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Lung adenocarcinoma (LUAD) is a major cause of cancer-related mortality
worldwide. This study aims to identify potential LUAD biomarkers and develop
robust classification models using the GSE151101 microarray dataset. Preprocessing
included RMA normalization, ComBat batch-effect correction, and feature filtering
based on annotation completeness, variability, and statistical significance. Support
Vector Machine (SVM) and Gaussian Process Classification (GPC) models were
constructed, with the polynomial GPC model achieving the best performance
(accuracy 97.92%; F1-score 97.96%). Repeated 10-fold cross-validation confirmed
its stability (mean accuracy 96.88%, SD £1.97%, CV 2.03%), outperforming linear
SVM, GPC-RBF, and Multiple Kernel Learning (MKL). Functional enrichment
analysis showed that key discriminative genes; CDH13, CDKN2A, BCL2LI11,
MYL9, COL1A1, and AKT3; were enriched in pathways related to epithelial—
mesenchymal transition, extracellular matrix remodelling, focal adhesion,
PI3K/AKT signalling, and cell-cycle regulation, all of which are central to LUAD
progression. In general, polynomial-kernel GPC is a stable and useful way to classify
transcriptomes and rank biomarkers. Nevertheless, the translational potential of these
signatures requires further validation in independent and clinically controlled

cohorts.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Lung cancer is a predominant cause of cancer-related
mortality globally, with lung adenocarcinoma (LUAD) being
the most prevalent subtype of non—small-cell lung cancer
(NSCLC). The development of microarray-based gene
expression technology allows for the concurrent analysis of
thousands of genes, facilitating the identification of molecular
biomarkers that can differentiate tumor tissues from normal
tissues. This capability is essential for the development of
early diagnostic tools and the advancement of personalized,
precision-based cancer therapies [1][2][3].

A study conducted by [4] examined the GSE151101 gene
expression dataset, consisting of 237 lung tissue samples from
126 LUAD patients. The findings indicated a correlation
between aberrant expression of Y-chromosome genes and

autosomal hypomethylation with poorer prognoses in male
patients. The study primarily concentrated on biological
mechanisms and did not consider the creation of predictive
classification models for the accurate automation of tumor
detection using gene expression profiles.

On the other hand, machine-learning techniques,
particularly the Support Vector Machine (SVM), have been
widely employed for the classification of cancer based on
gene expression [5]. In [6] showed that multiclass SVM
surpassed traditional methods, including Linear Discriminant
Analysis (LDA) and k-Nearest Neighbor (KNN), in the
classification of diverse cancer types based on gene
expression data. This finding highlights the effectiveness of
SVM in managing high-dimensional, small-sample datasets,
which are typical of microarray data [7].
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Classification performance can be improved through
methods that separate classes while also offering probabilistic
estimations and implicit feature selection, as demonstrated by
Gaussian Process Classification (GPC) [8]. In [9] utilized
Gaussian Process Classification (GPC) to identify gene-
expression biomarkers by incorporating the Automatic
Relevance Determination (ARD) parameter into the model's
covariance function. This method allows the model to classify
data and concurrently identify the key genes that influence
class differentiation [8].

This study seeks to develop and compare Support Vector
Machine (SVM) and Gaussian Process Classification (GPC)
models utilizing gene expression data from GSE151101. This
study aims to identify genes with potential as LUAD
biomarkers, in addition to evaluating the classification
performance between tumors and normal tissues, while
considering the biological insights reported by [4]. The
findings are anticipated to enhance both methodological
approaches in applied statistics and practical applications in
bioinformatics and cancer research.

II. METHOD

This research comprises seven primary stages: data
collection, data preprocessing, feature selection, feature
engineering, classification model development, performance
assessment, and functional analysis and interpretation of
results. The steps are depicted in Figure 1.

The data collecting phase was conducted to acquire gene
expression datasets from the public repository Gene
Expression Omnibus (GEO) under the code GSE151101,
comprising 237 lung tissue samples (both tumor and normal)
assessed using the Affymetrix Human Gene 1.1 ST Array
platform. The data preparation phase seeks to ready the data
for analytical purposes, encompassing background correction,
quantile normalization, and summarization procedures.

Subsequently, feature filtering was conducted to eliminate
duplicates, discard probes without gene annotations, and
identify significant genes utilizing a t-test with Bonferroni
correction. The feature engineering phase encompassed the
identification of genes that satisfied statistical requirements
and the partitioning of the dataset into training and testing
subsets (80:20 ratio).

The model classification phase was executed utilizing the
Support Vector Machine (SVM) and Gaussian Process
Classification (GPC) methods with diverse kernel functions,
such as Radial Basis Function (RBF), Polynomial, and
Multiple Kernel Learning (MKL). The model’s predictive
performance was evaluated using accuracy, precision, recall,
and Fl-score derived from the confusion matrix,
complemented by repeated 10-fold cross-validation to assess
model stability and variability.

The concluding phase involves functional analysis and
interpretation of data, aimed at elucidating the biological roles
of the discriminatory genes identified by the optimal model
using Gene Ontology (GO), KEGG, and Reactome analyses.

This stage's data offer biological insights into the molecular
underpinnings of lung cancer and establish a foundation for
conclusions and future research objectives.

Data

Preprocessing g

GPe-RBF, :
GPC-Palynowial
GPC-MKL :

GO, KEGG, Reactome

Best model From GPC Aceuracy, Precision, HE-

Recell, F1-Score,
10%10 Cross-validation

Figure 1. Gene Expression Classification Research Flowchart

A. Data and Research Variable

This research employed secondary data sourced from the
Gene Expression Omnibus (GEO), a public resource
administered by the National Center for Biotechnology
Information (NCBI) in the United States. National Institutes
of Health (NIH). The dataset GSE151101 comprises gene
expression data derived from human lung tissue, produced
using the Affymetrix Human Gene 1.1 ST Array platform.
The dataset comprises 237 samples obtained from 126
individuals diagnosed with lung adenocarcinoma (LUAD),
including 124 tumor samples and 113 normal samples,
reflecting a somewhat equal distribution between the two
categories. This specific class fraction is crucial for assessing
potential overfitting concerns, as microarray investigations
generally encompass high-dimensional feature spaces with
relatively small sample numbers [4].

The Affymetrix platform utilizes probe-based microarray
technology, wherein small DNA fragments are engineered to
selectively hybridize with their corresponding mRNA
sequences. Probes that target the same gene are organized into
a probeset, and the fluorescence intensity from hybridization
indicates the signal, which corresponds to the gene's
expression level. Phenotypic data, encompassing tissue type,
sex, and patient ID, was obtained from the GEO metadata.The
dependent variable in this study was tissue categorization
(tumor/normal), whereas the independent variables were
expression levels from 1178100 normalized probesets. Data
preparation was performed utilizing R and Bioconductor
tools, including normalization, logarithmic transformation,
and feature selection based on variance and statistical
significance. Only probesets with valid genetic IDs, namely
those linked to an Entrez Gene ID in NCBI, were preserved
for subsequent categorization analysis.The dataset was
randomly divided into two parts to build and test classification
models. The training set had 80% of the samples (n = 189),
and the testing set had the other 20% (n = 48).
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B. Preprocessing

The objective of the preprocessing stage was to get the data
on gene expression ready for the classification procedure so
that it could be used in a reliable manner. The signal was
normalized, the logarithmic transformation was performed,
feature selection was performed, class labeling was
performed, and statistical filtering of significant features was
performed at this step. Detailed descriptions of the
preprocessing processes that were carried out for this
investigation are provided below [10][11].

e Background Correction. Using equation 1, this step
removes the non-biological signal components coming
from the microarray background.

PMijn = bgijn + Sijn (1)
where s;;, is the actual signal with s;;, ~Exp(4), bg is
the background signal with bg;j,~N (1, a?), and PM; in
is the signal seen at the probe.

e By projecting each column g, to the reference distribution
vector using rank-based averaging, as stated in equation 2,
quantile normalization is carried out to align expression
distributions across samples.

projaqr = (%Z;‘l:l Qx> ---»%23'21 ‘ij) 2

e Use equation 3 to perform summarization by integrating
several signals from probes in a single probeset into a
single expression value per gene.

log, (PMijk) = ajy + Bik + Eiji (3)
where &, is the residual error component, B, is the
expression level of gene i, and a;; denotes the probe
affinity effect.

e Probesets were chosen based on genetic variability and
identity. Duplicate ID probesets and probesets without
Entrez IDs were removed. The interquartile range (IQR)
value in equation 4 was used to assess expression
variability; only features with an IQRi value > 0.5 were
kept.

1QR; = Q3(x;) — Q1 (x;) “4)

e While running a two-sample t-test to find any noteworthy
variations between “tumor” and “normal” tissues.
Equation 5 was utilized to account for non-homogeneous
variation between groups using Welch's t-test
methodology.

£, = i1 ~ %io
! s? s2
i1 i0
In, +"%/n,

In this context, s3, s3 represent the variance values for the
“tumor” and “normal” groups, respectively, while nq,n,
denote the sample sizes of these groups. Additionally,
X1, X;o indicate the average expression values of the i-th
gene in each group.

e Testing on hundreds of genes at once raises the possibility
of false positives, or Type I mistakes. The above issue was
addressed by applying the Bonferroni procedure with
equation 6 to make a p-value adjustment.

plfzdj = min(p; - m, 1)

)

(6)

where m is the total number of tests conducted, p; is the

initial p-value for the i-th feature/gene, and p{®“ is the p-
value following adjustment. Genes and features that have
plfl Y < @ =0.0005 are deemed statistically significant
and are kept for additional examination. These genes
exhibit notable variations in expression between “tumor”
and “normal” tissues, making them promising candidates
for use as biomarkers.

C. Support Vector Machine

One well-liked classification technique for high-
dimensional data, such as gene expression data, is Support
Vector Machine (SVM). SVM finds the best hyperplane in
feature space with the largest margin between the two classes
[12]. SVM seeks to distinguish between the two classes as
much as feasible using a linear combination of gene
expression in binary classification scenarios such as the one
in this study (tumor vs. normal). Equation 7 represents the
linear SVM objective function in primal form for binary
classification situations using training data {(x;, y;)}iq,
where x; € R and y; € {—1,+1} [13].

o1
minZlwll? + C X2, & )
with the constraints:
y,-(WTx,-+b)21— fi' EiZO' i=1,...,7’l

where w is the weight vector, b is the bias, §; are slack
variables, and C is the regularization parameter that regulates
the trade-off between the maximum margin and classification
errors.

SVM maps data to a higher-dimensional space using a
kernel function K (xl-,xj) for data that cannot be separated
linearly. Because it is appropriate for the high-dimensional
gene expression data structure and the small sample size, a
linear kernel was employed in this investigation. Equation 8
describes the linear kernel, which is typically computationally
efficient [12][14].

K(x,x") = xTx' (8)

The SVM model's performance is greatly impacted by the
choice of the C parameter. To find the ideal C value, tweaking
was done in this study using k-fold cross-validation. Training
data was split into k subsets for each candidate C; € C. k-1
subsets were used to train the model, while the remaining
subset was used for validation. Equation 9 is used to compute
the average validation error [12].

1 1 i

CVerr(G) = (a7 Zxen 10 ) #y) )

Nilai optimal dipilih sebagai yang meminimalkan
sebagaimana persamaan 10. According to equation 10, the
value of C (C*) that minimizes CVg,(C;) is the ideal value
[12].

C* = argmin CVerr(C)) (10)
J

where fj(i) is the SVM model trained on fold i with
parameters, I(-) is the indicator function that is 1 if the
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argument is true and 0 if it is false, y is the actual class label,
and D; is the validation data for fold i.

D. Gaussian Process Classification

For high-dimensional data, like gene expression data,
Gaussian Process Classification (GPC), a non-parametric,
probabilistic classification technique, works incredibly well.
A Gaussian Process (GP), which is a collection of random
functions with a multivariate normal distribution at each input
point, is used by GPC to represent the distribution of the
prediction function. This method generates uncertainty
estimates in addition to class predictions [8][15].

GPC presupposes that a latent function
f) ~g?(0,k(x,x’)) exists in binary classification. This
latent function is transferred to class probabilities via a link
function, such as the probit function [8]. Equation 11 defines
the likelihood of a label y; = 1 in the probit technique given
the value of the latent function f;.

PO = 1If) = o(f) (11)

where the wusual normal distribution's cumulative
distribution function (V' (0,1)) is represented by @(f;).

The kernel function k(x, x"), which establishes the degree
of similarity between data points, is the primary element of
GPC. The Radial Basis Function (RBF) kernel is used in this
study due to its smoothness and suitability for intricate
patterns in biological data [16]. Equation 12 is followed by
the RBF kernel.

K(x,x") = exp <_ llc — x’||2/2£2) (12)

where £ is the tuning-controlled length-scale parameter.

In addition to RBF, a polynomial kernel is employed,
which adds non-linear correlations between features to the
linear kernel [13]. Equation 13 is the generic form.

K(x,x") = (xfx + c)d (13)

where ¢ is the offset constant and d is the polynomial's
degree.

Multiple Kernel Linear, which incorporates several
kernels, were also employed in this investigation. Equation 14
is the generic form [17].

K(xlx’) = %=1 dem (x! x,)’
dm = 0, Z%=1dm =1

(14)

Predicting the class probability for a fresh sample x, is the
aim of GPC. Equation 15 is used to integrate the posterior of
the latent function f over the training data D in order to do
inference [18].

Py, = 1lx,, D) = [@(£) P(£ID, x.) df. (15)

E. Confusion Matrix

All classification goodness metrics, including accuracy,
precision, and Fl-score, are computed using the confusion
matrix as the foundation. The number of accurate and
inaccurate forecasts for each class is shown in this matrix.
Table 1 is the confusion matrix for a binary instance in its
generic form [5][10].

TABELI
CONFUSION MATRIX
Predicted
Actual

Positive Negative
Positive True Positive | False Negative

(TP) (FN)

False Positive | True Negative
Negative (FP) (TN)

The confusion matrix in Table 1 may be used to compute
the following classification goodness measures:

TP+TN ..
Accuracy = ——— X 100%, Precision =
TP+TN+FP+FN

™ _ % 100%, Recall = ——— x 100%, and F1 —
Score = PrecisionXRecall % 100%.

TP+FP TP+FN

Precision+Recall

F. Differential Gene Expression

Differential gene expression analysis is a crucial method in
transcriptomics designed to detect genes with significantly
varying expression levels between experimental groups, such
as treatment vs. control conditions. The fundamental purpose
of DGE analysis is to identify genes that are differently
expressed in the comparative contexts [19]. The theoretical
basis of DGE is that environmental stressors or molecular
disruptions, such as drug exposure or genetic mutation,
modify transcriptional regulation, leading to quantifiable
alterations in RNA abundance across genes [20]. By
quantifying these alterations, DGE enables researchers to
deduce functional pathways (with Gene Oncology, the Kyoto
Encyclopedia of Genes and Genomes (KEGG), and
Reactome), discover biomarkers, and elucidate molecular
processes behind particular biological responses [21][22].

II1. RESULT AND DISCUSSION

A. Preprocessing and Filtering

The Bioconductor ecosystem was used to process the
HuGene 1.1 ST microarray data during the preprocessing
phase. The pipeline was carried out using the oligo package,
which is specifically designed for Gene ST array platforms.
The primary objective of preprocessing is to eliminate
undesired variation across samples, reduce noise, and
minimize non-biological artifacts introduced by technical or
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experimental conditions. Background correction, quantile
normalization, and summarization were performed using the
Robust Multi-array Average (RMA) procedure at the
transcript-cluster level. Figure 2(A) illustrates that the inter-
sample gene expression distribution appeared non-uniform
prior to preprocessing. As shown in Figure 2(B), RMA
normalization effectively reduced this deviation, producing
more consistent intensity patterns across samples.

The GSE151101 dataset contains 33297 transcript features
(GPL11532 platform) measured across 237 samples,
comprising 124 tumor and 113 normal samples. Because
GEO microarray datasets are inherently prone to batch
effects, which cannot be fully addressed by RMA alone, an
additional correction step was incorporated. Prior to batch
adjustment, exploratory principal component analysis (PCA)
revealed mild clustering driven by technical variation rather
than biological class labels. To mitigate this, batch effect
correction was performed using the ComBat algorithm from
the sva package. After ComBat adjustment, PCA plots
showed a clear improvement, with samples clustering mostly
by biological condition (tumor vs. normal). This showed that
unwanted technical variation had been successfully removed.
This step ensured that downstream differential analysis and
classification were not confounded by batch-associated noise.

Filtering of expression features was subsequently
conducted using the nsFilter function from the genefilter
package. The filtering criteria included (i) removal of features
and control probes lacking complete annotation, (ii)
elimination of duplicated probe set identifiers, and (iii)
application of an interquartile range (IQR) threshold to retain
only genes exhibiting sufficient variability. From the initial
33297 probesets, 9425 features were retained after filtering
based on annotation completeness, uniqueness, and
variability (IQR > 0.5).To ensure transparency and
reproducibility in the feature-selection process, a statistically
rigorous differential expression analysis was performed.
Because many patients contributed paired tumor—normal
samples, the analysis accounted for within-patient
dependence by including patient ID as a blocking factor.
Differential testing was carried out using a two-sample
Welch’s t-test computed across all genes via the multtest
package. To control for multiple testing, which is critical in
high-dimensional microarray data, the Bonferroni correction
was applied. Genes were considered significantly
differentially expressed if their adjusted p-value was below
0.0005. This procedure yielded 5378 candidate genes for
model development. These selected genes formed the feature
set used to construct the primary classification models,
Support Vector Machine (SVM) and Gaussian Process
Classification (GPC), ensuring that the downstream machine
learning analysis was based on statistically robust and
biologically relevant predictors.

‘GSE151101/GPL11532 selected samples

500

400 -

300

200

100

GSE151101/hugenel selected samples

Figure 2. GSE151101 Expression Profile (A) Before Preprocessing and (B)
After Preprocessing

B. Classification Model

A classification model was created utilizing GSE151101
gene expression data and many machine learning methods.
Grid search across cost parameters (0.001-100) using 10-fold
cross-validation improved the first model, a linear kernel
Support Vector Machine (SVM). The ideal cost value (C =
0.001) has 3.21% cross-validation error. This model showed
significant linear separability of gene expression patterns,
reaching 95.83% accuracy on the independent test set and
99.47% accuracy on the training set, with perfect precision for
the normal class and perfect recall for the tumor class. Many
kernel functions were then implemented in Gaussian Process
Classification (GPC). The degree three polynomial kernel
performed best, with 97.92% accuracy and a 97.96% F1-
score. The Radial Basis Function (RBF) kernel had an
accuracy equivalent to SVM, while in the Multiple Kernel
Learning (MKL) configuration, RBF and polynomial kernels
had equal test accuracy (97.92%) with balanced precision and
recall. The Random Forest classifier had 95.83% accuracy
and 100% precision as a non-kernel benchmark. The main
model performance comparison is in Table 2.
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TABLE 2 Prediction: Normal

COMPARATIVE PERFORMANCE OF CLASSIFICATION MODELS

Model Accuracy Precision | F1-Score N o
SVM 95.83% 92.00% 97.96%
GPC-RBF 95.83% 9580% | 95.83% 23 2
GPC-Polynomial 97.92% 100.00% 97.96% 3 2
GPC-MKL 97.92% 100.00% 95.83% 2 g
Random Forest 95.83% 100.00% 95.83% § :

The high test-set accuracy observed across multiple models 0 23

does not adequately address the limitations of single-split
performance in high-dimensional microarray data, which
exhibit significant sensitivity to variations in data
partitioning. In response to this concern, a full stability test
was done using repeated 10-fold cross-validation. This
assessment measured robustness through mean accuracy,
standard deviation (SD), 95% confidence intervals (CI), and
coefficient of variation (CV). Table 3 indicates that the GPC-
Polynomial and GPC-MKL models exhibited the greatest
stability, evidenced by low variance (SD < 2.0%) and the
lowest coefficient of variation (< 2.1%). In contrast, the GPC-
RBF model demonstrated the highest variability (SD =
4.61%; CV = 5.23%), suggesting reduced reliability despite
comparable test-set accuracy.The results indicate that the
GPC-Polynomial model demonstrates both accuracy and
statistical stability across repeated resampling, thereby
reinforcing its position as the optimal classifier for LUAD
gene expression data.

TABLE 3
STABILITY EVALUATION OF CLASSIFICATION MODELS
Model Mean SD 95% Cv
Accuracy Cl

SVM 96.12% +2.30% | [95.48, 2.39%
96.76]

GPC-Poly 96.88% +1.97% | [96.33, 2.03%
97.42]

GPC-RBF 88.15% +4.61% | [86.87, 5.23%
89.42]

GPC-MKL 96.54% +1.01% | [96.03, 1.05%
97.05]

Random 96.54% +1.69% | [95.69, 1.75%

Forest 97.39]

Only two of the 25 normal samples were mistakenly
labeled as tumors, according to the confusion matrix derived
from the prediction results on the test data for the GPC model
with a polynomial kernel. On the other hand, every one of the
23 tumor samples was effectively identified as a tumor. Figure
3 illustrates this confusion matrix and highlights how accurate
the model is in identifying tumor gene expression patterns.

Prediction: Tumor

Figure 3. Confusion Matrix for GPC-Polynomial Classification on Test
Set

C. Functional Enrichment Analysis

Functional enrichment analysis examined the biological
significance of the most distinguishing genes identified by the
classification model. GO and KEGG studies were performed
utilizing the clusterProfiler and org.Hs.eg.db packages inside
R/Bioconductor. The investigation concentrated on the
highest-ranked genes generated by the Gaussian Process
Classification (GPC) model utilizing a third-degree
polynomial kernel, which exhibited the most superior
performance. Enrichment findings were deemed significant at
an adjusted p-value of less than 0.05, employing the
Benjamini—-Hochberg correction. GO enrichment analysis
indicated that the distinguishing genes were mostly associated
with extracellular matrix remodeling, cytoskeletal structure,
wound healing, and cell adhesion mechanisms (Table 4).
These basic features are pivotal to the evolution of lung
adenocarcinoma (LUAD), notably via epithelial-
mesenchymal transition (EMT), augmented migratory ability,
and aberrant cell-matrix interactions.

This investigation revealed many genes with well-
established mechanistic functions in lung adenocarcinoma
(LUAD) etiology. LUAD promoter hypermethylation
silences CDH13 (H-cadherin), a tumor suppressor, leading to
poor cell-cell adhesion and accelerated epithelial—
mesenchymal transition (EMT), which aids tumor invasion
and metastasis [23] [24]. COL1A1 (Collagen Type I Alpha 1
Chain), a major structural component of the extracellular
matrix (ECM), contributes to stromal remodeling by
increasing ECM stiffness, activating integrin; FAK signaling,
and promoting LUAD cell migration. Recent studies have
identified COL1A1 as a prognostic biomarker signature in
LUAD [25]. In addition, AKT3, a major node in the
PI3K/AKT oncogenic axis, improves tumor-cell survival,
metabolic plasticity, and apoptosis resistance. Prognostic
investigations of AKT isoforms have shown its dysregulation
in LUAD [26]. LUAD is linked to uncontrolled proliferation
and poor outcomes due to the loss or epigenetic silencing of
the tumor suppressor CDKN2A (pl67INK4A), which
governs G1-S cell-cycle progression. BCL2L11 (BIM), a pro-
apoptotic mediator of the intrinsic mitochondrial system, is
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essential to programmed cell death. Reduced BIM expression CTDSPL,
promotes tumor persistence and therapeutic resistance, CDK7
especially in EGFR-mutated LUAD. MYL9 (Myosin Light GO:00 | 114/4895 114 0.00 BCL2L11,
Chain 9), a regulator of cytoskeletal contractility and cell 07160 CDH13,
motility, supports actin—-myosin dynamics that drive CDK3,
metastatic dissemination. Recent studies indicate that MYL9 - CDRN2A
. . GO:00 185/4895 185 0.00 CD24,
is down-regulated in ngn-small-cell lung cancer (NSCLC) 43410 ADAMS,
and may suppress EMT in lung cancer cells [27]. These genes SORBS3,
constitute a cohesive network of biological processes; EMT, SPRY?2,
ECM remodeling, PI3K/AKT signaling, cell-cycle RAMP3
dysregulation, apoptosis evasion, and cytoskeletal GO:00 | 203/4895 203 0.00 SH2D3C,
reorganization, that closely match LUAD development 07264 SH2D3A,
molecular pathways [28]. CDHI3,

These gene-level findings reveal that the categorization RASA4,
approach prioritized statistically important, physiologically WASF2
relevant, and mechanistically integrated LUAD pathogenesis TABLE 5
genes. KEGG pathway analysis verified these genes' KEGG PATHWAY ENRICHMENT ANALYSIS RESULTS
participation in carcinogenic processes such as ECM; receptor D GeneRatio | Count | p.adjust | LeadingGenes
interaction, focal adhesion, PI3K/AKT signaling, Rapl hsa04820 0.042 105 1.00e- | MYL9, NEBL,
signaling, and the cell cycle (Table 5). The enrichment of 07 LDB3,
neutrophil extracellular trap (NET) creation pathways COL1A1,
(hsa04613) shows tumor-intrinsic transcriptional programs COL1A2
and the inflammatory tumor microenvironment may interact, hsa04613 0.035 87 4.50e- | AKTS3, PPIF,

a mechanism increasingly linked to LUAD aggressiveness. 06 ATG7,
The enrichment patterns show that the GPC model's }Cllz“gg; ¢
discriminative genes exhibit physiologically cqherent 15204110 0.029 = 540c. | CDK4, CDK,
pathways that match LUAD molecular pathophysiology. 06 CDKNIA,
CDH13, COL1A1, AKT3, CDKN2A, BCL2L11, and MYL9 CDKN2A.,
are promising biomarker validation candidates, consistent NDC80
with prior LUAD biomarker panels and molecular hsa04517 0.048 120 1.38e- AKT3,
investigations. 05 CLEC4M,
MYLO,
. TABLE 4 VAV3,
GO RESULT: BIOLOGICAL PROCESS OF GPC CLASSIFICATION GENE ARPCIA
POLYNOMIAL KERNEL hsa04510 | 0.032 81 | 529 AKT3,

GO GeneRatio | Count | p.adjust | LeadingGenes 04 LAMC3,

D MYL9,
GO:00 175/4895 175 0.00 BCL2L11, VAV3,
31589 CDH13, COLI1A1

SORBS3, hsa04512 0.016 40 2.06e- LAMC3,
CDKS5, 03 COLI1A1,
CDKN2A COLI1A2,
GO:00 156/4895 156 0.00 ADAMS, COL4A3,
30198 ANGPTL7, COL4A4
RAMP2,
FBLNS,
PRDX4 IV. CONCLUSION
GO:00 | 156/4895 156 0.00 ADAMS, This study developed and compared Support Vector
43062 API{\IAG]\}EIZJ Machine (SVM) and Gaussian Process Classification (GPC)
FBLNS. models to differentiate between tumor and normal lung
PRDX4 tissues utilizing the GSE151101 dataset. The GPC model
GO:00 | 184/4895 184 0.00 SH2B3, utilizing a polynomial kernel exhibited superior performance,
42060 CDKNIA, attaining a test accuracy of 97.92% and an Fl-score of
MYL9, VAV3 97.96%. Repeated 10x10 cross-validation demonstrated that
GO:19 | 192/4895 192 0.00 CDK4, this model exhibited both accuracy on a single test split and
01987 PSMES3, statistical stability, achieving one of the lowest variability
CDKS, metrics among the assessed models (mean CV accuracy =

Classification of Tumor and Normal Tissue Gene Expression in Lung Adenocarcinoma Using Support Vector Machine and
Gaussian Process Classification (Rahmadi Yotenka, Adhitya Ronnie Effendie, Rohmatul Fajriyah)



3750 e-ISSN: 2548-6861
96.88%, SD = £1.97%, CV = 2.03%). The findings adenocarcinoma,” Sci. Rep., vol. 14, no. 1, p. 17460, July 2024, doi:
demonstrate the effectiveness of GPC-Polynomial in 10.1038/541598-024-68111-5.

managing high-dimensional microarray data when compared
to linear SVM and GPC-RBF.The biological analysis
indicated that the discriminative genes selected by the optimal
model are closely associated with established mechanisms of
LUAD pathogenesis. Gene Ontology (GO) analysis revealed
enrichment in epithelial-mesenchymal transition (EMT),
wound healing, extracellular matrix (ECM) remodeling, cell—
substrate adhesion, and cell-cycle regulation; essential
processes that contribute to tumor migration, invasion, and
uncontrolled proliferation. Several genes, including CDH13,
CDKN2A, BCL2L11, MYL9, and SORBS3, play important
roles in these pathways. KEGG pathway enrichment analysis
corroborated this finding by identifying participation in focal
adhesion, ECM-receptor interaction, PI3K/AKT signaling,
cell-cycle progression, and neutrophil extracellular trap
formation (NETs). Pathways are influenced by genes
including AKT3, CDK4, CDK7, COL1A1, COL1A2, and
LAMC3, which recent studies on LUAD have identified as
factors contributing to tumor aggressiveness and
microenvironmental remodeling.

The results indicate that Gaussian Process Classification
utilizing a polynomial kernel is an effective and stable method
for modeling high-dimensional transcriptomic data.
Nonetheless, the implementation of this method requires
careful interpretation from a translational perspective. The
identified genes, namely CDHI13, CDKN2A, BCL2LI11,
MYL9, COL1A1, and AKT3, exhibit biological significance
and potential as biomarkers for LUAD. However, their
application in clinical diagnostics necessitates comprehensive
validation across independent cohorts, assessment of inter-
population  variability, evaluation of cross-platform
robustness (microarray versus RNA-seq), and standardization
in laboratory practices. This study should not be seen as a
useful diagnostic tool, but rather as a computational
framework for finding biomarkers and coming up with new
ideas.This research advances the methodology of machine
learning in transcriptomic classification and offers
biologically relevant insights into the molecular mechanisms
of LUAD. Future research should include multi-center
datasets, prospective validation, and integrative modeling to
facilitate the translation of these findings into clinical
practice.
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