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 This research implements and analyzes a multi-cloud failover system using DNS 

failover via AWS Route53 and Nginx reverse proxy load balancers on Google Cloud 

(primary) and Herza Cloud (backup), with AWS EC2 as shared backend web servers. 

An Ubuntu control node orchestrates deployments across these providers, enabling 

automatic traffic rerouting from the primary to secondary load balancer upon failure 

detection via health checks. Performance testing employed wrk benchmarking (4 

threads, 250 connections, 300s) and Python monitoring scripts under baseline and 

failover scenarios with DNS TTLs of 30s, 60s, and 120s. Baseline yielded 2,291.81 

req/s throughput, 108.42ms average latency, and 231.15ms p99 latency. Failover 

results showed TTL 30s optimal for reliability (152.65s downtime, 48.62% failed 

requests, 30.53s average recovery), outperforming TTL 60s (243.92s downtime, 

83.48% failures due to health check mismatch) and TTL 120s (186.88s downtime) 

and TTL 30s is recommended for high availability in low-budget SMEs, balancing 

reduced downtime against DNS overhead. However, this approach is limited to 

small-scale infrastructure. 
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I. INTRODUCTION 

The rapid adoption of cloud computing among small and 

medium enterprises (SMEs) has transformed how these 

organizations manage IT resources, enabling scalability, 

operational flexibility, and cost efficiency without requiring 

heavy upfront investments in physical infrastructure. This 

operational transformation is particularly significant in 

developing economies, where [1] reported that cloud-

adopting SMEs achieved 2.5 times improvement in 

operational efficiency (OR=2.5, p<0.001), while [2] 

identified 50–75% reduction in time and effort for product 

development. Empirical studies indicate that cloud services 

help SMEs streamline business processes, improve data 

accessibility, and strengthen business continuity, which are 

critical for maintaining competitiveness in dynamic market 

environments [3]. As cloud-based applications increasingly 

support critical business operations, service availability has 

become a primary concern, where even short periods of 

downtime may lead to financial loss and degradation of user 

trust [4], [5]. Consequently, ensuring high availability (HA) 

is a fundamental requirement in cloud infrastructure design, 

particularly for web services that demand continuous 

accessibility under varying network conditions and traffic 

loads [6], [7]. 

To address availability challenges, various high 

availability mechanisms have been widely adopted, 

including server clustering, load balancing, and automated 

failover strategies. Load balancing distributes incoming 

traffic across multiple backend servers to improve 

performance and fault tolerance, while failover mechanisms 

ensure service continuity when a primary node becomes 

unavailable [8], [9]. Most existing implementations rely on 

single-cloud architectures, where redundancy is confined 

within one cloud provider. Although effective in mitigating 

local failures, such approaches remain vulnerable to 

provider-level outages, regional disruptions, and vendor 

lock-in issues [10], [11]. These limitations have encouraged 

the adoption of multi-cloud architectures that leverage 

resources across different cloud providers to enhance 

resilience and availability [12]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Among various failover techniques, Domain Name 

System (DNS)-based failover is widely used due to its 

simplicity, scalability, and compatibility with heterogeneous 

cloud environments. DNS failover redirects client requests to 

alternative endpoints when service degradation is detected, 

typically controlled by Time To Live (TTL) parameters that 

determine DNS cache duration [13], [14]. Several studies 

highlight that TTL configuration plays a crucial role in 

failover responsiveness and service continuity, as shorter 

TTL values enable faster redirection at the cost of increased 

DNS query overhead [15], [16]. However, prior research 

largely focuses on functional validation or single-parameter 

observation, providing limited insight into how different 

TTL values quantitatively affect performance and reliability 

in real multi-cloud scenarios [17]. While cloud computing 

adoption has been extensively studied from business 

perspectives with 68.1% of SMEs prioritizing cost avoidance 

in hardware investments [1] and research [3] emphasizing 

infrastructure cost reduction as primary driver for Indonesian 

SMEs the technical optimization of failover mechanisms 

through DNS TTL configuration remains underexplored, 

particularly in low-budget multi-cloud architectures. 

Furthermore, performance evaluation in DNS-based 

failover studies often lacks comprehensive metrics. Many 

works emphasize availability status without analyzing 

network quality indicators such as latency, jitter, throughput, 

and tail latency, which are essential for understanding user 

experience during failover events [18], [19]. Benchmarking 

tools such as wrk have been recognized as effective for 

generating sustained HTTP workloads and capturing detailed 

latency distributions, including p95 and p99 values [20], 

[21]. Nevertheless, systematic performance analysis 

combining DNS failover behavior with fine-grained 

reliability metrics such as downtime duration, recovery time, 

and failed request percentage remains limited, particularly 

under controlled TTL variations. 

This study implements DNS-based multi-cloud failover 

using Nginx reverse proxy, with AWS EC2 backend, Google 

Cloud primary load balancer, Herza Cloud backup, and AWS 

Route53 orchestration. Performance evaluated across normal 

operation and TTL 30s, 60s, and 120s scenarios using wrk 

benchmarking and custom monitoring for network quality 

and recovery metrics and prioritizes high availability over 

throughput stability, which aligns with SME operational 

requirements. 

II. METHODS 

This research focuses on the implementation and 

performance analysis of a multi-cloud failover system based 

on DNS and Nginx load balancing mechanisms. The purpose 

of this methodology is to design, deploy, and evaluate a 

reliable web service infrastructure that can automatically 

maintain service availability during node or cloud provider 

failures. The experiment was conducted using three different 

cloud environments: Amazon Web Services (AWS) as the 

backend layer, Google Cloud as the primary load balancer 1 

(LB1), and Herza Cloud as the secondary backup load 

balancer 2 (LB2). All configurations and management tasks 

were performed from a Control Node, which runs on Ubuntu 

Server within a VirtualBox virtual machine environment. 

This setup provides a centralized control and monitoring 

station for establishing secure SSH connections to all remote 

instances. Figure 1 shows the flow of implementation 

methodology and performance analysis of DNS and Nginx-

based failover multi-cloud systems. 

 

 

 
A. Control Node Preparation 

The control node serves as the central orchestration point 

responsible for managing, configuring, and monitoring all 

remote cloud instances deployed across multiple cloud 

providers during this research. It provides a unified 

environment for executing SSH connections and 

administrative tasks while automating the provisioning and 

instantiation of virtual machines across distributed cloud 

platforms. This enables seamless deployment of identical 

server configurations on Google Cloud, AWS, and Herza 

Cloud. 

B. AWS Backend Web Server Infrastructure 

Figure 1. Multi-cloud failover methodology flow 
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The second phase involves provisioning two independent 

web servers on Amazon Web Services (AWS) EC2 to serve 

as the backend application layer. These instances were 

deployed through AWS Management Console with 

configurations optimized for load balancing and high 

availability. AWS was selected for its global infrastructure, 

predictable performance, and suitability for cross-cloud 

redundancy mechanisms. 

Table I presents the detailed specifications for Web 

Server 1 and Web Server 2. 

TABLE I 

WEB SERVER 1 & 2 SPECIFICATIONS 

 
Component Specification 

Cloud Provider Amazon Web Services (AWS) 

Compute Service EC2 (Elastic Compute Cloud) 

Instance Type t3.micro 

vCPU 2 vCPU 

RAM 1 GB 

Storage 8 GB  

Operating System Ubuntu Server 22.04 LTS 

Public IP Elastic IP 

 

 SSH key pairs were configured for secure authentication 

by generating EC2 RSA keys through AWS Management 

Console. The private key aws-key.pem was transferred to the 

control node via SCP, with permissions restricted to read-

only for owner following security best practices. The 

following is to change the access permissions: 
# chmod 400 aws-key.pem 

 

 

 
Two separate index pages were configured for Web 

Server 1 and Web Server 2 to uniquely identify backends and 

validate load distribution during failover testing. The 

following is how to install Nginx and change the index page: 

 

Figure 3 shows that these unique responses enable real-

time detection of routing behavior and verification of load 

balancing, while also helping monitor DNS propagation and 

reveal traffic inconsistencies that provide insight into overall 

failover performance. 

 

 

 

 

 

C. Google Cloud Primary Load Balancer Configuration 

The primary load balancing tier utilizes Google Cloud 

Compute Engine deployed in the Jakarta region (asia-

southeast2-a), designated as Load Balancer 1 (LB1). The 

Virtual Machine instance was provisioned through the 

Google Cloud Console with specifications detailed in Table 

II. 

TABLE II 
LOAD BALANCER 1 SPECIFICATIONS 

 
Component Specification 

Cloud Provider Google Cloud Platform 

Compute Service Compute Engine 

Instance Role Primary Load Balancer 

Zone Jakarta, asia-southeast2-a 

Machine Type e2-medium (2 vCPU, 4 GB RAM) 

Storage 20 GB  

Operating System Ubuntu Server 22.04 LTS 

Web Server Software Nginx 1.18.0 

 

 SSH access was configured by first generating an RSA 

key pair locally through the ssh-keygen command in the 

Linux terminal. The resulting public key was then added to 

the instance's authorized keys by inserting it into GCP 

metadata settings under the SSH keys field. The following is 

how to create an rsa key:  

  

After the RSA key pair was generated on the control node 

for SSH authentication to Google Cloud VM, where Nginx 

1.18.0 was installed as reverse proxy. Nginx was installed 

using the following commands: 

  

Once Nginx web server (version 1.18.0) was installed 

and running, the load balancing logic was implemented using 

the upstream module. The backend server pool and reverse 

proxy directives were defined in a configuration file at 

# sudo apt install nginx -y 

#echo "Hello from Webserver1 (AWS)" | sudo tee 

/var/www/html/index.html 

#echo "Hello from Webserver2 (AWS)" | sudo tee 

/var/www/html/index.html 

# mkdir GCP 

# cd GCP 

# ssh-keygen -t rsa -f gcp -C gcpkey 

# sudo apt install nginx -y 

# sudo systemctl enable nginx 

# sudo systemctl start nginx 

Figure 2. AWS key pair generation for secure ssh authentication 

 

 

 

Figure 3. Web server 1 and Web server 2 response output 
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“/etc/nginx/conf.d/loadbalancer.conf”. The following shows 

how to configure this file: 

# sudo nano /etc/nginx/conf.d/loadbalancer.conf 

 

 

 
The upstream block configures round-robin load 

balancing across two AWS EC2 instances on port 80, 

preserving client headers and isolating failed backends 

through health monitoring. Configuration syntax was 

validated using Nginx built-in testing before 

implementation.  

 

 

 
Figure 6 shows successful Nginx configuration syntax 

validation command: 

 

 

 
D. Herza Cloud Backup Load Balancer Deployment 

Load Balancer 2 (LB2) utilizes Herza Cloud KVM VPS 

in Indonesian infrastructure, selected for full root access and 

cost-effective pricing ensuring data residency. Deployment 

mirrors GCP configuration, with the key difference being 

SSH key generation performed locally on Windows 

command prompt and transferred to the control node server 

via SCP protocol. Table III shows the specifications of the 

backup load balancer. 

 

 

 

TABLE III 

LOAD BALANCER 2 SPECIFICATIONS 

 
Component Specification 

Cloud Provider Herza Cloud (Indonesia) 

Compute Service Virtual Private Server (KVM) 

Instance Role Secondary Load Balancer (Backup) 

Region Jakarta, Indonesia 

Instance Type 1 vCPU, 1 GB RAM 

Storage 20 GB SSD  

Operating System Ubuntu Server 22.04 LTS 

Firewall Allow: 22 (SSH), 80 (HTTP) 

Web Server Software Nginx 1.18.0 

 

After instance provisioning SSH key workflows differed. 

GCP keys generated on Linux control node due to Windows 

issues, while Herza keys were successfully generated on 

Windows and transferred via SCP. The following shows the 

SSH key pair generation on Windows CMD and subsequent 

transfer via SCP: 

 

The public key must then be uploaded manually to the 

Herza Cloud Panel under the SSH Keys section, where it is 

registered as an authorized key for later VPS provisioning. 

This process allows the VPS to be deployed with pre-

configured key-based authentication, ensuring secure, 

passwordless access once the instance is created. After the 

public key is added, the private key is transferred securely to 

the server control node and restricted to comply with SSH 

security requirements before connecting via ssh. The 

following is how to change the RSA key permissions and 

access the VM:  

 

 

 
After successfully establishing SSH connection to the 

Herza Cloud instance, Nginx installation and upstream 

configuration were performed following the same 

procedures as Load Balancer 1 (LB1). Nginx upstream 

config defines two AWS EC2 backends with round-robin, 

# ssh-keygen -t rsa -b 4096 -C "herza-lb2" -f herza-key 

# cat herza-key 

# scp "C:\Users\Cahya\Downloads\herza-key" 

username@IP_Public:~ 

# chmod 400 herza-key 

# ssh -i ~/name_folder/herza-key username@IP_Public 

Figure 4. Nginx is running 

Figure 5. Google Cloud upstream configuration 

Figure 6. Nginx configuration syntax validation 

Figure 7. Sends the rsa key file to the control node server 
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validated using “sudo nginx -t” then applied “via sudo 

systemctl restart nginx”. 

E.   DNS-Based Failover Orchestration 

AWS Route53 implements DNS failover through hosted 

zone configuration, health check deployment, and primary-

secondary routing policy implementation. Figure 8 shows the 

system flow of multi-cloud failover. 

 

 
Figure 8. System flow from multi-cloud failover 

The following section details the Hosted Zone 

configuration and domain registration that enables this DNS-

based traffic management across multi-cloud environments. 

1) Configuration Domain Registration: AWS Route53 

hosted zone was created for apifailover.my.id with 

nameserver delegation configured at DomaiNesia using four 

AWS-assigned nameservers. 

2) AWS Route53 Health Check Implementation for 

Load Balancer Monitoring: Automated failover relies on 

continuous health monitoring of Google Cloud Load 

Balancer 1 (LB1) and Herza Load Balancer 2 (LB2) using 

AWS Route53 HTTP health checks, with one targeting Load 

Balancer 1 (LB1) public IP 34.50.111.48:80. Figure 9 

illustrates the health check configuration for Load Balancer 

1 (LB1) in the AWS console, specifying protocol, endpoint 

path, check interval, timeout, and threshold values to ensure 

backend instances remain healthy and reliably serve user 

traffic. 

 

 
Figure 9. Configuration on health check Load Balancer 1 

While the second monitors the Herza Cloud load balancer 

2 (LB2) IP address 103.168.146.162 on the same port, both 

executing HTTP GET requests to the root path / to verify 

load balancer operational status. 

3) Failover Routing Policy Configuration with 

Primary and Secondary Records: The DNS failover policy 

is implemented in Route53 by creating a hosted zone for 

apifailover.my.id with two A records using failover routing. 

The primary A record points to Google Cloud load balancer 

IP 34.50.111.48, marked as Primary, attached to a health 

check, with 60-second TTL. 

The secondary failover record points to Herza Cloud load 

balancer IP 103.168.146.162 and is marked as Secondary 

with a 60‑second TTL, remaining passive until the primary 

health check fails, after which Route53 directs traffic to this 

backup endpoint. 

 

 

4)     DNS Failover Configuration Verification: After 

completing the Route53 failover configuration, DNS 

propagation was verified using DNSChecker.org to ensure 

proper domain resolution across the global DNS 

infrastructure. The verification process tested the 

resolution of (apifailover.my.id) from multiple geographic 

locations, including San Francisco and Mountain View, 

California, representing different DNS resolver networks 

worldwide. As shown in Figure 11, the domain consistently 

resolved to the primary load balancer IP address 

34.50.111.48 across all tested locations. This result 

Figure 10. Configuring Google Cloud records in hosted zones 
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confirms that the Route53 nameserver delegation, health 

checks, and failover routing policies were correctly 

implemented and successfully propagated globally, 

ensuring reliable domain accessibility and high 

availability. 

 

Figure 11. Domain has successfully propagated across global DNS 

F. Performance Testing and Metrics Collection 

Performance testing evaluates network quality and 

failover reliability using a dual-methodology approach. wrk 

(HTTP benchmarking tool) measures latency distribution, 

jitter, tail latency (p95/p99), and throughput under sustained 

load, while a custom Python monitoring script captures 

downtime duration, recovery time, and failed request 

percentages during simulated infrastructure failures. 

The selection of TTL intervals (30s, 60s, 120s) was based 

on industry practices and AWS Route53 health check 

threshold (90s) [22]. The 250 concurrent connections 

simulate typical SME traffic patterns, aligning with 

empirical evidence from [1] showing that surveyed SMEs 

averaged 25 employees with moderate-scale operations, 

while avoiding infrastructure saturation on low-tier instances 

commonly deployed by budget-constrained organizations. 

Research [2] further validated that SMEs prioritize 

scalability (dynamic resource provisioning) and cost 

efficiency over peak performance capacity, justifying our 

conservative load testing approach. 

 1)      Network Quality Metrics Testing: Network 

performance characteristics were measured using wrk 

(HTTP benchmarking tool), an open-source, high-

performance HTTP load generator capable of producing 

sustained traffic loads while capturing detailed latency 

statistics. wrk was selected for its efficiency in measuring 

request-level metrics under controlled load conditions and its 

widespread adoption in cloud computing research for 

performance benchmarking. The testing protocol executed 5-

minute (300s) benchmark sessions against the DNS-

managed endpoint (http://apifailover.my.id) Packet loss was 

measured using ICMP echo requests with the following 

configuration: 

 

Testing was conducted across four distinct scenarios to 

evaluate both baseline performance and DNS TTL impact on 

failover behavior: 

• Scenario 1 Normal Operation 

 

Figure 12. Results from normal operation 

All infrastructure components operational with no 

induced failures. This scenario establishes baseline 

performance metrics for comparison with failover scenarios. 

Figure 12 baseline wrk testing achieved 2,291 req/s 

throughput with 108 ms mean latency and 231 ms p99. 

Results indicate stable multi‑cloud performance under 

normal conditions, showing zero packet loss, no connection 

errors, and consistent latency behavior for quantitative 

failover benchmarking. 

• Scenario 2 DNS Failover with TTL 30 seconds 

 

Figure 13. Results from TTL 30 

Figure 13 generating a total of 55,616 requests. The 

observed performance metrics include a jitter of 49.29 ms, 

throughput of 185.38 requests per second, an average latency 

of 110.26 ms, and a p99 latency of 278.94 ms. A substantial 

number of socket errors were recorded, mainly triggered by 

frequent DNS re-resolution and repeated failover cycles 

during the test period. These conditions caused connection 

# ./wrk -t4 -c250 -d300s --latency http://apifailover.my.id 

#  ping -c 300 apifailover.my.id (packet loss) 
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instability, increased timeout events, and reduced request 

success rates. As a result, overall throughput degraded by 

approximately 91.9% compared to the baseline performance 

of 2,291.81 req/s, highlighting the adverse impact of overly 

aggressive DNS TTL configurations on system stability and 

performance. 

• Scenario 3 DNS Failover with TTL 60 seconds 

 

Figure 14. Results from TTL 60 

Figure 14 shows TTL 60s testing with 250 concurrent 

connections over 5 minutes, completing 146,444 requests at 

487.95 req/s, 101.20 ms average latency, Jitter 26.78ms, and 

200.15 ms p99. Although 56,047 socket errors occurred, 

throughput was 2.6× higher than TTL 30s but still 78.7% 

below baseline due to DNS failover. 

• Scenario 4 DNS Failover with TTL 120 seconds 

 

Figure 15. Results from TTL 120 

Figure 15 shows TTL 120s testing using wrk with 250 

concurrent connections over 5 minutes. TTL 120s and 60s 

reach ~498 and ~488 req/s with lower jitter, while TTL 30s 

suffers 185 req/s, highest jitter, and many socket errors, 

showing shorter TTLs worsen instability and overhead. 

 2)         Failover Reliability Metrics Testing: Failover 

behavior assessment required continuous endpoint 

availability monitoring to detect downtime duration, 

recovery time, and failed request rates during infrastructure 

failures.  Failover behavior was assessed using a custom 

Python monitoring script implementing polling-based 

availability checking. The script configuration defines four 

key parameters: 

 

These parameters enable granular 1-second resolution 

monitoring over 5-minute windows, sufficient to capture 

complete DNS TTL propagation cycles (30-120 seconds) 

while the 2-second timeout distinguishes network delays 

from actual service unavailability. The monitoring loop 

executes HTTP GET requests at fixed intervals, recording 

timestamp-precise success/failure status for subsequent 

analysis.  

• DNS Failover Reliability with TTL 30s 

 

Figure 16. Results of the TTL 30 test 

Figure 16 shows temporal failover behavior for TTL 30s 

with 5 recovery cycles across 218 requests in 5 minutes, 

achieving 51.38% success and 152.65s downtime, where 

frequent DNS cache expiration enables rapid repeated 

recovery, improving overall reliability despite slower 

individual recoveries. 

• DNS Failover Reliability with TTL 60s 

 

Figure 17. Results of the TTL 60 test 

Figure 17 presents DNS failover monitoring results for 

the TTL 60s configuration, based on 230 requests executed 

over a 5-minute observation period. The experiment reveals 

# url = "http://apifailover.my.id" 

# interval = 1          # 1-second polling interval 

# duration = 300     # 5-minute observation window 

# timeout = 2          # 2-second request timeout 
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a single prolonged recovery cycle with a very low success 

rate of only 16.52%, indicating that most requests failed 

during the failover process. The total recorded downtime 

reached 243.92 seconds, which is approximately 60% higher 

than the downtime observed in the TTL 30-second scenario. 

Although the measured average recovery time per event was 

relatively short at 3.08 seconds, this metric alone did not 

translate into reliable service availability. The mismatch 

between the DNS cache expiration interval (60 seconds) and 

the health check detection window (90 seconds) resulted in a 

worst-case cache coherence condition, where clients 

continued to resolve unhealthy endpoints.  

• DNS Failover Reliability with TTL 120s 

 

 Figure 18 shows TTL 120s failover with 1 recovery 

cycles, 186.88s downtime, and 38.12% success over 230 

requests, where longer TTL reduces recovery frequency yet 

avoids TTL 60s race conditions, providing intermediate, 

more stable reliability during infrastructure failures. 

III. RESULTS AND DISCUSSIONS 

The tests were conducted across four scenarios 

representing different operational conditions: Scenario 1 

(Baseline) establishes reference performance under normal 

operation, while Scenarios 2-4 evaluate DNS failover with 

TTL configurations of 30s, 60s, and 120s during simulated 

primary server failures. Each scenario employed dual-

methodology testing wrk for performance metrics 

(throughput, latency, jitter) and Python monitoring for 

reliability metrics (downtime, recovery cycles, success rates) 

over 5-minute windows with 250 concurrent connections. 

This section presents experimental findings from 

performance testing and failover reliability analysis across 

multiple DNS TTL configurations. Results are organized 

into three subsections: baseline performance characteristics, 

performance under failover conditions, and failover 

reliability metrics, followed by comparative analysis and 

discussion. 

A. Baseline Performance Characteristics 

Baseline performance testing establishes reference 

metrics for system behavior under normal operating 

conditions without any infrastructure failures and serves as a 

critical control scenario for subsequent experiments. Figure 

19 demonstrates stable baseline performance, achieving a 

throughput of 2,291.81 requests per second, with an average 

latency of 108.42 ms and jitter of 37.69 ms, indicating 

consistent and predictable request processing. Although 

minor packet loss and socket errors of 2.33% were observed, 

these anomalies remained within acceptable limits and did 

not significantly impact service availability or 

responsiveness. The p99 latency of 231.15 ms defines the 

upper-bound performance experienced by 99% of user 

requests, capturing worst-case delay under healthy 

conditions. Collectively, these metrics establish a reliable 

performance baseline that reflects optimal system behavior. 

This baseline is essential for accurately quantifying the 

extent of performance degradation, increased latency, 

throughput reduction, and availability loss introduced by 

DNS failover mechanisms and recovery events evaluated in 

subsequent testing scenarios. 

 

Figure 19. Normal operating test results 

B. Performance Under Failover Conditions 

This section evaluates network performance metrics 

during simulated primary infrastructure failures across three 

DNS TTL configurations. Each metric is analyzed 

independently with measurement methodologies, and 

comparative results. 

1)          Average Latency Analysis: Average latency 

represents the mean time required for request-response 

cycles, calculated as:  

 

 
 

Based on the measurements results in the Table IV, the 

average latency for each was calculated as follows:  

Figure 18. Results of the TTL 120 test 
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Average latency calculations reveal paradoxical 

performance metrics across TTL configurations. TTL 60s 

achieves the lowest latency (101.20 ms) with 146,444 

successful requests. However, latency and jitter metrics 

during failover cannot be interpreted independently from 

failure rates, as they represent only surviving requests, while 

TTL 120s records 105.85ms across 149.339 requests both 

processing 2.6-2.7× more requests than TTL 30s (110.26ms, 

55,616 requests). However, these favorable latency values 

reflect survival bias: only successful requests contribute to 

calculations, masking underlying 83.48% and 62.78% failure 

rates respectively, thereby invalidating apparent 

performance superiority during failover conditions. 

2)      Jitter Latency Analysis: Jitter quantifies latency 

variability as standard deviation of samples. TTL 30s 

exhibited highest jitter (49.29ms, +30.8% vs baseline 

37.69ms) due to synchronized 30-second DNS cache 

expiration creating periodic spikes. TTL 60s achieved lowest 

(26.78ms, -28.9%), paradoxically masking 83.48% failure 

rate through survival bias. TTL 120s maintained near-

baseline variability (35.46ms, -5.9%), confirming longer 

cache durations stabilize latency variance. 

3)         Packet Loss Analysis: Packet loss rate quantifies 

failed connection attempts relative to total requests. The 

following is the formula: 

 
The packet loss metrics across all test scenarios were 

obtained as follows: 

 
Baseline 2.33% packet loss during normal operation was 

caused by resource saturation of AWS t3.micro with burst 

limit of only ~1,788 req/s while wrk testing achieved 2,291 

req/s (28% overload), wrk aggressiveness with 4 threads 

generating 1,000 req/s instant burst (vs SME gradual ramp-

up averaging 25 users), and Nginx keep-alive timeout 65s 

causing connection pool exhaustion at 250 concurrent 

connection. 

4)     Throughput Analysis: Throughput measures 

successfully completed requests per unit time. The following 

is the formula: 

The request rate was measured in requests per second 

(req/s). The throughput metrics across all test scenarios were 

obtained as follows: 

 
Throughput calculations reveal catastrophic performance 

degradation during DNS failover: TTL 30s achieves only 

185.38 req/s (91.9% reduction from baseline 2,291.81 req/s), 

while TTL 60s and 120s attain 487.95 and 497.68 req/s 

respectively (78.7-78.3% degradation). Despite TTL 

60s/120s processing 2.6× more requests than TTL 30s, this 

apparent superiority masks critical reliability trade-offs their 

higher throughput coincides with 83.48% and 62.78% failure 

rates, indicating severe system instability under failover 

conditions. 

5)               p99 Tail Latency Analysis: p99 latency represents 

the 99th percentile latency value, indicating maximum 

latency experienced by 99% of requests. The following is the 

formula: 

 
The p99 tail latency, representing the latency threshold 

below which 99% of requests were completed, was measured 

across all test scenarios as follows: 
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p99 latency represents the 99th percentile value from 

sorted latency samples. The calculation involves three steps: 

(1) sorting all latency values, (2) computing the index k = 

⌈0.99 × n⌉ where n is the total number of samples, and (3) 

extracting P99 = L_k. Results reveal TTL 60s achieved best 

tail latency (200.15ms), TTL 120s intermediate (256.22ms), 

and TTL 30s worst (278.94ms), indicating longer TTL 

intervals reduce tail latency despite lower overall throughput 

during DNS failover. 

 

Table IV presents the aggregate results from all 

Performance Under Failover Condition experiments that 

have been implemented, showing comprehensive system 

performance metrics obtained through systematic 

observation of system behavior under failover conditions 

across various testing scenarios. 

 
TABLE IV 

NETWORK QUALITY METRICS 

 

 

 

 

 

 

Figure 20 Performance metrics comparison across DNS 

TTL configurations during simulated failover conditions. 

Metrics include average latency (blue), jitter (red), packet 

loss percentage (green), p99 latency (purple), and throughput 

(orange). Y-axis scaled to maximum observed value (p99 

latency: 278.94 ms). Throughput values: Baseline=2291.81, 

TTL 30s=185.38, TTL 60s=487.95, TTL 120s=497.68 req/s. 

Data aggregated from wrk benchmarking (n=4 threads, 250 

concurrent connections, 300s duration) against multi-cloud 

infrastructure endpoint, revealing DNS cache interval impact 

on system performance.

 

C. Failover Reliability Analysis 

This section evaluates system availability and recovery 

characteristics during simulated infrastructure failures. The 

analysis encompasses critical reliability metrics, including 

recovery time, system availability, and failure detection 

latency. Each metric is mathematically defined and 

systematically measured across different TTL configurations 

to quantify the impact of DNS caching parameters on system 

resilience under failover conditions. Table V presents the 

experimental results from each session and shows that 

shorter TTLs improve failover recovery and reduce 

Test Scenario 

Avg 

Latency 

(ms) 

 

Jitter 

(ms) 

 

Packet Loss 

(%) 

 

Throughput 

(req/s) 

p99 Latency 

(ms) 

 

Normal Operation 108.42 37.69 2.33 2291.81 231.15 

30 s 110.26 49.29 16.0 185.38 278.94 

60 s 101.20 26.78 4.0 487.95 200.15 

120 s 105.85 37.76 20.0 497.68 256.22 

 

Figure 20. Network quality metrics results 
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downtime but increase DNS overhead, quantifying key 

trade-offs in DNS-based failover reliability. 

 

 

 
     TABLE V 

     FAILOVER RELIABILITY METRICS 

 
 

 

 
 

 

 

Overall, this analysis evaluates three key metrics total 

downtime, average recovery time, and failed request 

percentage to compare the effectiveness of TTL 30s, 60s, and 

120s in multi‑cloud DNS failover scenarios. 

1)           Total Downtime Analysis: Total downtime quantifies 

cumulative service unavailability duration during the 

monitoring window.  The following is the formula: 

 

The downtime metrics across all test scenarios were 

obtained as follows: 

 

Based on calculations, TTL 30s achieves lowest 

downtime 152.65s, 5 recovery cycles, 51.38% success. TTL 

60s performs worst 1 cycle, 243.92s downtime, 16.52% 

success due to Route53 90s health check timing mismatch 

causing destructive race conditions. TTL 120s moderate 1 

cycle, 186.88s, 37.22% success with predictable behavior. 

For low-budget SMEs using cost-effective infrastructure 

(AWS t3.micro, GCP e2-medium, Herza 1vCPU), TTL 30s 

recommended for high availability. Avoid TTL 60s.  

2)          Recovery Time 

Analysis: Average 

recovery time measures 

mean duration of individual downtime-to-recovery cycles. 

The following is the formula: 

 

 Multi-cloud failover system testing demonstrates the 

significant during primary server failures. The recovery time 

metrics across all test scenarios were obtained as follows: 

 

 

Average recovery time calculation involves dividing total 

recovery time by the number of trials. For TTL 30s, total 

time of 152.65 seconds across 5 trials yields an average of 

30.53 seconds, demonstrating stable failover consistency. 

Meanwhile, TTL 60s with 1 trial recorded 243.92 seconds, 

and TTL 120s recorded 186.88 seconds in 1 trial. Lower TTL 

enables faster DNS propagation, allowing clients to switch 

to backup servers with minimal delay. 

3)          Failed Requests Analysis: Failed request percentage 

quantifies proportion of unsuccessful availability checks. 

The following is the formula: 

 

The failed requests metrics across all test scenarios were 

obtained as follows: 

 

Based on the calculation results TTL 30s shows lowest 

failure rate (48.62%) and downtime (152.65s across 5 

cycles), outperforming TTL 60s (83.48% failures, 243.92s 

single-cycle outage) and TTL 120s (62.78% failures, 

186.88s). Lower TTL enables faster DNS propagation via 

DNS TTL 

(s) 

Downtime Recovery Time 

(s) 

Failed Requests 

(%) 

30 152.65 30.53 48.62 

60 243.92 243.92 83.48 

120 186.88 186.88 62.78 
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frequent cache invalidation. TTL 60s fails due to resonance 

with Route53's 90s health check threshold. Empirical U-

shaped distribution confirms timing-dependent cache-health 

check interference. 

 

Figure 21. Failover reliability results 

D. Research Limitations and Discussion 

This study has several limitations that should be 

considered when interpreting results and practical 

applications: 

1)       Limited Scale and Infrastructure: The multi-

cloud failover system implementation used infrastructure 

with limited capacity, specifically AWS t3.micro instances 

(2 vCPU, 1 GB RAM) and Google Cloud e2-medium (2 

vCPU, 4 GB RAM). This configuration simulates small to 

medium enterprises with low-budget capabilities. 

Enterprises with high traffic may experience significantly 

different performance characteristics. 

2)     Testing Load Constraints: Performance testing 

used wrk with 4 threads and 250 concurrent connections over 

300 seconds. While representative for small-medium 

applications, these parameters do not reflect enterprise real-

world traffic loads of thousands to millions of requests per 

second. Network quality metrics such as average latency of 

108.42 ms and p99 latency of 231.15 ms under normal 

operation may not generalize to high-traffic production 

environments. 

3)    Geographic and Cloud Vendor Scope: 

Experiments were limited to three cloud providers (AWS, 

Google Cloud, Herza Cloud) focused on Southeast Asia, 

particularly Jakarta region. Vendor and region selection 

aligned with Indonesian data residency requirements and 

cost affordability for budget-constrained local organizations. 

Failover reliability results such as 152.65s downtime for 

TTL 30s and 243.92s for TTL 60s may differ substantially 

across other cloud providers or global multi-region 

deployments with higher network latency. 

4)    Practical Implications for Low-Budget SMEs: 

The implemented architecture uses lowest-tier cloud services 

Google Cloud (e2-medium, 2 vCPU, 4 GB RAM), AWS 

(t3.micro, 2 vCPU, 1 GB RAM), and Herza Cloud (1 vCPU, 

1 GB RAM) to minimize monthly operational costs. This 

infrastructure sizing is empirically justified, whose 

regression analysis of 400 SMEs demonstrated that training 

and support programs increased effective technology 

leverage by 1.75 times (p=0.0003), while cloud integration 

with existing systems doubled efficiency gains (OR=2.0, 

p<0.001) [1]. Our $45–60/month cost structure aligns with 

[3] findings that Indonesian SMEs prioritize pay-per-use 

models to avoid capital expenditure in hardware and 

infrastructure, research and [2] PEST analysis confirming 

that limited financial resources make cost factors more 

relevant to SMEs than strategic competitiveness . Compared 

to [1] reported 30% cost reduction and 20% security 

improvement through cloud adoption, our TTL 30s 

configuration achieving 152.65s downtime represents a 

practical implementation of high availability within 

comparable budget constraints. 

5)    Failover Observation Duration: Failover 

monitoring spanned 5-minute windows with 1-second 

polling intervals. While sufficient to capture DNS TTL 

propagation cycles (30-120 seconds), this duration does not 

evaluate long-term system stability, daily traffic pattern 

behaviors, or corner cases like simultaneous multi-

availability zone cascading failures. 

 

IV. CONCLUSION 

This research successfully implemented and evaluated a 

DNS-based multi-cloud failover system using AWS 

Route53, Nginx reverse proxy on Google Cloud (primary) 

and Herza Cloud (backup), with shared AWS EC2 backends 

orchestrated from an Ubuntu control node. Performance 

testing via wrk (4 threads, 250 connections, 300s) and 

Python monitoring scripts across baseline and failover 

scenarios (TTL 30s, 60s, 120s) showed baseline throughput 

of 2,291.81 req/s, average latency 108.42 ms, and p99 

latency 231.15 ms.  

Under failover conditions, TTL 30s performed best with 

152.65s downtime, 30.53s average recovery time, and 

48.62% failures, despite 91.9% throughput drop to 185.38 

req/s and 49.29 ms jitter from high DNS overhead. TTL 60s 

was worst (243.92s downtime, 83.48% failures) due to health 

check (90s) interference, while TTL 120s was intermediate 

(186.88s, 62.78%). TTL 30s configuration is recommended 

for low-budget SMEs ($45–60/month), balancing high 

availability with operational costs.  

Limitations include small-scale instances (t3.micro/e2-

medium), 250-connection loads, Jakarta region focus, and 

300s observation, limiting generalization to high-traffic or 

multi-region setups. Future research should explore 

enterprise-scale testing, ML-based load prediction, and 

hybrid anycast failover for further optimization. 
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