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Today, decision-makers begun to prioritize the concept of green logistics, which is
based on strategies aimed to promote more environmentally sustainable practices
during vehicle routing. Among key factors influencing fuel consumption in such
problems, vehicle speed plays a crucial role. This article adapts the Comprehensive
Modal Emission Model (CMEM) for fuel consumption by treating vehicle speed as
a fuzzy variable. This enhanced version, referred as Fuzzy-CMEM, enables the
formulation of a more realistic fuzzy multi-objective Green Vehicle Routing
Problem (GVRP). The proposed methodology follows four main steps. First, we
formulate the problem considering the vehicle speed as a fuzzy variable. Second the
initial fuzzy problem is defuzzified using the interval approximation approach.
Third, a sequential approach is adopted where the sweep heuristic is used to construct
feasible routes, and the BicriterionAnt metaheuristic is employed to generate optimal
Pareto-front solutions of the resulting deterministic problem. Finally, a numerical
simulation is addressed, followed by a comparative analysis of results and

discussion.

This is an open access article under the CC-BY-SA license.

I. INTRODUCTION

Vehicle speed plays a crucial role in fuel consumption and
pollutant emissions in the transportation systems. In the
context of the Green Vehicle Routing Problem (GVRP),
incorporating speed as an influential variable enables a more
realistic modeling of both energy and environmental costs.

Since the seminal work of Dantzig and Ramser [1] on the
Vehicle Routing Problem (VRP), research in vehicle routing
optimization has significantly evolved, particularly by
integrating environmental aspects. This evolution has led to
the formulation of the Green Vehicle Routing Problem
(GVRP) [2], which aims to minimize not only economic cost
or logistical costs, but also greenhouse gas emissions and
energy consumption. This problem aligns with the global shift
toward ecological transportation, where the search for
sustainable routing solutions has become a strategic priority,
as reported by the International Energy Agency (IEA) [3].

The studies by Bektas and Laporte [4], as well Kara et al.
[5], have emphasized the need to consider both economic and
environmental criteria simultaneously in routing models,
giving rise to multi-objective formulations of the GVRP. In

order to accurately assess the environmental impact of each
route, several fuel consumption models have been developed.
In addition to Zhang's model [6], these models can broadly be
categorized into two main types: macroscopic and
microscopic approaches [7,8]. Macroscopic models, such as
those reviewed by Hickman [9] or employed in early emission
minimization studies like the one of Figliozzi [10], are
generally based on aggregate functions that relate fuel
consumption to average speed, travel distance, or vehicle
type. While these models are easy to implement, they often
overlook the dynamic variability of driving conditions, such
as acceleration, frequent stops, or changes in road gradient
[11].

In contrast, microscopic models, such as the
Comprehensive Modal Emissions Model (CMEM) developed
by Barth et al. [12], provide a more precise and dynamic
estimation of fuel consumption and pollutant emissions. This
model incorporates parameters such as instantaneous speed,
acceleration, engine load, and vehicle specific characteristics
particularly for heavy-duty vehicles. It has been extensively
validated in the work of Younglove and Scora [13], and has
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been successfully applied to assess the real-world impact of
traffic congestion on emissions, as shown in studies of Barth
and Boriboonsomsin [14].

In the CMEM model, speed is taken as a real parameter
which is not at all realistic because of its variability related to
road congestion, the typology of roads and temporal traffic
conditions are changing in urban and peri-urban contexts as
highlighted by Jabali et al. [15]. To address this limitation, we
propose modeling speed as a fuzzy variable [16,17], using
linguistic terms such as very slow, slow, moderate, and fast,
each associated with corresponding membership functions.
This approach, grounded in fuzzy logic, enables a more
realistic representation of traffic variability and uncertainty.
Accordingly, in this paper, we introduce an enhanced version
of the CMEM referred as Fuzzy-CMEM in which vehicle
speed is treated as a fuzzy variable.

Based on this, we also develop a fuzzy multi-objective
formulation of the GVRP, where fuel consumption is
explicitly considered, and whose resolution is handled by the
metaheuristic BicriterionAnt originally proposed by Iredi et
al. [18]. This ant colony based method is capable of exploring
optimal trade-offs between distance and energy consumption,
even under uncertainty, as demonstrated in the work of Jabir
et al. [19]. Liu et al. [20] assumed that carbon emissions are
related to vehicle speed, load, and type, and developed an
improved Ant Colony Optimization (ACO) algorithm to solve
the problem. Kancharla and Ramadurai [21] included load,
speed, and acceleration in fuel consumption estimation using
driving cycles within vehicle routing problems, analyzing
their impact on total fuel consumption and route selection.
Early models that integrated speed into green VRP
formulations were based on macroscopic approaches [9], in
which consumption is expressed as a function of average
speed along a road segment or route. These models typically
use convex functions linking speed and fuel consumption. For
instance, Kara et al. [5] introduced an energy-minimizing
model where speed is optimized for each road segment, while
Figliozzi [10] proposed a speed-based fuel consumption
function tailored to different vehicle types. However, these
approaches tend to overlook the dynamic variability of actual
driving speeds and the effects of acceleration and deceleration
cycles. To better reflect traffic realities, several authors have
treated vehicle speed as a time-dependent variable. Jabali, et
al. [15] analyzed the effects of congestion on travel speeds,
demonstrating its direct impact on CO: emissions. Gupta et
al. [22] studied a multi-objective capacitated green vehicle
routing problem with fuzzy travel time—distance matrices and
split deliveries represented as discrete packages. They
employed fuzzy rule-based implication concepts for ranking
and comparing fuzzy numbers with crisp values, leading to an
expected value model. Based on this, a discrete hybrid fuzzy
genetic algorithm was developed. Demir et al. [23] introduced
a Pollution Routing Problem (PRP) that accounts for time-
varying speeds, and adapted heuristics to optimize both
departure times and routing based on allowable speeds. Kwon
et al. [24] investigated heterogeneous fleet routing by

incorporating speed profiles adjusted to each vehicle type.
Liu, C.S. et al. [25] focus on a realistic variant of the Vehicle
Routing Problem with Time Windows (VRPTW) in an urban
context. The problem is time-dependent, meaning that vehicle
speeds vary according to different times of the day
(congestion periods). The main objective is to reduce delays
and avoid congestion while respecting delivery time
windows. Ye Chong et al. [26], in their study Optimization of
Vehicle Paths Considering Carbon Emissions in a Time-
Varying Road Network (TDGVRP), represent vehicle speed
variation as a continuous function to make the model more
consistent with real-world conditions and to promote the
reduction of generated carbon emissions. They proposed a
hybrid Genetic Algorithm—Simulated Annealing (GA-SA) for
optimization. Fan, H. et al. [11] worked on the Time-
Dependent Green Vehicle Routing Problem with Time
Windows and Fuzzy Demand (TDGVRPTWEFED).
Considering the time dependency of vehicle speed and the
relationship between fuel consumption and vehicle type,
speed, load, and road gradient, a stochastic programming
model based on fuzzy credibility theory was formulated to
minimize total cost and optimize vehicle routing under fuzzy
demand. To solve the proposed problem, a chaotic genetic
algorithm with a variable neighborhood search and
rescheduling strategy was developed.

For greater precision, microscopic models such as the
Comprehensive  Modal Emissions Model (CMEM),
developed in [12,13,14], this model is capable of simulating
real-world driving cycles. The accuracy of CMEM makes it
particularly relevant for the GVRP when vehicle speed is
subject to spatio-temporal or stochastic variations. It has
notably been employed in studies such as Turkensteen [27],
which evaluates the precision of emission calculations
relative to the granularity of speed data, and Kancharla and
Ramadurai [19], who integrated it into a GVRP model
sensitive to driving cycles. A more flexible approach consists
of modeling speed as a fuzzy variable, allowing the capture of
uncertainty linked to traffic conditions. This method is
grounded in the principles of fuzzy logic introduced by Zadeh
[16,17], enabling the use of linguistic terms like slow,
moderate, fast to represent speed. El Fassi et al. [28] and
Hussain & Allaoui [29] used fuzzy inference systems (FIS) to
estimate fuel consumption based on uncertain speeds within
an eco-driving framework. Nguyen et al. [30] incorporated
fuzzy speed into an energy routing model for electric vehicles.
Jabir et al. [19] explored the impact of fuzzy speeds within a
GVRP solved using ant colony optimization.

Currently, very few studies explicitly and
comprehensively incorporate fuzzy speed directly into fuel
consumption models. Therefore, in this paper, we have
chosen to use the Comprehensive Modal Emissions Model
(CMEM), a deterministic microscopic model developed to
simulate fuel consumption and emissions based on detailed
driving profiles such as instantaneous speed, acceleration,
road grade, vehicle load, and more [12,13]. In this paper, we
employ the Nearest Interval of Approximation (NIA) method
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as the defuzzification technique. This approach aligns with
prior work by Demir et al. [23,31] and recent applications in
multimodal routing or congestion-constrained contexts, such
as those by Liu et al. [20] and Ye et al. [26]. Based on the
above analysis, this paper focuses on the Fuzzy Multi-
Objective Green Vehicle Routing Problem (FMOGVRP): by
considering vehicle speed as a fuzzy parameter and its
relationship with fuel consumption, a fuzzy multi-objective
optimization problem is formulated to minimize total distance
and CO: emissions. The defuzzification process relies on the
Nearest Interval of Approximation (NIA) of a fuzzy number,
after which the sweep algorithm and the BicriterionAnt
algorithm are applied respectively for customers clustering
(potential routes) and constructing the problem’s solutions.

The rest of paper is divided as follow: In section 2 we
present some preliminary concepts which will be used in the
sequel of the paper. In section 3, we present the problem
statement and mathematical model. Section 4 is devoted in the
methodology applied. In Section 5 is dedicated to the
numerical Simulation. In Section 6 some discussions are
presented. The paper is ended by concluding remarks in
section 7.

I1. PRELIMINARIES
I1.1. Fuzzy sets

Let X be a discourse universe non-empty. A fuzzy subset
A € X is defined as follow: 4 = {(x, uz(x)): x € X}. Where
uz: X — [0,1] is the membership function of the fuzzy set
under consideration[16]. A level set a of 4 is the set A% =
{x € X: uz(x) = a} [16]. In addition to a level subset, a fuzzy
set can be characterized by its core, height and support. Let
H(R) the set of all normal, convex fuzzy numbers with
compact support defined on R, with membership function
uz: X — [0,1]. If @ € H(R) then the level set a of @ is
[ak, a¥] where af et a¥ are continuous real valued functions
on X. There are several types of L — R fuzzy numbers when
the reference functions are linear, we speak of triangular or
trapezoidal fuzzy numbers.
Instead of working solely with a specific point such as a level
subset, in this paper we focus on intervals, as they provide
greater flexibility in decision-making. This is why, in this
article, we will also rigorously use fuzzy concepts such as :
The approximation interval operator given by C: H(R) —
P(R), the metric d: H(R) — [0,4+c0] and the Nearest
Interval of Approximation (NIA) of d@ in the sense of the
metric d, for more details readers can consult [33, 34].

Algorithm 1: Nearest Interval of Approximation (NIA)

1. Read ug(x)

2. Find inflx e R: pz(x) =a}=ak and sup{x e R:
Us(x)=alt=al ,a € (0,1]

3. Calculate fol a(a)da = NL and fol a’(a)da = NV
Write C, (@) = [N, NY]

1i.2. Combinatorial Optimization Problem

A multi-objective combinatorial optimization problem is
a decision-making problem that consists in jointly optimizing
a set of p often conflicting objective functions subject to a set
of constraints with discrete (binary) variables, where : F(x) =
(f1 ), (), s £ (x)) is a vector of objective functions [2].

The decision vector is (xq,%,,...,X,) and we note D =
{x €{0,1}": g;(x) <0,hi(x) =0;i=1,...m;j = 1,...,k}
the set of feasible solutions in the decision space. In the multi-
objective framework, the decision-maker thinks rather in
terms of evaluating a solution for each objective, and naturally
places himself in the objective space. The image of a solution
x € D in the objective space O is the point (y1,,, ..., ¥p)
with y; = f(x;),i =1,2,..,p; Y =F(D) represents the
solution in the goal space. The most widely accepted notion
of optimality is the Pareto optimum [2]. From the above, this
notion is extended to the fuzzy multi-objective combinatorial
problem, assuming that:

(i)  The set of feasible solutions D is nonempty, closed,

and bounded, and therefore compact.

(i) LetF(x)= (fl(x),fz(x), ...,fp(x)) be a vector of

fuzzy objective functions, where each f, € H(R).
(ili) For any x € D and any a € [0,1], level set a is

given by (fe() = [fta(@). @], where

fi. and £;Z, are continuous real-valued functions
onD.

(iv) The fuzzy partial order relation < on H(R) is
defined by A<B o AL <BL and AY <BY
V a € [0,1]. The fuzzy Pareto dominance relation
<p isthe Pareto dominance induced by <. For any
x,y € D, there exists at least one objective i €
{1, ..., p} such that Pareto dominance is defined as

x <p y ifandonly if f;(x) < f.(y) and f, (x) <
fk()’)-

11.3. Speed overview

In general, a vehicle’s speed varies continuously for
several reasons. Fan et al. [11] proposed that the relationship
between vehicle speed (v) and time (t) can be expressed by
the trigonometric function v(t) = asin(at) + &8, where a,o
and § are coefficients related to road conditions.
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In urban area, vehicle speeds can be partitioned into
periods Ty, T,, T; and T, as illustrated in Figure 1.

A
Speed of To-T1
—————— Speed of T1 -T2

Speed of T2 -Tz
Speed of T3 T4

s Speed of Ty —

Speed (V)
-

|-
T oy o Ts T4 Time (T)

Figure 1. Daily variation trend of vehicle speed

I11. PROBLEM STATEMENT AND MATHEMATICAL
MODEL

I11.1. Comprehensive modal emission model (CMEM)

In arrange to degree the use of fuel and CO. emissions, an
exact estimation strategy is connected. The CMEM is one of
the estimation models of fuel utilization, which was created
by Barth et al. 2005 [12]. The specified show comprises of
three  modules: motor control, motor speed and, fuel
utilization rate.

The Outflow Rate (ER) [g/s] for nursery gasses (such as
CO, HC or NOXx) is related to the use of fuel rate (FR) [g/s],
FR is a continuous, positive, and non-linear function, the
calculation of FR is complex because it depends on a number
of components. The calculation of FR is clarified in
underneath connection (1)

+Pq

Pt
FR=(Z.N.W.‘E77 )Xy Q)

Where z is the engine friction factor, N is the engine speed
(radian per second (rps)), W [liter] is the engine
displacement, P, [watt] or [kg m?/s%] is the total tractive
power demand , & [—] is vehicle drive train
efficiency, P, [watt] is the engine power demand associated
with additional vehicle accessories such as air conditioner,
n [—] is a measure of efficiency for diesel engines and y [—]
is a constant.

N= _"d;}g” )
Where n, is the differential ratio, n,is the gear ratio and

R isradius of the wheel. Moreover P, [kilowatt] is calculated

as follow :

P, = (Mav + Mgvsin @ + 0.5C;pAv® + Mgv cos6)1073 3)

Where M [kg]is the mass of the vehicle, v [m/s]is
speed, a [m/s?]is the acceleration, g [9.81 m/s?]is the
gravitational constant, 8 [radian] is the road angle, A [m?] is
the surface area in front of the vehicle, p [kg/m?] is the air

density, and C,. [—]and C, [—] are the coefficients of rolling
resistance and drag, respectively.
Thus,

FR=7y.z nd:gv R yMv(a+gsin 8+gC, co;ﬁg+0.5€dpsz)10_3+£Pa

()
111.2. Problem Description

The Vehicle Routing Problem (VRP), proposed by

Dantzig and Ramser [1], is an emblematic example of a
combinatorial problem, recognized for its NP-hard
complexity. Here, we present the formulation of FMOGVRP
(Fuzzy Multi-Objective Green Vehicle Routing Problem)
with homogeneous-capacity fleet vehicles which can be
summarized as follows:
Let G = (V,E) be an undirected graph, where V = {0} U 1/,
represents a set of all nodes. Node 0 is the central repository
from which all vehicles k € K ={1,2,...,m} depart;V, =
{1,2,...,n} denotes the set of customer nodes.
The setE ={(i,j):i€V,jeV} s the edge set, d;;
represents the distance between nodes i and j. All customers
have a specific demand [; = 0 to be served by a vehicle k of
capacity Q. The speed of each vehicle is expressed by
trapezoidal fuzzy variable v = (v1,v?,v3,v*).
The binary decision variables x{‘j are equal to 1 if vehicle k
visits node j directly after node i, and 0 otherwise. The main
objectives of the problem is to minimize the total travelled
distance of all routes driven by vehicles k and to minimize the
fuel consumption and CO: emissions. Based on the above, we
formulate the following assumptions:

e H1: fuel consumption occur with a warmed-up engine:
according [9] total fuel consumption are given by
FRtotar = FReota stare + FRuor N I FR g14 spqre = 0 =
FRiotar = FRyot

e H2: The vehicles used belong to the Heavy-Duty Vehicle
(HDV): 3.5-7.5 tonnes

e H3: Theroad gradient is zero degree.

e H4: Vehicle speed is modeled as a trapezoidal fuzzy
number v = (v?,v?, v3,v?).

IV. METHODOLOGY

This fuzzy approach enables the modeling of imprecision
associated with real traffic conditions. Thus, speed is no
longer treated as a fixed parameter but as flexible variable
whose value can fluctuate across several categories. This
uncertainty is most often epistemic in nature, arising from a
lack of information or imprecise data rather than from purely
random phenomena. Deterministic methods, based on the
assumption of constant speeds, are unable to reflect this
variability and may therefore lead to solutions with limited
robustness. While stochastic models allow uncertainty to be
explicitly taken into account, they nevertheless require the
availability of reliable probability distributions as well as
large volumes of historical data conditions that are rarely met
in the context of urban freight transportation. By contrast, the
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fuzzy approach provides a flexible modeling framework
capable of representing speed fluctuations through fuzzy
numbers, without relying on restrictive probabilistic
assumptions. To this end, we consider a trapezoidal fuzzy
number ¥ = (v, v?, v3,v*) describing vehicle travel speed
with the linguistic terms {very slow (VS), slow(S), moderate
(M), fast (F), and very fast (VF)}, whose membership
functions are defined as follows:
( 0 if x<v!

|vz_v1 if vl<x<wv?
us(x) = { if v?<x<vd (5)

'v—x , 3 4
v4v3 if v<x<v

0 if x>v*

where v, v2,v3,v* are real numbers and v! < V2 <13 <
v*. In this formulation, the interval [v2,v3] corresponds to
the most plausible operational speeds under typical traffic
conditions, whereas [v1, v*] defines the range of extreme, yet
still feasible speed values. The performance of the fuzzy
modeling framework largely depends on the specification of
the membership functions associated with fuzzy speeds,
which are based on empirical observations and expert
knowledge as reported in the literature [Ref]. Inadequate
calibration of these functions may introduce subjective bias
and undermine the reliability of the resulting outcomes.

IV.1. A Novel adaptation of CMEM and mathematical
formulation of FMOGVRP

According to the existing categorization of factors that
influence fuel consumption of vehicles directly, speed is part
of the category of factors that are difficult to control and
unpredictable but measurable. Whereas existing studies
generally rely on deterministic or stochastic models to
evaluate fuel consumption and/or CO: emissions [38, 39], in
this paper we introduce the new concept Fuzzy-CMEM in
order to calculate the fuel consumption of a vehicle k that
moves from point i to point j using the speed as a fuzzy
parameter while preserving the analytical structure of the
CMEM.

The Fuzzy-CMEM model assumes that all vehicle related
parameters, except for speed such as the vehicle mass M or
engine characteristics P, P, etc. are perfectly known and
remain constant throughout the process, even though this
scenario may seem restrictive, the Fuzzy-CMEM model
allows us to enrich the classical modeling by making it more
realistic in the face of real-world road traffic uncertainties
(variable traffic, non-constant speed limits, road conditions).

The Fuzzy-CMEM model is presented below: Let us
incorporate fuzzy speed ¥ into the relation (4) ,

ﬁ?(vu)
=y. ngdT;?ﬁijd
vaU(a + gsinf + gC, cos@ + 0.5C,pAD? )10 3dij + &R, d;; ©®
n.€
As a trapezoidal fuzzy number FR, can be written as : FR =
(s(wb), s(?),s(v?),s(v*)) with the membership function
defined by :

0 if x<siYH
if s(!)<x<s@?)
s(w?) <x <s(w?) ©)
i% if s(w¥)<x<s@?)
0 if x>s@wh

x-s(v?)

s(w2)-s(w1)

=y
15169, ={ 1 if

Settlng that Tij =a+ g sin HU + gCT' Cos 91-] and ‘BI-J =
0.5C;pA, we can then rewrite relation (6) as follows:
ngng

FR(UU) =vy. ZWJdi'

N yM BTy + Bi95)1073d;; + ePyd;
n.&

®

Based on the above, we can formulate our FMOGVRP
optimization problem (P1) as follows:

fi =minXFL, X, YR, (9)
_ . ndngvt] -

fH= mmzzz ()/.ZW—R d;j

KEK i€V jeV
N yM BTy + By95)1073d,; + sPadi,-) v (10)
n.&

Subject to:

ThoaXioxli =1 if i€ V\{0} (11)
oxls = Xiooxf ifLeEV\[0}Lk=1,..,m (12)
nxk=1 if k=1,..,m (13)
noxk =1 if k=1,..,m (14)
?zOZ] Ost+Z OZ t; xUST k=1,. (15)

Yo Xieuxls 2 X xls , VUCV\{0LIEU; k=1,..,m

(16)
T a (Toxk)<Q k=1,..m a7
xf; €{0,1} (18)

The set of feasible solutions is given by D = {x €{0,1}:
(11) — (17) are satisfied,i =1, ...,n;j=1,..,n,k =
1, m}
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Function (9) defines the objective function aimed at
minimizing the total distance, while function (10) defines the
objective function targeting the minimization of total CO:
emissions. The constraints can be interpreted as follows:
Expression (11) ensures that each customer is visited exactly
once, (12) stipulates that if a vehicle k arrives at customer j it
must depart from j once finish to server, (13) and (14) require
each vehicle k to return to the depot at the end of its route,
(15) enforces the maximum allowed route duration T, (16)
eliminates sub-tours to guarantee route connectivity, (17)
there is also the vehicle capacity constraint and equation (18)
specifies that the decision variables are binary.

Theorem 1 : Under assumptions (i)-(iv), the fuzzy multi-

objective  problem  min F(x) defined by (P1) s
X

mathematically well posed and admits at least one fuzzy

Pareto-optimal solution.

Proof : By (ii)-(iii), for any x € D, F(x) € H(R) thus the
problem defines a well-defined fuzzy application F:D —
H(R). According to assumption (iii), for a € [0,1] the real
functions  F () = ([fiLe (0, Al @], ., [fira (0, file (00])
are continuous over D. Thus, for all «, the fuzzy problem
induces a continuous deterministic multi-objective problem.
Hence, for each a € [0,1], there exists at least one Pareto-
optimal solution x; € D for the induced deterministic
problem. In other words, assume, for the sake of
contradiction, that no fuzzy Pareto-optimal solution exists.
Then, for all x €D, there exists y €D such that
F(x) <p F(y). However, by the definition of <, and (iv),
this implies that F,(y) <p F,(x) V a € [0,1] which
contradicts the existence, for each « of at least one
deterministic Pareto-optimal solution. Hence, there exists
x* € D such that 2 y € D satisfies F(y) <p F(x).

IV.2. Defuzzification of FMOGVRP

Contrary to commonly employed methods defuzzification to
a single point in the literature such as the Centre of Sums
(COS), Centre of Gravity (COG), Weighted Average, and
Maxima approaches [36], the Nearest Interval of
Approximation (NIA) is employed here as a defuzzification
strategy because it allows partial preservation of uncertainty
information by maintaining the lower and upper bounds at
each a level. This approach enables us to transform the
FMOGVRP into an equivalent deterministic MOGVRP while
retaining the range of plausible values induced by speed
uncertainty.

Let us apply Algorithm 1 to the membership function
uz(x) given by expression (5) and we consider « € [0,1],

x-vt

S x—vt=aw?—-v?)

51
=x=a@?-v!) +v! (19)
1]4—x
s =a=v—x=a@*-v°)
= x =v*—av* - v3) (20)

Hence, from (18) and (19), we respectively have
1 1 1

NL = f(a(vz—v1)+v1)da= fa(vz—vl)da"'fvl da
0 0 0
1 1 1
=(vz—vl)fada+v1fda=E(v2—171)+171
0 0
And

1 1

1
N = | (v*—a@*—v®))da = | vtda— | a(w* —v®)da
; foa |

0 0
1 1
v4fda—(v4—v3)fada
0 0

1

— 174—5(174 —U3)
Thus, the nearest interval of approximation is:
= [1o2 1 1,4 _ 10 4 3
Cd(v)—[;(v —v)+vivt—Z —v)] (21)
Instead of taking the lower bound or upper bound, in this
paper we consider the mean of the nearest interval of
approximation as a deterministic result because the mean of
the interval provides a real value that takes into account both
the extremes and the core. This allows avoiding a purely
optimistic N or even pessimistic N option.
Thus mean, the expression (21) is given by:

Lep2_ “Lpa_y3
S(WE-v)+vl+vt—S(vt-v3)

2

Av(Cy(®) = (22)

However, NIA entails a certain loss of information, as it
reduces the full structure of fuzzy parameters to real intervals.
This effect can influence the interpretation of Pareto
dominance within a strictly fuzzy framework, particularly in
multi-objective decision-making contexts. Nevertheless,
employing this approximation represents a deliberate trade-
off between uncertainty representation and computational
tractability.

By substituting (22) into (10), we obtain a deterministic
counterpart of the fuzzy objective function f, that describes
the fuel consumption of Problem (MOGVRP) expressed by:
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keEK i€V jev

min Z Z Z ( s Av(Cd(v)) d;

+

yMA(C, (%)) (rij + By (Av(Cd(ﬁ)))z) 1073dy; + ePydy;
e xij (23)

The deterministic MOGVRP can be written as:
fi =min YFL, X, Z?=1 dijxfs

fo = min Yyex ey ZJ'EV <}/. zw

ngngAv(Cq(¥)) di]- n

yMAv(Cd(ﬁ))(Tij+ﬁij (Av(Cd(ﬁ)))z)10_3dij+8Padij
e b
Subject to:

R Xiooxf =1 if i e V\{0}

oxli =Yloxf ifleV\{0}k=1,..,m
] 1x0] 1 ifk=1,..,m
v 1xlo 1 ifk=1,..,m

o Xiosixts + Do o tyxl ST  k=1,.

Y Xievxls 2 Xjoyxls  VUCV\{0LIEU; k=1,..,m
a(Texk)<Q k=1,..m

xf; €{0,1}

Theorem 2: (Characterization of efficient solutions to the

deterministic MOGVRP using the reference frame)

Let O be the objective space of problem (P1), y* € O is the

efficient solution. The following statements are equivalent:

a) y* € 0 is an efficient (Pareto optimal) solution of (P1)

b) There is no y* € O such that y* € O is located in the
dominated solution area of the reference frame of y.

c) Thereisno y € O such that z is located in the dominant
solution area of the reference frame of y*.

Proof: (a)=(b) : Suppose that y* is efficient for (P1), hence,

by definition of efficiency, there not existy € O such thaty <

y*, but y* is in the dominated zone of y, which is exactly

equivalent to y < y*. Therefore, there not exist y € 0, such

that y*is in the dominated zone of z. Hence (b).
(b)=(a): Suppose (b); there is no y € 0 with y*in the
dominated set of y. Since y*is in the dominated set of y,
i.e.y < y* thereisnoy € 0, such thaty < y*. By definition,
this means that y* is efficient. Therefore, (a) is true.
Formulations (b) and (c) express in words two ways of saying
the same thing: There is no y € O that dominates y*. Indeed,
(i) y*is in the dominated solution area of y, which
means that y < y*i.e. y dominates y*

(if) y is in the dominant solution area of y* also means
ysy"

Thus by (i)-(ii) we said that (b) and (c) are equivalent to each
other. Therefore, by transitivity, we say that (a) implies (c)
|

For the equivalent deterministic model MOGVRP the
necessary conditions of optimality given by Karush-Kuhn-
Tucker (KKT), unfortunately do not apply directly to a
combinatorial problem, because the latter contains binary
variables (NP-Hard), hence the need to use heuristics and
metaheuristics to find solutions to the problem. In the
following lines, in this paper relies on the consecutive
application of the sweep heuristic for partitioning customers
into different clusters (potential routes) based on their polar
angle relative to the central depot [37], our choice falls on the
sweep heuristic because, in addition to its simplicity, it has a
lower computational complexity O(nlogn) compared to
Clarke-Wright O(n? logn) and insertion heuristics 0(n?)
[38] making it better suited for initializing solutions in a
GVRP.
Followed by the BicriterionAnt metaheuristic for optimizing
the route costs according to the two objective functions f; and
f> , directly applying the concept of Pareto dominance in the
selection of generated solutions [18].
Even though the MOGVRP is solved deterministically, the
resulting Pareto solutions are directly derived from the initial
fuzzy formulation. The resulting Pareto front can therefore be
interpreted as a robust approximation of the fuzzy Pareto
front, where dominance relationships are assessed with
respect to the actual value intervals rather than fixed
predetermined values.

V. NUMERICAL SIMULATION
V.1. Presentation of data used
In this paper, five types of vehicle speed are considered,

as shown in Table 1 below, with information adapted from
[39].

TABLEI
PRESENTATION AND DESCRIPTION OF THE SPEED CATEGORIES
USED
Types of speed Description Trapezoidal fuzzy
number
Very slow (VS) 0to 30 Km/h (0, 0, 10,30)

Slow (S) 20to 60 Km/h (20, 30, 50,60)

Moderate (M) 50 to 90 km/h (50,60,80, 90)

Fast (F) 80 to 120 km/h (80,90,110,120)

Very (VF) 110 to 160+ | (110,120,160,180)
km/h

Table 2 below presents the different accelerations
associated with each speed type.
categorized the acceleration corresponding to each speed
type. This represents a typical classification used in CMEM-
based modeling within the context of GVRP [39].

Based on this, we
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TABLEII
CATEGORIZATION OF ACCELERATIONS ASSOCIATED WITH SPEEDS

of vehicle speed on the optimal routes in different scenarios.
The major modifications are: i) a new vehicle type having a

Types of speed Characteristic capacity multiplied by thirty that of the original is introduced.
acceleration [m/s’] ii) the demand of customers is multiplied by twenty. The both
;’I‘Zry ?'SO)W (vVS) 8;"@-? 5 modifications are done because of vehicle type used is HVD
W , ,
Moderate (M) 101018 (3.5-7.5 tonnes), see Table 5.
Fast (F) 1,8103,0 TABLE V
Very fast (VF) >3,0 CUSTOMERS DATA
R . . . N Co Co Dem No Co Co Dem No Coor Coor Dem
In order to represent the variability of fuel consumption in o o |ord fand | de |ord |ord | end | | dX | dY | end
. . X Y X Y
relation to speed as reported in [39], we adapted on ¢
. . . . 0 40 40 0 19 62 48 300 38 47 66 480
experimental basis [40] the fuel consumption as a trapezoidal B = =
fuzzy number for research purposes, as can be seen in Table
3 2 36 26 520 21 44 13 560 40 30 50 660
TABLE 11 3 |21 |45 220 22 | 26 13 | 240 41 12 17 300
FUEL CONSUMPTION LEVEL 4 |45 |35 600 23 | 1 28 120 22 15 14 220
Types of Consumption Trapezoidal fuzzy number 5 | 55 20 420 24 7 43 540 43 16 19 360
Low (3.0,35,4.5,5.0) 6 | 33 | 34 | 380 25 | 17 | 64 | 280 w4 | 21 8 340
M_edium (4.0,45,6.5,7.0) 7 [ 50 |50 300 26 | 41 46 360 45 | 50 30 420
High (6.0,7.0,9.0,10.0)
Medium-high (7_0 8.0.10.0 11_0) 8 55 45 320 27 55 34 340 46 51 42 540
Very high (9.0,11.0,14.0 16.0) 9 | 26 59 580 28 35 16 580 47 50 15 380
10 40 66 520 29 52 26 260 48 48 21 400
The different parameters used for the CMEM model are 11|55 |65 |74 |30 |4 |26 |40 |49 |12 3 100
provided in Table 4 below. 12 |3 |51 |320 |3 |31 |7 |50 |5 |35 56 40
We use the heavy-duty vehicle type with a gross vehicle 13|62 | B |20 |32 |2 |5 |50 |5 |2 39 220
weight of 3.5-7.5 tonnes, which is commonly employed in 4|62 |5 |60 |3 |2 |2 |50 |52 |54 38 380
energy consumption models for vehicles [21]. T2 T2z T 32 50 T2 T30 55 15 = 0
TABLE IV 16 |21 |36 380 I 50 | 200 54 | 67 41 320
DESCRIPTION OF PARAMETERS USED IN CMEM 17 | 33 44 400 36 54 10 240
Parameters Description Value Source 8|9 56 260 37 | 60 15 280
used
v Speed in [m/s] - Author . oL
a Acceleration in [m/s?] . Author The algorithms of Sweep and BicriterionAnt has been
M Gross Vehicle weight in[ kg] | 6350 implemented in Python language on a HP Laptop with CPU
g Gzravitational constant [m/ | 9.81 Intel® Core™i5-8365U, 1.90 GHz with 8 GB of RAM.
s°] Details of parameters used for BicriterionAnt are reported in
6 Road grade angle [degrees] 0 Table 6
p Air density in [kg/m?] 1.2041 '
A Frontql 'surface areain [mz]_ 3.341 TABLE VI
Cq Coefficient of aerodynamic | 0.9 PARAMETERS DESCRIPTION FOR THE BICRITERIONANT ALGORITHM
drag [] [21] [39]
C, Coefficient  of  rolling | 0.07 Parameters Value Description Source
resistance [-] m 7 The number of ants
€ Vehicle drive train efficiency | 0.4 T 1 Weight for pheromone
[] level [21[42]
Engine  power demand | O ) 2 Weight for heuristics
P, associatted  with  running information
losses of the engine [-] p 0.2 Pheromone evaporation
y Fuel to air mass ratio [-] 0.0667 constant
z Engine friction factor [-] 0.2 Iteration 100 Number of iterations
R Rayon [m] 0.35 V.2. Results
ny Differential 4.2 o . . o
n, 1er vitesse [m/s] 3.6 The graph in Figure 2 illustrates the spatial distribution of
w Engine displacement [litre] | 5.83 54 customers spread across a two-dimensional geographic
n [ET'C'enCy for diesel engines | 0.45 area. Each customer i € {1,2, ...,54} is represented by a node

We select and modify the instance P-n55-k10 Q=115 from
Augerat 1995 VRP Dataset [41], in order to evaluate the effect

identified by its Cartesian coordinates (x;, ;).

A central depot (x,,y,) is also depicted. This type of
graph serves as a visual basis for applying clustering
algorithms for vehicle routing.
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Figure 3. Result of the sweep algorithm

Figure 3 above shows the resolution of the system of
constraints (11) - (18) of Problem (P1), which enabled us to
find the initial solutions to the problem by clustering
customers (potential routes). As (P1) is an NP-hard problem,
we used the Sweep heuristic to achieve so we can show how
customers belonging to the same group (or route) are
represented by distinct color, allowing visualization of the
different service zones assigned to vehicles.

This representation highlights the geographical logic of
the sweep algorithm: customers close in angular position are
clustered together, which helps to minimize the travel
distance while respecting capacity constraints.

V.2.1. Deffuzification and Solution of Problem FMOGVRP

A. Deffuzification phase

As mentioned above, in this phase we will use the Nearest
Interval of Approximation (NIA). First, we will verify its

effectiveness by a comparative analysis of the NIA and COG
methods was conducted using the same dataset represented by
trapezoidal fuzzy numbers describing all the speed types
considered as we can see in the table 7 below.

TABLE VII
COMPARIISON BETWEEN NIA AND COG
Trapezoidal A
fuzzy Types of speed
number NL | NS | v, ) e
COoG
Very slow (0-
0.0.2.5) 30 rkym/h) ( 0 3,5 1,75 15 0,3
Very slow (0-
(1.3.4,6) 30 rkym/h) ( 2 5 3,5 35 0,0
Very slow (0-
2457 30 rkym/h) ( 3 6 45 45 0,0
Very slow (0-
(3.56,8) 30 rkym/h) ( 4 7 55 55 0,0
Very slow (0-
(4.6.7.9) 30 rkym/h) ( 5 8 6,5 6,5 0,0
Very slow (0-
(5.7.8,10) 30 rkym/h) ( 6 9 75 75 0,0
(8,10, 15, Slow (20-60
18) Km/h) 9 16,5 12,75 12,7 0,1
(10, 15, 18, Slow (20-60
22) Km/h) 12,5 20 16,25 16,3 0,1
(12,17, 20, Slow (20-60
25) Km/h) 14,5 22,5 18,5 18,5 0,0
(14,18, 22, Slow (20-60
28) Km/h) 16 25 20,5 20,3 0,2
(16, 20, 25, Slow (20-60
30) Km/h) 18 27,5 22,75 22,7 0,1
(18, 22, 28, Slow (20-60
35) Km/h) 20 315 25,75 255 03
(28, 32, 38, Moderate (50-
45) 90 km/h) 30 41,5 35,75 35,5 03
(30, 35, 42, Moderate (50-
48) 90 km/h) 32,5 45 38,75 38,7 01
(35, 40, 45, Moderate (50-
50) 90 km/h) 37,5 47,5 42,5 42,5 0,0
(38,43, 48, Moderate (50-
55) 90 km/h) 40,5 51,5 46 458 0,2
(40, 46, 52, Moderate (50-
60) 90 km/h) 43 56 49,5 49,3 0,2
(45, 50, 58, Moderate (50-
65) 90 km/h) 47,5 61,5 54,5 54,3 0,2
(55, 60, 70, Fast (80-120
80) km/h) 57,5 75 66,25 65,8 04
(60, 70, 80, Fast (80-120
90) km/h) 65 85 75 75,0 0,0
(65,75,85, | Fast(80-120
95) km/h) 70 90 80 80,0 0,0
(70, 80, 90, Fast (80-120
100) km/h) 75 95 85 85,0 0,0
(75, 85, 95, Fast (80-120
105) km/h) 80 100 90 90,0 0,0
(80,90, 100, | Fast (80-120
110) km/h) 85 105 95 95,0 0,0
(95, 100, Very fast (110-
110, 120) 160+ km/h) 97,5 115 106,25 105,8 04
(100, 110, Very fast (110-
120, 130) 160+ km/h) 105 125 115 115,0 0,0
(105, 115, Very fast (110-
125, 135) 160+ km/h) 110 130 120 120,0 0,0
(110, 120, Very fast (110-
130, 140) 160+ km/h) 115 135 125 125,0 0,0
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Gap analysis NIA vs COG

1234567

NIA CoG Gap (NIA-COG)

Figure 4. Comparison curve NIA vs COG

In Figure 4, the representative curves of both methods are
superimposed to visualize any potential differences.
Following this superposition, it became clear that the NIA and
COG curves perfectly overlap, with no visible divergence
across the entire studied interval. From a numerical
standpoint, this coincidence of results is confirmed by
calculating the gap (absolute difference) between the values
produced by each method at every point. For each
corresponding data pair (NI14;,COG;) the Gap|NIA; — COG;|
was evaluated. In all cases, the gap is insignificant close to
zero, which means that v i, NIA; = COG,; , this indicates that
the two methods are equivalent in the defuzzification of data.

B. Solution of Problem (P1)

In the context of modeling vehicle behavior on a road
network, we associate a characteristic speed type to each road
segment. Due to the lack of real data, we use a controlled
random assignment of speed types. Thus, each road segment
is randomly assigned a speed belonging to one of the five
linguistic classes considered as we can see in the table 1. This
random distribution is performed according to a uniform
probability law because all possible outcomes of a random
experiment have the same probability of being chosen. The
use of this method allows us to introduce variability into speed
profiles, simulate realistic scenarios where speed is not
uniform across the entire network. After route creation and
defuzzification phases, we apply now the BicriterionAnt

The Table 8, show us the results from the BicriterionAnt
algorithm, applied to the deterministic MOGVRP, provide a set
of Pareto optimal routes that aim to reconcile two main
objectives: reducing the total traveled distance and minimizing
energy consumption.

Coordinate Y

10 20 30 40 50 60 70
Coordinate X

Figure 5. Routes optimized by BicriterionAnt

Figure 5 shows us the graphical layout of the route
optimisation from Table 8. However, Table 9 below presents,
for each road segment belonging to the optimal routes, the
randomly assigned speed. Each row corresponds to a specific
segment, while the columns represent the speed classes {very
slow (VS), slow(S), moderate (M), fast (F), very fast (VF)}.

The obtained Pareto front exhibits a relatively high spacing
value, indicating an irregular distribution of non-dominated
solutions. While the trade-off between cost and emissions is
clearly captured, the uneven spacing suggests that certain
compromise regions are under-represented, leaving room for
improving solution diversity. From the decision-maker’s
perspective, firstly, this Pareto front can be used as a means to
identify compromise solutions that balance environmental
impact and operational cost under conditions of uncertain
speed. Secondly, the extreme solutions on the Pareto front can
be interpreted as policy-focused scenarios, such as emission-
minimization strategies under strict environmental regulations
or cost-oriented strategies when economic constraints

metaheuristic on the equivalent deterministic MOGVRP dominate.
according to the parameters reported in the table 6. TABLE IX
SPEED DISTRIBUTION ON OPTIMAL ROUTES
TABLE VIII Routes \ VS S M F VF
OPTIMAL ROUTES OBTAINED BY BICRITERIONANT Speed
Under fuzzy aspect Route 1 16-51-0 2;)6-33- 4112-1-22-42-41- 43-23-49-16
Vehicles | Routes fi f Route 2 47-36- 0-30-48- 21-28-2-0
0-6-33-15-1-22-42-41-43-23-49- Route 3 = 41‘;-20-37- 052-27-13 529-45-4-0
1 16-51-0 107.7 46.4 :
2 0-30-48-47-36-21-28-2-0 78.6 11.4 Route 4 0-34-46-8 8-54-19 10-14-53 53-35-7-0
3 0-52-27-13-20-37-5-29-45-4-0 85.1 35.1 Route 5 38-11-26- 39-31 0-12 12-39 & 31-10-
4 0-34-46-8-54-19-14-53-35-7-0 80.6 38.9 Route 6 : 25-9-40-0 3?17-32 32-50-18-25
5 0-12-39-31-10-38-11-26-0 96.6 18.6 Route 7 30 23 0-24
6 0-17-32-50-18-25-9-40-0 814 416
7 0-24-3-44-0 66.9 4.7
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In the following lines, we will attempt to carry out a
comparative analysis between the fuzzy and deterministic
CMEM models using the objective function f, .

TABLE X
COMPARATIVE ANALYSIS OF FUZZY AND FIXED VEHICLE SPEEDS ON
f2
f2
Speed (30 | Speed (60 | Speed Fuzzy Fuzzy Fuzzy
km/h) km/h) (120 speed speed speed vs
km/h) Vs Vs speed
Fuzzy speed speed 120km/h
Routes speed 30km/h | 60km/h
14.8 11.4 86.6 31.9% | 24.6% 186.6%
1 46.4
2 114 7.1 5.3 42.0 62.3% | 46.5% | 368.4%
7.0 55.6 27.0% | 19.9% | 158.3%
3 35.1 95
4 38.9 8.9 6.7 52.6 229% | 17.2% 135.2%
5 18.6 10.7 8.0 63.1 57.5% | 43.0% | 339.8%
6 41.6 7.7 7.0 70,1 185% | 16.8% 168.5%
7 4.7 78 74 70,8 165.9% | 157.4% | 1506.4%
V1. DISCUSSION
- o fixed speed
From the following formula % = —————x 100, we

fuzzy speed

were able to compare the results of objective function
f> when the speed is fuzzy and when the speed is fixed, Table
10 shows that when the vehicle speed is fixed at 30 km/h, fuel
consumption are significantly lower compared to the fuzzy
speed model across all routes on average, the speed of 30
km/h represents between 18% and 62% of the fuzzy speed,
except for route 7 where it greatly exceeds it (due to the very
low fuzzy speed). Similarly, when the speed is set at 60 km/h,
the fuel consumption lower on average it generally represents
17% to 46% of the fuzzy speed. This demonstrates that using
a fixed speed in the CMEM model severely underestimates
fuel consumption compared to our Fuzzy-CMEM model.
Conversely, when the speed is set to 120 km/h, fuel
consumption exceeds that of the fuzzy speed model, by more
than +100%, therefore, a speed of 120 km/h is completely
incompatible with an urban distribution context; it exceeds
the fuzzy speed in an extreme way, this confirming that
categorizing speed as "high" leads to very high fuel usage.
We consider these results as an illustrative validation of the
approach proposed in this paper rather than a generalization,
since problems of different sizes were not addressed.

VII. CONCLUSION

In this paper, we explored an innovative multi-objective
optimization approach for the Green Vehicle Routing
Problem (GVRP) by integrating vehicle speed as a fuzzy
parameter within the framework of the Comprehensive Modal
Emissions Model (CMEM) called Fuzzy-CMEM. This
modeling approach allows for a more accurate representation
of real uncertainties related to travel speeds on road segments,
due to dynamic factors such as traffic or weather conditions.
By incorporating these fuzzy speeds, it became possible to
compute fuel consumption more realistically. The results
demonstrate that this approach improves the relevance of

optimization decisions by providing more robust solutions
that better reflect real-world conditions and classical CMEM
model severely underestimates fuel consumption compared to
our Fuzzy-CMEM model. Indeed, the simultaneous
consideration of minimizing travel distance and fuel
consumption under uncertainty enables a balance between
logistical performance and environmental impact. The
FMOGVRP based on the Fuzzy-CMEM opens several
promising avenues for future research, such as: Developing a
fully fuzzy multi-objective optimization framework, in which
Pareto dominance is handled directly in the fuzzy domain
without relying on an initial defuzzification step. Integrating
real-time or dynamic speed data into the proposed model, as
this would enable adaptive routing strategies and improve the
robustness of eco-logistics decisions under time-varying
conditions. Finally, focusing on large-scale industrial
applications and benchmark-based evaluations, as well as the
development of specialized metaheuristics designed to handle
both fuzziness and multi-objective optimization more
efficiently.
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