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Understanding the mechanisms of infectious disease spread is a fundamental
prerequisite for any control, management, or eradication strategy. This
understanding relies on the rigorous integration of biological knowledge,
mathematical tools, and computational resources, which enable in-depth analysis,
the formulation of approximate numerical solutions, and the simulation of the
temporal evolution of the pathological phenomenon. In this study, we develop an
SEIR-type compartmental model to represent the transmission dynamics of Mpox,
taking into account a metapopulation structure between two interconnected
geographical areas, designated as patches 1 and 2. This model allows us to integrate
the effects of interregional mobility on the spread of infection. The SageMath
environment (version 9.3) was used to simulate viral dynamics within each patch,
incorporating migration flows between the two regions. The system equilibria were
determined and adjusted based on available data. The analysis focused on calculating
the basic reproduction number, studying the stability of equilibria, and evaluating
parameter sensitivity. The results suggest a gradual extinction of the disease in both
patches, under certain conditions relating to mobility and recovery rates. Finally, this
investigation highlights the relevance of SageMath software as a powerful tool for
exploring and simulating spatially structured epidemiological models, with the

ability to adapt to a variety of contexts and pathologies.

This is an open access article under the CC—BY—S Iicese.

|I. INTRODUCTION

Since the beginning of the 20th century, compartmental

modeling has established itself as an essential tool for
studying infectious diseases. Introduced by Ross's seminal
work on malaria, then developed by Hammer and formalized
by Kermack and McKendrick[1], [2] through the SIR model,
this approach has gradually evolved towards more complex
structures, such as the SEIR model, in order to better represent
diseases characterized by an incubation period.
These models, translated into systems of ordinary differential
equations (ODEs), make it possible to analyze transmission
dynamics transmission, assess stability conditions, and
determine critical thresholds for propagation.

Mpox, formerly known as monkeypox, is a re-emerging viral
zoonosis whose history is closely linked to Central Africa,
with the DRC alone reporting nearly 85% of known cases.
This country has experienced several epidemics, the most
significant of which occurred in the Katako-Kombe Health
Zone in the Sankuru district (Kasai Oriental province) [3]
between 1996 and 1997, with 511 suspected cases reported.
After the first human case of MPOX was identified in 1971 in
a child in the DRC, cases of this disease were observed
sporadically among people who had been in direct contact
with infected animals. Most authors agree that after 30 years
after the cessation of smallpox vaccination campaigns, there
has been a significant resurgence of MPOX cases in several
tropical regions, including the DRC, which is beginning to
pose a real public health problem. This has sparked renewed
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interest in the disease, which has been the subject of several
research projects since the late 1990s. According to studies on
recent MPOX epidemics, more than 90% of MPOX patients
are under the age of 30 and have therefore not been vaccinated
against smallpox because they were born after 1980.

Historically and culturally, the provinces of the DRC are
rural areas with a strong dependence on hunting and
agriculture. Infectious disease outbreaks have had a
significant impact on local communities. Hunting practices,
interactions with wildlife, and unprotected human contact
may play a role in the transmission of MPOX; hunters,
farmers, and rural communities are susceptible to catching
and transmitting the virus. This context is essential for
understanding the dynamics of the MPOX epidemic and for
developing strategies adapted to the local reality. Recurrent
outbreaks observed in the country, sometimes in densely
populated urban areas, highlight the importance of
appropriate mathematical tools to anticipate and control its
spread.In this work, we consider an SEIR compartmental
model, enriched with a metapopulation structure between two
interconnected regions (patches 1 and 2). This framework
allows us to take into account the effects of interregional
mobility on transmission dynamics by simulating population
exchanges that may influence the persistence or extinction of
the disease.[4]

The numerical resolution of the system is performed using
the free software SageMath (version 9.3), which integrates
scientific libraries such as NumPy, SciPy, Seaborn, and
Matplotlib. This environment provides a unified platform for
symbolic and numerical calculations, facilitating the
calculation of equilibrium points, the basic reproduction
number Ry ,as well as stability and sensitivity analysis of the
parameters.

The results obtained highlight the conditions under which
Mpox can gradually disappear in both patches, depending on
mobility dynamics and recovery rates. This study thus
illustrates the relevance of compartmental modeling and the
effectiveness of SageMath for the analysis and simulation of
multi-regional epidemiological models, with significant
added value for the Congolese context.

Il. MATHEMATICAL FORMULATION

Mathematical modeling of infectious diseases is a
fundamental tool for understanding transmission dynamics,
anticipating epidemic developments, and guiding public
health policies. Among the most widely used compartmental
models, the SEIR [2] (Susceptible—Exposed—Infectious—
Recovered) model represents the key stages of infection,
taking into account the incubation period before
contagiousness. However, real-world epidemiological
contexts are rarely homogeneous. Geographical disparities,
differences in access to healthcare, social behaviors, and
population mobility strongly influence the spread of
pathogens. To better capture this heterogeneity, it is relevant
to extend the classic SEIR model to a multi-patch structure,

where each patch represents a distinct geographical or social
area, interconnected by migratory flows.

In this study, we propose a mathematical formulation of the
two-patch SEIR model, incorporating the effects of natural
mortality, demographic recruitment, and inter-patch mobility.
Each compartment (susceptible, exposed, infectious,
recovered) is modeled separately for each patch, with specific
parameters for transmission (8;), progression («;), andhealing
(1), and migration (m;;). The resulting system allows us to
analyze the combined impact of local dynamics and spatial
interactions on the evolution of the epidemic.[6]

This approach provides a flexible framework for
calibration based on field data, simulation of intervention
scenarios, and study of the stability of epidemic equilibria. It
is part of a contextualized modeling approach, adapted to the
health realities of territories with high structural variability,
such as those observed in the Democratic Republic of Congo
or in other regions with fragmented health systems. [7]

A. Epidemiological assumptions leading to the multi-
patch SEIR model

Consider a population of size N in two different patches.
With interaction m;; between patches. And a set of people
interacting in a single patch using a deterministic
compartmental model (SEIR). With m;;, the inter-patch
movement rate matrices, and X = {S,E,|,R}. [5]

We consider a population distributed across two
interconnected geographical zones (patches 1 and 2). Each
individual belongs to one of the four compartments of the
SEIR model: Susceptible (S), Exposed (E), Infectious (I), and
Recovered (R).

In our modeling approach, animals remain localized in their
respective areas. This assumption, although simplistic, is
based on empirical and historical evidence: inter-patch
movement of animals is considered negligible, in accordance
with observations reported by Ejercito and Urbino, as well as
Russell and Santiago. Let us further assume that the time it
takes for humans to travel is very small compared to the
incubation period and demographics, so that humans do not
change their epidemiological status during travel and the
duration of the latency period: approximately 5 to 21 days
before the onset of symptoms.

1. Spatial heterogeneity of contacts

Individuals are not evenly distributed: transmission rates
B; vary across areas (patches) due to density, social behaviors,
or access to healthcare. For i=1,2

2. Inter-patch mobility

areas influences
model this

between
migration

Movement
propagation:

geographical
rates  my;
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mobility.Migration flows can be asymmetrical (e.g., rural[9]
exodus or seasonal movements).

3. Differentiated progression of infection

The rate of transition from exposed to infectious (a;) depends
on local factors: nutrition, comorbidities, detection times

4. Constant or seasonal recruitment

A; recruitment can represent births or arrivals in the
population (e.g., return of migrants). It is often assumed to be
constant for simplicity, but can be modulated.

5. Natural mortality independent of disease

rate d is introduced for reflect the dynamics System of
differential equations demographic system outside of an
epidemic (aging, accidents,etc.). This makes it possible to
better isolate the impact of the disease on the population [10]
[11]

6. Local recovery dependent on the healthcare System

The recovery rate varies depending on access to care, y;
availability of treatments, and the responsiveness of local
authorities

7. No immediate reinfection

Recovered individuals move into R; and do not immediately
return to S; , which is consistent with diseases with temporary
or lasting immunity.

8. Incidence function

The transmission of infection in each patch i is modeled by a
bilinear incidence function of the form

2T R
F (S, 1) =% Pour i= 1,2
The overall dynamics of the epidemiological model are
therefore  given by the following system  of
differentialequations
ds, dE; dI dRy
o By
I
! My
maEy  maply|  [mals mpR
29 2
QF/ T
dEs dI, dR,

Figure 1 Mpox diagram

Compartment

S;(t) : susceptible individuals in patch i

E;(t) : exposed individuals (infected but not yet infectious) in
patch i

I;(t): infectious individuals in patch i

R;(t) : recovered individuals in patch i

System of differential equations

ds;
Fre A; = BiSil; —dS; — myS; + my;S;
dE,
i BiSil; — a;E; — dE; — my;E; + myE;
(1)
d,
ar = GEi—vili - dly — myl; + myl;
dR,
i Yili —dR; — my;R; + my;R;

System (1) is solved under the following initial conditions :
($: (0), E; (0).1; (0), R; (0)) =0 (2
For i=1,2

TABLEI
TABLE DESCRIBING THE VARIABLES

Par. | Description

B, | Transmission rate in patch 1

B, | Transmission rate in patch 2

a, Rate of progression from exposed to infectious
state in patch 1

a, Rate of progression from exposed to infectious
state in patch 2

¥y Recovery rate in patch 1

Yy Recovery rate in patch 2

d Natural mortality rate

Ay Recruitment rate (births or immigration
in each patch 1)

A, Recruitment rate (births or immigration
in each patch 2)

m,, | Migration rate from patch 1 to patch 2
m,, | Migration rate from patch 2 to patch 1
Notes 1.

The terms m;; model mobility between the two patches.
Recruitmen 4; is assumed to be constant and identical in the
two patches, but it can be adapted A; and A, if necessary.
The system is coupled by migration terms, which allows us to
study the impact of mobility on the dynamics ofthe epidemic.
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I1l. MATERIALS AND METHODS

The SEIR model considered in this study is formalized by
a system of ordinary differential equations (ODES), as shown
in equation (1) and illustrated in Figure 1. The model diagram
was generated using GeoGebra software (version 6.0.848.0)
on a machine equipped with a 1.10 GHz Intel Celeron N4020
processor, 6 GB of RAM, a 932 GB SSD (LS 1TB M300),
and an Intel UHD Graphics 600 (128 MB) graphics card,
running on a 64-bit operating system.

All numerical analyses were performed using SageMath
(version 9.3). This software allowed us to :

e Calculation of the system's equilibrium points;

e Estimating the basic reproduction number (R;) ;

e Simulation of equilibrium stability;

e Sensitivity analysis of parameters influencing
R,.

The data used for model adjustment and validation were
obtained from the Ministry of Public Health, Hygiene, and
Social Action, the National Institute for Biomedical Research
(1 complementary scientific sources.

IV. RESULTS AND DISCUSSION

A. Results

This section examines the fundamental properties of the
SEIR [10] model applied to Mpox. It addresses successively :

e the positivity of the solutions,
e the boundedness of trajectories,
¢ invariance of the admissible domain,
o the equilibrium of the system,
the basic reproduction number R,
and the stability of equilibrium states.

1. Consider the following compact invariant domain :

Q={(S;,E ,I;,R;))ER}:0<N < A 3)

T d+myi—-mqy
fori=1,2

Theorem1. The system model (1) is well established both
biologically and mathematically. [12]

Proof: We demonstrate this theorem step by step.

Step 1:

We show that system (1) has a unique solution. The functions
of system (1) are of class C?!, so they are continuous in an
open ball containing  the initial conditions
(5;(0),E;(0), I;(0), R;(0)) and are locally Lipschitz, so there

exists a unique local maximum solution for system (1) in Q.
fori=1,2

Step 2:

We show that the solutions to system (1) are
positive. Starting from system (1), we have : [12]

ds;
at | (Si=0)(EyLiR;) >0 = A

dE;
T | (E; = 0)(S;, iRy ) > 0 = B;Sil;

dl;
o | =0, ER) >0 = i

dR;
= | (Ri = 0)(S;, Eil;) > 0 = v

fori=1,2

We can conclude that all solutions of the system (1) are
positive.

Step 3.
By adding the equations of system (1), we obtain

N = N1+N2
:51+E1+11+R1+52+E2+12+R2
:A '(d+ m21 - mlz)N

Which implies

A
d+my1—mq2

N(t) < (—————(

d+mgi—mq2

_ N(O))e(d+ Mz~ myp)t )

Using the constant variation formula, we get.

A
d+myi—mq2

tll_)rro10 Sup(t) = 4)

Thus, N(t) = ﬁ. This allows us to conclude that, the

——
set of solutions {(S,(t) . E;(t), I(t), R;(t) ) } is bounded ins
Q, i.e

Q={(S,.E,I,R)ERE:0<N< 4

T d+my-myp
fori=1,2

Therefore, all solutions of system (1) are bounded in the
Region Q which attracts all solutions in R8

Given all this, we conclude that for the initial condition
(S(0),E(0),1(0),R(0)) contained in the positively invariant
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Domain Q, le systéme (1) admits a unique, non-negative
solution.

2. Disease Free Equilibrium (DFE) and basic
reproduction number (R,)

Model (1) admits two equilibrium points, namely: the
disease-free equilibrium point X° which appears in the
absence of any infection, i.e. (E=0, [=0), and the endemic
equilibrium X* which appears in the presence of infection, i.e.
(E#0, 170). [13]

A partir de ce qui précéde, I'équilibre sans maladie est donné
par

X0 = (S E%I°%RO) = (——

d+mgp1—mq2

,0,0,0) (5)

and the endemic equilibrium point is given by

X* = (S*, E*, I*,R*)

Where
== B I})/(d+ my; — myy)
E*=(BSiI7) / (d+ my; — myy) (6)
R*=(yI}) /(d+ my — myy)
fori=1,2

Note 2.

Considering the equations S* a R*, if I*=0, we obtain the
equilibrium without disease X°.

3. Basic reproduction number

A crucial indicator of infectious diseases is the number
basic reproduction number (R,), defined as the average
number of secondary cases that a typical infectious individual
produces when introduced into a population composed
entirely of susceptible individuals. It is calculated using the
van den Driessche [ algorithm. After calculation in
SageMath, we obtain the new infection production matrix F
and the transition matrix and the inverse of the V1. [14]

0 0 Spbs 0
E = 0 o 0 Sop
0 0 0 0
0 o 0 0

x+y 0 0 0
V= 0 x+y 0 0
—o 0 x4y 0
0 —0 0 x+y
With
x=a,+d;
Y =My, — My,
And
1
pany 0 0 0
0 w00
vi= & 1
(x—|—1y)2 0 x+y ?
oo I S
O Gar 0w

Thus, the basic reproduction number obtained from the
pectral radius of the new generation matrix (R, =FV 1) is
therefore

Sox1 B2 0 Sppo
(x+y)* x+y
0 Soao Bo 0 SoPo
fo = (x+y)* ¥ty
0 0 0 0
0 0 0 0
If
A = 2(11 - dl y
B=a?- d?
C=m,my,
and
k, = d% + m%z - m%1
k, = my; — my,
k3 = 4(11 + 2d1
ky =mi, + mj
Then
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RO = alphal vs Nombre de reproduction de base (R0)
p( AazfB; %1 ———
C{%d1+(k1)A—(k2)B +(k3+3(k2))C —k4_' ! 0s
AaiBr ]
,0,0)

a§d1+(k1)A—(k2)B +(k3+3(k2))C —k4, 0

RO

TABLE I 021
PARAMETERS AND THEIR VALUE

0.1+

Parameter Values Reference
A, 0.05 [3] 00
]/1 003 [3] 0 Rate of o ion fi o d to inf t‘O.G tate i toﬁsl (alphal) 1o
ate of progression from exposed to infectious state In patch 1 (alpha

Cﬁ? 828 [5_35]] Figure 3, Evolution of the profile as a function of the value of a,

B 0.60 [15] alpha2 vs Nombre de reproduction de base (R0)

a, 0.50 [3] —

¥ 0.03 [3] oa]

d 0.1 [16]

Ay 0.05 [3] 03]

my, 0.00009 [16] i

my, 0.00015 [16] o2
Thus 011

R, = max {0.352, 0.441, 0,0} 001
e Rate of prt?;lession from e(:;csedto infectiuo.ﬁs state in pat:§|2 (alpha2)
R, = 0.44

Figure 4, Evolution of the profile as a function of the value of @,

Part of the basic reproduction number R, is represented as
a function depending on the parameters a; and S, identified 4. Global stability of the DFE
as the most decisive in the evolution of R,,.
The equilibrium without disease X© is studied in this

In order to illustrate the impact of these parameters on subsection using the method developed by. Based on this
the behavior of the model, the SageMath code below method, system (1) is rewritten as system (7) below. [17], [18]
can be used to generate the corresponding curves,

dA,
beta2 vs Nembre de reproduction de base (RQ) W = fi (Al' AZ)
0.7 i A (7)
064 d_: =f(A1,43),  12(441,0),

Where A, represents the non-infectious compartments,
A= (S; R; ) € R} and A, representthe infectious

0.4

RO

> compartments, A,= (E; ,1; ) € R% The equilibrium point
02 without Mpox is given in this case byX°=(49,0) and will be
011 globally asymptotically stable (GAS) for R,<1, if the two
ool conditions below are satisfied:

Rate of contamination (beta2) 1. for % — f;l(Ali 0) Where (A?,O) iS and globally

asymptbtically stable (GAS)
2. f,(A1,4;) =GA; — f(ApAz)
Where f(A,4,) =0,
For all (A;,A,) dans Q

Figure 2, Evolution of the profile as a function of the value of (3,
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With Z = DA, (A9, 0) is M-matrix.

Theorem 2. The disease-free equilibrium points X°=(49,0)
of model (1) are globally asymptotically stable (GAS) for
R,<1 if conditions 1 and 2 above are satisfied. [17]

Proof. Considering model

(1) fi(A,Ay) et (A4, Ap)
are defined as follows:

Ay — B1Si 1y —dS; — My S+ myp Sy
Ay = B3S31; — dS; — mypS; + My S,

A, A) =
fl( 1 2) y1[1 —dR1 — m21R1 + m12R1

)/212 - dR2 - m12R2 + m21R2
and

BiSihh —a By — dEy — my By + myyE;
(A, A) = B2Sol, — ayE; — dE, — myyEy + my By
2\ d2) —

a By — vy —dly — my s + myyly,

Ay By —volp —dly— myplp + myyly

From the above, we can easily show that

f2(41,0) =0
and

Ay — dS; — My S+ MmypSy
Ay — dS; — mypS; + myy S,
fi(A]J 0) =

—dRy — My Ry + MR

—dR; — my3R; + My R,

Regarding condition 1, we have

Ay — dS; — My Sy + M5y

Ay = dS; — my38; + myy S,
dA;

P f1(41,0)= —dR; — my Ry + my,R,

—dR; — my3R, + My R,

By analytically solving system (8), and tending towards
t — +oo, We obtain

A
) and R;(t) =0
12

50 = (g

A

WhereX°=( i ,o,o,o) is GAS for

d+myi—mq2

dA;

“at = fl(Al' 0)

This satisfies the first condition 1. Now the second condition
2 is also satisfied. Looking at the system (1), the matrices G
and f(A,,A,) can be written as

Xty 0 Bs’ 0
G- 0 —xEyty 0 Bs°
31 0 -n-dity 0
0 iy 0 Xty
and
Bi(1— Ey—l)ﬁ
2(1—-%)Dh
fAna,) = Po(1— )

Since 0 <S <N, (1- %) >0, itis clear that G>0. We N
also note that the matrix G is an M-matrix(all non-diagonal
elements of G are non-negative). Since condition 2 is
satisfied, this proves that X is globally asymptotically stable
(GAS) for Ry < 1.

5. Global stability of Endemic Equilibrium

Theorem 3. The endemic equilibrium X* of model (1) is
globally asymptotically stable (GAS) when R, >1. [19]

Preuve. Proof. Consider the differentiable function with value
positive following :

L=12[(S-S})+(E-ED+(-1})+R-R)1? (9)

JAIC Vol. 10, No. 1, February 2026: 468 — 478
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The time derivative of L gives us

D[(5-5) + E-E)+ (- 1)+ R-R)]1 (S, + B +
ILL+R, )

=[S+ E;+L+R )+ ST+ Ef+L+R] )]%(Sl+
Ei+1;+R;)

= [S;+E,+L+R, ) + (Sf+E/+L+R )]
[(4) —(d + myy — myp) (S + E; + 13 + Ry )]

=[Sy + E;+ 1, +R)-(S;+ Ef+ I + R[S, + E; +
myp; — Myq)]

Let'sset (d + my; — myp)=(d + my, — myy),

we have:

=[Sy + E;+L,+R)-(S;+ Ef +I; + R[S, + E; +
Ii+R )+ (ST + Ef + 1 +R7) ] (d + myy — my,)

=-(d+ my;—mpp) [+ Ev+ L +Ry ) - (ST + Ef +
I; +Ry)P

Clearly, dL/dt is defined as negative.

We can therefore conclude that the function chosen above is
indeed a Lyapunov function.

dL/dt=0if and only if S=S*, E=E*, I=I".

It follows, according to LaSalle's invariance principle, that
the largest invariant set in Q is the singleton {X*}. This
implies that the endemic equilibrium is GAS.

6. Sensitivity analysis

We will analyze the stability using the approach of
Typically, in an epidemiological context, the definition of the
basic reproduction number (R,) refers to the epidemiological
threshold including the value 1, where, if R,>1, an epidemic
may occur, and if R,<1, the disease cannot establish it self,
and an epidemic is not expected. [20]

This analysis identifies the most influential parameters.
The following formula calculates the sensitivity of all the
parameters that make up R,.

Mo, 2 (10)

ow Ry

Where w is the parameter of R,,.

The sensitivity analysis is thus performed in SageMath and
we have this results :

TABLE III
SENSITIVITY PARAMETERS
Parameter | Values Sensibilité Interpretation
using Values

B 0.60 0.000 | Nedligible
impact
Dominant

B2 0.40 1.000 parameter,
priority control
Marked negative

o1 0.50 -0.764 effect (reduced
Ro acceleration)

o2 0.03 -0.001 Very low impact
Dominant

A 0.10 1.000 parameter, direct
influence on Ro

Mz 0.00009 0.0004 | Weak  effect,
asymmetrical

M1 000015 | -0.0007 | \Weak effect,
asymmetrical

Numerical values are reported up to three decimal places.

Readability: Both figures and tables are integrated into the
text with explanations, making them not only legible but also
contextually meaningful. The captions and references in the
discussion section confirm their interpretability.

In short, the visual elements meet academic standards: they
are clear, precise, and support the mathematical and
epidemiological analysis.

This reveals that:

The Parameters dominant:

B, (Transmission rate in patch 2) and A (recruitment) are the
most sensitive. These are priority levers for controlling the
epidemic. Effect of the progression: a; has a marked negative
effect, meaning that accelerating transition from exposed to
infectious state in patch 1 reduced R, — counterintuitive, but
this may reflect a local dynamic where infected individuals
are better cared for. Inter-patch mobility: the rates m,, and
m,, have a weak but asymmetric effect onR,, highlighting
the importance of the direction of migration flows.
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SEIR Model Dynamics with two patchs

054

\

—— Susceptiblel (S1}
Susceptible2 (S2)
—— Exposedl (E1}
—— Exposed? (E2}
— Infectiousl (1)
—— Infectious2 (12)
Recavered (R)

0.4+

]
w

=
¥

Fopulation Fraction

0.0+

Time

Figure 5, Evolution of mpox over time (Ry<1)

When the basic reproduction number R, is less than 1, it
means that each infected individual transmits thedisease to
less than one person on average. In this context, the temporal
evolution of mpox shows a gradual decline in the number of
cases, reflecting a long-term trend toward the disappearance
of the disease. This situation reflects the effectiveness of the
control measures put in place—such as targeted vaccination,
isolation of cases, and community awareness—which are
successful in breaking the chains of transmission. The system
then tends toward equilibrium without disease, confirming the
overall stability of this state in the model.

SEIR Model Dynamics with two patchs

—— Susceptiblel (51)
Susceptible2 (52)

Fopulation Fraction

0 20 40 60 ap 100
Time

Figure 6, Evolution of susceptible individuals over time. (R,< 1)

SEIR Model Dynamics with two patchs

0.040 7" Exposedl (E1)

Exposed? (E2)
0.035

0.030 4

0.025

0.015 4

Fopulation Fraction
o
2
5

0.010 4

0.005

0.000 4

0 20 40 60 80 100

Time
Figure 7, Evolution of exposed individuals over time.
(Ro<1)
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Figure 8, Evolution of infectious individuals over time.(R,< 1)

Figures 6, 7, and 8: The majority of the population remains
in the susceptible compartment, indicating low exposure to
the disease and sustainable protection dynamics. The number
of exposed individuals is rapidly decreasing, reflecting a
break in the chain of transmission and slow progression
toward infection. The infectious population is continuously
decreasing, confirming that the disease is no longer actively
spreading and is tending toward extinction.
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Figure 9, Evolution of susceptible individuals vs individuals recovered
over time. (Ry< 1)
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Figure 10, Evolution of exposed individuals vs individuals recovered over
time. (Ry< 1)
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Figure 11, Evolution of infectious individuals vs individuals recovered
over time. (Ry< 1).

B. Discussion

The use of a two-patch compartmental structure better
captures the spatial heterogeneity observed in the spread of
Mpox in the DRC. Unlike homogeneous models, this
approach incorporates disparities in density, access to care,
and social behaviors, providing a more accurate
representation of local dynamics. Graphical analysis reveals
epidemiological dynamics favorable to the extinction of
Mpox in both patches. Figure 6 shows continued growth in
the number of susceptible individuals, reflecting low
exposure to infection and effective control measures. At the
same time, Figures 7 and 8 show a rapid decline in exposed
and infectious individuals, confirming the gradual
interruption of the chain of transmission. [8]

Numerical simulations highlight a progressive decline in
prevalence when the basic reproduction number R,< 1. This
result is consistent with classical epidemiological theory,
confirming that disease extinction is achievable under
conditions of sufficient recovery rates and controlled
mobility. Graphical outputs further show that the majority of
the population remains in the susceptible compartment, while
exposed and infectious individuals decrease rapidly,
reflecting the interruption of transmission chains.

Sensitivity analysis emphasizes the dominant influence of
the transmission rate B, and recruitment A on epidemic
persistence. These parameters emerge as priority levers for
intervention, suggesting that surveillance and control
measures should focus on regions with high transmission
potential and demographic influx. Interestingly, the
progression parameter oy exhibits a negative sensitivity,
indicating that accelerating the transition from exposed to
infectious states may paradoxically reduce R,. This
counterintuitive result underscores the importance of local
healthcare responses, where rapid detection and management
of infectious individuals can mitigate spread.

Inter-patch mobility mi,, my plays a secondary but
asymmetric role, highlighting how directional migration
flows—such as rural-to-urban movements—can subtly alter
epidemic trajectories. This finding reinforces the need for

coordinated surveillance across regions, particularly in areas
with seasonal or economic migration patterns.

From a methodological standpoint, the model is
mathematically well-posed: solutions are positive, bounded,
and biologically coherent. Stability analyses using Lyapunov
[21] functions and LaSalle’s invariance principle confirm the
robustness of both disease-free and endemic equilibria. These
theoretical guarantees strengthen the legitimacy of the model
as a decision-support tool for public health authorities.

Nevertheless, certain limitations must be acknowledged.
The assumptions of constant recruitment and absence of
immediate reinfection simplify the dynamics but may not
fully  reflect real-world  conditions.  Incorporating
stochasticity, age-structure, or larger multi-patch networks
could enhance predictive accuracy. Moreover, calibration
with finer empirical data would improve the model’s
applicability to specific provinces and outbreak scenarios.

In conclusion, this study demonstrates that compartmental
models enriched with spatial heterogeneity can provide
actionable insights for epidemic control. In the case of Mpox
in the DRC, the findings advocate for interventions focused
on transmission hotspots, demographic surveillance, and
interregional coordination. Beyond Mpox, the proposed
framework offers a versatile foundation for analyzing other
zoonotic or vector-borne diseases in fragmented health
systems.

V. CONCLUSION

This study formalized and analyzed a two-patch SEIR
compartmental model, integrating the effects of interregional

mobility on the transmission dynamics of Mpox in the
Democratic Republic of Congo. The multi-patch structure
proved particularly relevant for capturing the spatial
heterogeneity of health, social, and demographic contexts,
while offering flexibility for calibration using local data.

The results confirm the mathematical validity of the model,
with positive, bounded, and biologically consistent solutions.

Stability analysis shows that the extinction or persistence
of the epidemic strongly depends on the basic reproduction
number RO, which is itself influenced by key parameters such
as transmission and progression rates. The sensitivity of the
model to these parameters highlights the importance of
targeted surveillance and differentiated intervention
depending on the area.

The use of SageMath as a simulation environment has
proven to be effective, accessible, and reproducible,
strengthening local capacity to explore complex
epidemiological scenarios. This work thus paves the way for
contextualized modeling capable of supporting decision-
makers in designing control strategies adapted to the realities
of the Congo.

Finally, beyond Mpox, the proposed framework can be
extended to other vector-borne or zoonotic diseases in
contexts with high geographical variability. It provides a
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promising basis for the development of public health decision
support tools, combining mathematical rigor, local
relevance, and digital accessibility.
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