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 Understanding the mechanisms of infectious disease spread is a fundamental 

prerequisite for any control, management, or eradication strategy. This 

understanding relies on the rigorous integration of biological knowledge, 

mathematical tools, and computational resources, which enable in-depth analysis, 

the formulation of approximate numerical solutions, and the simulation of the 

temporal evolution of the pathological phenomenon. In this study, we develop an 

SEIR-type compartmental model to represent the transmission dynamics of Mpox, 

taking into account a metapopulation structure between two interconnected 

geographical areas, designated as patches 1 and 2. This model allows us to integrate 
the effects of interregional mobility on the spread of infection. The SageMath 

environment (version 9.3) was used to simulate viral dynamics within each patch, 

incorporating migration flows between the two regions. The system equilibria were 

determined and adjusted based on available data. The analysis focused on calculating 

the basic reproduction number, studying the stability of equilibria, and evaluating 

parameter sensitivity. The results suggest a gradual extinction of the disease in both 

patches, under certain conditions relating to mobility and recovery rates. Finally, this  

investigation highlights the relevance of SageMath software as a powerful tool for 

exploring and simulating spatially structured epidemiological models, with the 

ability to adapt to a variety of contexts and pathologies. 
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I.  INTRODUCTION 

Since the beginning of the 20th century, compartmental 

modeling has established itself as an essential tool for 

studying infectious diseases. Introduced by Ross's seminal 
work on malaria, then developed by Hammer and formalized  

by Kermack and McKendrick[1], [2]  through the SIR model, 

this approach has gradually evolved towards more complex 

structures, such as the SEIR model, in order to better represent 

diseases characterized by an incubation period. 

These models, translated into systems of ordinary differential 

equations (ODEs), make it possible to analyze transmission 

dynamics transmission, assess stability conditions, and 

determine critical thresholds for propagation. 

Mpox, formerly known as monkeypox, is a re-emerging viral 

zoonosis whose history is closely linked to Central Africa, 

with the DRC alone reporting nearly 85% of known cases. 

This country has experienced several epidemics, the most 

significant of which occurred in the Katako-Kombe Health 

Zone in the Sankuru district (Kasaï Oriental province) [3] 

between 1996 and 1997, with 511 suspected cases reported. 

After the first human case of MPOX was identified in 1971 in 

a child in the DRC, cases of this disease were observed 

sporadically among people who had been in direct contact 
with infected animals. Most authors agree that after 30 years 

after the cessation of smallpox vaccination campaigns, there 

has been a significant resurgence of MPOX cases in several 

tropical regions, including the DRC, which is beginning to 

pose a real public health problem. This has sparked renewed 
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interest in the disease, which has been the subject of several 

research projects since the late 1990s. According to studies on 

recent MPOX epidemics, more than 90% of MPOX patients 

are under the age of 30 and have therefore not been vaccinated 

against smallpox because they were born after 1980. 

Historically and culturally, the provinces of the DRC are 

rural areas with a strong dependence on hunting and 

agriculture. Infectious disease outbreaks have had a 
significant impact on local communities. Hunting practices, 

interactions with wildlife, and unprotected human contact 

may play a role in the transmission of MPOX; hunters, 

farmers, and rural communities are susceptible to catching 

and transmitting the virus. This context is essential for 

understanding the dynamics of the MPOX epidemic and for 

developing strategies adapted to the local reality. Recurrent 

outbreaks observed in the country, sometimes in densely 

populated urban areas, highlight the importance of 

appropriate mathematical tools to anticipate and control its 

spread.In this work, we consider an SEIR compartmental 
model, enriched with a metapopulation structure between two 

interconnected regions (patches 1 and 2). This framework 

allows us to take into account the effects of interregional 

mobility on transmission dynamics by simulating population 

exchanges that may influence the persistence or extinction of 

the disease.[4] 

The numerical resolution of the system is performed using 

the free software SageMath (version 9.3), which integrates 

scientific libraries such as NumPy, SciPy, Seaborn, and 

Matplotlib. This environment provides a unified platform for 

symbolic and numerical calculations, facilitating the 

calculation of equilibrium points, the basic reproduction 

number 𝑅0 ,as well as stability and sensitivity analysis of the 

parameters. 

The results obtained highlight the conditions under which 

Mpox can gradually disappear in both patches, depending on  

mobility dynamics and recovery rates. This study thus 

illustrates the relevance of compartmental modeling and the 

effectiveness of SageMath for the analysis and simulation of  

multi-regional epidemiological models, with significant 

added value for the Congolese context. 

 

II. MATHEMATICAL FORMULATION 

 

Mathematical modeling of infectious diseases is a 

fundamental tool for understanding transmission dynamics, 

anticipating epidemic developments, and guiding public 

health policies. Among the most widely used compartmental  

models, the SEIR [2] (Susceptible–Exposed–Infectious–

Recovered) model represents the key stages of infection, 

taking into account the incubation period before 

contagiousness. However, real-world epidemiological 

contexts are rarely homogeneous. Geographical disparities, 

differences in access to healthcare, social behaviors, and 
population mobility strongly influence the spread of 

pathogens. To better capture this heterogeneity, it is relevant 

to extend the classic SEIR model to a multi-patch structure, 

where each patch represents a distinct geographical or social 

area, interconnected by migratory flows. 

In this study, we propose a mathematical formulation of the 

two-patch SEIR model, incorporating the effects of natural 

mortality, demographic recruitment, and inter-patch mobility. 

Each compartment (susceptible, exposed, infectious, 

recovered) is modeled separately for each patch, with specific 

parameters for transmission (𝛽𝑖), progression (𝛼𝑖), andhealing 

(𝛾𝑖), and migration (𝑚𝑖𝑗). The resulting system allows us to 

analyze the combined impact of local dynamics and spatial 

interactions on the evolution of the epidemic.[6] 

This approach provides a flexible framework for 

calibration based on field data, simulation of intervention 

scenarios, and study of the stability of epidemic equilibria. It 

is part of a contextualized modeling approach, adapted to the 

health realities of territories with high structural variability, 

such as those observed in the Democratic Republic of Congo 
or in other regions with fragmented health systems. [7] 

 

A. Epidemiological assumptions leading to the multi-

patch SEIR model 

Consider a population of size N in two different patches. 

With interaction 𝑚𝑖𝑗  between patches. And a set of people 

interacting in a single patch using a deterministic 

compartmental model (SEIR). With 𝑚𝑖𝑗 , the inter-patch 

movement rate matrices, and  X = {S,E,I,R}.  [5] 

 

We consider a population distributed across two 

interconnected geographical zones (patches 1 and 2). Each 

individual belongs to one of the four compartments of the 

SEIR model: Susceptible (S), Exposed (E), Infectious (I), and 

Recovered (R). 

 

In our modeling approach, animals remain localized in their 

respective areas. This assumption, although simplistic, is 

based on empirical and historical evidence: inter-patch 
movement of animals is considered negligible, in accordance  

with observations reported by Ejercito and Urbino, as well as  

Russell and Santiago. Let us further assume that the time it 

takes for humans to travel is very small compared to the 

incubation period and demographics, so that humans do not 

change their epidemiological status during travel and the 

duration of the latency period: approximately 5 to 21 days 

before the onset of symptoms. 

 

1. Spatial heterogeneity of contacts 

Individuals are not evenly distributed: transmission rates 

𝛽𝑖  vary across areas (patches) due to density, social behaviors, 

or access to healthcare. For  i= 1,2 

 

2. Inter-patch mobility 

Movement between geographical areas influences 

propagation: migration rates 𝑚𝑖𝑗  model this 
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mobility.Migration flows can be asymmetrical (e.g., rural[9] 

exodus or seasonal movements).  

 

3. Differentiated progression of infection 

The rate of transition from exposed to infectious  (𝛼𝑖) depends 

on local factors: nutrition, comorbidities, detection times 

 

4. Constant or seasonal recruitment 

𝛬𝑖 recruitment can represent births or arrivals in the 

population (e.g., return of migrants). It is often assumed to be 
constant for simplicity, but can be modulated. 

 

5. Natural mortality independent of disease 

rate d is introduced for reflect the dynamics System of 

differential equations demographic system outside of an 

epidemic (aging, accidents,etc.). This makes it possible to 

better isolate the impact of the disease on the population [10] 

[11] 

 

6. Local recovery dependent on the healthcare System 

The recovery rate varies depending on access to care, 𝛾𝑖 

availability of treatments, and the responsiveness of local 

authorities 

 

7. No immediate reinfection 

Recovered individuals move into 𝑅𝑖 and do not immediately 

return to 𝑆𝑖 , which is consistent with diseases with temporary  

or lasting immunity. 

 

8. Incidence function 

The transmission of infection in each patch i is modeled by a 

bilinear incidence function of the form  

 

𝐹𝑖 (𝑆𝑖, 𝐼𝑖) = 
𝛽𝑖 𝐼𝑖

𝑁
          Pour i= 1,2 

 

The overall dynamics of the epidemiological model are 

therefore given by the following system of 

differentialequations 

 

 
Figure 1 Mpox diagram 

Compartment 

𝑆𝑖(t) : susceptible individuals in patch i 

𝐸𝑖(t) : exposed individuals (infected but not yet infectious) in  

patch i 

𝐼𝑖(t): infectious individuals in patch i 

𝑅𝑖(t) : recovered individuals in patch i 
 

System of differential equations 

 
𝑑𝑆𝑖

𝑑𝑡
= 𝛬𝑖 − 𝛽𝑖𝑆𝑖𝐼𝑖 − 𝑑𝑆𝑖 −  𝑚𝑖𝑗𝑆𝑖 +  𝑚𝑗𝑖𝑆𝑖 

  
𝑑𝐸𝑖

𝑑𝑡
= 𝛽𝑖𝑆𝑖𝐼𝑖 − 𝛼𝑖𝐸𝑖  − 𝑑𝐸𝑖 − 𝑚𝑖𝑗𝐸𝑖 + 𝑚𝑗𝑖𝐸𝑖 

(1) 
𝑑𝐼𝑖

𝑑𝑡
= 𝛼𝑖𝐸𝑖 − 𝛾𝑖𝐼𝑖  − 𝑑𝐼𝑖 −  𝑚𝑖𝑗𝐼𝑖 +  𝑚𝑗𝑖𝐼𝑖 

 
𝑑𝑅𝑖

𝑑𝑡
= 𝛾𝑖𝐼𝑖  − 𝑑𝑅𝑖 −  𝑚𝑖𝑗𝑅𝑖 +  𝑚𝑗𝑖𝑅𝑖 

 

 
System (1) is solved under the following initial conditions : 

  

(𝑆𝑖 (0), 𝐸𝑖 (0), 𝐼𝑖 (0), 𝑅𝑖 (0))  ≥ 0        (2) 

 

For  i= 1,2 

 
TABLE I 

TABLE DESCRIBING THE VARIABLES 

 

Par. Description 

𝜷𝟏 Transmission rate in patch 1 

𝜷𝟐 Transmission rate in patch 2 

𝛼1 Rate of progression from exposed to infectious 

state in patch 1 

𝛼2 Rate of progression from exposed to infectious 

state in patch 2 

𝛾1 Recovery rate in patch 1 

𝛾2  Recovery rate in patch 2 

d Natural mortality rate 

𝜦𝟏 Recruitment rate (births or immigration 

in each patch 1) 

𝜦𝟐 Recruitment rate (births or immigration 

in each patch 2) 

𝑚12 Migration rate from patch 1 to patch 2 

𝑚21 Migration rate from patch 2 to patch 1 

 

Notes 1. 

 

The terms 𝑚𝑖𝑗   model mobility between the two patches.  

Recruitmen 𝛬𝑖  is assumed to be constant and identical in the 

two patches, but it can be adapted 𝛬1 𝑎𝑛𝑑 𝛬2 if necessary. 

The system is coupled by migration terms, which allows us to 

study the impact of mobility on the dynamics ofthe epidemic. 
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III. MATERIALS AND METHODS 

 

The SEIR model considered in this study is formalized by 

a system of ordinary differential equations (ODEs), as shown 

in equation (1) and illustrated in Figure 1. The model diagram 

was generated using GeoGebra software (version 6.0.848.0) 

on a machine equipped with a 1.10 GHz Intel Celeron N4020 

processor, 6 GB of RAM, a 932 GB SSD (LS 1TB M300), 
and an Intel UHD Graphics 600 (128 MB) graphics card, 

running on a 64-bit operating system.  

 

All numerical analyses were performed using SageMath 

(version 9.3). This software allowed us to : 

 

 Calculation of the system's equilibrium points; 

 Estimating the basic reproduction number (𝑅0) ; 

 Simulation of equilibrium stability; 

 Sensitivity analysis of parameters influencing 

𝑅0. 

The data used for model adjustment and validation were 
obtained from the Ministry of Public Health, Hygiene, and 

Social Action, the National Institute for Biomedical Research 
[6], complementary scientific sources. 

 

IV.  RESULTS AND DISCUSSION 

 

A. Results 

This section examines the fundamental properties of the 

SEIR [10] model applied to Mpox. It addresses successively : 

 

 the positivity of the solutions, 

 the boundedness of trajectories, 

 invariance of the admissible domain, 

 the equilibrium of the system, 

 the basic reproduction number 𝑅0, 

 and the stability of equilibrium states. 

 

1. Consider the following compact invariant domain : 

Ω = { (𝑆𝑖 , 𝐸𝑖 , 𝐼𝑖 , 𝑅𝑖 ) ∈ 𝑅+
8  : 0 < 𝑁 ≤  

𝛬

𝑑+ 𝑚21− 𝑚12
}        (3) 

 

for i= 1,2 

 

Theorem1. The system model (1) is well established both 

biologically and mathematically. [12] 
 

Proof: We demonstrate this theorem step by step. 

Step 1:  

We show that system (1) has a unique solution. The functions 

of system (1) are of class  𝐶1, so they are continuous in an 

open ball containing the initial conditions  

(𝑆𝑖(0),𝐸𝑖(0), 𝐼𝑖(0), 𝑅𝑖(0)) and are locally Lipschitz, so there 

exists a unique local maximum solution for system (1) in  Ω. 

for i= 1,2 

 

Step 2 :  

We show that the solutions to system (1) are  

positive. Starting from system (1), we have : [12] 

  

 
dSi

dt
│(Si = 0)(Ei, IiRi ) > 0 = Λi 

 
dEi

dt
│(Ei = 0)(Si, IiRi ) > 0 = βiSiIi 

 
dIi

dt
│(Ii = 0)(Si, EiRi ) > 0 = αiEi 

 

 
dRi

dt
│(Ri = 0)(Si, EiIi ) > 0 = γiIi 

 

for i= 1,2 

 

We can conclude that all solutions of the system (1) are 

positive. 
 

Step 3.  

By adding the equations of system (1), we obtain 

 

N =   𝑁1 + 𝑁2 

    = 𝑆1 + 𝐸1 +  𝐼1 + 𝑅1  +  𝑆2 + 𝐸2 + 𝐼2 + 𝑅2  

    = 𝛬  - (𝑑 +  𝑚21 −  𝑚12) 𝑁  

 

Which implies 
 

N(t) ≤ ( 
𝛬

𝑑+ 𝑚21− 𝑚12
 – (

𝛬

𝑑+ 𝑚21− 𝑚12
 – N(0))𝑒(𝑑+ 𝑚21− 𝑚12)𝑡  )    

 
Using the constant variation formula, we get. 

 

lim
𝑡 →∞

𝑆𝑢𝑝(𝑡) = 
𝛬

𝑑+ 𝑚21− 𝑚12
         (4) 

 

Thus, N(𝑡) = 
𝛬

𝑑+ 𝑚21− 𝑚12
. This allows us to conclude that, the  

set of solutions {(𝑆𝑖(t) , 𝐸𝑖(t), 𝐼𝑖(t), 𝑅𝑖(𝑡) ) }  is bounded ins 
Ω, i.e 

 

Ω = { (𝑆𝑖,𝐸𝑖, 𝐼𝑖, 𝑅𝑖 ) ∈ 𝑅+
8  : 0 < 𝑁 ≤  

𝛬

𝑑+ 𝑚21− 𝑚12
} 

 

for i= 1,2 

 

Therefore, all solutions of system (1) are bounded in the 

Region Ω which attracts all solutions in 𝑅+
8  

 

Given all this, we conclude that for the initial condition 

(S(0),E(0),𝐼(0),𝑅(0)) contained in the positively invariant 
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Domain  Ω, le système (1) admits a unique, non-negative 

solution. 

 

2.  Disease Free Equilibrium (DFE) and basic  

reproduction number  (𝑅0)  

Model  (1) admits two equilibrium points, namely: the 

disease-free equilibrium point 𝑋0 which appears in the 

absence of any infection, i.e.  (𝐸=0, 𝐼=0), and the endemic 

equilibrium 𝑋∗ which appears in the presence of infection, i.e.  

(𝐸≠0, 𝐼≠0 ). [13] 
 

À partir de ce qui précède, l'équilibre sans maladie est donné 

par  

 

𝑋0 = ( 𝑆0, 𝐸0, 𝐼0, 𝑅0 ) = ( 
𝛬

𝑑+ 𝑚21− 𝑚12
, 0,0,0)    (5) 

 

and the endemic equilibrium point is given by 

 

𝑋∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) 

Where 

 

𝑆∗ = (𝛬𝑖 −  𝛽𝑖   𝐼𝑖
∗) / ( 𝑑 + 𝑚21 −  𝑚12) 

𝐸∗ = ( 𝛽𝑖𝑆𝑖
∗𝐼𝑖

∗) / ( 𝑑 +  𝑚21 −  𝑚12)           (6) 

𝑅∗ = ( 𝛾𝑖𝐼𝑖
∗)  / ( 𝑑 +  𝑚21 −  𝑚12) 

 

for i= 1,2  

 

Note 2.  

 

Considering the equations 𝑆∗ à 𝑅∗, if 𝐼∗=0, we obtain the 

equilibrium without disease 𝑋0. 
 

 

3. Basic reproduction number 

A crucial indicator of infectious diseases is the number 

basic reproduction number (𝑅0), defined as the average 
number of secondary cases that a typical infectious individual 

produces when introduced into a population composed 

entirely of susceptible individuals. It is calculated using the 

van den Driessche [12] algorithm. After calculation in 

SageMath, we obtain the new infection production matrix F 

and the transition matrix   and the inverse of the 𝑉−1. [14] 

 

 

 

 

      F    = 

 
 

 

 

 

 

 

 

V =   

 

 

 

 

 
With  

𝑥 = 𝛼1 + 𝑑1 

𝑦 = 𝑚12 − 𝑚21 
 

And 

 

 

 

 

 

𝑉−1 =   

 

 

 

 

 

 

Thus, the basic reproduction number obtained from the 

pectral radius of the new generation matrix (𝑅0 =𝐹𝑉−1) is 

therefore 

 

 

 
 

 

𝑅0  = 
 

 

 

 

 

 

If   

A = 2𝛼1 −  𝑑1 ,  

B = 𝛼2 −  𝑑1
2       

C = 𝑚12𝑚21       

and 

𝑘1 = 𝑑1
2 +  𝑚12

2 − 𝑚21
2  

𝑘2 =  𝑚12 −  𝑚21 

𝑘3 = 4𝛼1 +  2𝑑1 

 𝑘4 = 𝑚12
2 +   𝑚21

2  

Then 
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𝑅0 =

ρ (
𝛬 𝛼2𝛽2

 𝛼1
2𝑑1+(𝑘1)𝐴−(𝑘2)𝐵 +(𝑘3+3(𝑘2))𝐶 −𝑘4

, ,

𝛬 𝛼1𝛽2

 𝛼1
2𝑑1+(𝑘1)𝐴−(𝑘2)𝐵 +( 𝑘3+3(𝑘2))𝐶 −𝑘4

, 0,0 ) 

 
 

TABLE II 

PARAMETERS AND THEIR VALUE 

 

Parameter Values Reference 

𝛬2 0.05 [3] 

𝛾1 0.03 [3] 

𝛼2 0.40 [3] 

𝛽1 0.60 [15] 

𝛽2 0.60 [15] 

𝛼1 0.50  [3] 

𝛾2 0.03 [3] 

d 0.1 [16] 

𝛬1 0.05 [3] 

𝑚12 0.00009 [16] 

𝑚21 0.00015 [16] 

 

Thus 
 

𝑅0 = max {0.352, 0.441, 0,0} 

 

𝑅0 ≈  0.44 
 

 

Part of the basic reproduction number 𝑅0 is represented as 

a function depending on the parameters 𝛼𝑖  𝑎𝑛𝑑 𝛽2 identified 

as the most decisive in the evolution of 𝑅0.  
 

In order to illustrate the impact of these parameters on  

the behavior of the model, the SageMath code below 

can be used to generate the corresponding curves, 

 

 
 

Figure 2, Evolution of the profile as a function of the value of β2 

 

 
Figure 3, Evolution of the profile as a function of the value 𝑜𝑓 𝛼2 

 

 
 

Figure 4, Evolution of the profile as a function of the value 𝑜𝑓 𝛼1 

 

 

4.  Global stability of the DFE 

The equilibrium without disease 𝑋0 is studied in this 
subsection using the method developed by. Based on this 

method, system (1) is rewritten as system (7) below. [17], [18] 

 
𝑑𝐴1

𝑑𝑡
= 𝑓1(𝐴1, 𝐴2) 

(7) 
𝑑𝐴2

𝑑𝑡
= 𝑓2(𝐴1, 𝐴2),     𝑓2(𝐴1, 0), 

 

Where 𝐴1 represents the non-infectious compartments, 

𝐴1= (𝑆𝑖 , 𝑅𝑖 ) ∈ 𝑅+
4  and  𝐴2   representthe infectious 

compartments, 𝐴2= (𝐸𝑖 , 𝐼𝑖 ) ∈ 𝑅+
4  The equilibrium point 

without Mpox is given in this case by𝑋0=(𝐴1
0,0) and will be 

globally asymptotically stable (GAS) for 𝑅0<1, if the two 

conditions below are satisfied: 

 

1. for  
𝑑𝐴1

𝑑𝑡
= 𝑓1(𝐴1, 0) where (𝐴1

0,0) is and globally 

asymptotically stable (GAS) 

2. 𝑓2(𝐴1, 𝐴2) = 𝐺𝐴2 −  𝑓(𝐴1, 𝐴2) 

𝑊ℎ𝑒𝑟𝑒 𝑓(𝐴1, 𝐴2)  ≥ 0,
𝐹𝑜𝑟  𝑎𝑙𝑙 (𝐴1, 𝐴2) 𝑑𝑎𝑛𝑠 Ω 
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With 𝑍 = 𝐷𝐴2(𝐴1
0, 0) is M-matrix. 

 

Theorem 2.  The disease-free equilibrium points 𝑋0=(𝐴1
0,0) 

of model (1) are globally asymptotically stable (GAS) for  

𝑅0<1 if conditions 1 and 2 above are satisfied. [17] 

 Proof. Considering model  

 (1)  𝑓1(𝐴1, 𝐴2) et 𝑓2(𝐴1, 𝐴2)  

are defined as follows: 

  

 

 

𝑓1(𝐴1, 𝐴2) =   

 
 

 

and 

 

 

𝑓2(𝐴1, 𝐴2)  =  

 

 

 

From the above, we can easily show that 

𝑓2(𝐴1, 0)  = 0   

and 

 

 

𝑓1(𝐴1, 0) =   

 

 

 

Regarding condition 1, we have 

 

 

 

𝑑𝐴1

𝑑𝑡
= 𝑓1(𝐴1, 0)=    

 

 

By analytically solving system (8), and tending towards 

𝑡 → +∞, we obtain 

 

𝑆𝑖(𝑡) =  (
𝛬𝑖

𝑑 +  𝑚21 −  𝑚12

)  𝑎𝑛𝑑  𝑅𝑖(𝑡) = 0 

 

Where 𝑋0 = (
𝛬𝑖

𝑑+ 𝑚21− 𝑚12
, 0,0,0) is GAS for 

 

 
𝑑𝐴1

𝑑𝑡
= 𝑓1(𝐴1, 0).  

 

This satisfies the first condition 1. Now the second condition 

2 is also satisfied. Looking at the system (1), the matrices G 

and   𝑓(𝐴1, 𝐴2) can be written as  

 

 

 

G =  

 

 

 

and 

 

 

𝑓(𝐴1, 𝐴2)  = 

 

 

 

Since 0 ≤ 𝑆 ≤ 𝑁, (1− 
𝑆

𝑁
) ≥ 0, it is clear that G ≥ 0. We 𝑁 

also note that the matrix G is an M-matrix(all non-diagonal 

elements of G are non-negative). Since condition 2 is 

satisfied, this proves that   𝑋0 is globally asymptotically stable 

(GAS) for 𝑅0 < 1. 

5. Global stability of Endemic Equilibrium 

Theorem 3.  The endemic equilibrium 𝑋∗ of model (1) is 

globally asymptotically stable (GAS) when   𝑅0 >1.  [19] 

Preuve. Proof. Consider the differentiable function with value 

positive following : 

 

L = 1/2 [ (𝑆 - 𝑆1
∗) + (E - 𝐸1

∗) + (I - 𝐼1
∗) + (R - 𝑅1

∗) ] 2      (9) 

 

𝛬1 −  𝛽1𝑆1𝐼1 − 𝑑𝑆1 − 𝑚21𝑆1 + 𝑚12𝑆1 

𝛬2 − 𝛽2𝑆2𝐼2 − 𝑑𝑆2 −  𝑚12𝑆2 + 𝑚21𝑆2 

𝛾1𝐼1  − 𝑑𝑅1 − 𝑚21𝑅1 + 𝑚12𝑅1 

𝛾2𝐼2  − 𝑑𝑅2 −  𝑚12𝑅2 +  𝑚21𝑅2 

 

 
𝛽1𝑆1𝐼1 − 𝛼1𝐸1  − 𝑑𝐸1 − 𝑚21𝐸𝑖 + 𝑚12𝐸𝑖 

 
𝛽2𝑆2𝐼2 − 𝛼2𝐸2  − 𝑑𝐸2 − 𝑚12𝐸2 + 𝑚21𝐸2 

  
𝛼1𝐸1 − 𝛾1𝐼1  − 𝑑𝐼1 − 𝑚21𝐼1 + 𝑚12𝐼12

     
𝛼2𝐸2 − 𝛾2𝐼2  − 𝑑𝐼𝑖 −  𝑚12𝐼2 + 𝑚21𝐼2 

 

𝛬1 −  𝑑𝑆1 − 𝑚21𝑆1 + 𝑚12𝑆1 

𝛬2 −  𝑑𝑆2 − 𝑚12𝑆2 + 𝑚21𝑆2 

 −𝑑𝑅1 − 𝑚21𝑅1 + 𝑚12𝑅1 

 −𝑑𝑅2 − 𝑚12𝑅2 + 𝑚21𝑅2 

 

𝛬1 −  𝑑𝑆1 − 𝑚21𝑆1 + 𝑚12𝑆1 

𝛬2 −  𝑑𝑆2 − 𝑚12𝑆2 + 𝑚21𝑆2 

 −𝑑𝑅1 − 𝑚21𝑅1 + 𝑚12𝑅1 

 −𝑑𝑅2 − 𝑚12𝑅2 + 𝑚21𝑅2 
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The time derivative of L gives us 

 

𝑑𝐿

𝑑𝑡
=[ (𝑆 - 𝑆∗) + (E - 𝐸∗) + (I - 𝐼∗) + (R - 𝑅∗) ] 

𝑑

𝑑𝑡
(𝑆1 +  𝐸1 +

𝐼1 + 𝑅1     ) 

 

= [(𝑆1 +  𝐸1 + 𝐼1 + 𝑅1  ) + (𝑆1
∗ + 𝐸1

∗ + 𝐼1
∗ + 𝑅1

∗ )] 
𝑑

𝑑𝑡
(𝑆1 +

 𝐸1 + 𝐼1 + 𝑅1 ) 

 

= [(𝑆1 +  𝐸1 + 𝐼1 + 𝑅1  ) + (𝑆1
∗ + 𝐸1

∗ + 𝐼1
∗ + 𝑅1

∗ )] 

[(𝛬𝑖) −( 𝑑 + 𝑚21 −  𝑚12) (𝑆1 + 𝐸1 + 𝐼1 + 𝑅1 )]  

 

= [(𝑆1 +  𝐸1 + 𝐼1 + 𝑅1 ) - (𝑆1
∗ +  𝐸1

∗ + 𝐼1
∗ + 𝑅1

∗ )] [-(𝑆1 +  𝐸1 +
𝐼1 + 𝑅1 ) ( 𝑑 +  𝑚21 − 𝑚12) + (𝑆1

∗ +  𝐸1
∗ + 𝐼1

∗ + 𝑅1
∗ ) ( 𝑑 +

 𝑚12 −  𝑚21)] 

 

Let's set ( 𝑑 +  𝑚21 −  𝑚12)= ( 𝑑 +  𝑚12 − 𝑚21),  

we have: 

 

= [(𝑆1 +  𝐸1 + 𝐼1 + 𝑅1 ) - (𝑆1
∗ +  𝐸1

∗ + 𝐼1
∗ + 𝑅1

∗ )] [-(𝑆1 +  𝐸1 +
𝐼1 + 𝑅1 ) + (𝑆1

∗ + 𝐸1
∗ + 𝐼1

∗ + 𝑅1
∗ ) ] ( 𝑑 +  𝑚21 −  𝑚12) 

 

= - ( 𝑑 +  𝑚21 −  𝑚12) [(𝑆1 +  𝐸1 + 𝐼1 + 𝑅1 ) - (𝑆1
∗ +  𝐸1

∗ +
𝐼1

∗ + 𝑅1
∗ )]2 

 

Clearly, 𝑑𝐿/𝑑𝑡 is defined as negative.  

We can therefore conclude that the function chosen above is 

indeed a Lyapunov function.  

𝑑𝐿/𝑑𝑡=0 if and only if 𝑆=𝑆∗, 𝐸=𝐸∗, 𝐼=𝐼∗. 

It follows, according to LaSalle's invariance principle, that 

the largest invariant set in Ω is the singleton {𝑋∗}. This 

implies that the endemic equilibrium is GAS. 

 

6. Sensitivity analysis  

We will analyze the stability using the approach of 

Typically, in an epidemiological context, the definition of the 

basic reproduction number (𝑅0) refers to the epidemiological 

threshold including the value 1, where, if  𝑅0>1, an epidemic 

may occur, and if  𝑅0<1, the disease cannot establish it self, 

and an epidemic is not expected.  [20] 

This analysis identifies the most influential parameters. 

The following formula calculates the sensitivity of all the 

parameters that make up  𝑅0.  

 

𝜕𝑅0

𝜕𝜔
∗  

𝜔

𝑅0
        (10) 

 

Where 𝜔  is the parameter of 𝑅0.  

The sensitivity analysis is thus performed in SageMath and 

we have this results : 

TABLE III 

SENSITIVITY PARAMETERS 

 

Parameter Values 
using 

Sensibilité 
Values 

Interpretation 

β1 0.60 0.000 
Negligible 
impact 

β2 0.40 1.000 

Dominant 
parameter, 
priority control 

α1 0.50 -0.764 

Marked negative 

effect (reduced 
R0 acceleration) 

α2 0.03 -0.001 Very low impact 

Λ 0.10 1.000 

Dominant 
parameter, direct 
influence on R0 

m12 0.00009 0.0004 
Weak effect, 
asymmetrical 

m21 0.00015 -0.0007 
Weak effect, 
asymmetrical 

 

Numerical values are reported up to three decimal places. 

 

Readability: Both figures and tables are integrated into the 

text with explanations, making them not only legible but also 

contextually meaningful. The captions and references in the 

discussion section confirm their interpretability. 

In short, the visual elements meet academic standards: they 
are clear, precise, and support the mathematical and 

epidemiological analysis. 

 

This reveals that: 

 

The Parameters dominant: 

𝛽2 (Transmission rate in patch 2) and Λ (recruitment) are the  

most sensitive. These are priority levers for controlling the 

epidemic.  Effect of the progression: 𝛼1 has a marked negative 

effect, meaning that accelerating transition from exposed to 

infectious state in patch 1 reduced 𝑅0 — counterintuitive, but 

this may reflect a local dynamic where infected individuals 

are better cared for. Inter-patch mobility: the rates 𝑚12 and  

𝑚21 have a weak but asymmetric effect on𝑅0, highlighting 

the importance of the direction of migration flows. 

 



476               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  468 – 478 

 

Figure 5, Evolution of mpox over time  (𝑅0< 1) 
 

When the basic reproduction number 𝑅0 is less than 1, it 
means that each infected individual transmits thedisease to 

less than one person on average. In this context, the temporal 

evolution of mpox shows a gradual decline in the number of 

cases, reflecting a long-term trend toward the disappearance 

of the disease. This situation reflects the effectiveness of the 

control measures put in place—such as targeted vaccination, 

isolation of cases, and community awareness—which are 

successful in breaking the chains of transmission. The system 

then tends toward equilibrium without disease, confirming the 

overall stability of this state in the model. 

 

 
Figure 6, Evolution of susceptible individuals over time. (𝑅0< 1) 

 

 
Figure 7, Evolution of exposed individuals over time.  

(𝑅0< 1) 

 

Figure 8, Evolution of infectious individuals over time.(𝑅0< 1)  

 

Figures 6, 7, and 8: The majority of the population remains 

in the susceptible compartment, indicating low exposure to 

the disease and sustainable protection dynamics. The number 

of exposed individuals is rapidly decreasing, reflecting a 

break in the chain of transmission and slow progression 

toward infection. The infectious population is continuously 

decreasing, confirming that the disease is no longer actively 

spreading and is tending toward extinction. 

 

 
Figure 9, Evolution of susceptible individuals vs individuals recovered 

over time. (𝑅0< 1)  

 

Figure 10, Evolution of exposed individuals vs individuals recovered over 

time. (𝑅0< 1)  
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Figure 11, Evolution of infectious individuals vs individuals recovered 

over time. (𝑅0< 1).  

B. Discussion 

The use of a two-patch compartmental structure better 

captures the spatial heterogeneity observed in the spread of 

Mpox in the DRC. Unlike homogeneous models, this 

approach incorporates disparities in density, access to care, 

and social behaviors, providing a more accurate 

representation of local dynamics. Graphical analysis reveals 
epidemiological dynamics favorable to the extinction of 

Mpox in both patches. Figure 6 shows continued growth in 

the number of susceptible individuals, reflecting low 

exposure to infection and effective control measures. At the 

same time, Figures 7 and 8 show a rapid decline in exposed 

and infectious individuals, confirming the gradual 

interruption of the chain of transmission. [8] 

Numerical simulations highlight a progressive decline in 

prevalence when the basic reproduction number 𝑅0< 1. This 

result is consistent with classical epidemiological theory, 
confirming that disease extinction is achievable under 

conditions of sufficient recovery rates and controlled 

mobility. Graphical outputs further show that the majority of 

the population remains in the susceptible compartment, while 

exposed and infectious individuals decrease rapidly, 

reflecting the interruption of transmission chains. 

Sensitivity analysis emphasizes the dominant influence of 

the transmission rate β2 and recruitment Λ on epidemic 

persistence. These parameters emerge as priority levers for 

intervention, suggesting that surveillance and control 

measures should focus on regions with high transmission 

potential and demographic influx. Interestingly, the 
progression parameter α1 exhibits a negative sensitivity, 

indicating that accelerating the transition from exposed to 

infectious states may paradoxically reduce 𝑅0. This 

counterintuitive result underscores the importance of local 

healthcare responses, where rapid detection and management 

of infectious individuals can mitigate spread. 

Inter-patch mobility m12, m21 plays a secondary but 

asymmetric role, highlighting how directional migration 

flows—such as rural-to-urban movements—can subtly alter 

epidemic trajectories. This finding reinforces the need for 

coordinated surveillance across regions, particularly in areas 

with seasonal or economic migration patterns. 

From a methodological standpoint, the model is 

mathematically well-posed: solutions are positive, bounded, 

and biologically coherent. Stability analyses using Lyapunov 

[21] functions and LaSalle’s invariance principle confirm the 

robustness of both disease-free and endemic equilibria. These 

theoretical guarantees strengthen the legitimacy of the model 
as a decision-support tool for public health authorities. 

Nevertheless, certain limitations must be acknowledged. 

The assumptions of constant recruitment and absence of 

immediate reinfection simplify the dynamics but may not 

fully reflect real-world conditions. Incorporating 

stochasticity, age-structure, or larger multi-patch networks 

could enhance predictive accuracy. Moreover, calibration 

with finer empirical data would improve the model’s 

applicability to specific provinces and outbreak scenarios. 

In conclusion, this study demonstrates that compartmental 

models enriched with spatial heterogeneity can provide 
actionable insights for epidemic control. In the case of Mpox 

in the DRC, the findings advocate for interventions focused 

on transmission hotspots, demographic surveillance, and 

interregional coordination. Beyond Mpox, the proposed 

framework offers a versatile foundation for analyzing other 

zoonotic or vector-borne diseases in fragmented health 

systems. 

 

V.  CONCLUSION 

This study formalized and analyzed a two-patch SEIR 

compartmental model, integrating the effects of interregional  

mobility on the transmission dynamics of Mpox in the 

Democratic Republic of Congo. The multi-patch structure 

proved particularly relevant for capturing the spatial 

heterogeneity of health, social, and demographic contexts, 

while offering flexibility for calibration using local data. 

The results confirm the mathematical validity of the model, 

with positive, bounded, and biologically consistent solutions. 

Stability analysis shows that the extinction or persistence 
of the epidemic strongly depends on the basic reproduction 

number  R0, which is itself influenced by key parameters such 

as transmission and progression rates. The sensitivity of the 

model to these parameters highlights the importance of 

targeted surveillance and differentiated intervention 

depending on the area. 

The use of SageMath as a simulation environment has 

proven to be effective, accessible, and reproducible, 

strengthening local capacity to explore complex 

epidemiological scenarios. This work thus paves the way for 

contextualized modeling capable of supporting decision-
makers in designing control strategies adapted to the realities 

of the Congo. 

Finally, beyond Mpox, the proposed framework can be 

extended to other vector-borne or zoonotic diseases in 

contexts with high geographical variability. It provides a 
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promising basis for the development of public health decision 

support tools, combining mathematical rigor, local  

relevance, and digital accessibility. 
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