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 Lung adenocarcinoma (LUAD) is a major cause of cancer-related mortality 

worldwide. This study aims to identify potential LUAD biomarkers and develop 

robust classification models using the GSE151101 microarray dataset. Preprocessing 

included RMA normalization, ComBat batch-effect correction, and feature filtering 

based on annotation completeness, variability, and statistical significance. Support 

Vector Machine (SVM) and Gaussian Process Classification (GPC) models were 

constructed, with the polynomial GPC model achieving the best performance 

(accuracy 97.92%; F1-score 97.96%). Repeated 10-fold cross-validation confirmed 

its stability (mean accuracy 96.88%, SD ±1.97%, CV 2.03%), outperforming linear 

SVM, GPC-RBF, and Multiple Kernel Learning (MKL). Functional enrichment 

analysis showed that key discriminative genes; CDH13, CDKN2A, BCL2L11, 

MYL9, COL1A1, and AKT3; were enriched in pathways related to epithelial–

mesenchymal transition, extracellular matrix remodelling, focal adhesion, 

PI3K/AKT signalling, and cell-cycle regulation, all of which are central to LUAD 

progression. In general, polynomial-kernel GPC is a stable and useful way to classify 

transcriptomes and rank biomarkers. Nevertheless, the translational potential of these 

signatures requires further validation in independent and clinically controlled 

cohorts. 
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I. INTRODUCTION 

Lung cancer is a predominant cause of cancer-related 

mortality globally, with lung adenocarcinoma (LUAD) being 

the most prevalent subtype of non–small-cell lung cancer 

(NSCLC). The development of microarray-based gene 

expression technology allows for the concurrent analysis of 

thousands of genes, facilitating the identification of molecular 

biomarkers that can differentiate tumor tissues from normal 

tissues. This capability is essential for the development of 

early diagnostic tools and the advancement of personalized, 

precision-based cancer therapies [1][2][3].  

A study conducted by [4] examined the GSE151101 gene 

expression dataset, consisting of 237 lung tissue samples from 

126 LUAD patients. The findings indicated a correlation 

between aberrant expression of Y-chromosome genes and 

autosomal hypomethylation with poorer prognoses in male 

patients. The study primarily concentrated on biological 

mechanisms and did not consider the creation of predictive 

classification models for the accurate automation of tumor 

detection using gene expression profiles. 

On the other hand, machine-learning techniques, 

particularly the Support Vector Machine (SVM), have been 

widely employed for the classification of cancer based on 

gene expression [5]. In [6] showed that multiclass SVM 

surpassed traditional methods, including Linear Discriminant 

Analysis (LDA) and k-Nearest Neighbor (KNN), in the 

classification of diverse cancer types based on gene 

expression data. This finding highlights the effectiveness of 

SVM in managing high-dimensional, small-sample datasets, 

which are typical of microarray data [7]. 
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Classification performance can be improved through 

methods that separate classes while also offering probabilistic 

estimations and implicit feature selection, as demonstrated by 

Gaussian Process Classification (GPC) [8]. In [9] utilized 

Gaussian Process Classification (GPC) to identify gene-

expression biomarkers by incorporating the Automatic 

Relevance Determination (ARD) parameter into the model's 

covariance function. This method allows the model to classify 

data and concurrently identify the key genes that influence 

class differentiation [8]. 

This study seeks to develop and compare Support Vector 

Machine (SVM) and Gaussian Process Classification (GPC) 

models utilizing gene expression data from GSE151101. This 

study aims to identify genes with potential as LUAD 

biomarkers, in addition to evaluating the classification 

performance between tumors and normal tissues, while 

considering the biological insights reported by [4]. The 

findings are anticipated to enhance both methodological 

approaches in applied statistics and practical applications in 

bioinformatics and cancer research. 

 

II. METHOD 

This research comprises seven primary stages: data 

collection, data preprocessing, feature selection, feature 

engineering, classification model development, performance 

assessment, and functional analysis and interpretation of 

results. The steps are depicted in Figure 1.  

The data collecting phase was conducted to acquire gene 

expression datasets from the public repository Gene 

Expression Omnibus (GEO) under the code GSE151101, 

comprising 237 lung tissue samples (both tumor and normal) 

assessed using the Affymetrix Human Gene 1.1 ST Array 

platform. The data preparation phase seeks to ready the data 

for analytical purposes, encompassing background correction, 

quantile normalization, and summarization procedures. 

Subsequently, feature filtering was conducted to eliminate 

duplicates, discard probes without gene annotations, and 

identify significant genes utilizing a t-test with Bonferroni 

correction. The feature engineering phase encompassed the 

identification of genes that satisfied statistical requirements 

and the partitioning of the dataset into training and testing 

subsets (80:20 ratio). 

The model classification phase was executed utilizing the 

Support Vector Machine (SVM) and Gaussian Process 

Classification (GPC) methods with diverse kernel functions, 

such as Radial Basis Function (RBF), Polynomial, and 

Multiple Kernel Learning (MKL). The model’s predictive 

performance was evaluated using accuracy, precision, recall, 

and F1-score derived from the confusion matrix, 

complemented by repeated 10-fold cross-validation to assess 

model stability and variability. 

The concluding phase involves functional analysis and 

interpretation of data, aimed at elucidating the biological roles 

of the discriminatory genes identified by the optimal model 

using Gene Ontology (GO), KEGG, and Reactome analyses. 

This stage's data offer biological insights into the molecular 

underpinnings of lung cancer and establish a foundation for 

conclusions and future research objectives. 

 

 
 

Figure 1. Gene Expression Classification Research Flowchart  

A. Data and Research Variable 

This research employed secondary data sourced from the 

Gene Expression Omnibus (GEO), a public resource 

administered by the National Center for Biotechnology 

Information (NCBI) in the United States. National Institutes 

of Health (NIH). The dataset GSE151101 comprises gene 

expression data derived from human lung tissue, produced 

using the Affymetrix Human Gene 1.1 ST Array platform.  

The dataset comprises 237 samples obtained from 126 

individuals diagnosed with lung adenocarcinoma (LUAD), 

including 124 tumor samples and 113 normal samples, 

reflecting a somewhat equal distribution between the two 

categories. This specific class fraction is crucial for assessing 

potential overfitting concerns, as microarray investigations 

generally encompass high-dimensional feature spaces with 

relatively small sample numbers [4]. 

The Affymetrix platform utilizes probe-based microarray 

technology, wherein small DNA fragments are engineered to 

selectively hybridize with their corresponding mRNA 

sequences. Probes that target the same gene are organized into 

a probeset, and the fluorescence intensity from hybridization 

indicates the signal, which corresponds to the gene's 

expression level. Phenotypic data, encompassing tissue type, 

sex, and patient ID, was obtained from the GEO metadata.The 

dependent variable in this study was tissue categorization 

(tumor/normal), whereas the independent variables were 

expression levels from 1178100 normalized probesets. Data 

preparation was performed utilizing R and Bioconductor 

tools, including normalization, logarithmic transformation, 

and feature selection based on variance and statistical 

significance. Only probesets with valid genetic IDs, namely 

those linked to an Entrez Gene ID in NCBI, were preserved 

for subsequent categorization analysis.The dataset was 

randomly divided into two parts to build and test classification 

models. The training set had 80% of the samples (n = 189), 

and the testing set had the other 20% (n = 48). 
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B. Preprocessing 

The objective of the preprocessing stage was to get the data 

on gene expression ready for the classification procedure so 

that it could be used in a reliable manner. The signal was 

normalized, the logarithmic transformation was performed, 

feature selection was performed, class labeling was 

performed, and statistical filtering of significant features was 

performed at this step. Detailed descriptions of the 

preprocessing processes that were carried out for this 

investigation are provided below [10][11]. 

• Background Correction. Using equation 1, this step 

removes the non-biological signal components coming 

from the microarray background.  

𝑃𝑀𝑖𝑗𝑛 = 𝑏𝑔𝑖𝑗𝑛 + 𝑠𝑖𝑗𝑛    (1) 

where 𝑠𝑖𝑗𝑛  is the actual signal with 𝑠𝑖𝑗𝑛~𝐸𝑥𝑝(𝜆), 𝑏𝑔𝑖𝑗𝑛 is 

the background signal with 𝑏𝑔𝑖𝑗𝑛~𝒩(𝜇, 𝜎2), and 𝑃𝑀𝑖𝑗𝑛 

is the signal seen at the probe. 

• By projecting each column 𝑞𝑘 to the reference distribution 

vector using rank-based averaging, as stated in equation 2, 

quantile normalization is carried out to align expression 

distributions across samples. 

𝑝𝑟𝑜𝑗𝑑𝑞𝑘 = (
1

𝑛
∑ 𝑞𝑘𝑗 , … ,𝑛

𝑗=1
1

𝑛
∑ 𝑞𝑘𝑗

𝑛
𝑗=1 )  (2) 

• Use equation 3 to perform summarization by integrating 

several signals from probes in a single probeset into a 

single expression value per gene. 

𝑙𝑜𝑔2(𝑃𝑀𝑖𝑗𝑘) = 𝛼𝑗𝑘 + 𝛽𝑖𝑘 + 𝜀𝑖𝑗𝑘   (3) 

where 𝜀𝑖𝑗𝑘 is the residual error component, 𝛽𝑖𝑘 is the 

expression level of gene 𝑖, and 𝛼𝑗𝑘 denotes the probe 

affinity effect.  

• Probesets were chosen based on genetic variability and 

identity. Duplicate ID probesets and probesets without 

Entrez IDs were removed. The interquartile range (IQR) 

value in equation 4 was used to assess expression 

variability; only features with an IQRi value > 0.5 were 

kept. 

𝐼𝑄𝑅𝑖 = 𝑄3(𝑥𝑖) − 𝑄1(𝑥𝑖)   (4) 

• While running a two-sample t-test to find any noteworthy 

variations between “tumor” and “normal” tissues. 

Equation 5 was utilized to account for non-homogeneous 

variation between groups using Welch's t-test 

methodology. 

𝑡𝑖 =
𝑥̅𝑖1 − 𝑥̅𝑖0

√𝑠𝑖1
2

𝑛1
⁄ +

𝑠𝑖0
2

𝑛0
⁄

⁄
   (5) 

In this context, 𝑠𝑖1
2 , 𝑠𝑖0

2  represent the variance values for the 

“tumor” and “normal” groups, respectively, while 𝑛1, 𝑛0 

denote the sample sizes of these groups. Additionally, 

𝑥̅𝑖1 , 𝑥̅𝑖0 indicate the average expression values of the i-th 

gene in each group. 

• Testing on hundreds of genes at once raises the possibility 

of false positives, or Type I mistakes. The above issue was 

addressed by applying the Bonferroni procedure with 

equation 6 to make a p-value adjustment. 

𝑝𝑖
𝑎𝑑𝑗

= 𝑚𝑖𝑛(𝑝𝑖 ∙ 𝑚, 1)    (6) 

where m is the total number of tests conducted, 𝑝𝑖  is the 

initial p-value for the i-th feature/gene, and 𝑝𝑖
𝑎𝑑𝑗

 is the p-

value following adjustment. Genes and features that have 

𝑝𝑖
𝑎𝑑𝑗

< 𝛼 = 0.0005 are deemed statistically significant 

and are kept for additional examination. These genes 

exhibit notable variations in expression between “tumor” 

and “normal” tissues, making them promising candidates 

for use as biomarkers.  

C. Support Vector Machine 

One well-liked classification technique for high-

dimensional data, such as gene expression data, is Support 

Vector Machine (SVM). SVM finds the best hyperplane in 

feature space with the largest margin between the two classes 

[12]. SVM seeks to distinguish between the two classes as 

much as feasible using a linear combination of gene 

expression in binary classification scenarios such as the one 

in this study (tumor vs. normal). Equation 7 represents the 

linear SVM objective function in primal form for binary 

classification situations using training data {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , 

where 𝑥𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ {−1, +1} [13]. 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1    (7) 

with the constraints: 

  

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 −  𝜉𝑖 ,   𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

where w is the weight vector, b is the bias, 𝝃𝒊 are slack 

variables, and 𝐶 is the regularization parameter that regulates 

the trade-off between the maximum margin and classification 

errors. 

SVM maps data to a higher-dimensional space using a 

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) for data that cannot be separated 

linearly. Because it is appropriate for the high-dimensional 

gene expression data structure and the small sample size, a 

linear kernel was employed in this investigation. Equation 8 

describes the linear kernel, which is typically computationally 

efficient [12][14]. 

𝐾(𝑥, 𝑥′) = 𝑥T𝑥′   (8) 

The SVM model's performance is greatly impacted by the 

choice of the 𝐶 parameter. To find the ideal 𝐶 value, tweaking 

was done in this study using k-fold cross-validation. Training 

data was split into k subsets for each candidate 𝐶𝑗 ∈ 𝐶. k-1 

subsets were used to train the model, while the remaining 

subset was used for validation. Equation 9 is used to compute 

the average validation error [12]. 

𝐶𝑉𝐸𝑟𝑟(𝐶𝑗) =
1

𝑘
∑

1

|𝐷𝑖|

𝑘
𝑖=1 ∑ 𝕀(𝑓𝑗

(𝑖)(𝑥) ≠ 𝑦)𝑥∈𝐷𝑖
 (9) 

Nilai optimal dipilih sebagai yang meminimalkan 

sebagaimana persamaan 10. According to equation 10, the 

value of 𝐶 (𝐶∗) that minimizes 𝐶𝑉𝐸𝑟𝑟(𝐶𝑗) is the ideal value 

[12]. 

𝐶∗ = arg min
𝐶𝑗∈𝐶

𝐶𝑉𝐸𝑟𝑟(𝐶𝑗) (10) 

where 𝑓𝑗
(𝑖)

 is the SVM model trained on fold i with 

parameters, 𝕀(∙) is the indicator function that is 1 if the 
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argument is true and 0 if it is false, y is the actual class label, 

and 𝐷𝑖  is the validation data for fold i. 

 

D. Gaussian Process Classification  

For high-dimensional data, like gene expression data, 

Gaussian Process Classification (GPC), a non-parametric, 

probabilistic classification technique, works incredibly well. 

A Gaussian Process (GP), which is a collection of random 

functions with a multivariate normal distribution at each input 

point, is used by GPC to represent the distribution of the 

prediction function. This method generates uncertainty 

estimates in addition to class predictions [8][15]. 

GPC presupposes that a latent function 

𝑓(𝑥) ~𝒢𝒫(0, 𝑘(𝑥, 𝑥′)) exists in binary classification. This 

latent function is transferred to class probabilities via a link 

function, such as the probit function [8]. Equation 11 defines 

the likelihood of a label 𝑦𝑖 = 1 in the probit technique given 

the value of the latent function 𝑓𝑖. 

 

𝑃(𝑦𝑖 = 1|𝑓𝑖) = 𝛷(𝑓𝑖)    (11) 

 

where the usual normal distribution's cumulative 

distribution function (𝒩(0,1)) is represented by 𝛷(𝑓𝑖). 

The kernel function 𝑘(𝑥, 𝑥′), which establishes the degree 

of similarity between data points, is the primary element of 

GPC. The Radial Basis Function (RBF) kernel is used in this 

study due to its smoothness and suitability for intricate 

patterns in biological data [16]. Equation 12 is followed by 

the RBF kernel. 

 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥′‖2

2ℓ2⁄ )  (12) 

 

where ℓ is the tuning-controlled length-scale parameter. 

In addition to RBF, a polynomial kernel is employed, 

which adds non-linear correlations between features to the 

linear kernel [13]. Equation 13 is the generic form. 

  

𝐾(𝑥, 𝑥′) = (𝑥𝑖
T𝑥′ + 𝑐)

𝑑
   (13) 

where c is the offset constant and d is the polynomial's 

degree. 

Multiple Kernel Linear, which incorporates several 

kernels, were also employed in this investigation. Equation 14 

is the generic form [17]. 

 

𝐾(𝑥, 𝑥′) = ∑ 𝑑𝑚𝐾𝑚
𝑀
𝑚=1 (𝑥, 𝑥′),    (14) 

𝑑𝑚 ≥ 0, ∑ 𝑑𝑚
𝑀
𝑚=1 = 1 

 

Predicting the class probability for a fresh sample 𝑥∗ is the 

aim of GPC. Equation 15 is used to integrate the posterior of 

the latent function f over the training data D in order to do 

inference [18]. 

 

𝑃(𝑦∗ = 1|𝑥∗,  𝐷) = ∫ 𝛷(𝑓∗) 𝑃(𝑓∗|𝐷,  𝑥∗) 𝑑𝑓∗ (15) 

E. Confusion Matrix 

All classification goodness metrics, including accuracy, 

precision, and F1-score, are computed using the confusion 

matrix as the foundation. The number of accurate and 

inaccurate forecasts for each class is shown in this matrix. 

Table 1 is the confusion matrix for a binary instance in its 

generic form [5][10]. 

TABEL I 

CONFUSION MATRIX 

Actual 
Predicted 

Positive Negative 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 

False Positive 

(FP) 

True Negative 

(TN) 

 

The confusion matrix in Table 1 may be used to compute 

the following classification goodness measures: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%, and 𝐹1 −

𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100%.  

 

F. Differential Gene Expression 

Differential gene expression analysis is a crucial method in 

transcriptomics designed to detect genes with significantly 

varying expression levels between experimental groups, such 

as treatment vs. control conditions. The fundamental purpose 

of DGE analysis is to identify genes that are differently 

expressed in the comparative contexts [19]. The theoretical 

basis of DGE is that environmental stressors or molecular 

disruptions, such as drug exposure or genetic mutation, 

modify transcriptional regulation, leading to quantifiable 

alterations in RNA abundance across genes [20]. By 

quantifying these alterations, DGE enables researchers to 

deduce functional pathways (with Gene Oncology, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG), and 

Reactome), discover biomarkers, and elucidate molecular 

processes behind particular biological responses [21][22]. 

 

III. RESULT AND DISCUSSION 

A. Preprocessing and Filtering 

The Bioconductor ecosystem was used to process the 

HuGene 1.1 ST microarray data during the preprocessing 

phase. The pipeline was carried out using the oligo package, 

which is specifically designed for Gene ST array platforms. 

The primary objective of preprocessing is to eliminate 

undesired variation across samples, reduce noise, and 

minimize non-biological artifacts introduced by technical or 
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experimental conditions. Background correction, quantile 

normalization, and summarization were performed using the 

Robust Multi-array Average (RMA) procedure at the 

transcript-cluster level. Figure 2(A) illustrates that the inter-

sample gene expression distribution appeared non-uniform 

prior to preprocessing. As shown in Figure 2(B), RMA 

normalization effectively reduced this deviation, producing 

more consistent intensity patterns across samples.  

The GSE151101 dataset contains 33297 transcript features 

(GPL11532 platform) measured across 237 samples, 

comprising 124 tumor and 113 normal samples. Because 

GEO microarray datasets are inherently prone to batch 

effects, which cannot be fully addressed by RMA alone, an 

additional correction step was incorporated. Prior to batch 

adjustment, exploratory principal component analysis (PCA) 

revealed mild clustering driven by technical variation rather 

than biological class labels. To mitigate this, batch effect 

correction was performed using the ComBat algorithm from 

the sva package. After ComBat adjustment, PCA plots 

showed a clear improvement, with samples clustering mostly 

by biological condition (tumor vs. normal). This showed that 

unwanted technical variation had been successfully removed. 

This step ensured that downstream differential analysis and 

classification were not confounded by batch-associated noise.  

Filtering of expression features was subsequently 

conducted using the nsFilter function from the genefilter 

package. The filtering criteria included (i) removal of features 

and control probes lacking complete annotation, (ii) 

elimination of duplicated probe set identifiers, and (iii) 

application of an interquartile range (IQR) threshold to retain 

only genes exhibiting sufficient variability. From the initial 

33297 probesets, 9425 features were retained after filtering 

based on annotation completeness, uniqueness, and 

variability (IQR > 0.5).To ensure transparency and 

reproducibility in the feature-selection process, a statistically 

rigorous differential expression analysis was performed. 

Because many patients contributed paired tumor–normal 

samples, the analysis accounted for within-patient 

dependence by including patient ID as a blocking factor. 

Differential testing was carried out using a two-sample 

Welch’s t-test computed across all genes via the multtest 

package. To control for multiple testing, which is critical in 

high-dimensional microarray data, the Bonferroni correction 

was applied. Genes were considered significantly 

differentially expressed if their adjusted p-value was below 

0.0005. This procedure yielded 5378 candidate genes for 

model development. These selected genes formed the feature 

set used to construct the primary classification models, 

Support Vector Machine (SVM) and Gaussian Process 

Classification (GPC), ensuring that the downstream machine 

learning analysis was based on statistically robust and 

biologically relevant predictors. 

 
(A) 

 
(B) 

Figure 2. GSE151101 Expression Profile (A) Before Preprocessing and (B) 

After Preprocessing 

B. Classification Model 

A classification model was created utilizing GSE151101 

gene expression data and many machine learning methods. 

Grid search across cost parameters (0.001–100) using 10-fold 

cross-validation improved the first model, a linear kernel 

Support Vector Machine (SVM). The ideal cost value (C = 

0.001) has 3.21% cross-validation error. This model showed 

significant linear separability of gene expression patterns, 

reaching 95.83% accuracy on the independent test set and 

99.47% accuracy on the training set, with perfect precision for 

the normal class and perfect recall for the tumor class. Many 

kernel functions were then implemented in Gaussian Process 

Classification (GPC). The degree three polynomial kernel 

performed best, with 97.92% accuracy and a 97.96% F1-

score. The Radial Basis Function (RBF) kernel had an 

accuracy equivalent to SVM, while in the Multiple Kernel 

Learning (MKL) configuration, RBF and polynomial kernels 

had equal test accuracy (97.92%) with balanced precision and 

recall. The Random Forest classifier had 95.83% accuracy 

and 100% precision as a non-kernel benchmark. The main 

model performance comparison is in Table 2. 
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TABLE 2 

COMPARATIVE PERFORMANCE OF CLASSIFICATION MODELS 

Model Accuracy Precision F1-Score 

SVM 95.83% 92.00% 97.96% 

GPC-RBF 95.83% 95.80% 95.83% 

GPC-Polynomial 97.92% 100.00% 97.96% 

GPC-MKL 97.92% 100.00% 95.83% 

Random Forest 95.83% 100.00% 95.83% 

 

The high test-set accuracy observed across multiple models 

does not adequately address the limitations of single-split 

performance in high-dimensional microarray data, which 

exhibit significant sensitivity to variations in data 

partitioning. In response to this concern, a full stability test 

was done using repeated 10-fold cross-validation. This 

assessment measured robustness through mean accuracy, 

standard deviation (SD), 95% confidence intervals (CI), and 

coefficient of variation (CV). Table 3 indicates that the GPC-

Polynomial and GPC-MKL models exhibited the greatest 

stability, evidenced by low variance (SD ≤ 2.0%) and the 

lowest coefficient of variation (≤ 2.1%). In contrast, the GPC-

RBF model demonstrated the highest variability (SD = 

4.61%; CV = 5.23%), suggesting reduced reliability despite 

comparable test-set accuracy.The results indicate that the 

GPC-Polynomial model demonstrates both accuracy and 

statistical stability across repeated resampling, thereby 

reinforcing its position as the optimal classifier for LUAD 

gene expression data. 

TABLE 3 

STABILITY EVALUATION OF CLASSIFICATION MODELS 

Model Mean 

Accuracy 

SD 95% 

CI 

CV 

SVM 96.12% ±2.30% [95.48, 

96.76] 

2.39% 

GPC-Poly 96.88% ±1.97% [96.33, 

97.42] 

2.03% 

GPC-RBF 88.15% ±4.61% [86.87, 

89.42] 

5.23% 

GPC-MKL 96.54% ±1.01% [96.03, 

97.05] 

1.05% 

Random 

Forest 

96.54% ±1.69% [95.69, 

97.39] 

1.75% 

 

Only two of the 25 normal samples were mistakenly 

labeled as tumors, according to the confusion matrix derived 

from the prediction results on the test data for the GPC model 

with a polynomial kernel. On the other hand, every one of the 

23 tumor samples was effectively identified as a tumor. Figure 

3 illustrates this confusion matrix and highlights how accurate 

the model is in identifying tumor gene expression patterns. 

 

 

 
Figure 3. Confusion Matrix for GPC-Polynomial Classification on Test 

Set 

C. Functional Enrichment Analysis 

Functional enrichment analysis examined the biological 

significance of the most distinguishing genes identified by the 

classification model. GO and KEGG studies were performed 

utilizing the clusterProfiler and org.Hs.eg.db packages inside 

R/Bioconductor. The investigation concentrated on the 

highest-ranked genes generated by the Gaussian Process 

Classification (GPC) model utilizing a third-degree 

polynomial kernel, which exhibited the most superior 

performance. Enrichment findings were deemed significant at 

an adjusted p-value of less than 0.05, employing the 

Benjamini–Hochberg correction. GO enrichment analysis 

indicated that the distinguishing genes were mostly associated 

with extracellular matrix remodeling, cytoskeletal structure, 

wound healing, and cell adhesion mechanisms (Table 4). 

These basic features are pivotal to the evolution of lung 

adenocarcinoma (LUAD), notably via epithelial–

mesenchymal transition (EMT), augmented migratory ability, 

and aberrant cell–matrix interactions. 

This investigation revealed many genes with well-

established mechanistic functions in lung adenocarcinoma 

(LUAD) etiology. LUAD promoter hypermethylation 

silences CDH13 (H-cadherin), a tumor suppressor, leading to 

poor cell–cell adhesion and accelerated epithelial–

mesenchymal transition (EMT), which aids tumor invasion 

and metastasis [23] [24]. COL1A1 (Collagen Type I Alpha 1 

Chain), a major structural component of the extracellular 

matrix (ECM), contributes to stromal remodeling by 

increasing ECM stiffness, activating integrin; FAK signaling, 

and promoting LUAD cell migration. Recent studies have 

identified COL1A1 as a prognostic biomarker signature in 

LUAD [25]. In addition, AKT3, a major node in the 

PI3K/AKT oncogenic axis, improves tumor-cell survival, 

metabolic plasticity, and apoptosis resistance. Prognostic 

investigations of AKT isoforms have shown its dysregulation 

in LUAD [26]. LUAD is linked to uncontrolled proliferation 

and poor outcomes due to the loss or epigenetic silencing of 

the tumor suppressor CDKN2A (p16^INK4A), which 

governs G1-S cell-cycle progression. BCL2L11 (BIM), a pro-

apoptotic mediator of the intrinsic mitochondrial system, is 
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essential to programmed cell death. Reduced BIM expression 

promotes tumor persistence and therapeutic resistance, 

especially in EGFR-mutated LUAD. MYL9 (Myosin Light 

Chain 9), a regulator of cytoskeletal contractility and cell 

motility, supports actin–myosin dynamics that drive 

metastatic dissemination. Recent studies indicate that MYL9 

is down-regulated in non-small-cell lung cancer (NSCLC) 

and may suppress EMT in lung cancer cells [27]. These genes 

constitute a cohesive network of biological processes; EMT, 

ECM remodeling, PI3K/AKT signaling, cell-cycle 

dysregulation, apoptosis evasion, and cytoskeletal 

reorganization, that closely match LUAD development 

molecular pathways [28]. 

These gene-level findings reveal that the categorization 

approach prioritized statistically important, physiologically 

relevant, and mechanistically integrated LUAD pathogenesis 

genes.KEGG pathway analysis verified these genes' 

participation in carcinogenic processes such as ECM; receptor 

interaction, focal adhesion, PI3K/AKT signaling, Rap1 

signaling, and the cell cycle (Table 5). The enrichment of 

neutrophil extracellular trap (NET) creation pathways 

(hsa04613) shows tumor-intrinsic transcriptional programs 

and the inflammatory tumor microenvironment may interact, 

a mechanism increasingly linked to LUAD aggressiveness. 

The enrichment patterns show that the GPC model's 

discriminative genes exhibit physiologically coherent 

pathways that match LUAD molecular pathophysiology. 

CDH13, COL1A1, AKT3, CDKN2A, BCL2L11, and MYL9 

are promising biomarker validation candidates, consistent 

with prior LUAD biomarker panels and molecular 

investigations. 

. TABLE 4 

GO RESULT: BIOLOGICAL PROCESS OF GPC CLASSIFICATION GENE 

POLYNOMIAL KERNEL 

GO 

ID 

GeneRatio Count p.adjust LeadingGenes 

GO:00

31589 

175/4895 175 0.00 BCL2L11, 

CDH13, 

SORBS3, 

CDK5, 

CDKN2A 

GO:00

30198 

156/4895 156 0.00 ADAM8, 

ANGPTL7, 

RAMP2, 

FBLN5, 

PRDX4 

GO:00

43062 

156/4895 156 0.00 ADAM8, 

ANGPTL7, 

RAMP2, 

FBLN5, 

PRDX4 

GO:00

42060 

184/4895 184 0.00 SH2B3, 

CDKN1A, 

MYL9, VAV3 

GO:19

01987 

192/4895 192 0.00 CDK4, 

PSME3, 

CDK5, 

CTDSPL, 

CDK7 

GO:00

07160 

114/4895 114 0.00 BCL2L11, 

CDH13, 

CDK5, 

CDKN2A 

GO:00

43410 

185/4895 185 0.00 CD24, 

ADAM8, 

SORBS3, 

SPRY2, 

RAMP3 

GO:00

07264 

203/4895 203 0.00 SH2D3C, 

SH2D3A, 

CDH13, 

RASA4, 

WASF2 

TABLE 5 

KEGG PATHWAY ENRICHMENT ANALYSIS RESULTS 

ID GeneRatio Count p.adjust LeadingGenes 

hsa04820 0.042 105 1.00e-

07 

MYL9, NEBL, 

LDB3, 

COL1A1, 

COL1A2 

hsa04613 0.035 87 4.50e-

06 

AKT3, PPIF, 

ATG7, 

CLCN4, 

H2BC26 

hsa04110 0.029 73 5.40e-

06 

CDK4, CDK7, 

CDKN1A, 

CDKN2A, 

NDC80 

hsa04517 0.048 120 1.38e-

05 

AKT3, 

CLEC4M, 

MYL9, 

VAV3, 

ARPC1A 

hsa04510 0.032 81 5.29e-

04 

AKT3, 

LAMC3, 

MYL9, 

VAV3, 

COL1A1 

hsa04512 0.016 40 2.06e-

03 

LAMC3, 

COL1A1, 

COL1A2, 

COL4A3, 

COL4A4 

 

IV. CONCLUSION 

This study developed and compared Support Vector 

Machine (SVM) and Gaussian Process Classification (GPC) 

models to differentiate between tumor and normal lung 

tissues utilizing the GSE151101 dataset. The GPC model 

utilizing a polynomial kernel exhibited superior performance, 

attaining a test accuracy of 97.92% and an F1-score of 

97.96%. Repeated 10×10 cross-validation demonstrated that 

this model exhibited both accuracy on a single test split and 

statistical stability, achieving one of the lowest variability 

metrics among the assessed models (mean CV accuracy = 
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96.88%, SD = ±1.97%, CV = 2.03%). The findings 

demonstrate the effectiveness of GPC-Polynomial in 

managing high-dimensional microarray data when compared 

to linear SVM and GPC-RBF.The biological analysis 

indicated that the discriminative genes selected by the optimal 

model are closely associated with established mechanisms of 

LUAD pathogenesis. Gene Ontology (GO) analysis revealed 

enrichment in epithelial–mesenchymal transition (EMT), 

wound healing, extracellular matrix (ECM) remodeling, cell–

substrate adhesion, and cell-cycle regulation; essential 

processes that contribute to tumor migration, invasion, and 

uncontrolled proliferation. Several genes, including CDH13, 

CDKN2A, BCL2L11, MYL9, and SORBS3, play important 

roles in these pathways. KEGG pathway enrichment analysis 

corroborated this finding by identifying participation in focal 

adhesion, ECM–receptor interaction, PI3K/AKT signaling, 

cell-cycle progression, and neutrophil extracellular trap 

formation (NETs). Pathways are influenced by genes 

including AKT3, CDK4, CDK7, COL1A1, COL1A2, and 

LAMC3, which recent studies on LUAD have identified as 

factors contributing to tumor aggressiveness and 

microenvironmental remodeling. 

The results indicate that Gaussian Process Classification 

utilizing a polynomial kernel is an effective and stable method 

for modeling high-dimensional transcriptomic data. 

Nonetheless, the implementation of this method requires 

careful interpretation from a translational perspective. The 

identified genes, namely CDH13, CDKN2A, BCL2L11, 

MYL9, COL1A1, and AKT3, exhibit biological significance 

and potential as biomarkers for LUAD. However, their 

application in clinical diagnostics necessitates comprehensive 

validation across independent cohorts, assessment of inter-

population variability, evaluation of cross-platform 

robustness (microarray versus RNA-seq), and standardization 

in laboratory practices. This study should not be seen as a 

useful diagnostic tool, but rather as a computational 

framework for finding biomarkers and coming up with new 

ideas.This research advances the methodology of machine 

learning in transcriptomic classification and offers 

biologically relevant insights into the molecular mechanisms 

of LUAD. Future research should include multi-center 

datasets, prospective validation, and integrative modeling to 

facilitate the translation of these findings into clinical 

practice. 
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