
Journal of Applied Informatics and Computing (JAIC)

Vol.10, No.1, February 2026, pp. 910~922

e-ISSN: 2548-6861 910

Performance Evaluation of Multi-Cloud Failover Using

Domain Name System

Cahya Zaelani 1*, Galura Muhammad Suranegara 2*
* Department of Telecommunication Systems, Universitas Pendidikan Indonesia

cahyaazaelanii@upi.edu 1, galurams@upi.edu 2

Article Info ABSTRACT

Article history:

Received 2025-11-17

Revised 2026-01-28

Accepted 2026-01-30

 This research implements and analyzes a multi-cloud failover system using DNS

failover via AWS Route53 and Nginx reverse proxy load balancers on Google Cloud

(primary) and Herza Cloud (backup), with AWS EC2 as shared backend web servers.

An Ubuntu control node orchestrates deployments across these providers, enabling

automatic traffic rerouting from the primary to secondary load balancer upon failure

detection via health checks. Performance testing employed wrk benchmarking (4

threads, 250 connections, 300s) and Python monitoring scripts under baseline and

failover scenarios with DNS TTLs of 30s, 60s, and 120s. Baseline yielded 2,291.81

req/s throughput, 108.42ms average latency, and 231.15ms p99 latency. Failover

results showed TTL 30s optimal for reliability (152.65s downtime, 48.62% failed

requests, 30.53s average recovery), outperforming TTL 60s (243.92s downtime,

83.48% failures due to health check mismatch) and TTL 120s (186.88s downtime)

and TTL 30s is recommended for high availability in low-budget SMEs, balancing

reduced downtime against DNS overhead. However, this approach is limited to

small-scale infrastructure.

Keywords:

Multi-Cloud,

Cloud Computing,

Failover,

Domain Name System,

High Availability,

Nginx.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

The rapid adoption of cloud computing among small and

medium enterprises (SMEs) has transformed how these

organizations manage IT resources, enabling scalability,

operational flexibility, and cost efficiency without requiring

heavy upfront investments in physical infrastructure. This

operational transformation is particularly significant in

developing economies, where [1] reported that cloud-

adopting SMEs achieved 2.5 times improvement in

operational efficiency (OR=2.5, p<0.001), while [2]

identified 50–75% reduction in time and effort for product

development. Empirical studies indicate that cloud services

help SMEs streamline business processes, improve data

accessibility, and strengthen business continuity, which are

critical for maintaining competitiveness in dynamic market

environments [3]. As cloud-based applications increasingly

support critical business operations, service availability has

become a primary concern, where even short periods of

downtime may lead to financial loss and degradation of user

trust [4], [5]. Consequently, ensuring high availability (HA)

is a fundamental requirement in cloud infrastructure design,

particularly for web services that demand continuous

accessibility under varying network conditions and traffic

loads [6], [7].

To address availability challenges, various high

availability mechanisms have been widely adopted,

including server clustering, load balancing, and automated

failover strategies. Load balancing distributes incoming

traffic across multiple backend servers to improve

performance and fault tolerance, while failover mechanisms

ensure service continuity when a primary node becomes

unavailable [8], [9]. Most existing implementations rely on

single-cloud architectures, where redundancy is confined

within one cloud provider. Although effective in mitigating

local failures, such approaches remain vulnerable to

provider-level outages, regional disruptions, and vendor

lock-in issues [10], [11]. These limitations have encouraged

the adoption of multi-cloud architectures that leverage

resources across different cloud providers to enhance

resilience and availability [12].

https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

911

Among various failover techniques, Domain Name

System (DNS)-based failover is widely used due to its

simplicity, scalability, and compatibility with heterogeneous

cloud environments. DNS failover redirects client requests to

alternative endpoints when service degradation is detected,

typically controlled by Time To Live (TTL) parameters that

determine DNS cache duration [13], [14]. Several studies

highlight that TTL configuration plays a crucial role in

failover responsiveness and service continuity, as shorter

TTL values enable faster redirection at the cost of increased

DNS query overhead [15], [16]. However, prior research

largely focuses on functional validation or single-parameter

observation, providing limited insight into how different

TTL values quantitatively affect performance and reliability

in real multi-cloud scenarios [17]. While cloud computing

adoption has been extensively studied from business

perspectives with 68.1% of SMEs prioritizing cost avoidance

in hardware investments [1] and research [3] emphasizing

infrastructure cost reduction as primary driver for Indonesian

SMEs the technical optimization of failover mechanisms

through DNS TTL configuration remains underexplored,

particularly in low-budget multi-cloud architectures.

Furthermore, performance evaluation in DNS-based

failover studies often lacks comprehensive metrics. Many

works emphasize availability status without analyzing

network quality indicators such as latency, jitter, throughput,

and tail latency, which are essential for understanding user

experience during failover events [18], [19]. Benchmarking

tools such as wrk have been recognized as effective for

generating sustained HTTP workloads and capturing detailed

latency distributions, including p95 and p99 values [20],

[21]. Nevertheless, systematic performance analysis

combining DNS failover behavior with fine-grained

reliability metrics such as downtime duration, recovery time,

and failed request percentage remains limited, particularly

under controlled TTL variations.

This study implements DNS-based multi-cloud failover

using Nginx reverse proxy, with AWS EC2 backend, Google

Cloud primary load balancer, Herza Cloud backup, and AWS

Route53 orchestration. Performance evaluated across normal

operation and TTL 30s, 60s, and 120s scenarios using wrk

benchmarking and custom monitoring for network quality

and recovery metrics and prioritizes high availability over

throughput stability, which aligns with SME operational

requirements.

II. METHODS

This research focuses on the implementation and

performance analysis of a multi-cloud failover system based

on DNS and Nginx load balancing mechanisms. The purpose

of this methodology is to design, deploy, and evaluate a

reliable web service infrastructure that can automatically

maintain service availability during node or cloud provider

failures. The experiment was conducted using three different

cloud environments: Amazon Web Services (AWS) as the

backend layer, Google Cloud as the primary load balancer 1

(LB1), and Herza Cloud as the secondary backup load

balancer 2 (LB2). All configurations and management tasks

were performed from a Control Node, which runs on Ubuntu

Server within a VirtualBox virtual machine environment.

This setup provides a centralized control and monitoring

station for establishing secure SSH connections to all remote

instances. Figure 1 shows the flow of implementation

methodology and performance analysis of DNS and Nginx-

based failover multi-cloud systems.

A. Control Node Preparation

The control node serves as the central orchestration point

responsible for managing, configuring, and monitoring all

remote cloud instances deployed across multiple cloud

providers during this research. It provides a unified

environment for executing SSH connections and

administrative tasks while automating the provisioning and

instantiation of virtual machines across distributed cloud

platforms. This enables seamless deployment of identical

server configurations on Google Cloud, AWS, and Herza

Cloud.

B. AWS Backend Web Server Infrastructure

Figure 1. Multi-cloud failover methodology flow

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

912

The second phase involves provisioning two independent

web servers on Amazon Web Services (AWS) EC2 to serve

as the backend application layer. These instances were

deployed through AWS Management Console with

configurations optimized for load balancing and high

availability. AWS was selected for its global infrastructure,

predictable performance, and suitability for cross-cloud

redundancy mechanisms.

Table I presents the detailed specifications for Web

Server 1 and Web Server 2.

TABLE I

WEB SERVER 1 & 2 SPECIFICATIONS

Component Specification

Cloud Provider Amazon Web Services (AWS)

Compute Service EC2 (Elastic Compute Cloud)

Instance Type t3.micro

vCPU 2 vCPU

RAM 1 GB

Storage 8 GB

Operating System Ubuntu Server 22.04 LTS

Public IP Elastic IP

 SSH key pairs were configured for secure authentication

by generating EC2 RSA keys through AWS Management

Console. The private key aws-key.pem was transferred to the

control node via SCP, with permissions restricted to read-

only for owner following security best practices. The

following is to change the access permissions:
chmod 400 aws-key.pem

Two separate index pages were configured for Web

Server 1 and Web Server 2 to uniquely identify backends and

validate load distribution during failover testing. The

following is how to install Nginx and change the index page:

Figure 3 shows that these unique responses enable real-

time detection of routing behavior and verification of load

balancing, while also helping monitor DNS propagation and

reveal traffic inconsistencies that provide insight into overall

failover performance.

C. Google Cloud Primary Load Balancer Configuration

The primary load balancing tier utilizes Google Cloud

Compute Engine deployed in the Jakarta region (asia-

southeast2-a), designated as Load Balancer 1 (LB1). The

Virtual Machine instance was provisioned through the

Google Cloud Console with specifications detailed in Table

II.

TABLE II
LOAD BALANCER 1 SPECIFICATIONS

Component Specification

Cloud Provider Google Cloud Platform

Compute Service Compute Engine

Instance Role Primary Load Balancer

Zone Jakarta, asia-southeast2-a

Machine Type e2-medium (2 vCPU, 4 GB RAM)

Storage 20 GB

Operating System Ubuntu Server 22.04 LTS

Web Server Software Nginx 1.18.0

 SSH access was configured by first generating an RSA

key pair locally through the ssh-keygen command in the

Linux terminal. The resulting public key was then added to

the instance's authorized keys by inserting it into GCP

metadata settings under the SSH keys field. The following is

how to create an rsa key:

After the RSA key pair was generated on the control node

for SSH authentication to Google Cloud VM, where Nginx

1.18.0 was installed as reverse proxy. Nginx was installed

using the following commands:

Once Nginx web server (version 1.18.0) was installed

and running, the load balancing logic was implemented using

the upstream module. The backend server pool and reverse

proxy directives were defined in a configuration file at

sudo apt install nginx -y

#echo "Hello from Webserver1 (AWS)" | sudo tee

/var/www/html/index.html

#echo "Hello from Webserver2 (AWS)" | sudo tee

/var/www/html/index.html

mkdir GCP

cd GCP

ssh-keygen -t rsa -f gcp -C gcpkey

sudo apt install nginx -y

sudo systemctl enable nginx

sudo systemctl start nginx

Figure 2. AWS key pair generation for secure ssh authentication

Figure 3. Web server 1 and Web server 2 response output

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

913

“/etc/nginx/conf.d/loadbalancer.conf”. The following shows

how to configure this file:

sudo nano /etc/nginx/conf.d/loadbalancer.conf

The upstream block configures round-robin load

balancing across two AWS EC2 instances on port 80,

preserving client headers and isolating failed backends

through health monitoring. Configuration syntax was

validated using Nginx built-in testing before

implementation.

Figure 6 shows successful Nginx configuration syntax

validation command:

D. Herza Cloud Backup Load Balancer Deployment

Load Balancer 2 (LB2) utilizes Herza Cloud KVM VPS

in Indonesian infrastructure, selected for full root access and

cost-effective pricing ensuring data residency. Deployment

mirrors GCP configuration, with the key difference being

SSH key generation performed locally on Windows

command prompt and transferred to the control node server

via SCP protocol. Table III shows the specifications of the

backup load balancer.

TABLE III

LOAD BALANCER 2 SPECIFICATIONS

Component Specification

Cloud Provider Herza Cloud (Indonesia)

Compute Service Virtual Private Server (KVM)

Instance Role Secondary Load Balancer (Backup)

Region Jakarta, Indonesia

Instance Type 1 vCPU, 1 GB RAM

Storage 20 GB SSD

Operating System Ubuntu Server 22.04 LTS

Firewall Allow: 22 (SSH), 80 (HTTP)

Web Server Software Nginx 1.18.0

After instance provisioning SSH key workflows differed.

GCP keys generated on Linux control node due to Windows

issues, while Herza keys were successfully generated on

Windows and transferred via SCP. The following shows the

SSH key pair generation on Windows CMD and subsequent

transfer via SCP:

The public key must then be uploaded manually to the

Herza Cloud Panel under the SSH Keys section, where it is

registered as an authorized key for later VPS provisioning.

This process allows the VPS to be deployed with pre-

configured key-based authentication, ensuring secure,

passwordless access once the instance is created. After the

public key is added, the private key is transferred securely to

the server control node and restricted to comply with SSH

security requirements before connecting via ssh. The

following is how to change the RSA key permissions and

access the VM:

After successfully establishing SSH connection to the

Herza Cloud instance, Nginx installation and upstream

configuration were performed following the same

procedures as Load Balancer 1 (LB1). Nginx upstream

config defines two AWS EC2 backends with round-robin,

ssh-keygen -t rsa -b 4096 -C "herza-lb2" -f herza-key

cat herza-key

scp "C:\Users\Cahya\Downloads\herza-key"

username@IP_Public:~

chmod 400 herza-key

ssh -i ~/name_folder/herza-key username@IP_Public

Figure 4. Nginx is running

Figure 5. Google Cloud upstream configuration

Figure 6. Nginx configuration syntax validation

Figure 7. Sends the rsa key file to the control node server

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

914

validated using “sudo nginx -t” then applied “via sudo

systemctl restart nginx”.

E. DNS-Based Failover Orchestration

AWS Route53 implements DNS failover through hosted

zone configuration, health check deployment, and primary-

secondary routing policy implementation. Figure 8 shows the

system flow of multi-cloud failover.

Figure 8. System flow from multi-cloud failover

The following section details the Hosted Zone

configuration and domain registration that enables this DNS-

based traffic management across multi-cloud environments.

1) Configuration Domain Registration: AWS Route53

hosted zone was created for apifailover.my.id with

nameserver delegation configured at DomaiNesia using four

AWS-assigned nameservers.

2) AWS Route53 Health Check Implementation for

Load Balancer Monitoring: Automated failover relies on

continuous health monitoring of Google Cloud Load

Balancer 1 (LB1) and Herza Load Balancer 2 (LB2) using

AWS Route53 HTTP health checks, with one targeting Load

Balancer 1 (LB1) public IP 34.50.111.48:80. Figure 9

illustrates the health check configuration for Load Balancer

1 (LB1) in the AWS console, specifying protocol, endpoint

path, check interval, timeout, and threshold values to ensure

backend instances remain healthy and reliably serve user

traffic.

Figure 9. Configuration on health check Load Balancer 1

While the second monitors the Herza Cloud load balancer

2 (LB2) IP address 103.168.146.162 on the same port, both

executing HTTP GET requests to the root path / to verify

load balancer operational status.

3) Failover Routing Policy Configuration with

Primary and Secondary Records: The DNS failover policy

is implemented in Route53 by creating a hosted zone for

apifailover.my.id with two A records using failover routing.

The primary A record points to Google Cloud load balancer

IP 34.50.111.48, marked as Primary, attached to a health

check, with 60-second TTL.

The secondary failover record points to Herza Cloud load

balancer IP 103.168.146.162 and is marked as Secondary

with a 60‑second TTL, remaining passive until the primary

health check fails, after which Route53 directs traffic to this

backup endpoint.

4) DNS Failover Configuration Verification: After

completing the Route53 failover configuration, DNS

propagation was verified using DNSChecker.org to ensure

proper domain resolution across the global DNS

infrastructure. The verification process tested the

resolution of (apifailover.my.id) from multiple geographic

locations, including San Francisco and Mountain View,

California, representing different DNS resolver networks

worldwide. As shown in Figure 11, the domain consistently

resolved to the primary load balancer IP address

34.50.111.48 across all tested locations. This result

Figure 10. Configuring Google Cloud records in hosted zones

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

915

confirms that the Route53 nameserver delegation, health

checks, and failover routing policies were correctly

implemented and successfully propagated globally,

ensuring reliable domain accessibility and high

availability.

Figure 11. Domain has successfully propagated across global DNS

F. Performance Testing and Metrics Collection

Performance testing evaluates network quality and

failover reliability using a dual-methodology approach. wrk

(HTTP benchmarking tool) measures latency distribution,

jitter, tail latency (p95/p99), and throughput under sustained

load, while a custom Python monitoring script captures

downtime duration, recovery time, and failed request

percentages during simulated infrastructure failures.

The selection of TTL intervals (30s, 60s, 120s) was based

on industry practices and AWS Route53 health check

threshold (90s) [22]. The 250 concurrent connections

simulate typical SME traffic patterns, aligning with

empirical evidence from [1] showing that surveyed SMEs

averaged 25 employees with moderate-scale operations,

while avoiding infrastructure saturation on low-tier instances

commonly deployed by budget-constrained organizations.

Research [2] further validated that SMEs prioritize

scalability (dynamic resource provisioning) and cost

efficiency over peak performance capacity, justifying our

conservative load testing approach.

 1) Network Quality Metrics Testing: Network

performance characteristics were measured using wrk

(HTTP benchmarking tool), an open-source, high-

performance HTTP load generator capable of producing

sustained traffic loads while capturing detailed latency

statistics. wrk was selected for its efficiency in measuring

request-level metrics under controlled load conditions and its

widespread adoption in cloud computing research for

performance benchmarking. The testing protocol executed 5-

minute (300s) benchmark sessions against the DNS-

managed endpoint (http://apifailover.my.id) Packet loss was

measured using ICMP echo requests with the following

configuration:

Testing was conducted across four distinct scenarios to

evaluate both baseline performance and DNS TTL impact on

failover behavior:

• Scenario 1 Normal Operation

Figure 12. Results from normal operation

All infrastructure components operational with no

induced failures. This scenario establishes baseline

performance metrics for comparison with failover scenarios.

Figure 12 baseline wrk testing achieved 2,291 req/s

throughput with 108 ms mean latency and 231 ms p99.

Results indicate stable multi‑cloud performance under

normal conditions, showing zero packet loss, no connection

errors, and consistent latency behavior for quantitative

failover benchmarking.

• Scenario 2 DNS Failover with TTL 30 seconds

Figure 13. Results from TTL 30

Figure 13 generating a total of 55,616 requests. The

observed performance metrics include a jitter of 49.29 ms,

throughput of 185.38 requests per second, an average latency

of 110.26 ms, and a p99 latency of 278.94 ms. A substantial

number of socket errors were recorded, mainly triggered by

frequent DNS re-resolution and repeated failover cycles

during the test period. These conditions caused connection

./wrk -t4 -c250 -d300s --latency http://apifailover.my.id

ping -c 300 apifailover.my.id (packet loss)

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

916

instability, increased timeout events, and reduced request

success rates. As a result, overall throughput degraded by

approximately 91.9% compared to the baseline performance

of 2,291.81 req/s, highlighting the adverse impact of overly

aggressive DNS TTL configurations on system stability and

performance.

• Scenario 3 DNS Failover with TTL 60 seconds

Figure 14. Results from TTL 60

Figure 14 shows TTL 60s testing with 250 concurrent

connections over 5 minutes, completing 146,444 requests at

487.95 req/s, 101.20 ms average latency, Jitter 26.78ms, and

200.15 ms p99. Although 56,047 socket errors occurred,

throughput was 2.6× higher than TTL 30s but still 78.7%

below baseline due to DNS failover.

• Scenario 4 DNS Failover with TTL 120 seconds

Figure 15. Results from TTL 120

Figure 15 shows TTL 120s testing using wrk with 250

concurrent connections over 5 minutes. TTL 120s and 60s

reach ~498 and ~488 req/s with lower jitter, while TTL 30s

suffers 185 req/s, highest jitter, and many socket errors,

showing shorter TTLs worsen instability and overhead.

 2) Failover Reliability Metrics Testing: Failover

behavior assessment required continuous endpoint

availability monitoring to detect downtime duration,

recovery time, and failed request rates during infrastructure

failures. Failover behavior was assessed using a custom

Python monitoring script implementing polling-based

availability checking. The script configuration defines four

key parameters:

These parameters enable granular 1-second resolution

monitoring over 5-minute windows, sufficient to capture

complete DNS TTL propagation cycles (30-120 seconds)

while the 2-second timeout distinguishes network delays

from actual service unavailability. The monitoring loop

executes HTTP GET requests at fixed intervals, recording

timestamp-precise success/failure status for subsequent

analysis.

• DNS Failover Reliability with TTL 30s

Figure 16. Results of the TTL 30 test

Figure 16 shows temporal failover behavior for TTL 30s

with 5 recovery cycles across 218 requests in 5 minutes,

achieving 51.38% success and 152.65s downtime, where

frequent DNS cache expiration enables rapid repeated

recovery, improving overall reliability despite slower

individual recoveries.

• DNS Failover Reliability with TTL 60s

Figure 17. Results of the TTL 60 test

Figure 17 presents DNS failover monitoring results for

the TTL 60s configuration, based on 230 requests executed

over a 5-minute observation period. The experiment reveals

url = "http://apifailover.my.id"

interval = 1 # 1-second polling interval

duration = 300 # 5-minute observation window

timeout = 2 # 2-second request timeout

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

917

a single prolonged recovery cycle with a very low success

rate of only 16.52%, indicating that most requests failed

during the failover process. The total recorded downtime

reached 243.92 seconds, which is approximately 60% higher

than the downtime observed in the TTL 30-second scenario.

Although the measured average recovery time per event was

relatively short at 3.08 seconds, this metric alone did not

translate into reliable service availability. The mismatch

between the DNS cache expiration interval (60 seconds) and

the health check detection window (90 seconds) resulted in a

worst-case cache coherence condition, where clients

continued to resolve unhealthy endpoints.

• DNS Failover Reliability with TTL 120s

 Figure 18 shows TTL 120s failover with 1 recovery

cycles, 186.88s downtime, and 38.12% success over 230

requests, where longer TTL reduces recovery frequency yet

avoids TTL 60s race conditions, providing intermediate,

more stable reliability during infrastructure failures.

III. RESULTS AND DISCUSSIONS

The tests were conducted across four scenarios

representing different operational conditions: Scenario 1

(Baseline) establishes reference performance under normal

operation, while Scenarios 2-4 evaluate DNS failover with

TTL configurations of 30s, 60s, and 120s during simulated

primary server failures. Each scenario employed dual-

methodology testing wrk for performance metrics

(throughput, latency, jitter) and Python monitoring for

reliability metrics (downtime, recovery cycles, success rates)

over 5-minute windows with 250 concurrent connections.

This section presents experimental findings from

performance testing and failover reliability analysis across

multiple DNS TTL configurations. Results are organized

into three subsections: baseline performance characteristics,

performance under failover conditions, and failover

reliability metrics, followed by comparative analysis and

discussion.

A. Baseline Performance Characteristics

Baseline performance testing establishes reference

metrics for system behavior under normal operating

conditions without any infrastructure failures and serves as a

critical control scenario for subsequent experiments. Figure

19 demonstrates stable baseline performance, achieving a

throughput of 2,291.81 requests per second, with an average

latency of 108.42 ms and jitter of 37.69 ms, indicating

consistent and predictable request processing. Although

minor packet loss and socket errors of 2.33% were observed,

these anomalies remained within acceptable limits and did

not significantly impact service availability or

responsiveness. The p99 latency of 231.15 ms defines the

upper-bound performance experienced by 99% of user

requests, capturing worst-case delay under healthy

conditions. Collectively, these metrics establish a reliable

performance baseline that reflects optimal system behavior.

This baseline is essential for accurately quantifying the

extent of performance degradation, increased latency,

throughput reduction, and availability loss introduced by

DNS failover mechanisms and recovery events evaluated in

subsequent testing scenarios.

Figure 19. Normal operating test results

B. Performance Under Failover Conditions

This section evaluates network performance metrics

during simulated primary infrastructure failures across three

DNS TTL configurations. Each metric is analyzed

independently with measurement methodologies, and

comparative results.

1) Average Latency Analysis: Average latency

represents the mean time required for request-response

cycles, calculated as:

Based on the measurements results in the Table IV, the

average latency for each was calculated as follows:

Figure 18. Results of the TTL 120 test

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

918

Average latency calculations reveal paradoxical

performance metrics across TTL configurations. TTL 60s

achieves the lowest latency (101.20 ms) with 146,444

successful requests. However, latency and jitter metrics

during failover cannot be interpreted independently from

failure rates, as they represent only surviving requests, while

TTL 120s records 105.85ms across 149.339 requests both

processing 2.6-2.7× more requests than TTL 30s (110.26ms,

55,616 requests). However, these favorable latency values

reflect survival bias: only successful requests contribute to

calculations, masking underlying 83.48% and 62.78% failure

rates respectively, thereby invalidating apparent

performance superiority during failover conditions.

2) Jitter Latency Analysis: Jitter quantifies latency

variability as standard deviation of samples. TTL 30s

exhibited highest jitter (49.29ms, +30.8% vs baseline

37.69ms) due to synchronized 30-second DNS cache

expiration creating periodic spikes. TTL 60s achieved lowest

(26.78ms, -28.9%), paradoxically masking 83.48% failure

rate through survival bias. TTL 120s maintained near-

baseline variability (35.46ms, -5.9%), confirming longer

cache durations stabilize latency variance.

3) Packet Loss Analysis: Packet loss rate quantifies

failed connection attempts relative to total requests. The

following is the formula:

The packet loss metrics across all test scenarios were

obtained as follows:

Baseline 2.33% packet loss during normal operation was

caused by resource saturation of AWS t3.micro with burst

limit of only ~1,788 req/s while wrk testing achieved 2,291

req/s (28% overload), wrk aggressiveness with 4 threads

generating 1,000 req/s instant burst (vs SME gradual ramp-

up averaging 25 users), and Nginx keep-alive timeout 65s

causing connection pool exhaustion at 250 concurrent

connection.

4) Throughput Analysis: Throughput measures

successfully completed requests per unit time. The following

is the formula:

The request rate was measured in requests per second

(req/s). The throughput metrics across all test scenarios were

obtained as follows:

Throughput calculations reveal catastrophic performance

degradation during DNS failover: TTL 30s achieves only

185.38 req/s (91.9% reduction from baseline 2,291.81 req/s),

while TTL 60s and 120s attain 487.95 and 497.68 req/s

respectively (78.7-78.3% degradation). Despite TTL

60s/120s processing 2.6× more requests than TTL 30s, this

apparent superiority masks critical reliability trade-offs their

higher throughput coincides with 83.48% and 62.78% failure

rates, indicating severe system instability under failover

conditions.

5) p99 Tail Latency Analysis: p99 latency represents

the 99th percentile latency value, indicating maximum

latency experienced by 99% of requests. The following is the

formula:

The p99 tail latency, representing the latency threshold

below which 99% of requests were completed, was measured

across all test scenarios as follows:

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

919

p99 latency represents the 99th percentile value from

sorted latency samples. The calculation involves three steps:

(1) sorting all latency values, (2) computing the index k =

⌈0.99 × n⌉ where n is the total number of samples, and (3)

extracting P99 = L_k. Results reveal TTL 60s achieved best

tail latency (200.15ms), TTL 120s intermediate (256.22ms),

and TTL 30s worst (278.94ms), indicating longer TTL

intervals reduce tail latency despite lower overall throughput

during DNS failover.

Table IV presents the aggregate results from all

Performance Under Failover Condition experiments that

have been implemented, showing comprehensive system

performance metrics obtained through systematic

observation of system behavior under failover conditions

across various testing scenarios.

TABLE IV

NETWORK QUALITY METRICS

Figure 20 Performance metrics comparison across DNS

TTL configurations during simulated failover conditions.

Metrics include average latency (blue), jitter (red), packet

loss percentage (green), p99 latency (purple), and throughput

(orange). Y-axis scaled to maximum observed value (p99

latency: 278.94 ms). Throughput values: Baseline=2291.81,

TTL 30s=185.38, TTL 60s=487.95, TTL 120s=497.68 req/s.

Data aggregated from wrk benchmarking (n=4 threads, 250

concurrent connections, 300s duration) against multi-cloud

infrastructure endpoint, revealing DNS cache interval impact

on system performance.

C. Failover Reliability Analysis

This section evaluates system availability and recovery

characteristics during simulated infrastructure failures. The

analysis encompasses critical reliability metrics, including

recovery time, system availability, and failure detection

latency. Each metric is mathematically defined and

systematically measured across different TTL configurations

to quantify the impact of DNS caching parameters on system

resilience under failover conditions. Table V presents the

experimental results from each session and shows that

shorter TTLs improve failover recovery and reduce

Test Scenario

Avg

Latency

(ms)

Jitter

(ms)

Packet Loss

(%)

Throughput

(req/s)

p99 Latency

(ms)

Normal Operation 108.42 37.69 2.33 2291.81 231.15

30 s 110.26 49.29 16.0 185.38 278.94

60 s 101.20 26.78 4.0 487.95 200.15

120 s 105.85 37.76 20.0 497.68 256.22

Figure 20. Network quality metrics results

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

920

downtime but increase DNS overhead, quantifying key

trade-offs in DNS-based failover reliability.

 TABLE V

 FAILOVER RELIABILITY METRICS

Overall, this analysis evaluates three key metrics total

downtime, average recovery time, and failed request

percentage to compare the effectiveness of TTL 30s, 60s, and

120s in multi‑cloud DNS failover scenarios.

1) Total Downtime Analysis: Total downtime quantifies

cumulative service unavailability duration during the

monitoring window. The following is the formula:

The downtime metrics across all test scenarios were

obtained as follows:

Based on calculations, TTL 30s achieves lowest

downtime 152.65s, 5 recovery cycles, 51.38% success. TTL

60s performs worst 1 cycle, 243.92s downtime, 16.52%

success due to Route53 90s health check timing mismatch

causing destructive race conditions. TTL 120s moderate 1

cycle, 186.88s, 37.22% success with predictable behavior.

For low-budget SMEs using cost-effective infrastructure

(AWS t3.micro, GCP e2-medium, Herza 1vCPU), TTL 30s

recommended for high availability. Avoid TTL 60s.

2) Recovery Time

Analysis: Average

recovery time measures

mean duration of individual downtime-to-recovery cycles.

The following is the formula:

 Multi-cloud failover system testing demonstrates the

significant during primary server failures. The recovery time

metrics across all test scenarios were obtained as follows:

Average recovery time calculation involves dividing total

recovery time by the number of trials. For TTL 30s, total

time of 152.65 seconds across 5 trials yields an average of

30.53 seconds, demonstrating stable failover consistency.

Meanwhile, TTL 60s with 1 trial recorded 243.92 seconds,

and TTL 120s recorded 186.88 seconds in 1 trial. Lower TTL

enables faster DNS propagation, allowing clients to switch

to backup servers with minimal delay.

3) Failed Requests Analysis: Failed request percentage

quantifies proportion of unsuccessful availability checks.

The following is the formula:

The failed requests metrics across all test scenarios were

obtained as follows:

Based on the calculation results TTL 30s shows lowest

failure rate (48.62%) and downtime (152.65s across 5

cycles), outperforming TTL 60s (83.48% failures, 243.92s

single-cycle outage) and TTL 120s (62.78% failures,

186.88s). Lower TTL enables faster DNS propagation via

DNS TTL

(s)

Downtime Recovery Time

(s)

Failed Requests

(%)

30 152.65 30.53 48.62

60 243.92 243.92 83.48

120 186.88 186.88 62.78

JAIC e-ISSN: 2548-6861

Performance Evaluation of Multi-Cloud Failover Using Domain Name System

(Cahya Zaelani, Galura Muhammad Suranegara)

921

frequent cache invalidation. TTL 60s fails due to resonance

with Route53's 90s health check threshold. Empirical U-

shaped distribution confirms timing-dependent cache-health

check interference.

Figure 21. Failover reliability results

D. Research Limitations and Discussion

This study has several limitations that should be

considered when interpreting results and practical

applications:

1) Limited Scale and Infrastructure: The multi-

cloud failover system implementation used infrastructure

with limited capacity, specifically AWS t3.micro instances

(2 vCPU, 1 GB RAM) and Google Cloud e2-medium (2

vCPU, 4 GB RAM). This configuration simulates small to

medium enterprises with low-budget capabilities.

Enterprises with high traffic may experience significantly

different performance characteristics.

2) Testing Load Constraints: Performance testing

used wrk with 4 threads and 250 concurrent connections over

300 seconds. While representative for small-medium

applications, these parameters do not reflect enterprise real-

world traffic loads of thousands to millions of requests per

second. Network quality metrics such as average latency of

108.42 ms and p99 latency of 231.15 ms under normal

operation may not generalize to high-traffic production

environments.

3) Geographic and Cloud Vendor Scope:

Experiments were limited to three cloud providers (AWS,

Google Cloud, Herza Cloud) focused on Southeast Asia,

particularly Jakarta region. Vendor and region selection

aligned with Indonesian data residency requirements and

cost affordability for budget-constrained local organizations.

Failover reliability results such as 152.65s downtime for

TTL 30s and 243.92s for TTL 60s may differ substantially

across other cloud providers or global multi-region

deployments with higher network latency.

4) Practical Implications for Low-Budget SMEs:

The implemented architecture uses lowest-tier cloud services

Google Cloud (e2-medium, 2 vCPU, 4 GB RAM), AWS

(t3.micro, 2 vCPU, 1 GB RAM), and Herza Cloud (1 vCPU,

1 GB RAM) to minimize monthly operational costs. This

infrastructure sizing is empirically justified, whose

regression analysis of 400 SMEs demonstrated that training

and support programs increased effective technology

leverage by 1.75 times (p=0.0003), while cloud integration

with existing systems doubled efficiency gains (OR=2.0,

p<0.001) [1]. Our $45–60/month cost structure aligns with

[3] findings that Indonesian SMEs prioritize pay-per-use

models to avoid capital expenditure in hardware and

infrastructure, research and [2] PEST analysis confirming

that limited financial resources make cost factors more

relevant to SMEs than strategic competitiveness . Compared

to [1] reported 30% cost reduction and 20% security

improvement through cloud adoption, our TTL 30s

configuration achieving 152.65s downtime represents a

practical implementation of high availability within

comparable budget constraints.

5) Failover Observation Duration: Failover

monitoring spanned 5-minute windows with 1-second

polling intervals. While sufficient to capture DNS TTL

propagation cycles (30-120 seconds), this duration does not

evaluate long-term system stability, daily traffic pattern

behaviors, or corner cases like simultaneous multi-

availability zone cascading failures.

IV. CONCLUSION

This research successfully implemented and evaluated a

DNS-based multi-cloud failover system using AWS

Route53, Nginx reverse proxy on Google Cloud (primary)

and Herza Cloud (backup), with shared AWS EC2 backends

orchestrated from an Ubuntu control node. Performance

testing via wrk (4 threads, 250 connections, 300s) and

Python monitoring scripts across baseline and failover

scenarios (TTL 30s, 60s, 120s) showed baseline throughput

of 2,291.81 req/s, average latency 108.42 ms, and p99

latency 231.15 ms.

Under failover conditions, TTL 30s performed best with

152.65s downtime, 30.53s average recovery time, and

48.62% failures, despite 91.9% throughput drop to 185.38

req/s and 49.29 ms jitter from high DNS overhead. TTL 60s

was worst (243.92s downtime, 83.48% failures) due to health

check (90s) interference, while TTL 120s was intermediate

(186.88s, 62.78%). TTL 30s configuration is recommended

for low-budget SMEs ($45–60/month), balancing high

availability with operational costs.

Limitations include small-scale instances (t3.micro/e2-

medium), 250-connection loads, Jakarta region focus, and

300s observation, limiting generalization to high-traffic or

multi-region setups. Future research should explore

enterprise-scale testing, ML-based load prediction, and

hybrid anycast failover for further optimization.

 e-ISSN: 2548-6861

JAIC Vol. 10, No. 1, February 2026: 910 – 922

922

REFERENCES

[1] H. Kalinaki, T. Joshua, and A. University, “Cloud Computing and

Operational Efficiency: A Case Study of SMEs in Kampala,” vol. 3,
pp. 711–723, Oct. 2024.

[2] M. A. Javaid, “Implementation of Cloud Computing for SMEs,”

World J. Comput. Appl. Technol. Publ., vol. 2, no. 3, pp. 66–72, Mar.
2014, doi: 10.13189/wjcat.2014.020302.

[3] D. R. Rahadian, V. Y. Mahendra, R. D. Yuliyanto, and M. A.

Sholihin, “Manajemen Resiko Cloud Computing Pada UMKM,”
Pros. Semin. Nas. Teknol. Inf. Dan Bisnis, pp. 135–141, 2023.

[4] A. F. Kasmar, W. Wahyuna, F. Sukma, and S. Amalia, “Implementasi

sistem keamanan dan high availability pada cloud server
menggunakan Amazon Web Services (AWS),” J. Teknoif Tek.

Inform. Inst. Teknol. Padang, vol. 13, no. 1, pp. 40–47, Apr. 2025,

doi: 10.21063/jtif.2025.V13.1.40-47.

[5] A. A. Rotib, “Pusat Data Dan Layanan Cloud Center : Jaringan

Protokol Dan Manajemen,” vol. 1, no. 1, 2024.

[6] Muhajirin, “Optimalisasi Web Server Menggunakan System Failover
Clustering Berbasis Cloud Computing,” J. Ilm. Ilmu Komput. Fak.

Ilmu Komput. Univ. Al Asyariah Mandar, vol. 3, no. 2, pp. 35–42,

2017, doi: 10.35329/jiik.v3i2.58.
[7] H. Y. Prabowo, A. R. Mukti, Suryayusra, and T. Ariyadi, “Analisa

Desain High Availability dan Uji Reabilitas Cloud Storage,” J.
Indones. Manaj. Inform. Dan Komun., vol. 5, no. 1, pp. 262–270, Jan.

2024, doi: 10.35870/jimik.v5i1.467.

[8] S. Sumarna, H. Nurdin, and F. W. Handono, “Perancangan N-
Clustering High Availability Web Server Dengan Load Balancing

Dan Failover,” JITK J. Ilmu Pengetah. Dan Teknol. Komput., vol. 4,

no. 2, pp. 149–154, Feb. 2019, doi: 10.33480/jitk.v4i2.287.
[9] A. Fadila, M. Nasir, and S. Safriadi, “Implementasi Sistem Load

Balancing Web Server Pada Jaringan public Cloud Computing

Menggunakan Least Connection,” J. Artif. Intell. Softw. Eng., vol. 3,
no. 2, pp. 50–55, Oct. 2023, doi: 10.30811/jaise.v3i2.4578.

[10] Prinafsika, A. Junaidi, and M. Muharrom Al Haromainy, “Cloud-

Based High Availability Architecture Using Least Connection Load
Balancer and Integrated Alert System,” Bit-Tech, vol. 8, no. 1, pp.

263–274, Aug. 2025, doi: 10.32877/bt.v8i1.2520.

[11] D. Siregar, A. Ariangga, S. Sarudin, H. Harahap, and R. Liza, “Load
Balancing untuk Lalu Lintas Tinggi pada Lingkungan Cloud

Menggunakan Metode Round Robin,” J. Inform. Univ. Pamulang,

vol. 9, no. 2, pp. 38–45, Jul. 2024, doi:
10.32493/informatika.v9i2.42662.

[12] Fauzan Prasetyo Eka Putra, Noviyani Dwi Saputri, Fathur Rosi, and

Rohilia Loati, “Optimalisasi Infrastruktur Cloud Networking melalui
Integrasi SDN, NFV, dan Multi-Cloud,” J. Inform. Dan Tekonologi

Komput. JITEK, vol. 5, no. 1, pp. 118–125, Mar. 2025, doi:

10.55606/jitek.v5i1.6099.
[13] Y. Afek and A. Litmanovich, “Decoupling DNS Update Timing from

TTL Values,” Sep. 16, 2024, arXiv: arXiv:2409.10207. doi:

10.48550/arXiv.2409.10207.
[14] M. F. Darmawan and S. Risnanto, “Implementasi Failover Gateway

Recursive Dan Load Balancing Menggunakan Metode Per

Connection Classifier,” Infotronik J. Teknol. Inf. Dan Elektron., vol.
8, no. 2, pp. 56–66, Dec. 2023, doi:

10.32897/infotronik.2023.8.2.1887.

[15] N. M. K. Koneru, “Disaster Recovery In The Cloud: Implementing
Dr Sites And Blue/Green Deployments In Aws,” Int. J. Appl. Math.,

vol. 38, no. 10s, pp. 2441–2461, Nov. 2025, doi:

10.12732/ijam.v38i10s.1135.
[16] I. P. A. E. Pratama, P. V. Andreyana, and P. R. Nurjana, “Pengujian

High Availability pada Asynchronous DNS Berbasis Restknot

menggunakan Algoritma Round Robin,” J. Indones. Manaj. Inform.
Dan Komun., vol. 5, no. 1, pp. 1019–1032, Jan. 2024, doi:

10.35870/jimik.v5i1.582.

[17] M. P. Hapsari, A. B. Prasetijo, and A. Fauzi, “Analisa Kinerja pada
Standalone Server dan Clustering Server Teknologi RAC (Real

Application Clustering) dengan Algoritma DNS (Domain Name

System) Round Robin Berbasis Oracle Linux 6.4 di Lingkungan

Virtual,” J. Sist. Komput., vol. 10, no. 2, 2020.

[18] L. Izhikevich et al., “ZDNS: A Fast DNS Toolkit for Internet
Measurement,” in Proceedings of the 22nd ACM Internet

Measurement Conference, Oct. 2022, pp. 33–43. doi:

10.1145/3517745.3561434.
[19] R. Annisa, A. R. Makarim, M. Afif, W. E. Sulistiono, and S.

Ferbangkara, “Analisis Kinerja Layanan Cloud Computing dalam

Sistem Cerdas Rekomendasi Tanaman Perkebunan,” SINTA, vol. 7,
Jun. 2025.

[20] W. Wicoksono, H. A. Mustaqhim, P. P. Anwas, and L. N. L.

Badratul, “Performance Comparison of NGINX, Apache, and
Lighttpd Using WRK on a Debian,” Bit-Tech, vol. 8, no. 1, pp. 670–

680, Aug. 2025, doi: 10.32877/bt.v8i1.2661.

[21] A. A. Nizar, S. A. Karimah, and E. M. Jadied, “Analysis of
Virtualization Performance on Resource Efficiency Using Containers

and Unikernel,” in 2024 International Conference on Artificial

Intelligence, Blockchain, Cloud Computing, and Data Analytics
(ICoABCD), Aug. 2024, pp. 125–130. doi:

10.1109/ICoABCD63526.2024.10704518.

[22] M. Willetts and A. S. Atkins, “Performance measurement to evaluate
the implementation of big data analytics to SMEs using

benchmarking and the balanced scorecard approach,” J. Data Inf.
Manag., vol. 5, no. 1, pp. 55–69, Jun. 2023, doi: 10.1007/s42488-

023-00088-8.

