] J. Sani, ‘Improved Log Monitoring UsingHost-based Intrusion

Detection System’, Advanced International Journal of

Multidisciplinary Research, vol. 1, no. 1, 2023.
[12] B. Havano and A. Dobush, ‘Enhancing host intrusion detection

systems for Linux based network operating systems’, Advances in

Cyber-Physical Systems, vol. 10, no. 1, pp. 54–58, May 2025, doi:
10.23939/acps2025.01.054.

[13] A. C. Jaya, ‘Single-Board Computer For Affordable Personal Data
Storage Server’, Jurnal Mantik, vol. 4, no. 36, 2020.

[14] Z. Chen, M. Simsek, B. Kantarci, M. Bagheri, and P. Djukic, ‘Host-

Based Network Intrusion Detection via Feature Flattening and Two-
stage Collaborative Classifier’, arXiv, vol. 1, no. 1, 2023, doi:

10.48550/arXiv.2306.09451.

[15] Y. Mawaru, M. Yahya, and A. M. Mappalotteng, ‘Analisis
Efektivitas IPTABLES Dalam Melindungi Jaringan Dari Serangan

DDoS’, Pinisi Journal of Science & Technology, vol. 1, no. 5, 2024.

[16] K. A. Prasetyo, M. Idhom, and H. E. Wahanani, ‘Sistem Pencegahan
Serangan Bruteforce pada Multiple Server dengan Menggunakan

Fail2ban’, Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 1,

no. 3, 2020.
[17] M. Á. Enríquez, J. P. Marcial, T. R. Linares, and A. C. Z. Vázquez,

‘Análisis de servicios y aplicaciones en sistemas Linux con

monitoreo de logs’, Abstraction & Application, pp. 23–32, 2024.
[18] J. Stühn, J.-N. Hilgert, and M. Lambertz, ‘The Hidden Threat:

Analysis of Linux Rootkit Techniques and Limitations of Current

Detection Tools’, Digital Threats: Research and Practice, vol. 5, no.
3, 2024, doi: 10.1145/3688808.

[19] E. D. Ansong, E. A. Affum, and E. Donkor, ‘Framework for Security

Auditing in Linux: Detecting and Mitigating Privilege Escalation
Vulnerabilities Using PriviLynis’, Physical Communication, 2025.

[20] T. Fernando and D. Jayawardena, ‘Leveraging ZFS Snapshots for

Incremental Recovery in Hybrid Unix Networks’, International
Journal of Science, Engineering and Technology, vol. 11, no. 6, 2023.

[21] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,

‘A Survey on IoT Security: Application Areas, Security Threats, and
Solution Architectures’, IEEE Access, vol. 7, pp. 82721–82743,

2019, doi: 10.1109/ACCESS.2019.2924045.

[22] W. Stallings, Effective cybersecurity: understanding and using
standards and best practices. Upper Saddle River, NJ: Addison-

Wesley, 2019.

[23] M. M. I. Jabed, M. S. Hossain, S. Ferdous, R. B. Ankhi, and A. B.
Gupta, ‘AI-Driven Intrusion Detection Systems: A Business

Analyst’s Framework for Enhancing Enterprise Security and

Intelligence’, International Journal of Research Publications in
Engineering, Technology and Management, vol. 08, no. 05, Sep.

2025, doi: 10.15662/IJRPETM.2025.0805004.

[24] N. L. Beebe, S. D. Stacy, and D. Stuckey, ‘Digital forensic
implications of ZFS’, Digital Investigation, vol. 6, 2009, doi:

10.1016/j.diin.2009.06.006.

[25] Z. Li, G. Liu, Y. Dang, Z. Shang, and N. Lin, ‘Research on New
Virtualization Security Protection Management System Based on

Cloud Platform’, Journal of Applied Data Sciences, vol. 4, no. 2,

2023.
[26] O. Rodeh, J. Bacik, and C. Mason, ‘BTRFS: The Linux B-Tree

Filesystem’, ACM Transactions on Storage, vol. 9, no. 3, 2013, doi:

10.1145/2501620.2501623.

