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This research implements and analyzes a multi-cloud failover system using DNS
failover via AWS Route53 and Nginx reverse proxy load balancers on Google Cloud
(primary) and Herza Cloud (backup), with AWS EC2 as shared backend web servers.
An Ubuntu control node orchestrates deployments across these providers, enabling
automatic traffic rerouting from the primary to secondary load balancer upon failure
detection via health checks. Performance testing employed wrk benchmarking (4
threads, 250 connections, 300s) and Python monitoring scripts under baseline and
failover scenarios with DNS TTLs of 30s, 60s, and 120s. Baseline yielded 2,291.81
req/s throughput, 108.42ms average latency, and 231.15ms p99 latency. Failover
results showed TTL 30s optimal for reliability (152.65s downtime, 48.62% failed
requests, 30.53s average recovery), outperforming TTL 60s (243.92s downtime,
83.48% failures due to health check mismatch) and TTL 120s (186.88s downtime)
and TTL 30s is recommended for high availability in low-budget SMEs, balancing
reduced downtime against DNS overhead. However, this approach is limited to
small-scale infrastructure.

This is an open access article under the CC-BY-SA license.

1. INTRODUCTION

The rapid adoption of cloud computing among small and
medium enterprises (SMEs) has transformed how these
organizations manage IT resources, enabling scalability,
operational flexibility, and cost efficiency without requiring
heavy upfront investments in physical infrastructure. This
operational transformation is particularly significant in
developing economies, where [1] reported that cloud-
adopting SMEs achieved 2.5 times improvement in
operational efficiency (OR=2.5, p<0.001), while [2]
identified 50-75% reduction in time and effort for product
development. Empirical studies indicate that cloud services
help SMEs streamline business processes, improve data
accessibility, and strengthen business continuity, which are
critical for maintaining competitiveness in dynamic market
environments [3]. As cloud-based applications increasingly
support critical business operations, service availability has
become a primary concern, where even short periods of
downtime may lead to financial loss and degradation of user
trust [4], [5]. Consequently, ensuring high availability (HA)

is a fundamental requirement in cloud infrastructure design,
particularly for web services that demand continuous
accessibility under varying network conditions and traffic
loads [6], [7].

To address availability challenges, various high
availability mechanisms have been widely adopted,
including server clustering, load balancing, and automated
failover strategies. Load balancing distributes incoming
traffic across multiple backend servers to improve
performance and fault tolerance, while failover mechanisms
ensure service continuity when a primary node becomes
unavailable [8], [9]. Most existing implementations rely on
single-cloud architectures, where redundancy is confined
within one cloud provider. Although effective in mitigating
local failures, such approaches remain vulnerable to
provider-level outages, regional disruptions, and vendor
lock-in issues [10], [11]. These limitations have encouraged
the adoption of multi-cloud architectures that leverage
resources across different cloud providers to enhance
resilience and availability [12].
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Among various failover techniques, Domain Name
System (DNS)-based failover is widely used due to its
simplicity, scalability, and compatibility with heterogeneous
cloud environments. DNS failover redirects client requests to
alternative endpoints when service degradation is detected,
typically controlled by Time To Live (TTL) parameters that
determine DNS cache duration [13], [14]. Several studies
highlight that TTL configuration plays a crucial role in
failover responsiveness and service continuity, as shorter
TTL values enable faster redirection at the cost of increased
DNS query overhead [15], [16]. However, prior research
largely focuses on functional validation or single-parameter
observation, providing limited insight into how different
TTL values quantitatively affect performance and reliability
in real multi-cloud scenarios [17]. While cloud computing
adoption has been extensively studied from business
perspectives with 68.1% of SMEs prioritizing cost avoidance
in hardware investments [1] and research [3] emphasizing
infrastructure cost reduction as primary driver for Indonesian
SMEs the technical optimization of failover mechanisms
through DNS TTL configuration remains underexplored,
particularly in low-budget multi-cloud architectures.

Furthermore, performance evaluation in DNS-based
failover studies often lacks comprehensive metrics. Many
works emphasize availability status without analyzing
network quality indicators such as latency, jitter, throughput,
and tail latency, which are essential for understanding user
experience during failover events [18], [19]. Benchmarking
tools such as wrk have been recognized as effective for
generating sustained HTTP workloads and capturing detailed
latency distributions, including p95 and p99 values [20],
[21]. Nevertheless, systematic performance analysis
combining DNS failover behavior with fine-grained
reliability metrics such as downtime duration, recovery time,
and failed request percentage remains limited, particularly
under controlled TTL variations.

This study implements DNS-based multi-cloud failover
using Nginx reverse proxy, with AWS EC2 backend, Google
Cloud primary load balancer, Herza Cloud backup, and AWS
Route53 orchestration. Performance evaluated across normal
operation and TTL 30s, 60s, and 120s scenarios using wrk
benchmarking and custom monitoring for network quality
and recovery metrics and prioritizes high availability over
throughput stability, which aligns with SME operational
requirements.

II. METHODS

This research focuses on the implementation and
performance analysis of a multi-cloud failover system based
on DNS and Nginx load balancing mechanisms. The purpose
of this methodology is to design, deploy, and evaluate a
reliable web service infrastructure that can automatically
maintain service availability during node or cloud provider
failures. The experiment was conducted using three different
cloud environments: Amazon Web Services (AWS) as the

backend layer, Google Cloud as the primary load balancer 1
(LB1), and Herza Cloud as the secondary backup load
balancer 2 (LB2). All configurations and management tasks
were performed from a Control Node, which runs on Ubuntu
Server within a VirtualBox virtual machine environment.
This setup provides a centralized control and monitoring
station for establishing secure SSH connections to all remote
instances. Figure 1 shows the flow of implementation
methodology and performance analysis of DNS and Nginx-
based failover multi-cloud systems.

Deploy Multi-Cloud &
DNS failover systems

¥

Setup Monitoring
Tools

v

Configure Route53
TTL & Waitfor  [€—
Propagation

v

Execute Failover Test
& Collect
Performance Data

AIITTL
Tested?

Analysis and
evaluation of results

v

Conclusion

Figure 1. Multi-cloud failover methodology flow

A. Control Node Preparation

The control node serves as the central orchestration point
responsible for managing, configuring, and monitoring all
remote cloud instances deployed across multiple cloud
providers during this research. It provides a unified
environment for executing SSH connections and
administrative tasks while automating the provisioning and
instantiation of virtual machines across distributed cloud
platforms. This enables seamless deployment of identical
server configurations on Google Cloud, AWS, and Herza
Cloud.
B. AWS Backend Web Server Infrastructure
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The second phase involves provisioning two independent
web servers on Amazon Web Services (AWS) EC2 to serve
as the backend application layer. These instances were
deployed through AWS Management Console with
configurations optimized for load balancing and high
availability. AWS was selected for its global infrastructure,
predictable performance, and suitability for cross-cloud
redundancy mechanisms.

Table I presents the detailed specifications for Web
Server 1 and Web Server 2.

TABLE I
WEB SERVER 1 & 2 SPECIFICATIONS

&« C A Notsecure apifailover.my.id
Hello from Webserver]l (AWS)
Hello from Webserver2 (AWS)

Figure 3. Web server 1 and Web server 2 response output

C. Google Cloud Primary Load Balancer Configuration

The primary load balancing tier utilizes Google Cloud
Compute Engine deployed in the Jakarta region (asia-
southeast2-a), designated as Load Balancer 1 (LB1). The
Virtual Machine instance was provisioned through the
Google Cloud Console with specifications detailed in Table
1L

TABLE I
LOAD BALANCER | SPECIFICATIONS

Component Specification
Cloud Provider Amazon Web Services (AWS)
Compute Service EC2 (Elastic Compute Cloud)
Instance Type t3.micro
vCPU 2 vCPU
RAM 1 GB
Storage 8 GB
Operating System Ubuntu Server 22.04 LTS
Public IP Elastic IP

SSH key pairs were configured for secure authentication

Component

Specification

Cloud Provider

Google Cloud Platform

Compute Service

Compute Engine

Instance Role

Primary Load Balancer

by generating EC2 RSA keys through AWS Management
Console. The private key aws-key.pem was transferred to the
control node via SCP, with permissions restricted to read-
only for owner following security best practices. The
following is to change the access permissions:

| # chmod 400 aws-key.pem I

Key pairs (1) i @:;‘ netions w ) (| Create by paie

]

Hame. v | Type W | Cresed v | Fingerprine

sy = AMTETOSHITCIETIEICIAIICINT. . by Db,

Figure 2. AWS key pair generation for secure ssh authentication

2025/10/04 2144 GMT=7

Two separate index pages were configured for Web
Server 1 and Web Server 2 to uniquely identify backends and
validate load distribution during failover testing. The
following is how to install Nginx and change the index page:

# sudo apt install nginx -y

#echo "Hello from Webserverl (AWS)" | sudo tee
/var/www/html/index.html
#echo "Hello from Webserver2 (AWS)" | sudo tee

/var/www/html/index.html

Figure 3 shows that these unique responses enable real-
time detection of routing behavior and verification of load
balancing, while also helping monitor DNS propagation and
reveal traffic inconsistencies that provide insight into overall
failover performance.

Zone Jakarta, asia-southeast2-a
Machine Type e2-medium (2 vCPU, 4 GB RAM)
Storage 20 GB

Operating System Ubuntu Server 22.04 LTS

Web Server Software | Nginx 1.18.0

SSH access was configured by first generating an RSA
key pair locally through the ssh-keygen command in the
Linux terminal. The resulting public key was then added to
the instance's authorized keys by inserting it into GCP
metadata settings under the SSH keys field. The following is
how to create an rsa key:
# mkdir GCP

# cd GCP
# ssh-keygen -t rsa -f gcp -C gepkey

After the RSA key pair was generated on the control node
for SSH authentication to Google Cloud VM, where Nginx
1.18.0 was installed as reverse proxy. Nginx was installed
using the following commands:

# sudo apt install nginx -y
# sudo systemctl enable nginx
# sudo systemctl start nginx

Once Nginx web server (version 1.18.0) was installed
and running, the load balancing logic was implemented using
the upstream module. The backend server pool and reverse
proxy directives were defined in a configuration file at
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“/etc/nginx/conf.d/loadbalancer.conf”. The following shows
how to configure this file:

| # sudo nano /etc/nginx/conf.d/loadbalancer.conf |

gcloud@lb1-jakarta: ~

:-$ sudo systemctl status nginx
nginx.service - A high performance web server and a reverse proxy server
loaded (/lib/systemd/system/nginx.servi enabled; vendor preset:
since Fri 2026-01-16 1 :02 UTC; 8h ago
Docs: man:nginx(8)
Process: 34404 ExecStartPre=/usr/sbin/nginx -t -q -g daemon on; master_proc]
Process: 34405 E Start=/usr/sbin/nginx -g daemon on; master_process on; (
Main PID: 34406 (nginx)
Tasks: 3 (Llimit: 4687)
Memory: 7.9M
CPU: 6.911s
CGroup: /system.slice/nginx.service
34406 "nginx: master proces
34407 "nginx: worker process
34408 "nginx: worker process”

:02 lbi-jakarta systemd[1]: Starting A high performance web server
Figure 4. Nginx is running

The upstream block configures round-robin load
balancing across two AWS EC2 instances on port 80,
preserving client headers and isolating failed backends
through health monitoring. Configuration syntax was
validated using Nginx built-in  testing  before
implementation.

gcloud@lb1-jakarta: ~

GNU nano 6.2
Wpstream backend {
server 52.74.244.19;
server 13.214.222.58;

etc/nginx/conf.d/loadbalancer.conf
# WebServerl (AWS
# WebServers2 (
}
server {

listen 86;

server_name apifailover.my.id;

location / {
proxy_pass http://backend;

Figure 5. Google Cloud upstream configuration

Figure 6 shows successful Nginx configuration syntax
validation command:

Sat Jan 17 01:20:39 UTC 2026
:~S$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file fetc/nginx/nginx.conf test is successful
1S sudo systemctl reload nginx

Figure 6. Nginx configuration syntax validation

D. Herza Cloud Backup Load Balancer Deployment

Load Balancer 2 (LB2) utilizes Herza Cloud KVM VPS
in Indonesian infrastructure, selected for full root access and
cost-effective pricing ensuring data residency. Deployment
mirrors GCP configuration, with the key difference being
SSH key generation performed locally on Windows
command prompt and transferred to the control node server
via SCP protocol. Table III shows the specifications of the
backup load balancer.

TABLE III
LOAD BALANCER 2 SPECIFICATIONS

Component
Cloud Provider
Compute Service
Instance Role

Specification
Herza Cloud (Indonesia)
Virtual Private Server (KVM)
Secondary Load Balancer (Backup)

Region Jakarta, Indonesia

Instance Type 1 vCPU, 1 GB RAM
Storage 20 GB SSD

Operating System Ubuntu Server 22.04 LTS
Firewall Allow: 22 (SSH), 80 (HTTP)

Web Server Software | Nginx 1.18.0

After instance provisioning SSH key workflows differed.
GCP keys generated on Linux control node due to Windows
issues, while Herza keys were successfully generated on
Windows and transferred via SCP. The following shows the
SSH key pair generation on Windows CMD and subsequent
transfer via SCP:

# ssh-keygen -t rsa -b 4096 -C "herza-1b2" -f herza-key
# cat herza-key

# scp "C:\Users\Cahya\Downloads\herza-key"
username@IP Public:~

The public key must then be uploaded manually to the
Herza Cloud Panel under the SSH Keys section, where it is
registered as an authorized key for later VPS provisioning.
This process allows the VPS to be deployed with pre-
configured key-based authentication, ensuring secure,
passwordless access once the instance is created. After the
public key is added, the private key is transferred securely to
the server control node and restricted to comply with SSH
security requirements before connecting via ssh. The
following is how to change the RSA key permissions and
access the VM:

# chmod 400 herza-key
# ssh -1 ~/name _folder/herza-key username@IP Public

B Command Prompt X + - [m] >

Microsoft Windows [Version 10.0.26100.1]
(c) Microsoft Corporation. All rights reserved.

C:\Users\cahya>scp "C:\Users\Cahya\Downloads\herza-key" hy
bridnode@192.168.118.247:~

hybridnode@192.168.118.2U7's password:

herza-key

100% 3369 1.6MB/s

Figure 7. Sends the rsa key file to the control node server

00:00

After successfully establishing SSH connection to the
Herza Cloud instance, Nginx installation and upstream
configuration were performed following the same
procedures as Load Balancer 1 (LBI1). Nginx upstream
config defines two AWS EC2 backends with round-robin,
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validated using “sudo nginx -t” then applied “via sudo
systemctl restart nginx”.
E. DNS-Based Failover Orchestration

AWS Route53 implements DNS failover through hosted

zone configuration, health check deployment, and primary-
secondary routing policy implementation. Figure 8 shows the
system flow of multi-cloud failover.

Start: Client Request

I

DNS Query
apifailover.my.d

I

AWS Routa53
DNS Failover Service

Health Check Status

Active Route Backup Route

Load Balancer 2
Herza Cloud

Load Balancer 1
Google Cloud

l I

Nginx Load Balancing Round-robin

Nginx Load Balancing Round-robin

Web Server 1 AWS

L» Respanse to Client J

Figure 8. System flow from multi-cloud failover

Web Server 2 AWS

The following section details the Hosted Zone
configuration and domain registration that enables this DNS-
based traffic management across multi-cloud environments.
1) Configuration Domain Registration: AWS Route53
hosted zone was created for apifailover.my.id with
nameserver delegation configured at DomaiNesia using four
AWS-assigned nameservers.

2) AWS' Route53 Health Check Implementation for
Load Balancer Monitoring: Automated failover relies on
continuous health monitoring of Google Cloud Load
Balancer 1 (LB1) and Herza Load Balancer 2 (LB2) using
AWS Route53 HTTP health checks, with one targeting Load
Balancer 1 (LB1) public IP 34.50.111.48:80. Figure 9
illustrates the health check configuration for Load Balancer
1 (LBI1) in the AWS console, specifying protocol, endpoint
path, check interval, timeout, and threshold values to ensure

backend instances remain healthy and reliably serve user
traffic.
Name - optional

healthcheck-GoogleCloud

Resource that the health check monitors
Endpoint

Specify endpoint by
IP address

Protocal
HTTP

IP address
The path can be any value for which your endpoint will return an HTTF

34.50.111.48:80/

Figure 9. Configuration on health check Load Balancer 1

While the second monitors the Herza Cloud load balancer

2 (LB2) IP address 103.168.146.162 on the same port, both
executing HTTP GET requests to the root path / to verify
load balancer operational status.
3) Failover Routing Policy Configuration with
Primary and Secondary Records: The DNS failover policy
is implemented in Route53 by creating a hosted zone for
apifailover.my.id with two A records using failover routing.
The primary A record points to Google Cloud load balancer
IP 34.50.111.48, marked as Primary, attached to a health
check, with 60-second TTL.

The secondary failover record points to Herza Cloud load
balancer IP 103.168.146.162 and is marked as Secondary
with a 60-second TTL, remaining passive until the primary
health check fails, after which Route53 directs traffic to this
backup endpoint.

Record type

Alias TIL (sexonds)
N 60

Health check 10
TE) 56446524-5997-40b7-8568-55 10bAcHASO

Figure 10. Configuring Google Cloud records in hosted zones

4) DNS Failover Configuration Verification: After
completing the Route53 failover configuration, DNS
propagation was verified using DNSChecker.org to ensure
proper domain resolution across the global DNS
infrastructure. The verification process tested the
resolution of (apifailover.my.id) from multiple geographic
locations, including San Francisco and Mountain View,
California, representing different DNS resolver networks
worldwide. As shown in Figure 11, the domain consistently
resolved to the primary load balancer IP address
34.50.111.48 across all tested locations. This result
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confirms that the Route53 nameserver delegation, health
checks, and failover routing policies were correctly
implemented and successfully propagated globally,

ensuring reliable domain accessibility and high
availability.

DNS CHECK

apifailover.my.id ‘A v ‘

Refresh: 20  sec.

+ CD Flag

BE= san Francisco CA, United States v

B g

OpenDNS
BE= Mountain View CA, United States 3450.111.48

Google

Figure 11. Domain has successfully propagated across global DNS

F. Performance Testing and Metrics Collection

Performance testing evaluates network quality and
failover reliability using a dual-methodology approach. wrk
(HTTP benchmarking tool) measures latency distribution,
jitter, tail latency (p95/p99), and throughput under sustained
load, while a custom Python monitoring script captures
downtime duration, recovery time, and failed request
percentages during simulated infrastructure failures.

The selection of TTL intervals (30s, 60s, 120s) was based
on industry practices and AWS Route53 health check
threshold (90s) [22]. The 250 concurrent connections
simulate typical SME traffic patterns, aligning with
empirical evidence from [1] showing that surveyed SMEs
averaged 25 employees with moderate-scale operations,
while avoiding infrastructure saturation on low-tier instances
commonly deployed by budget-constrained organizations.
Research [2] further wvalidated that SMEs prioritize
scalability (dynamic resource provisioning) and cost
efficiency over peak performance capacity, justifying our
conservative load testing approach.

1) Network Quality Metrics Testing: Network
performance characteristics were measured using wrk
(HTTP benchmarking tool), high-
performance HTTP load generator capable of producing
sustained traffic loads while capturing detailed latency
statistics. wrk was selected for its efficiency in measuring
request-level metrics under controlled load conditions and its
widespread adoption in cloud computing research for
performance benchmarking. The testing protocol executed 5-
minute (300s) benchmark sessions against the DNS-

an  open-source,

managed endpoint (http://apifailover.my.id) Packet loss was

measured using ICMP echo requests with the following
configuration:

# .Jwrk -t4 -c250 -d300s --latency http://apifailover.my.id
# ping -c 300 apifailover.my.id (packet loss)

Testing was conducted across four distinct scenarios to
evaluate both baseline performance and DNS TTL impact on
failover behavior:

e Scenario 1 Normal Operation

" hybridnode@Bastion-Hybrid: ~/wrk Q = = o

$ ./wrk -t4 -c250 -d300s --latency http://apifa
over.my.id
Running Sm test @ http://apifailover.my.id
4 threads and 250 connections
Thread Stats Avg stdev Max  +/- Stdev
Latency 108.42ms 37.69ms 740.66ms 82.62%
Req/Sec 577.48 179.47 0.97k 75.65%
Distribution
X 100.73ms
¢ 118.42ms
152.93ms
231.15ms
687727 requests in 5.060m, 179.02MB read
Requests/sec: 2291.81
Transfer/sec: 610.89KB

s i

Figure 12. Results from normal operation

All infrastructure components operational with no
induced failures. This scenario establishes baseline
performance metrics for comparison with failover scenarios.
Figure 12 baseline wrk testing achieved 2,291 req/s
throughput with 108 ms mean latency and 231 ms p99.
Results indicate stable multi-cloud performance under
normal conditions, showing zero packet loss, no connection
errors, and consistent latency behavior for quantitative
failover benchmarking.

e Scenario 2 DNS Failover with TTL 30 seconds

" hybridnode @Bastion-Hybrid: ~/wrk

S ./wrk -t4 -c250 -d30@s --latency http://apifai
over.my.id
Running 5m test @ http://apifailover.my.id
4 threads and 250 connections
Thread Stats Avg Stdev Max
110.26ms 49.29ms 1.40s
391.25 212.62 0.86k 59.70%
97.76ms
126.77ms
90% 173.30ms
99% 278.94ms
55616 requests in 5.eem, 14.48MB read
socket errors: connect 8, read 377, write 58683, timeout 236
Requests/sec: 185.38
Transfer/sec: 49.42KB

£ |
Figure 13. Results from TTL 30

Figure 13 generating a total of 55,616 requests. The
observed performance metrics include a jitter of 49.29 ms,
throughput of 185.38 requests per second, an average latency
of 110.26 ms, and a p99 latency of 278.94 ms. A substantial
number of socket errors were recorded, mainly triggered by
frequent DNS re-resolution and repeated failover cycles
during the test period. These conditions caused connection
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instability, increased timeout events, and reduced request
success rates. As a result, overall throughput degraded by
approximately 91.9% compared to the baseline performance
of 2,291.81 req/s, highlighting the adverse impact of overly
aggressive DNS TTL configurations on system stability and
performance.

e Scenario 3 DNS Failover with TTL 60 seconds

hybridnode @Bastion-Hybrid: ~fwrk

S .Jwrk -t4 -c250 -d308s --latency http://apifa
over.my.id
Running 5m test @ http://apifailover.my.id
4 threads and 250 connections
Thread stats Avg Stdev Max  +/- Stdev
Latency 101.20ms 26.78ms 304.25ms 75.8
Req/Sec  612.81 159.58 0.95k
stribution
96.43ms
110.00ms
136.96ms
99% 260.15ms
146444 requests in 5.00m, 38.12MB read
Socket errors: connect ®, read 247, write 55860, timeout @
Requests/sec: 487.95
Transfer/sec: 130.07KB

78.71%

£ |
Figure 14. Results from TTL 60

Figure 14 shows TTL 60s testing with 250 concurrent
connections over 5 minutes, completing 146,444 requests at
487.95 req/s, 101.20 ms average latency, Jitter 26.78ms, and
200.15 ms p99. Although 56,047 socket errors occurred,
throughput was 2.6x higher than TTL 30s but still 78.7%
below baseline due to DNS failover.

e Scenario 4 DNS Failover with TTL 120 seconds

hybridnode @Bastion-Hybrid: ~fwrk

S ./wrk -t4 -c250 -d300s --latency http://apifai
over.my.id
Running 5m test @ http://apifailover.my.id
4 threads and 250 connections
Thread stats Avg Stdev Max
Latency 105.85ms 37.76ms 470.62ms
Req/Sec  583.54 187.97 1.02k

Latency Distribution
50% 96.62ms
114.67ms
147.84ms

256.22ms
149339 requests in 5.00m, 38.87MB read
socket errors: connect @, read 14, write 20388, timeout 247
Requests/sec: 497.68
Transfer/sec: 132.66KB

N |
Figure 15. Results from TTL 120

Figure 15 shows TTL 120s testing using wrk with 250
concurrent connections over 5 minutes. TTL 120s and 60s
reach ~498 and ~488 req/s with lower jitter, while TTL 30s
suffers 185 req/s, highest jitter, and many socket errors,
showing shorter TTLs worsen instability and overhead.

2) Failover Reliability Metrics Testing: Failover
behavior assessment required continuous endpoint
availability monitoring to detect downtime duration,
recovery time, and failed request rates during infrastructure

failures. Failover behavior was assessed using a custom

Python monitoring script implementing polling-based
availability checking. The script configuration defines four

# url = "http://apifailover.my.id"

# interval = 1 # 1-second polling interval

# duration =300 # 5-minute observation window
# timeout = 2 # 2-second request timeout

key parameters:

These parameters enable granular 1-second resolution
monitoring over S5-minute windows, sufficient to capture
complete DNS TTL propagation cycles (30-120 seconds)
while the 2-second timeout distinguishes network delays
from actual service unavailability. The monitoring loop
executes HTTP GET requests at fixed intervals, recording
timestamp-precise success/failure status for subsequent
analysis.

e DNS Failover Reliability with TTL 30s

hybridnode@Bastion-Hybrid: ~

1§ python3 ttl.py
Monitoring dimulat...
Monitoring selesati.

Total Requests
Failed Requests

Failed Requests (%)

Total Downtime (s)

Average Recovery Time (s):
Number of Recovery Events: 5

Detail setiap request:

Hasil monitoring telah disimpan ke 'monitoring_results.txt'
:~5

Figure 16. Results of the TTL 30 test

Figure 16 shows temporal failover behavior for TTL 30s
with 5 recovery cycles across 218 requests in 5 minutes,
achieving 51.38% success and 152.65s downtime, where
frequent DNS cache expiration enables rapid repeated
recovery, improving overall reliability despite slower
individual recoveries.

o DNS Failover Reliability with TTL 60s

: S python3 ttl.py
Monitoring dimulai...
Monitoring selesai.

Total Requests : 230
Failed Requests @ 192
Failed Requests (%) : 83.48%
Total Downtime (s) 1 243.92
(Average Recovery Time (s): 3.08
Number of Recovery Events: 1

Detail setiap request:

Hasil monitoring telah disimpan ke 'monitoring_results.txt'

Figure 17. Results of the TTL 60 test

Figure 17 presents DNS failover monitoring results for
the TTL 60s configuration, based on 230 requests executed
over a 5-minute observation period. The experiment reveals
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a single prolonged recovery cycle with a very low success
rate of only 16.52%, indicating that most requests failed
during the failover process. The total recorded downtime
reached 243.92 seconds, which is approximately 60% higher
than the downtime observed in the TTL 30-second scenario.
Although the measured average recovery time per event was
relatively short at 3.08 seconds, this metric alone did not
translate into reliable service availability. The mismatch
between the DNS cache expiration interval (60 seconds) and
the health check detection window (90 seconds) resulted in a
worst-case cache coherence condition, where clients
continued to resolve unhealthy endpoints.

e DNS Failover Reliability with TTL 120s

hybridnode @Bastion-Hybrid: ~

:~% python3 ttl.py
Monitoring dimulai...
Monitoring selesai.

Total Requests 1 223
Failed Requests : 140
Failed Requests (%) i 62.78%
Total Downtime (s) : 186.88
Average Recovery Time (s): 8.66
Number of Recovery Events: 1

Detail setiap request:

Hasil monitoring telah disimpan ke 'monitoring_results.txt'
-3

Figure 18. Results of the TTL 120 test

Figure 18 shows TTL 120s failover with 1 recovery
cycles, 186.88s downtime, and 38.12% success over 230
requests, where longer TTL reduces recovery frequency yet
avoids TTL 60s race conditions, providing intermediate,
more stable reliability during infrastructure failures.

II1. RESULTS AND DISCUSSIONS

The tests were conducted across four scenarios
representing different operational conditions: Scenario 1
(Baseline) establishes reference performance under normal
operation, while Scenarios 2-4 evaluate DNS failover with
TTL configurations of 30s, 60s, and 120s during simulated
primary server failures. Each scenario employed dual-
methodology testing wrk for performance metrics
(throughput, latency, jitter) and Python monitoring for
reliability metrics (downtime, recovery cycles, success rates)
over 5-minute windows with 250 concurrent connections.
This section presents experimental findings from
performance testing and failover reliability analysis across
multiple DNS TTL configurations. Results are organized
into three subsections: baseline performance characteristics,
performance under failover conditions, and failover
reliability metrics, followed by comparative analysis and
discussion.

A. Baseline Performance Characteristics
Baseline performance testing establishes reference

metrics for system behavior under normal operating

conditions without any infrastructure failures and serves as a
critical control scenario for subsequent experiments. Figure
19 demonstrates stable baseline performance, achieving a
throughput of 2,291.81 requests per second, with an average
latency of 108.42 ms and jitter of 37.69 ms, indicating
consistent and predictable request processing. Although
minor packet loss and socket errors of 2.33% were observed,
these anomalies remained within acceptable limits and did
not significantly impact service availability or
responsiveness. The p99 latency of 231.15 ms defines the
upper-bound performance experienced by 99% of user
requests, capturing worst-case delay under healthy
conditions. Collectively, these metrics establish a reliable
performance baseline that reflects optimal system behavior.
This baseline is essential for accurately quantifying the
extent of performance degradation, increased latency,
throughput reduction, and availability loss introduced by
DNS failover mechanisms and recovery events evaluated in
subsequent testing scenarios.

Normal Operation Performance Metrics

2291.81

231.15
37.69 2.33%

Avg Latency jitter
{ms) ims)

Packet Loss Throughput 99 Latency
) treqfs) fms)

Performance Metrics

Figure 19. Normal operating test results

B. Performance Under Failover Conditions

This section evaluates network performance metrics
during simulated primary infrastructure failures across three
DNS TTL configurations. analyzed
independently with measurement methodologies, and
comparative results.

Each metric is

1) Average Latency Analysis: Average latency
represents the mean time required for request-response
cycles, calculated as:

¥ Latency;
i=1

Average Latency =—;

Based on the measurements results in the Table IV, the
average latency for each was calculated as follows:
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6.132.295.16

TTL30s: 110.26 ms —
55.616
- 14.820.132.80
TTL 60s: 101.20 ms
146.444
. 15.811.241.15
TTL 120s: 105.85 ms
149.339
Average latency calculations reveal paradoxical

performance metrics across TTL configurations. TTL 60s
achieves the lowest latency (101.20 ms) with 146,444
successful requests. However, latency and jitter metrics
during failover cannot be interpreted independently from
failure rates, as they represent only surviving requests, while
TTL 120s records 105.85ms across 149.339 requests both
processing 2.6-2.7x more requests than TTL 30s (110.26ms,
55,616 requests). However, these favorable latency values
reflect survival bias: only successful requests contribute to
calculations, masking underlying 83.48% and 62.78% failure

rates  respectively, thereby invalidating apparent
performance superiority during failover conditions.
2) Jitter Latency Analysis: Jitter quantifies latency

variability as standard deviation of samples. TTL 30s
exhibited highest jitter (49.29ms, +30.8% vs baseline
37.69ms) due to synchronized 30-second DNS cache
expiration creating periodic spikes. TTL 60s achieved lowest
(26.78ms, -28.9%), paradoxically masking 83.48% failure
rate through survival bias. TTL 120s maintained near-
baseline variability (35.46ms, -5.9%), confirming longer
cache durations stabilize latency variance.

3) Packet Loss Analysis: Packet loss rate quantifies
failed connection attempts relative to total requests. The
following is the formula:

Packet Loss (%) = Socket Errors + Timeouts % 100
Total Requests

The packet loss metrics across all test scenarios were
obtained as follows:

7

Normal: Packet Loss (%) = 00 x 100 = 2.33%
48

TTL 30s: Packet Loss (%) = 200 * 100 = 16.00%
12

TTL 60s: Packet Loss (%) = 00 * 100 = 4.00%

— 60

I'TL 120s: Packet Loss (%) = * 100 = 20.00 %

300

Baseline 2.33% packet loss during normal operation was
caused by resource saturation of AWS t3.micro with burst

limit of only ~1,788 req/s while wrk testing achieved 2,291
req/s (28% overload), wrk aggressiveness with 4 threads
generating 1,000 req/s instant burst (vs SME gradual ramp-
up averaging 25 users), and Nginx keep-alive timeout 65s
causing connection pool exhaustion at 250 concurrent
connection.

4) Throughput Analysis: Throughput measures
successfully completed requests per unit time. The following
is the formula:

Total Successful Requests

Throughput (req/s) = Test Duration (s)

The request rate was measured in requests per second
(req/s). The throughput metrics across all test scenarios were

obtained as follows:
55.616

TTL 30s: 185.38 req/s
300
146.444
TTL 60s: ‘ 487.95 req/s
300
149.339
TTL 120s: 497.68 req/s

300

Throughput calculations reveal catastrophic performance
degradation during DNS failover: TTL 30s achieves only
185.38 req/s (91.9% reduction from baseline 2,291.81 req/s),
while TTL 60s and 120s attain 487.95 and 497.68 req/s
respectively  (78.7-78.3% degradation). Despite TTL
60s/120s processing 2.6x more requests than TTL 30s, this
apparent superiority masks critical reliability trade-offs their
higher throughput coincides with 83.48% and 62.78% failure
rates, indicating severe system instability under failover
conditions.

5) P99 Tail Latency Analysis: p99 latency represents
the 99th percentile latency value, indicating maximum
latency experienced by 99% of requests. The following is the
formula:

P99 Latency = L.g9 where P(L < Lg.99)=0.99
The p99 tail latency, representing the latency threshold

below which 99% of requests were completed, was measured
across all test scenarios as follows:
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TTL30s: 1= 55616 requests i extracting P99 = L_k. Results reveal TTL 60s achieved best
k=[0.99 > 55,616] = 55.059 @ tail latency (200.15ms), TTL 120s intermediate (256.22ms),
P99 = (55,059) = 278.94 ms @) o
and TTL 30s worst (278.94ms), indicating longer TTL
TTL60s:  n=146.444 requests n intervals reduce tail latency despite lower overall throughput
k= [0.99 x 146,444] = 144.979 @ during DNS failover
P99 = (144,979) = 200.15 ms @) g )
TTL 120s: n = 149.339 requests )

k =[0.99 x 149,339] = 147.845 @
P99 =1(147.845) = 256.22 ms 3)
p99 latency represents the 99th percentile value from
sorted latency samples. The calculation involves three steps:
(1) sorting all latency values, (2) computing the index k =
[0.99 x n] where n is the total number of samples, and (3)

Table IV presents the aggregate results from all
Performance Under Failover Condition experiments that
have been implemented, showing comprehensive system
performance metrics obtained through systematic
observation of system behavior under failover conditions
across various testing scenarios.

TABLE IV
NETWORK QUALITY METRICS
Avg Jitter Packet Loss | Throughput | p99 Latency
0,
Test Scenario Latency (ms) (%) (req/s) (ms)
(ms)
Normal Operation 108.42 37.69 2.33 2291.81 231.15
30s 110.26 49.29 16.0 185.38 278.94
60 s 101.20 26.78 4.0 487.95 200.15
120 s 105.85 37.76 20.0 497.68 256.22
. f\uq‘ \.m:.;:y ims) \".‘uhl-l'\n-.-‘{'kll ) ' == P99 Latency (ms)
100 o _7_*—7——_*‘;_ I

Test Scenario / TTL

Figure 20. Network quality metrics results

Figure 20 Performance metrics comparison across DNS
TTL configurations during simulated failover conditions.
Metrics include average latency (blue), jitter (red), packet
loss percentage (green), p99 latency (purple), and throughput
(orange). Y-axis scaled to maximum observed value (p99
latency: 278.94 ms). Throughput values: Baseline=2291.81,

C. Failover Reliability Analysis

This section evaluates system availability and recovery
characteristics during simulated infrastructure failures. The
analysis encompasses critical reliability metrics, including
recovery time, system availability, and failure detection

latency. Each metric is mathematically defined and

TTL 30s=185.38, TTL 60s=487.95, TTL 120s=497.68 req/s.
Data aggregated from wrk benchmarking (n=4 threads, 250
concurrent connections, 300s duration) against multi-cloud
infrastructure endpoint, revealing DNS cache interval impact
on system performance.

systematically measured across different TTL configurations
to quantify the impact of DNS caching parameters on system
resilience under failover conditions. Table V presents the
experimental results from each session and shows that
shorter TTLs improve failover recovery and reduce
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downtime but increase DNS overhead, quantifying key
trade-offs in DNS-based failover reliability.

TABLE V
FAILOVER RELIABILITY METRICS
DNS TTL Downtime Recovery Time | Failed Requests
(s) (s) (%)
30 152.65 30.53 48.62 )
60 243.92 243.92 83.48 2)  Recovery Time
120 186.88 186.88 62.78 Analysis: Average

Overall, this analysis evaluates three key metrics total

. 152.65
TTL 30s: Avg Recovery Time =——— = 3053s
>
J— . 24392
TTL 60s: Avg Recovery Time = = 24392s
186.88
TTL 120s: Avg Recovery Time = = 186.88s

downtime, average recovery time, and failed request
percentage to compare the effectiveness of TTL 30s, 60s, and
120s in multi-cloud DNS failover scenarios.

1) Total Downtime Analysis: Total downtime quantifies
cumulative service unavailability duration during the
monitoring window. The following is the formula:

k
Total Downtime ($) = " (fend,i — fstart, i)

i=1

The downtime metrics across all test scenarios were
obtained as follows:
TTL 30s:

Total Downtime = (fang,1 = Ustart, 1) + (tana, 2 = tstart, 2) + . . + (Leng,6 = tstart,6) (1)
128.91 + 3.16 + 8.01 + 8.03 + 454 + 0.00 2)

152,65 s 3)

TTL 60s:  Total Downtime = (teng, 1 = tstart,1) + (tena, 2 = tstart, 2) )

3.08 + 240.85 2)
24392 3)
TTL 120s:  Total Downtime = {teng,1 = tstart, 1) + (tena, 2 = Lstare, 2) (1)
8.00 + 178,82 2)
186.88 s 3)

Based on calculations, TTL 30s achieves lowest
downtime 152.65s, 5 recovery cycles, 51.38% success. TTL
60s performs worst 1 cycle, 243.92s downtime, 16.52%
success due to Route53 90s health check timing mismatch
causing destructive race conditions. TTL 120s moderate 1
cycle, 186.88s, 37.22% success with predictable behavior.
For low-budget SMEs using cost-effective infrastructure
(AWS t3.micro, GCP e2-medium, Herza 1vCPU), TTL 30s
recommended for high availability. Avoid TTL 60s.

recovery time measures
mean duration of individual downtime-to-recovery cycles.
The following is the formula:

Total Downtime (s)
Number of Recovery Events

Avg Recovery Time (s) =

Multi-cloud failover system testing demonstrates the
significant during primary server failures. The recovery time
metrics across all test scenarios were obtained as follows:

Average recovery time calculation involves dividing total
recovery time by the number of trials. For TTL 30s, total
time of 152.65 seconds across 5 trials yields an average of
30.53 seconds, demonstrating stable failover consistency.
Meanwhile, TTL 60s with 1 trial recorded 243.92 seconds,
and TTL 120s recorded 186.88 seconds in 1 trial. Lower TTL
enables faster DNS propagation, allowing clients to switch
to backup servers with minimal delay.

3) Failed Requests Analysis: Failed request percentage
quantifies proportion of unsuccessful availability checks.
The following is the formula:

Failed Requests (%) = Failed Requests o 1))

" Total Requests

The failed requests metrics across all test scenarios were

obtained as follows:
106

TTL 30s:  Failed Requests (%) T * 100 48.62 %
192

TTL 60s:  Failed Requests (%) 0 % 100 83.48 %
140

TTL 120s: Failed Requests (%) x 100 62.78 %

223

Based on the calculation results TTL 30s shows lowest
failure rate (48.62%) and downtime (152.65s across 5
cycles), outperforming TTL 60s (83.48% failures, 243.92s
single-cycle outage) and TTL 120s (62.78% failures,
186.88s). Lower TTL enables faster DNS propagation via
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frequent cache invalidation. TTL 60s fails due to resonance
with Route53's 90s health check threshold. Empirical U-
shaped distribution confirms timing-dependent cache-health
check interference.

—a— Downtime (s) —8— Recovery Time (s)

Failed Requests (%)

Value

30s 60s 120s
DNS TTL (s)

Figure 21. Failover reliability results

D. Research Limitations and Discussion
This study has several limitations that should be

considered when interpreting results and practical
applications:
1) Limited Scale and Infrastructure: The multi-

cloud failover system implementation used infrastructure
with limited capacity, specifically AWS t3.micro instances
(2 vCPU, 1 GB RAM) and Google Cloud e2-medium (2
vCPU, 4 GB RAM). This configuration simulates small to
medium  enterprises with low-budget capabilities.
Enterprises with high traffic may experience significantly
different performance characteristics.

2) Testing Load Constraints: Performance testing
used wrk with 4 threads and 250 concurrent connections over
300 seconds. While representative for small-medium
applications, these parameters do not reflect enterprise real-
world traffic loads of thousands to millions of requests per
second. Network quality metrics such as average latency of
108.42 ms and p99 latency of 231.15 ms under normal
operation may not generalize to high-traffic production
environments.

3) Geographic and  Cloud Vendor  Scope:
Experiments were limited to three cloud providers (AWS,
Google Cloud, Herza Cloud) focused on Southeast Asia,
particularly Jakarta region. Vendor and region selection
aligned with Indonesian data residency requirements and
cost affordability for budget-constrained local organizations.
Failover reliability results such as 152.65s downtime for
TTL 30s and 243.92s for TTL 60s may differ substantially
across other cloud providers or global multi-region
deployments with higher network latency.

4) Practical Implications for Low-Budget SMEs:
The implemented architecture uses lowest-tier cloud services
Google Cloud (e2-medium, 2 vCPU, 4 GB RAM), AWS
(t3.micro, 2 vCPU, 1 GB RAM), and Herza Cloud (1 vCPU,

1 GB RAM) to minimize monthly operational costs. This
infrastructure sizing is empirically justified, whose
regression analysis of 400 SMEs demonstrated that training
and support programs increased effective technology
leverage by 1.75 times (p=0.0003), while cloud integration
with existing systems doubled efficiency gains (OR=2.0,
p<0.001) [1]. Our $45—60/month cost structure aligns with
[3] findings that Indonesian SMEs prioritize pay-per-use
models to avoid capital expenditure in hardware and
infrastructure, research and [2] PEST analysis confirming
that limited financial resources make cost factors more
relevant to SMEs than strategic competitiveness . Compared
to [1] reported 30% cost reduction and 20% security
improvement through cloud adoption, our TTL 30s
configuration achieving 152.65s downtime represents a
practical implementation of high availability within
comparable budget constraints.

5) Failover
monitoring spanned 5-minute windows with 1-second
polling intervals. While sufficient to capture DNS TTL
propagation cycles (30-120 seconds), this duration does not
evaluate long-term system stability, daily traffic pattern
behaviors, or corner cases like simultaneous multi-
availability zone cascading failures.

Observation  Duration:  Failover

IV. CONCLUSION

This research successfully implemented and evaluated a
DNS-based multi-cloud failover system using AWS
Route53, Nginx reverse proxy on Google Cloud (primary)
and Herza Cloud (backup), with shared AWS EC2 backends
orchestrated from an Ubuntu control node. Performance
testing via wrk (4 threads, 250 connections, 300s) and
Python monitoring scripts across baseline and failover
scenarios (TTL 30s, 60s, 120s) showed baseline throughput
of 2,291.81 req/s, average latency 108.42 ms, and p99
latency 231.15 ms.

Under failover conditions, TTL 30s performed best with
152.65s downtime, 30.53s average recovery time, and
48.62% failures, despite 91.9% throughput drop to 185.38
req/s and 49.29 ms jitter from high DNS overhead. TTL 60s
was worst (243.92s downtime, 83.48% failures) due to health
check (90s) interference, while TTL 120s was intermediate
(186.88s, 62.78%). TTL 30s configuration is recommended
for low-budget SMEs ($45-60/month), balancing high
availability with operational costs.

Limitations include small-scale instances (t3.micro/e2-
medium), 250-connection loads, Jakarta region focus, and
300s observation, limiting generalization to high-traffic or
multi-region setups. Future research should explore
enterprise-scale testing, ML-based load prediction, and
hybrid anycast failover for further optimization.
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