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 Today, decision-makers begun to prioritize the concept of green logistics, which is 

based on strategies aimed to promote more environmentally sustainable practices 

during vehicle routing. Among key factors influencing fuel consumption in such 

problems, vehicle speed plays a crucial role. This article adapts the Comprehensive 

Modal Emission Model (CMEM) for fuel consumption by treating vehicle speed as 

a fuzzy variable. This enhanced version, referred as Fuzzy-CMEM, enables the 

formulation of a more realistic fuzzy multi-objective Green Vehicle Routing 

Problem (GVRP). The proposed methodology follows four main steps. First, we 
formulate the problem considering the vehicle speed as a fuzzy variable. Second the 

initial fuzzy problem is defuzzified using the interval approximation approach. 

Third, a sequential approach is adopted where the sweep heuristic is used to construct 

feasible routes, and the BicriterionAnt metaheuristic is employed to generate optimal 

Pareto-front solutions of the resulting deterministic problem. Finally, a numerical 

simulation is addressed, followed by a comparative analysis of results and 

discussion. 

Keyword: 

Logistics,  

Fuzzy Theory,  

Metaheuristic,  
Multi-Objective Problem,  

Green Vehicle Routing Problem. 

 

    
This is an open access article under the CC–BY-SA license. 

 

I. INTRODUCTION 

Vehicle speed plays a crucial role in fuel consumption and 

pollutant emissions in the transportation systems. In the 

context of the Green Vehicle Routing Problem (GVRP), 

incorporating speed as an influential variable enables a more 

realistic modeling of both energy and environmental costs.   

Since the seminal work of Dantzig and Ramser [1] on the 
Vehicle Routing Problem (VRP), research in vehicle routing 

optimization has significantly evolved, particularly by 

integrating environmental aspects. This evolution has led to 

the formulation of the Green Vehicle Routing Problem 

(GVRP) [2], which aims to minimize not only economic cost 

or logistical costs, but also greenhouse gas emissions and 

energy consumption. This problem aligns with the global shift 

toward ecological transportation, where the search for 

sustainable routing solutions has become a strategic priority, 

as reported by the International Energy Agency (IEA) [3]. 

The studies by Bektaş and Laporte [4], as well Kara et al. 
[5], have emphasized the need to consider both economic and 

environmental criteria simultaneously in routing models, 

giving rise to multi-objective formulations of the GVRP. In 

order to accurately assess the environmental impact of each 

route, several fuel consumption models have been developed. 

In addition to Zhang's model [6], these models can broadly be 

categorized into two main types: macroscopic and 

microscopic approaches [7,8]. Macroscopic models, such as 

those reviewed by Hickman [9] or employed in early emission 

minimization studies like the one of Figliozzi [10], are 
generally based on aggregate functions that relate fuel 

consumption to average speed, travel distance, or vehicle 

type. While these models are easy to implement, they often 

overlook the dynamic variability of driving conditions, such 

as acceleration, frequent stops, or changes in road gradient 

[11].    

In contrast, microscopic models, such as the 

Comprehensive Modal Emissions Model (CMEM) developed 

by Barth et al. [12], provide a more precise and dynamic 

estimation of fuel consumption and pollutant emissions. This 

model incorporates parameters such as instantaneous speed, 
acceleration, engine load, and vehicle specific characteristics 

particularly for heavy-duty vehicles. It has been extensively 

validated in the work of Younglove and Scora [13], and has 
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been successfully applied to assess the real-world impact of 

traffic congestion on emissions, as shown in studies of Barth 

and Boriboonsomsin [14]. 

In the CMEM model, speed is taken as a real parameter 

which is not at all realistic because of its variability related to 

road congestion, the typology of roads and temporal traffic 

conditions are changing in urban and peri-urban contexts as 

highlighted by Jabali et al. [15]. To address this limitation, we 
propose modeling speed as a fuzzy variable [16,17], using 

linguistic terms such as very slow, slow, moderate, and fast, 

each associated with corresponding membership functions. 

This approach, grounded in fuzzy logic, enables a more 

realistic representation of traffic variability and uncertainty. 

Accordingly, in this paper, we introduce an enhanced version 

of the CMEM referred as Fuzzy-CMEM in which vehicle 

speed is treated as a fuzzy variable. 

Based on this, we also develop a fuzzy multi-objective 

formulation of the GVRP, where fuel consumption is 

explicitly considered, and whose resolution is handled by the 

metaheuristic BicriterionAnt originally proposed by Iredi et 

al. [18]. This ant colony based method is capable of exploring 

optimal trade-offs between distance and energy consumption, 

even under uncertainty, as demonstrated in the work of Jabir 

et al. [19]. Liu et al. [20] assumed that carbon emissions are 

related to vehicle speed, load, and type, and developed an 

improved Ant Colony Optimization (ACO) algorithm to solve 

the problem. Kancharla and Ramadurai [21] included load, 

speed, and acceleration in fuel consumption estimation using 

driving cycles within vehicle routing problems, analyzing 

their impact on total fuel consumption and route selection. 

Early models that integrated speed into green VRP 
formulations were based on macroscopic approaches [9], in 

which consumption is expressed as a function of average 

speed along a road segment or route. These models typically 

use convex functions linking speed and fuel consumption. For 

instance, Kara et al. [5] introduced an energy-minimizing 

model where speed is optimized for each road segment, while 

Figliozzi [10] proposed a speed-based fuel consumption 

function tailored to different vehicle types. However, these 

approaches tend to overlook the dynamic variability of actual 

driving speeds and the effects of acceleration and deceleration 

cycles. To better reflect traffic realities, several authors have 
treated vehicle speed as a time-dependent variable. Jabali, et 

al. [15] analyzed the effects of congestion on travel speeds, 

demonstrating its direct impact on CO₂ emissions. Gupta et 

al. [22] studied a multi-objective capacitated green vehicle 

routing problem with fuzzy travel time–distance matrices and 

split deliveries represented as discrete packages. They 

employed fuzzy rule-based implication concepts for ranking 

and comparing fuzzy numbers with crisp values, leading to an 

expected value model. Based on this, a discrete hybrid fuzzy 

genetic algorithm was developed. Demir et al. [23] introduced 

a Pollution Routing Problem (PRP) that accounts for time-

varying speeds, and adapted heuristics to optimize both 
departure times and routing based on allowable speeds. Kwon 

et al. [24] investigated heterogeneous fleet routing by 

incorporating speed profiles adjusted to each vehicle type. 

Liu, C.S. et al. [25] focus on a realistic variant of the Vehicle 

Routing Problem with Time Windows (VRPTW) in an urban 

context. The problem is time-dependent, meaning that vehicle 

speeds vary according to different times of the day 

(congestion periods). The main objective is to reduce delays 

and avoid congestion while respecting delivery time 

windows. Ye Chong et al. [26], in their study Optimization of 
Vehicle Paths Considering Carbon Emissions in a Time-

Varying Road Network (TDGVRP), represent vehicle speed 

variation as a continuous function to make the model more 

consistent with real-world conditions and to promote the 

reduction of generated carbon emissions. They proposed a 

hybrid Genetic Algorithm–Simulated Annealing (GA-SA) for 

optimization. Fan, H. et al. [11] worked on the Time-

Dependent Green Vehicle Routing Problem with Time 

Windows and Fuzzy Demand (TDGVRPTWFD). 

Considering the time dependency of vehicle speed and the 

relationship between fuel consumption and vehicle type, 
speed, load, and road gradient, a stochastic programming 

model based on fuzzy credibility theory was formulated to 

minimize total cost and optimize vehicle routing under fuzzy 

demand. To solve the proposed problem, a chaotic genetic 

algorithm with a variable neighborhood search and 

rescheduling strategy was developed. 

For greater precision, microscopic models such as the 

Comprehensive Modal Emissions Model (CMEM), 

developed in [12,13,14], this model is capable of simulating 

real-world driving cycles. The accuracy of CMEM makes it 

particularly relevant for the GVRP when vehicle speed is 

subject to spatio-temporal or stochastic variations. It has 
notably been employed in studies such as Turkensteen [27], 

which evaluates the precision of emission calculations 

relative to the granularity of speed data, and Kancharla and 

Ramadurai [19], who integrated it into a GVRP model 

sensitive to driving cycles. A more flexible approach consists 

of modeling speed as a fuzzy variable, allowing the capture of 

uncertainty linked to traffic conditions. This method is 

grounded in the principles of fuzzy logic introduced by Zadeh 

[16,17], enabling the use of linguistic terms like slow, 

moderate, fast to represent speed. El Fassi et al. [28] and 

Hussain & Allaoui [29] used fuzzy inference systems (FIS) to 
estimate fuel consumption based on uncertain speeds within 

an eco-driving framework. Nguyen et al. [30] incorporated 

fuzzy speed into an energy routing model for electric vehicles. 

Jabir et al. [19] explored the impact of fuzzy speeds within a 

GVRP solved using ant colony optimization. 

Currently, very few studies explicitly and 

comprehensively incorporate fuzzy speed directly into fuel 

consumption models. Therefore, in this paper, we have 

chosen to use the Comprehensive Modal Emissions Model 

(CMEM), a deterministic microscopic model developed to 

simulate fuel consumption and emissions based on detailed 

driving profiles such as instantaneous speed, acceleration, 
road grade, vehicle load, and more [12,13]. In this paper, we 

employ the Nearest Interval of Approximation (NIA) method 
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as the defuzzification technique. This approach aligns with 

prior work by Demir et al. [23,31] and recent applications in 

multimodal routing or congestion-constrained contexts, such 

as those by Liu et al. [20] and Ye et al. [26]. Based on the 

above analysis, this paper focuses on the Fuzzy Multi-

Objective Green Vehicle Routing Problem (FMOGVRP): by 

considering vehicle speed as a fuzzy parameter and its 

relationship with fuel consumption, a fuzzy multi-objective 

optimization problem is formulated to minimize total distance 
and CO₂ emissions. The defuzzification process relies on the 

Nearest Interval of Approximation (NIA) of a fuzzy number, 

after which the sweep algorithm and the BicriterionAnt 

algorithm are applied respectively for customers clustering 

(potential routes) and constructing the problem’s solutions. 

The rest of paper is divided as follow: In section 2 we 

present some preliminary concepts which will be used in the 

sequel of the paper. In section 3, we present the problem 

statement and mathematical model. Section 4 is devoted in the 

methodology applied. In Section 5 is dedicated to the 

numerical Simulation. In Section 6 some discussions are 
presented. The paper is ended by concluding remarks in 

section 7. 

 

II. PRELIMINARIES 

II.1. Fuzzy sets 

Let 𝑋 be a discourse universe non-empty. A fuzzy subset 

𝐴̃ ∈ 𝑋 is defined as follow: 𝐴̃ = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}. Where 

𝜇𝐴: 𝑋 ⟶ [0,1] is the membership function of the fuzzy set 

under consideration[16]. A level set 𝛼 of 𝐴̃ is the set 𝐴̃𝛼 =
{𝑥 ∈ 𝑋: 𝜇𝐴(𝑥) ≥ 𝛼} [16]. In addition to a level subset, a fuzzy 

set can be characterized by its core, height and support. Let 

𝐻(ℝ) the set of all normal, convex fuzzy numbers with 

compact support defined on ℝ, with membership function 

𝜇𝐴: 𝑋 ⟶ [0,1]. If 𝑎̃ ∈ 𝐻(ℝ) then the level set 𝛼 of  𝑎̃ is   

[𝑎𝛼
𝐿 , 𝑎𝛼

𝑈] where 𝑎𝛼
𝐿  et 𝑎𝛼

𝑈 are continuous real valued functions 

on 𝑋. There are several types of 𝐿 − 𝑅 fuzzy numbers when 

the reference functions are linear, we speak of triangular or 

trapezoidal fuzzy numbers.  

Instead of working solely with a specific point such as a level 

subset, in this paper we focus on intervals, as they provide 

greater flexibility in decision-making. This is why, in this 

article, we will also rigorously use fuzzy concepts such as : 

The approximation interval operator given by 𝐶:𝐻(ℝ) ⟶

𝒫(ℝ), the metric 𝑑:𝐻(ℝ)⟶ [0,+∞] and the Nearest 

Interval of Approximation (NIA) of 𝑎̃  in the sense of the 

metric 𝑑, for more details readers can consult [33, 34].  

 

 

 

 

Algorithm 1: Nearest Interval of Approximation (NIA) 

1. Read 𝜇𝑎̃(𝑥) 

2. Find  inf{𝑥 ∈ ℝ ∶  𝜇𝑎̃(𝑥) ≥ 𝛼 } = 𝑎𝛼
𝐿  and sup{𝑥 ∈ ℝ ∶

 𝜇𝑎̃(𝑥) ≥ 𝛼 } = 𝑎𝛼
𝑈  , 𝛼 ∈ (0,1] 

3. Calculate ∫ 𝑎𝐿(𝛼)𝑑𝛼
1

0
= 𝑁𝛼

𝐿 and  ∫ 𝑎𝑈(𝛼)𝑑𝛼
1

0
= 𝑁𝛼

𝑈 

4. Write 𝐶𝑑(𝑎̃) = [𝑁𝛼
𝐿, 𝑁𝛼

𝑈]   
 

Ii.2. Combinatorial Optimization Problem 

A multi-objective combinatorial optimization problem is 

a decision-making problem that consists in jointly optimizing 

a set of  𝑝 often conflicting objective functions subject to a set 

of constraints with discrete (binary) variables, where : 𝐹(𝑥) =

(𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑝(𝑥)) is a vector of objective functions [2]. 

The decision vector is (𝑥1, 𝑥2, … , 𝑥𝑛) and we note 𝐷 =
{𝑥 ∈ {0,1}𝑛: 𝑔𝑖(𝑥) ≤ 0, ℎ𝑗(𝑥) = 0; 𝑖 = 1, … ,𝑚; 𝑗 = 1,… , 𝑘}  
the set of feasible solutions in the decision space. In the multi-

objective framework, the decision-maker thinks rather in 

terms of evaluating a solution for each objective, and naturally 

places himself in the objective space. The image of a solution 

𝑥 ∈ 𝐷 in the objective space 𝑂 is the point (𝑦1, 𝑦2, … , 𝑦𝑝) 

with 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 1,2,… , 𝑝; 𝑌 = 𝐹(𝐷) represents the 

solution in the goal space. The most widely accepted notion 

of optimality is the Pareto optimum [2]. From the above, this 
notion is extended to the fuzzy multi-objective combinatorial 

problem, assuming that:  

(i) The set of feasible solutions 𝐷 is nonempty, closed, 

and bounded, and therefore compact. 

(ii) Let 𝐹̃(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑝(𝑥)) be a vector of 

fuzzy objective functions, where each 𝑓𝑘 ∈ 𝐻(ℝ).  
(iii) For any 𝑥 ∈ 𝐷 and any 𝛼 ∈ [0,1], level set 𝛼 is 

given by (𝑓𝑘(𝑥))
𝛼
= [𝑓𝑘,𝛼

𝐿 (𝑥), 𝑓𝑘,𝛼
𝑈 (𝑥)], where 

𝑓𝑘,𝛼
𝐿  and 𝑓𝑘,𝛼

𝑈  are continuous real-valued functions 

on 𝐷.  

(iv) The fuzzy partial order relation ≼  on 𝐻(ℝ) is 

defined by 𝐴̃ ≼ 𝐵̃ ⇔ 𝐴𝛼
𝐿 ≤ 𝐵𝛼

𝐿 and 𝐴𝛼
𝑈 ≤ 𝐵𝛼

𝑈  

∀ 𝛼 ∈ [0,1]. The fuzzy Pareto dominance relation 
≺𝑃 is the Pareto dominance induced by  ≼. For any 

𝑥, 𝑦 ∈ 𝐷, there exists at least one objective 𝑖 ∈
{1, … , 𝑝} such that Pareto dominance is defined as 

𝑥 ≺𝑃 𝑦  if and only if  𝑓𝑖(𝑥) ≼  𝑓𝑘(𝑦) and 𝑓𝑘(𝑥) ≺

𝑓𝑘(𝑦). 

II.3. Speed overview 

In general, a vehicle’s speed varies continuously for 

several reasons. Fan et al. [11] proposed that the relationship 

between vehicle speed (𝑣)  and time (𝑡) can be expressed by 

the trigonometric function 𝑣(𝑡) = 𝑎𝑠𝑖𝑛(𝜎𝑡) + 𝛿, where 𝑎, 𝜎  

and 𝛿 are coefficients related to road conditions.  
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In urban area, vehicle speeds can be partitioned into 

periods 𝑇1 , 𝑇2 , 𝑇3   and 𝑇4 as illustrated in Figure 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Daily variation trend of vehicle speed 

 

III. PROBLEM STATEMENT AND MATHEMATICAL 

MODEL 

III.1. Comprehensive modal emission model (CMEM) 

In arrange to degree the use of fuel and CO₂ emissions, an 

exact estimation strategy is connected. The CMEM is one of 

the estimation models of fuel utilization, which was created 

by Barth et al. 2005 [12]. The specified show comprises of 

three modules: motor control, motor speed and, fuel 

utilization rate.  

The Outflow Rate (𝐸𝑅) [𝑔/𝑠] for nursery gasses (such as 

CO, HC or NOx) is related to the use of fuel rate (𝐹𝑅) [𝑔/𝑠], 
𝐹𝑅 is a continuous, positive, and non-linear function, the 

calculation of 𝐹𝑅 is complex because it depends on a number 
of components. The calculation of FR is clarified in 

underneath connection (1) 

𝐹𝑅 = (𝑧. 𝑁.𝑊.
𝑃𝑡
𝜀
+𝑃𝑎

𝜂
) × 𝛾                   (1) 

Where 𝑧 is the engine friction factor, 𝑁 is the engine speed 

(radian per second (𝑟𝑝𝑠)), 𝑊 [𝑙𝑖𝑡𝑒𝑟] is the engine 

displacement, 𝑃𝑡  [𝑤𝑎𝑡𝑡] or [𝑘𝑔 𝑚2/𝑠3] is the total tractive 

power demand , 𝜀 [−] is vehicle drive train 

efficiency, 𝑃𝑎  [𝑤𝑎𝑡𝑡] is the engine power demand associated 
with additional vehicle accessories such as air conditioner, 

𝜂 [−] is a measure of efficiency for diesel engines and 𝛾 [−] 
is a constant.  

𝑁 =
𝑛𝑑𝑛𝑔𝑣

𝑅
                                           (2)                                          

       Where 𝑛𝑑 is the differential ratio, 𝑛𝑔is the gear ratio and 

𝑅 is radius of the wheel. Moreover 𝑃𝑡  [𝑘𝑖𝑙𝑜𝑤𝑎𝑡𝑡] is calculated 

as follow : 

𝑃𝑡 = (𝑀𝑎𝑣 +𝑀𝑔𝑣 sin𝜃 + 0.5𝐶𝑑𝜌𝐴𝑣
3 +𝑀𝑔𝑣 cos𝜃)10−3            (3) 

 

Where 𝑀 [𝑘𝑔] is the mass of the vehicle, 𝑣 [𝑚/𝑠] is 
speed, 𝑎 [𝑚/𝑠2] is the acceleration, 𝑔 [ 9.81 𝑚/𝑠2] is the 

gravitational constant, 𝜃 [𝑟𝑎𝑑𝑖𝑎𝑛] is the road angle, 𝐴 [𝑚2] is 
the surface area in front of the vehicle, 𝜌 [𝑘𝑔/𝑚3] is the air 

density, and 𝐶𝑟   [−] and 𝐶𝑑 [−] are the coefficients of rolling 

resistance and drag, respectively. 

Thus, 

 𝐹𝑅 = 𝛾. 𝑧
𝑛𝑑𝑛𝑔𝑣

𝑅
.𝑊 +

𝛾𝑀𝑣(𝑎+𝑔sin 𝜃+𝑔𝐶𝑟 cos 𝜃+0.5𝐶𝑑𝜌𝐴𝑣
2)10−3+𝜀𝑃𝑎

𝜂.𝜀
             

(4) 

III.2. Problem Description 

The Vehicle Routing Problem (VRP), proposed by 

Dantzig and Ramser [1], is an emblematic example of a 

combinatorial problem, recognized for its NP-hard 

complexity. Here, we present the formulation of FMOGVRP 

(Fuzzy Multi-Objective Green Vehicle Routing Problem) 
with homogeneous-capacity fleet vehicles which can be 

summarized as follows:  

Let 𝐺 = (𝑉,𝐸) be an undirected graph, where 𝑉 = {0} ∪ 𝑉0 

represents a set of all nodes. Node 0 is the central repository 

from which all vehicles 𝑘 ∈ 𝐾 = {1,2,… ,𝑚} depart; 𝑉0 =
{1,2,… , 𝑛}  denotes the set of customer nodes.  

The set 𝐸 = {(𝑖, 𝑗): 𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉}  is the edge set, 𝑑𝑖𝑗   

represents the distance between nodes 𝑖 and 𝑗. All customers 

have a specific demand 𝑙𝑖 ≥ 0  to be served by a vehicle 𝑘 of 

capacity 𝑄. The speed of each vehicle is expressed by 

trapezoidal  fuzzy variable 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4).  
The binary decision variables 𝑥𝑖𝑗

𝑘  are equal to 1 if vehicle 𝑘 

visits node 𝑗 directly after node 𝑖, and 0 otherwise. The main 

objectives of the problem is to minimize the total travelled 

distance of all routes driven by vehicles 𝑘 and to minimize the 
fuel consumption and CO₂ emissions. Based on the above, we 

formulate the following assumptions: 

 H1: fuel consumption occur with a warmed-up engine: 

according [9] total fuel consumption are given by 

𝐹𝑅𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑅𝑐𝑜𝑙𝑑 𝑠𝑡𝑎𝑟𝑡 + 𝐹𝑅𝐻𝑜𝑡 and if 𝐹𝑅𝑐𝑜𝑙𝑑 𝑠𝑡𝑎𝑟𝑡 = 0 ⇒
𝐹𝑅𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑅𝐻𝑜𝑡  

 H2: The vehicles used belong to the Heavy-Duty Vehicle 

(HDV): 3.5-7.5 tonnes 

 H3: The road gradient is zero degree. 

 H4: Vehicle speed is modeled as a trapezoidal fuzzy 

number 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4). 
 

IV. METHODOLOGY       

This fuzzy approach enables the modeling of imprecision 

associated with real traffic conditions. Thus, speed is no 

longer treated as a fixed parameter but as flexible variable 

whose value can fluctuate across several categories. This 

uncertainty is most often epistemic in nature, arising from a 

lack of information or imprecise data rather than from purely 

random phenomena. Deterministic methods, based on the 

assumption of constant speeds, are unable to reflect this 

variability and may therefore lead to solutions with limited 
robustness. While stochastic models allow uncertainty to be 

explicitly taken into account, they nevertheless require the 

availability of reliable probability distributions as well as 

large volumes of historical data conditions that are rarely met 

in the context of urban freight transportation. By contrast, the 

S
p

ee
d

 (
v
) 

T0 T1 T2 T3 T4 Time (T) 

Speed of T0 –T1 

Speed of T1 –T2 

Speed of T2 –T3 

Speed of T3 –T4 

Speed of T4 – 
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fuzzy approach provides a flexible modeling framework 

capable of representing speed fluctuations through fuzzy 

numbers, without relying on restrictive probabilistic 

assumptions. To this end, we consider a trapezoidal fuzzy 

number 𝑣̃ = (𝑣1, 𝑣2, 𝑣3, 𝑣4) describing vehicle travel speed 
with the linguistic terms {very slow (VS), slow(S), moderate 

(M), fast (F), and very fast (VF)}, whose membership 

functions are defined as follows: 

𝜇𝑣̃(𝑥) =

{
  
 

  
 

0 𝑖𝑓 𝑥 ≤ 𝑣1

𝑥−𝑣1

𝑣2−𝑣1
𝑖𝑓 𝑣1 < 𝑥 ≤ 𝑣2

1 𝑖𝑓 𝑣2 ≤ 𝑥 ≤ 𝑣3

𝑣4−𝑥

𝑣4−𝑣3
𝑖𝑓 𝑣3 < 𝑥 ≤ 𝑣4

0 𝑖𝑓 𝑥 > 𝑣4

                  (5) 

 

where 𝑣1, 𝑣2, 𝑣3, 𝑣4 are real numbers and 𝑣1 < 𝑣2 < 𝑣3 <
𝑣4. In this formulation, the interval [𝑣2, 𝑣3] corresponds to 
the most plausible operational speeds under typical traffic 

conditions, whereas  [𝑣1, 𝑣4] defines the range of extreme, yet 

still feasible speed values. The performance of the fuzzy 

modeling framework largely depends on the specification of 
the membership functions associated with fuzzy speeds, 

which are based on empirical observations and expert 

knowledge as reported in the literature [Ref]. Inadequate 

calibration of these functions may introduce subjective bias 

and undermine the reliability of the resulting outcomes. 

 

IV.1. A Novel adaptation of CMEM and mathematical 

formulation of FMOGVRP 

According to the existing categorization of factors that 

influence fuel consumption of vehicles directly, speed is part 

of the category of factors that are difficult to control and 

unpredictable but measurable. Whereas existing studies 

generally rely on deterministic or stochastic models to 

evaluate fuel consumption and/or CO₂ emissions [38, 39], in 

this paper we introduce the new concept Fuzzy-CMEM in 

order to calculate the fuel consumption of a vehicle 𝑘 that 

moves from point 𝑖 to point 𝑗 using the speed as a fuzzy 

parameter while preserving the analytical structure of the 

CMEM.  

 

The Fuzzy-CMEM model assumes that all vehicle related 

parameters, except for speed such as the vehicle mass 𝑀 or 

engine characteristics 𝑃𝑡 , 𝑃𝑎 etc. are perfectly known and 
remain constant throughout the process, even though this 

scenario may seem restrictive, the Fuzzy-CMEM model 

allows us to enrich the classical modeling by making it more 

realistic in the face of real-world road traffic uncertainties 

(variable traffic, non-constant speed limits, road conditions). 

  

The Fuzzy-CMEM model is presented below: Let us 

incorporate fuzzy speed 𝑣̃ into the relation (4) , 

𝐹𝑅̃(𝑣𝑖𝑗)

= 𝛾. 𝑧𝑊
𝑛𝑑𝑛𝑔𝑣̃𝑖𝑗

𝑅
𝑑𝑖𝑗

+ 
𝛾𝑀𝑣̃𝑖𝑗(𝑎 + 𝑔 sin 𝜃 + 𝑔𝐶𝑟 cos𝜃 + 0.5𝐶𝑑𝜌𝐴𝑣̃𝑖𝑗

2 )10−3𝑑𝑖𝑗 + 𝜀𝑃𝑎𝑑𝑖𝑗

𝜂. 𝜀
     (6) 

As a trapezoidal fuzzy number 𝐹𝑅̃, can be written as : 𝐹𝑅̃ =
(𝑠(𝑣1), 𝑠(𝑣2), 𝑠(𝑣3), 𝑠(𝑣4)) with the membership function 

defined by : 

𝜇𝐹𝑅̃(𝑥) =

{
  
 

  
 

0 𝑖𝑓 𝑥 ≤ 𝑠(𝑣1)
𝑥−𝑠(𝑣1)

𝑠(𝑣2)−𝑠(𝑣1)
𝑖𝑓 𝑠(𝑣1) < 𝑥 ≤ 𝑠(𝑣2)

1 𝑖𝑓 𝑠(𝑣2) ≤ 𝑥 ≤ 𝑠(𝑣3)
𝑠(𝑣4)−𝑥

𝑠(𝑣4)−𝑠(𝑣3)
𝑖𝑓 𝑠(𝑣3) < 𝑥 ≤ 𝑠(𝑣4)

0 𝑖𝑓 𝑥 > 𝑠(𝑣4)

        (7) 

                              

Setting that 𝜏𝑖𝑗 = 𝑎 + 𝑔 sin 𝜃𝑖𝑗 + 𝑔𝐶𝑟 cos𝜃𝑖𝑗 and 𝛽𝑖𝑗 =

0.5𝐶𝑑𝜌𝐴, we can then rewrite relation (6) as follows: 

𝐹𝑅̃(𝑣𝑖𝑗) =  𝛾. 𝑧𝑊
𝑛𝑑𝑛𝑔𝑣̃𝑖𝑗

𝑅
𝑑𝑖𝑗

+ 
𝛾𝑀𝑣̃𝑖𝑗(𝜏𝑖𝑗 + 𝛽𝑖𝑗𝑣̃𝑖𝑗

2 )10−3𝑑𝑖𝑗 + 𝜀𝑃𝑎𝑑𝑖𝑗

𝜂. 𝜀
      (8) 

 

Based on the above, we can formulate our FMOGVRP 

optimization problem (P1) as follows: 

 

𝑓1 = min∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘𝑛

𝑗=1
𝑛
𝑖=1

𝑚
𝑘=1                                           (9) 

𝑓2̃ = min∑∑∑(𝛾. 𝑧𝑊
𝑛𝑑𝑛𝑔𝑣̃𝑖𝑗

𝑅
𝑑𝑖𝑗

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

+ 
𝛾𝑀𝑣̃𝑖𝑗(𝜏𝑖𝑗 + 𝛽𝑖𝑗𝑣̃𝑖𝑗

2 )10−3𝑑𝑖𝑗 + 𝜀𝑃𝑎𝑑𝑖𝑗

𝜂. 𝜀
) 𝑥𝑖𝑗   (10) 

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1𝑛

𝑗=0
𝑣
𝑘=1       if  𝑖 ∈ 𝑉\{0}   (11)  

  ∑ 𝑥𝑖𝑗
𝑘𝑛

𝑖=0 = ∑ 𝑥𝑗𝑖
𝑘𝑛

𝑗=0     if  𝑙 ∈ 𝑉\{0},𝑘 = 1,… ,𝑚       (12) 

 ∑ 𝑥0𝑗
𝑘𝑛

𝑗=1 = 1            if  𝑘 = 1,… ,𝑚       (13) 

 ∑ 𝑥𝑖0
𝑘𝑛

𝑖=1 = 1             if  𝑘 = 1,… ,𝑚            (14) 

 ∑ ∑ 𝑠𝑖𝑥𝑖𝑗
𝑘 +∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗

𝑘 ≤ 𝑇𝑛
𝑗=0

𝑛
𝑖=0

𝑛
𝑗=0

𝑛
𝑖=0       𝑘 = 1,… ,𝑚    (15) 

 ∑ ∑ 𝑥𝑖𝑗
𝑘 ≥ ∑ 𝑥𝑖𝑗

𝑘𝑛
𝑗=1

𝑛
𝑗∈𝑈

𝑣
𝑖∈𝑈    ,   ∀𝑈 ⊂ 𝑉\{0}, 𝑙 ∈ 𝑈 ;  𝑘 = 1,… ,𝑚      

(16) 

 ∑ 𝑞𝑖
𝑛
𝑖=1 (∑ 𝑥𝑖𝑗

𝑘𝑛
𝑗=0 ) ≤ 𝑄     𝑘 = 1,… ,𝑚    (17) 

 𝑥𝑖𝑗
𝑘 ∈ {0,1}    (18) 

The set of feasible solutions is given by 𝐷 = {𝑥𝑖𝑗
𝑘 ∈ {0,1} ∶

 (11) − (17) are satisfied, 𝑖 = 1, … , 𝑛 ; 𝑗 = 1, … , 𝑛 , 𝑘 =

1, …𝑚}. 
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Function (9) defines the objective function aimed at 
minimizing the total distance, while function (10) defines the 

objective function targeting the minimization of total CO₂ 

emissions. The constraints can be interpreted as follows: 

Expression (11) ensures that each customer is visited exactly 

once, (12) stipulates that if a vehicle 𝑘 arrives at customer 𝑗 it 
must depart from 𝑗 once finish to server,  (13) and (14) require 

each vehicle 𝑘 to return to the depot at the end of its route, 

(15) enforces the maximum allowed route duration 𝑇, (16) 

eliminates sub-tours to guarantee route connectivity, (17) 

there is also the vehicle capacity constraint and equation (18) 

specifies that the decision variables are binary. 

Theorem 1 :  Under assumptions (i)-(iv), the fuzzy multi-

objective problem min
𝑥∈𝐷

𝐹̃(𝑥) defined by (P1) is 

mathematically well posed and admits at least one fuzzy 

Pareto-optimal solution. 

Proof : By (ii)-(iii), for any 𝑥 ∈ 𝐷, 𝐹̃(𝑥) ∈ 𝐻(ℝ) thus the 

problem defines a well-defined fuzzy application 𝐹̃:𝐷 ⟶
𝐻(ℝ). According to assumption (iii), for 𝛼 ∈ [0,1] the real 

functions 𝐹𝛼(𝑥) = ([𝑓1,𝛼
𝐿 (𝑥), 𝑓1,𝛼

𝑈 (𝑥)],… , [𝑓𝑝,𝛼
𝐿 (𝑥), 𝑓𝑝,𝛼

𝑈 (𝑥)])  

are continuous over 𝐷. Thus, for all 𝛼, the fuzzy problem 

induces a continuous deterministic multi-objective problem. 

Hence, for each 𝛼 ∈ [0,1], there exists at least one  Pareto-

optimal solution 𝑥𝛼
∗ ∈ 𝐷 for the induced deterministic 

problem. In other words, assume, for the sake of 

contradiction, that no fuzzy Pareto-optimal solution exists. 

Then, for all 𝑥 ∈ 𝐷, there exists 𝑦 ∈ 𝐷 such that 

𝐹̃(𝑥) ≺𝑃 𝐹̃(𝑦). However, by the definition of ≺𝑃 and (iv), 

this implies that 𝐹𝛼(𝑦) ≺𝑃 𝐹𝛼(𝑥) ∀ 𝛼 ∈ [0,1] which 

contradicts the existence, for each 𝛼 of at least one 

deterministic Pareto-optimal solution. Hence, there exists 

𝑥∗ ∈ 𝐷 such that ∄ 𝑦 ∈ 𝐷 satisfies  𝐹(𝑦) ≺𝑃 𝐹(𝑥).   

IV.2. Defuzzification of FMOGVRP 

Contrary to commonly employed methods defuzzification to 

a single point in the literature such as the Centre of Sums 

(COS), Centre of Gravity (COG), Weighted Average, and 

Maxima approaches [36], the Nearest Interval of 

Approximation (NIA) is employed here as a defuzzification 

strategy because it allows partial preservation of uncertainty 

information by maintaining the lower and upper bounds at 

each 𝛼 level. This approach enables us to transform the 

FMOGVRP into an equivalent deterministic MOGVRP while 

retaining the range of plausible values induced by speed 

uncertainty. 

Let us apply Algorithm 1 to the membership function 

𝜇𝑣̃(𝑥)  given by expression (5) and we consider 𝛼 ∈ [0,1], 

𝑥−𝑣1

𝑣2−𝑣1
= 𝛼 ⟹ 𝑥 − 𝑣1 = 𝛼(𝑣2 − 𝑣1)                         

⟹ 𝑥 = 𝛼(𝑣2 − 𝑣1) + 𝑣1             (19)  

𝑣4−𝑥

𝑣4−𝑣3
= 𝛼 ⟹ 𝑣4 − 𝑥 = 𝛼(𝑣4 − 𝑣3)                       

                ⟹ 𝑥 = 𝑣4 − 𝛼(𝑣4 − 𝑣3)             (20) 

Hence, from (18) and (19), we respectively have  

𝑁𝛼
𝐿 = ∫(𝛼(𝑣2 − 𝑣1)+ 𝑣1)𝑑𝛼

1

0

= ∫𝛼(𝑣2− 𝑣1)

1

0

𝑑𝛼 + ∫𝑣1
1

0

𝑑𝛼 

= (𝑣2 − 𝑣1)∫𝛼

1

0

𝑑𝛼 + 𝑣1∫𝑑𝛼

1

0

=
1

2
(𝑣2 − 𝑣1) + 𝑣1 

And  
          

𝑁𝛼
𝑈 = ∫(𝑣4 − 𝛼(𝑣4− 𝑣3))𝑑𝛼

1

0

= ∫𝑣4
1

0

𝑑𝛼 −∫𝛼(𝑣4 − 𝑣3)

1

0

𝑑𝛼

= 𝑣4∫𝑑𝛼

1

0

− (𝑣4 − 𝑣3)∫𝛼

1

0

𝑑𝛼

= 𝑣4 −
1

2
(𝑣4 − 𝑣3) 

Thus, the nearest interval of approximation is:  

 

𝐶𝑑(𝑣) = [
1

2
(𝑣2 − 𝑣1) + 𝑣1 , 𝑣4 −

1

2
(𝑣4− 𝑣3) ]          (21) 

 

Instead of taking the lower bound or upper bound, in this 

paper we consider the mean of the nearest interval of 

approximation as a deterministic result because the mean of 

the interval provides a real value that takes into account both 
the extremes and the core. This allows avoiding a purely 

optimistic 𝑁𝛼𝐿 or even pessimistic 𝑁𝛼𝑈 option. 

Thus mean, the expression (21) is given by: 

 

𝐴𝑣(𝐶𝑑(𝑣̃)) =
1

2
(𝑣2−𝑣1)+𝑣1+𝑣4−

1

2
(𝑣4−𝑣3)

2
                (22) 

However, NIA entails a certain loss of information, as it 
reduces the full structure of fuzzy parameters to real intervals. 

This effect can influence the interpretation of Pareto 

dominance within a strictly fuzzy framework, particularly in 

multi-objective decision-making contexts. Nevertheless, 

employing this approximation represents a deliberate trade-

off between uncertainty representation and computational 

tractability. 

By substituting (22) into (10), we obtain a deterministic 

counterpart of the fuzzy objective function 𝑓2  that describes 

the fuel consumption of Problem (MOGVRP) expressed by: 
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min∑∑∑(𝛾. 𝑧𝑊
𝑛𝑑𝑛𝑔𝐴𝑣(𝐶𝑑(𝑣̃))

𝑅
𝑑𝑖𝑗

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

+ 
𝛾𝑀𝐴𝑣(𝐶𝑑(𝑣̃)) (𝜏𝑖𝑗 + 𝛽𝑖𝑗 (𝐴𝑣(𝐶𝑑(𝑣̃)))

2

) 10−3𝑑𝑖𝑗 + 𝜀𝑃𝑎𝑑𝑖𝑗

𝜂. 𝜀
) 𝑥𝑖𝑗  (23) 

The deterministic MOGVRP can be written as: 

𝑓1 = min∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘𝑛

𝑗=1
𝑛
𝑖=1

𝑚
𝑘=1   

𝑓2 = min∑ ∑ ∑ (𝛾. 𝑧𝑊
𝑛𝑑𝑛𝑔𝐴𝑣(𝐶𝑑(𝑣̃))

𝑅
𝑑𝑖𝑗 +𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

 
𝛾𝑀𝐴𝑣(𝐶𝑑(𝑣̃))(𝜏𝑖𝑗+𝛽𝑖𝑗(𝐴𝑣(𝐶𝑑(𝑣̃)))

2
)10−3𝑑𝑖𝑗+𝜀𝑃𝑎𝑑𝑖𝑗

𝜂.𝜀
) 𝑥𝑖𝑗  

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1𝑛

𝑗=0
𝑣
𝑘=1       if  𝑖 ∈ 𝑉\{0}     

  ∑ 𝑥𝑖𝑗
𝑘𝑛

𝑖=0 = ∑ 𝑥𝑗𝑖
𝑘𝑛

𝑗=0     if  𝑙 ∈ 𝑉\{0},𝑘 = 1,… ,𝑚     

 ∑ 𝑥0𝑗
𝑘𝑛

𝑗=1 = 1            if  𝑘 = 1,… ,𝑚        

 ∑ 𝑥𝑖0
𝑘𝑛

𝑖=1 = 1             if  𝑘 = 1,… ,𝑚             

 ∑ ∑ 𝑠𝑖𝑥𝑖𝑗
𝑘 +∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗

𝑘 ≤ 𝑇𝑛
𝑗=0

𝑛
𝑖=0

𝑛
𝑗=0

𝑛
𝑖=0       𝑘 = 1,… ,𝑚     

 ∑ ∑ 𝑥𝑖𝑗
𝑘 ≥ ∑ 𝑥𝑖𝑗

𝑘𝑛
𝑗=1

𝑛
𝑗∈𝑈

𝑣
𝑖∈𝑈    ,   ∀𝑈 ⊂ 𝑉\{0}, 𝑙 ∈ 𝑈 ;  𝑘 = 1,… ,𝑚       

 ∑ 𝑞𝑖
𝑛
𝑖=1 (∑ 𝑥𝑖𝑗

𝑘𝑛
𝑗=0 ) ≤ 𝑄     𝑘 = 1,… ,𝑚    

 𝑥𝑖𝑗
𝑘 ∈ {0,1}   

 

Theorem 2: (Characterization of efficient solutions to the 

deterministic MOGVRP using the reference frame) 

Let 𝑂 be the objective space of problem (P1), 𝑦∗ ∈ 𝑂 is the 

efficient solution. The following statements are equivalent: 

a) 𝑦∗ ∈ 𝑂 is an efficient (Pareto optimal) solution of (P1) 

b) There is no 𝑦∗ ∈ 𝑂 such that 𝑦∗ ∈ 𝑂 is located in the 

dominated solution area of the reference frame of 𝑦. 
c) There is no 𝑦 ∈ 𝑂 such that 𝑧 is located in the dominant 

solution area of the reference frame of 𝑦∗. 
Proof: (a)⇒(b) : Suppose that 𝑦∗ is efficient for (P1), hence, 

by definition of efficiency, there not exist 𝑦 ∈ 𝑂 such that 𝑦 ≤
𝑦∗, but 𝑦∗ is in the dominated zone of 𝑦, which is exactly 

equivalent to 𝑦 ≤ 𝑦∗. Therefore, there not exist 𝑦 ∈ 𝑂, such 

that 
*y is in the dominated zone of 𝑧. Hence (b). 

(b)⇒(a): Suppose (b); there is no 𝑦 ∈ 𝑂 with 𝑦∗ in the 

dominated set of 𝑦. Since 𝑦∗ is in the dominated set of 𝑦, 

i.e. 𝑦 ≤ 𝑦∗, there is no 𝑦 ∈ 𝑂, such that 𝑦 ≤ 𝑦∗. By definition, 

this means that 𝑦∗ is efficient. Therefore, (a) is true. 

Formulations (b) and (c) express in words two ways of saying 

the same thing: There is no 𝑦 ∈ 𝑂 that dominates 𝑦∗. Indeed,  

(i) 𝑦∗ is in the dominated solution area of 𝑦, which 

means that 𝑦 ≤ 𝑦∗i.e. 𝑦 dominates 𝑦∗ 

(ii) 𝑦 is in the dominant solution area of 𝑦∗ also means 
𝑦 ≤ 𝑦∗. 

Thus by (i)-(ii) we said that (b) and (c) are equivalent to each 

other. Therefore, by transitivity, we say that (a) implies (c)                                                                                                          

∎ 
For the equivalent deterministic model MOGVRP the 

necessary conditions of optimality given by Karush-Kuhn-

Tucker (KKT), unfortunately do not apply directly to a 

combinatorial problem, because the latter contains binary 

variables (NP-Hard), hence the need to use heuristics and 

metaheuristics to find solutions to the problem. In the 
following lines, in this paper relies on the consecutive 

application of the sweep heuristic for partitioning customers 

into different clusters (potential routes) based on their polar 

angle relative to the central depot [37], our choice falls on the 

sweep heuristic because, in addition to its simplicity, it has a 

lower computational complexity O(n log n) compared to 

Clarke-Wright O(n2 log n) and insertion heuristics O(n2)  
[38] making it better suited for initializing solutions in a 

GVRP. 

Followed by the BicriterionAnt metaheuristic for optimizing 

the route costs according to the two objective functions 𝑓1 and 

𝑓2  , directly applying the concept of Pareto dominance in the 

selection of generated solutions [18]. 

Even though the MOGVRP is solved deterministically, the 

resulting Pareto solutions are directly derived from the initial 

fuzzy formulation. The resulting Pareto front can therefore be 

interpreted as a robust approximation of the fuzzy Pareto 

front, where dominance relationships are assessed with 

respect to the actual value intervals rather than fixed 

predetermined values. 

 

V. NUMERICAL SIMULATION 

V.1. Presentation of data used 

In this paper, five types of vehicle speed are considered, 

as shown in Table 1 below, with information adapted from 

[39]. 
TABLE I 

PRESENTATION AND DESCRIPTION OF THE SPEED CATEGORIES 

USED 

Types of speed Description  Trapezoidal fuzzy 

number 

Very slow (VS) 0 to 30 Km/h (0, 0, 10,30) 

Slow (S) 20 to 60 Km/h (20, 30, 50,60) 

Moderate (M) 50 to 90 km/h (50,60,80, 90) 

Fast (F) 80 to 120 km/h (80,90,110,120) 

Very (VF) 110 to 160+ 

km/h 

(110,120,160,180) 

 

Table 2 below presents the different accelerations 
associated with each speed type. Based on this, we 

categorized the acceleration corresponding to each speed 

type. This represents a typical classification used in CMEM-

based modeling within the context of GVRP [39]. 
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TABLE II 

CATEGORIZATION OF ACCELERATIONS ASSOCIATED WITH SPEEDS 

Types of speed Characteristic 

acceleration [𝒎/𝒔𝟐] 
Very slow (VS) 0 to 0.5 

Slow (S) 0,5 to 1,0 

Moderate (M) 1,0 to 1,8 

Fast (F) 1,8 to 3,0 

Very fast (VF) > 3,0 

 

In order to represent the variability of fuel consumption in 

relation to speed as reported in [39], we adapted on 

experimental basis [40] the fuel consumption as a trapezoidal 

fuzzy number for research purposes, as can be seen in Table 

3.  
TABLE III 

FUEL CONSUMPTION LEVEL 

Types of Consumption Trapezoidal fuzzy number 

Low (3.0, 3.5, 4.5,5.0) 

Medium (4.0, 4.5, 6.5,7.0) 

High (6.0, 7.0, 9.0,10.0) 

Medium-high (7.0, 8.0,10.0, 11.0) 

Very high (9.0,11.0,14.0 16.0) 

 
The different parameters used for the CMEM model are 

provided in Table 4 below. 
We use the heavy-duty vehicle type with a gross vehicle 

weight of 3.5-7.5 tonnes, which is commonly employed in 

energy consumption models for vehicles [21]. 

TABLE IV 

DESCRIPTION OF PARAMETERS USED IN CMEM 

Parameters  Description Value 

used 

Source 

𝑣 Speed in [𝑚/𝑠] - Author 

𝑎 Acceleration in [𝑚/𝑠2] - Author 

𝑀 Gross Vehicle weight in[ 𝑘𝑔] 6350  

 

 

 

 

 

 

[21] [39] 

𝑔 Gravitational constant [𝑚/
𝑠2] 

9.81 

𝜃 Road grade angle  [degrees] 0 

𝜌 Air density in [𝑘𝑔/𝑚3] 1.2041 

𝐴 Frontal surface area in [𝑚2] 3.341 

𝐶𝑑 Coefficient of aerodynamic 

drag [-] 

0. 9 

𝐶𝑟 Coefficient of rolling 

resistance [-] 

0.07 

𝜀 Vehicle drive train efficiency 

[-] 

0.4 

 

𝑃𝑎  

Engine power demand 

associatted with running 

losses of the engine [-] 

0 

𝛾 Fuel to air mass ratio [-] 0.0667 

𝑧 Engine friction factor [-] 0.2 

𝑅 Rayon [m] 0.35 

𝑛𝑑 Differential  4.2 

𝑛𝑔 1ere vitesse [𝑚/𝑠] 3.6 

𝑊 Engine displacement [litre] 5.83 

𝜂 Efficiency for diesel engines 

[-] 

0.45 

 

We select and modify the instance P-n55-k10 Q=115 from 

Augerat 1995 VRP Dataset [41], in order to evaluate the effect 

of vehicle speed on the optimal routes in different scenarios. 

The major modifications are: i) a new vehicle type having a 

capacity multiplied by thirty that of the original is introduced. 

ii) the demand of customers is multiplied by twenty. The both 

modifications are done because of vehicle type used is HVD 

(3.5-7.5 tonnes), see Table 5. 

TABLE V 

CUSTOMERS DATA 

N

o

de 

Co

ord 

X 

Co

ord 

Y 

Dem

and 

No

de 

Co

ord 

X 

Co

ord 

Y 

Dem

and 

No

de 

Coor

d X 

Coor

d Y 

Dem

and 

0 40 40 0 19 62 48 300 38 47 66 480 

1 22 22 360 20 66 14 440 39 30 60 320 

2 36 26 520 21 44 13 560 40 30 50 660 

3 21 45 220 22 26 13 240 41 12 17 300 

4 45 35 600 23 11 28 120 42 15 14 220 

5 55 20 420 24 7 43 540 43 16 19 360 

6 33 34 380 25 17 64 280 44 21 48 340 

7 50 50 300 26 41 46 360 45 50 30 420 

8 55 45 320 27 55 34 340 46 51 42 540 

9 26 59 580 28 35 16 580 47 50 15 380 

10 40 66 520 29 52 26 260 48 48 21 400 

11 55 65 740 30 43 26 440 49 12 38 100 

12 35 51 320 31 31 76 500 50 15 56 440 

13 62 35 240 32 22 53 560 51 29 39 240 

14 62 57 620 33 26 29 540 52 54 38 380 

15 21 24 160 34 50 40 380 53 55 57 440 

16 21 36 380 35 55 50 200 54 67 41 320 

17 33 44 400 36 54 10 240  

18 9 56 260 37 60 15 280 

 
The algorithms of Sweep and BicriterionAnt has been 

implemented in Python language on a HP Laptop with CPU 

Intel® Core™i5-8365U, 1.90 GHz with 8 GB of RAM. 

Details of parameters used for BicriterionAnt are reported in 

Table 6. 

TABLE VI 

PARAMETERS DESCRIPTION FOR THE BICRITERIONANT ALGORITHM 

Parameters Value Description Source 

𝑚 7 The number of ants  
 

[2][42] 
𝜋 1 Weight for pheromone 

level 

𝜔 2 Weight for heuristics 

information 

𝜌 0.2 Pheromone evaporation 

constant 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 100 Number of iterations 

V.2. Results 

The graph in Figure 2 illustrates the spatial distribution of 
54 customers spread across a two-dimensional geographic 

area. Each customer 𝑖 ∈ {1,2,… ,54} is represented by a node 

identified by its Cartesian coordinates (𝑥𝑖 , 𝑦𝑖).  

A central depot (𝑥0, 𝑦0) is also depicted. This type of 
graph serves as a visual basis for applying clustering 

algorithms for vehicle routing. 
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Figure 2. Spatial distribution of customers 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 3. Result of the sweep algorithm 

 

Figure 3 above shows the resolution of the system of 

constraints (11) - (18) of Problem (P1), which enabled us to 

find the initial solutions to the problem by clustering 
customers (potential routes).  As (P1) is an NP-hard problem, 

we used the Sweep heuristic to achieve so we can show how 

customers belonging to the same group (or route) are 

represented by distinct color, allowing visualization of the 

different service zones assigned to vehicles. 

 

 This representation highlights the geographical logic of 

the sweep algorithm: customers close in angular position are 

clustered together, which helps to minimize the travel 

distance while respecting capacity constraints. 

 

V.2.1. Deffuzification and Solution of Problem FMOGVRP 

A. Deffuzification phase 

As mentioned above, in this phase we will use the Nearest 

Interval of Approximation (NIA). First, we will verify its 

effectiveness by a comparative analysis of the NIA and COG 

methods was conducted using the same dataset represented by 

trapezoidal fuzzy numbers describing all the speed types 

considered as we can see in the table 7 below. 

TABLE VII 

COMPARIISON BETWEEN NIA AND COG 

Trapezoidal 

fuzzy 

number 

Types of speed 

NIA 

COG 

  

𝑵𝜶
𝑳  𝑵𝜶

𝑼 𝑨𝒗(𝑪𝒅(𝒗)̃) 
Gap (NIA-

COG) 

(0, 0, 2, 5) 
Very slow (0-

30 km/h) 0 3,5 1,75 1,5 0,3 

(1, 3, 4, 6) 
Very slow (0-

30 km/h) 2 5 3,5 3,5 0,0 

(2, 4, 5, 7) 
Very slow (0-

30 km/h) 3 6 4,5 4,5 0,0 

(3, 5, 6, 8) 
Very slow (0-

30 km/h) 4 7 5,5 5,5 0,0 

(4, 6, 7, 9) 
Very slow (0-

30 km/h) 5 8 6,5 6,5 0,0 

(5, 7, 8, 10) 
Very slow (0-

30 km/h) 6 9 7,5 7,5 0,0 

(8, 10, 15, 

18) 
Slow (20-60 
Km/h) 9 16,5 12,75 12,7 0,1 

(10, 15, 18, 
22) 

Slow (20-60 

Km/h) 12,5 20 16,25 16,3 0,1 

(12, 17, 20, 

25) 
Slow (20-60 

Km/h) 14,5 22,5 18,5 18,5 0,0 

(14, 18, 22, 

28) 
Slow (20-60 
Km/h) 16 25 20,5 20,3 0,2 

(16, 20, 25, 

30) 
Slow (20-60 

Km/h) 18 27,5 22,75 22,7 0,1 

(18, 22, 28, 
35) 

Slow (20-60 

Km/h) 20 31,5 25,75 25,5 0,3 

(28, 32, 38, 

45) 
Moderate (50-

90 km/h) 30 41,5 35,75 35,5 0,3 

(30, 35, 42, 

48) 
Moderate (50-
90 km/h) 32,5 45 38,75 38,7 0,1 

(35, 40, 45, 
50) 

Moderate (50-

90 km/h) 37,5 47,5 42,5 42,5 0,0 

(38, 43, 48, 

55) 
Moderate (50-

90 km/h) 40,5 51,5 46 45,8 0,2 

(40, 46, 52, 

60) 
Moderate (50-
90 km/h) 43 56 49,5 49,3 0,2 

(45, 50, 58, 

65) 
Moderate (50-

90 km/h) 47,5 61,5 54,5 54,3 0,2 

(55, 60, 70, 
80) 

Fast (80-120 

km/h) 57,5 75 66,25 65,8 0,4 

(60, 70, 80, 

90) 
Fast (80-120 

km/h) 65 85 75 75,0 0,0 

(65, 75, 85, 

95) 
Fast (80-120 
km/h) 70 90 80 80,0 0,0 

(70, 80, 90, 
100) 

Fast (80-120 

km/h) 75 95 85 85,0 0,0 

(75, 85, 95, 

105) 
Fast (80-120 

km/h) 80 100 90 90,0 0,0 

(80, 90, 100, 

110) 
Fast (80-120 
km/h) 85 105 95 95,0 0,0 

(95, 100, 

110, 120) 
Very fast (110- 

160+ km/h) 97,5 115 106,25 105,8 0,4 

(100, 110, 
120, 130) 

Very fast (110-

160+ km/h) 105 125 115 115,0 0,0 

(105, 115, 

125, 135) 
Very fast (110-

160+ km/h) 110 130 120 120,0 0,0 

(110, 120, 

130, 140) 
Very fast (110-

160+ km/h) 115 135 125 125,0 0,0 
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Figure 4. Comparison curve NIA vs COG 

In Figure 4, the representative curves of both methods are 

superimposed to visualize any potential differences. 

Following this superposition, it became clear that the NIA and 

COG curves perfectly overlap, with no visible divergence 

across the entire studied interval. From a numerical 

standpoint, this coincidence of results is confirmed by 

calculating the gap (absolute difference) between the values 

produced by each method at every point. For each 

corresponding data pair (𝑁𝐼𝐴𝑖 , 𝐶𝑂𝐺𝑖) the 𝐺𝑎𝑝|𝑁𝐼𝐴𝑖 − 𝐶𝑂𝐺𝑖| 
was evaluated. In all cases, the gap is insignificant close to 

zero, which means that ∀ 𝑖, 𝑁𝐼𝐴𝑖 ≡ 𝐶𝑂𝐺𝑖 , this indicates that 

the two methods are equivalent in the defuzzification of data. 

B. Solution of Problem (P1) 

In the context of modeling vehicle behavior on a road 

network, we associate a characteristic speed type to each road 
segment. Due to the lack of real data, we use a controlled 

random assignment of speed types. Thus, each road segment 

is randomly assigned a speed belonging to one of the five 

linguistic classes considered as we can see in the table 1. This 

random distribution is performed according to a uniform 

probability law because all possible outcomes of a random 

experiment have the same probability of being chosen. The 

use of this method allows us to introduce variability into speed 

profiles, simulate realistic scenarios where speed is not 

uniform across the entire network. After route creation and 

defuzzification phases, we apply now the BicriterionAnt 

metaheuristic on the equivalent deterministic MOGVRP 

according to the parameters reported in the table 6. 

TABLE VIII 

OPTIMAL ROUTES OBTAINED BY BICRITERIONANT 

  Under fuzzy aspect 

Vehicles Routes 𝑓1  𝑓2  

1 

0-6-33-15-1-22-42-41-43-23-49-

16-51-0 107.7 46.4 

2 0-30-48-47-36-21-28-2-0 78.6 11.4 

3 0-52-27-13-20-37-5-29-45-4-0 85.1 35.1 

4 0-34-46-8-54-19-14-53-35-7-0 80.6 38.9 

5 0-12-39-31-10-38-11-26-0 96.6 18.6 

6 0-17-32-50-18-25-9-40-0 81.4 41.6 

7 0-24-3-44-0 66.9 4.7 

The Table 8, show us the results from the BicriterionAnt 

algorithm, applied to the deterministic MOGVRP, provide a set 

of Pareto optimal routes that aim to reconcile two main 

objectives: reducing the total traveled distance and minimizing 

energy consumption.  

 

 
Figure 5. Routes optimized by BicriterionAnt 

 

Figure 5 shows us the graphical layout of the route 

optimisation from Table 8. However, Table 9 below presents, 

for each road segment belonging to the optimal routes, the 

randomly assigned speed. Each row corresponds to a specific 

segment, while the columns represent the speed classes {very 

slow (VS), slow(S), moderate (M), fast (F), very fast (VF)}. 

 
The obtained Pareto front exhibits a relatively high spacing 

value, indicating an irregular distribution of non-dominated 

solutions. While the trade-off between cost and emissions is 

clearly captured, the uneven spacing suggests that certain 

compromise regions are under-represented, leaving room for 

improving solution diversity. From the decision-maker’s 

perspective, firstly, this Pareto front can be used as a means to 

identify compromise solutions that balance environmental 

impact and operational cost under conditions of uncertain 

speed. Secondly, the extreme solutions on the Pareto front can 

be interpreted as policy-focused scenarios, such as emission-
minimization strategies under strict environmental regulations 

or cost-oriented strategies when economic constraints 

dominate. 

TABLE IX 

SPEED DISTRIBUTION ON OPTIMAL ROUTES 

Routes \ 

Speed 

VS S M F VF 

Route 1 16-51-0 0-6-33-

15 

 15-1-22-42-41-

43 

43-23-49-16 

Route 2  47-36-

21 

0-30-48-

47 

21-28-2-0  

Route 3   13-20-37-

5 

0-52-27-13 5-29-45-4-0 

Route 4 0-34-46-8  8-54-19 19-14-53 53-35-7-0 

Route 5 38-11-26-

0 

39-31 0-12  12-39 & 31-10-

38 

 

Route 6   25-9-40-0 0-17-32 32-50-18-25 

Route 7 3-0 24-3 0-24   
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In the following lines, we will attempt to carry out a 

comparative analysis between the fuzzy and deterministic 

CMEM models using the objective function 𝑓2  . 

TABLE X       

COMPARATIVE ANALYSIS OF FUZZY AND FIXED VEHICLE SPEEDS ON  
𝑓2  

 

𝑓2 
 

Routes  

Fuzzy 

speed 

Speed (30 

km/h) 

Speed (60 

km/h) 

Speed 

(120 

km/h) 

Fuzzy 

speed 

vs 

speed 

30km/h 

Fuzzy 

speed 

vs 

speed 

60km/h 

Fuzzy 

speed vs 

speed 

120km/h 

1 46.4 

14.8 11.4 86.6 31.9 % 24.6% 186.6% 

2 11.4 7.1 5.3 42.0 62.3 % 46.5% 368.4% 

3 35.1 

 

9.5 

7.0 55.6 27.0 % 19.9% 158.3% 

4 38.9 8.9 6.7 52.6 22.9 % 17.2% 135.2% 

5 18.6 10.7 8.0 63.1 57.5 % 43.0% 339.8% 

6 41.6 7.7 7.0 70,1 18.5 % 16.8% 168.5% 

7 4.7 7,8 7.4 70,8 165.9% 157.4% 1506.4% 

 

VI. DISCUSSION 

From the following  formula  % =
𝑓𝑖𝑥𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 

𝑓𝑢𝑧𝑧𝑦 𝑠𝑝𝑒𝑒𝑑 
× 100, we 

were able to compare the results of objective function  
𝑓2  when the speed is fuzzy and when the speed is fixed, Table 

10 shows that when the vehicle speed is fixed at 30 km/h, fuel 

consumption are significantly lower compared to the fuzzy 

speed model across all routes on average, the speed of 30 

km/h represents between 18% and 62% of the fuzzy speed, 

except for route 7 where it greatly exceeds it (due to the very 

low fuzzy speed). Similarly, when the speed is set at 60 km/h, 

the fuel consumption lower on average it generally represents 

17% to 46% of the fuzzy speed. This demonstrates that using 

a fixed speed in the CMEM model severely underestimates 
fuel consumption compared to our Fuzzy-CMEM model. 

Conversely, when the speed is set to 120 km/h, fuel 

consumption exceeds that of the fuzzy speed model, by more 

than +100%, therefore, a speed of 120 km/h is completely 

incompatible with an urban distribution context; it exceeds 

the fuzzy speed in an extreme way, this confirming that 

categorizing speed as "high" leads to very high fuel usage. 

We consider these results as an illustrative validation of the 

approach proposed in this paper rather than a generalization, 

since problems of different sizes were not addressed. 

VII. CONCLUSION 

In this paper, we explored an innovative multi-objective 
optimization approach for the Green Vehicle Routing 

Problem (GVRP) by integrating vehicle speed as a fuzzy 

parameter within the framework of the Comprehensive Modal 

Emissions Model (CMEM) called Fuzzy-CMEM. This 

modeling approach allows for a more accurate representation 

of real uncertainties related to travel speeds on road segments, 

due to dynamic factors such as traffic or weather conditions. 

By incorporating these fuzzy speeds, it became possible to 
compute fuel consumption more realistically. The results 

demonstrate that this approach improves the relevance of 

optimization decisions by providing more robust solutions 

that better reflect real-world conditions and classical CMEM 

model severely underestimates fuel consumption compared to 

our Fuzzy-CMEM model. Indeed, the simultaneous 

consideration of minimizing travel distance and fuel 

consumption under uncertainty enables a balance between 

logistical performance and environmental impact. The 

FMOGVRP based on the Fuzzy-CMEM opens several 

promising avenues for future research, such as: Developing a 
fully fuzzy multi-objective optimization framework, in which 

Pareto dominance is handled directly in the fuzzy domain 

without relying on an initial defuzzification step. Integrating 

real-time or dynamic speed data into the proposed model, as 

this would enable adaptive routing strategies and improve the 

robustness of eco-logistics decisions under time-varying 

conditions. Finally, focusing on large-scale industrial 

applications and benchmark-based evaluations, as well as the 

development of specialized metaheuristics designed to handle 

both fuzziness and multi-objective optimization more 

efficiently. 
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