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EDCST-Rain: Enhanced Density-Aware Cross-Scale Transformer for
Robust Object Classification Under Diverse Rainfall Conditions

Hrrrx

Oshasha Oshasha Fiston

VeSS

, Djungu Ahuka Saint Jean*’, Mwamba Kande Franklin®”, Simboni Simboni Tege*™™,

Biaba Kuya Jirince®™" Muka Kabeya Arsene® ***** Tietia Ndengo Tresor***+=* Dumbi Kabangu Dieu merci®+x«+**
* CRIA-Center for Research in Applied Computing, Kinshasa, DR. Congo

** Health Sciences Research Institute, Kinshasa, Democratic Republic of the Congo
*** Faculty of Computer Science, Hanoi University of Science and Technology, Vietnam
**** Department of Computer Management, Higher Pedagogical Institute of Isiro, Isiro, D.R. Congo
**x**General Commissariat for Atomic Energy, Regional Center for Nuclear Studies of Kinshasa, P.O. Box 868, University of Kinshasa
**x*xx Department of Mathematics, Statistics and Computer Science, University of Kinshasa, Kinshasa, DR. Congo
fiston.oshasha.oshasha@cgea-rdc.org ¢, saintjean.djungu@unikin.ac.cd 2, franklin.mwamba@irss.cd 2

, tege.simbonil@gmail.com 4, jirincebiaba@gmail.com °, arsene.muka.kabeya@cgea-rdc.org ®, tietiazoraitresor@gmail.com’

dieumercidumbi06@gmail.com 8

Article Info

ABSTRACT

Article history:

Received 2025-10-27
Revised 2025-11-23
Accepted 2025-12-22

Keyword:

Rain Degradation,

Robust Classification,
Vision Transformer,
Weather-Aware Computer
Vision,

Autonomous Systems,
Atmospheric Occlusion,
Density-Aware Networks.

Rain degradation significantly impairs object classification systems, causing accuracy
drops of 40-60% under severe conditions and limiting autonomous vehicle
deployment. While preprocessing approaches attempt deraining before classification,
they suffer from error propagation and computational overhead. This paper introduces
EDCST-Rain, an Enhanced Density-Aware Cross-Scale Transformer specifically
designed for robust classification under diverse rain conditions. The architecture
consists of five integrated components: a Rain Density Encoding Module that
captures rain streak density, accumulation, and orientation; a Swin-Tiny Backbone
for hierarchical feature extraction; and three rain-specific mechanisms: directional
attention modules adapting to rain streak orientation, accumulation-aware processing
handling lens droplet distortions, and adaptive cross-scale fusion integrating multi-
resolution information. We develop a comprehensive physics-based rain simulation
framework covering four rain types (drizzle, moderate, heavy, storm) and implement
a curriculum learning strategy that progressively introduces rain complexity during
training. Extensive experiments on CIFAR-10 demonstrate that EDCST-Rain
achieves 83.1% clean accuracy while maintaining 71.8% under severe rain (86.4%
retention), representing a 10-percentage-point improvement over state-of-the-art
methods. With 15.8 million parameters and a 14.3 ms GPU inference time, enabling
real-time operation, EDCST-Rain provides a practical, weather-robust perception
framework suitable for autonomous systems operating under adverse weather
conditions.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Computer vision systems have become foundational to
modern autonomous technologies, powering self-driving
vehicles, outdoor robotics, and intelligent surveillance
systems. However, these systems face a critical vulnerability:
their performance degrades dramatically under adverse
weather ~ conditions,  particularly  rainfall.  Recent
benchmarking studies reveal that standard deep learning

models suffer accuracy drops of 40-60% when confronted
with rain-degraded images [1, 2], severely limiting the
reliability and deployment of autonomous systems in real-
world scenarios where weather conditions are unpredictable
and often challenging.

Rain introduces a uniquely complex set of visual
degradations that fundamentally differ from other
atmospheric phenomena. Unlike fog's smooth depth-
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dependent attenuation [3] or snow's uniform particle
distribution, rain creates multiple simultaneous challenges.
Falling raindrops travel at velocities of 2-9 m/s, creating
oriented streak occlusions with diagonal patterns across
images [4]. Droplets accumulating on camera lenses produce
severe localized distortions through refraction and blur [5].
Atmospheric scattering reduces overall scene contrast and
visibility [6], while dynamic lighting variations from rapidly
changing cloud cover further complicate the scene. Each
raindrop acts as a semi-transparent occluder, partially
blocking object features while simultaneously introducing
motion blur and spectral alterations [7]. These multifaceted
degradations occur simultaneously and interact in complex
ways, making rain one of the most challenging weather
conditions for robust computer vision.

Research addressing rain-degraded images has evolved
along three main trajectories: preprocessing-based deraining,
robust feature learning, and weather-aware architectures.
Each approach has yielded progress, yet significant gaps
persist that motivate our work. The dominant paradigm
involves a two-stage pipeline: first restore the image by
removing rain, then classify the cleaned result. Early work by
Garg and Nayar [4] established foundational understanding of
rain's photometric properties, revealing that rain streaks
exhibit predictable orientations determined by wind velocity
and gravity [8]. Traditional methods relied on hand-crafted
priors such as dictionary learning [9] and sparse coding [10].
The dark channel prior [11] for dehazing inspired analogous
rain removal approaches, though rain's directional nature
required different formulations.

Deep learning transformed  deraining  research
dramatically. Li et al. [12] proposed RESCAN with recurrent
architectures and squeeze-and-excitation attention, achieving
impressive visual quality. Yang et al. [13] advanced joint
detection and removal networks. Recently, transformer-based
approaches emerged: Restormer [14] leverages multi-head
self-attention for long-range dependencies, while Uformer
[15] combines transformers' global receptive fields with
hierarchical processing. Zhang et al. [16] developed multi-
stage knowledge learning for adverse weather removal.
However, preprocessing suffers three fundamental limitations
for classification tasks. First, deraining networks optimize for
perceptual similarity metrics (PSNR, SSIM [17]) rather than
classification accuracy, creating an objective misalignment
where improving image appearance does not necessarily
improve recognition performance. A 3dB PSNR
improvement may yield only 1-2% classification gains, and
aggressive deraining can remove semantically important
edges and textures. Second, the two-stage pipeline introduces
error propagation where deraining failures directly corrupt
classification inputs with no recovery mechanism [13]. This
becomes particularly severe under heavy rain when deraining
itself becomes unreliable. Third, preprocessing imposes
significant computational overhead, with modern deraining
networks requiring 8-12 GFLOPs before classification even
begins [12, 14], effectively doubling inference time and

prohibiting real-time deployment in resource-constrained
autonomous systems.

An alternative direction bypasses explicit deraining by
learning features inherently resilient to rain. Hendrycks and
Dietterich's [1] influential benchmarking work revealed that
standard networks suffer 40-60% accuracy drops under rain,
sparking intensive robustness research. Data augmentation
provides 8-15% improvements through random rain overlay
[18], though gains saturate quickly. AutoAugment [19]
discovers optimal perturbation combinations but requires
thousands of GPU hours. Sakaridis et al. [20, 21] pioneered
curriculum domain adaptation for fog, progressively
introducing degradation during training. Their work on the
ACDC dataset [22] demonstrated the value of weather-
specific training strategies. However, fog-focused curricula
don't translate directly to rain due to fundamental physical
differences—fog's uniform attenuation versus rain's discrete
oriented occlusions. Adversarial training [23] struggles with
natural corruptions where the perturbation space is ill-
defined. Generic robustness techniques treat rain as just
another corruption, missing opportunities to exploit rain-
specific structure such as predictable directional patterns [4],
spatially varying intensity [24], and characteristic frequency
signatures [7].

Recent research recognizes that weather-specific designs
outperform generic approaches. For fog, density-aware
networks [20, 25] explicitly estimate fog thickness and adapt
processing accordingly, achieving superior robustness by
modeling degradation characteristics. Attention mechanisms
prove particularly valuable in this context. Squeeze-and-
Excitation networks [26] introduced channel-wise attention
enabling adaptive feature recalibration, while CBAM [27]
extended this to spatial dimensions. For deraining
specifically, attention helps focus on clean regions while
suppressing corrupted areas [28]. Vision transformers brought
unprecedented flexibility to weather-robust perception.
Dosovitskiy et al. [29] demonstrated that pure transformer
architectures could match CNN performance, with global
receptive fields enabling reasoning about distant uncorrupted
regions [30]. Swin Transformer [31] introduced hierarchical
architectures and shifted window attention for computational
efficiency. However, existing transformers employ generic
self-attention [32] treating all spatial relationships uniformly.
For rain, attention between positions aligned with rain streaks
should be suppressed since they share occlusion, while
perpendicular attention should be enhanced. Standard
transformers also lack specialized mechanisms for lens
droplet accumulation [5], which creates severe localized
distortions qualitatively different from airborne streaks.

Curriculum learning, introduced by Bengio et al. [33],
established that starting with easy examples then gradually
increasing  difficulty  improves  convergence  and
generalization. This has been successfully applied across
domains [34, 35]. However, for vision robustness, curriculum
approaches remain underexplored. Existing curricula [36] use
simple intensity  progressions  without considering
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degradation type diversity. Weather-specific curricula are
particularly scarce—training on single conditions prevents
generalization, while uniform mixing overwhelms networks
early with impossible cases. Principled difficulty
quantification remains an open challenge [37].

This work introduces EDCST-Rain (Enhanced Density-
Aware Cross-Scale Transformer for Rain), a novel end-to-end
architecture specifically engineered for robust object
classification under diverse rainfall conditions. Our approach
moves beyond generic robustness techniques by
incorporating three rain-specific architectural innovations that
directly address rain's unique characteristics. First, we
introduce directional attention modules that explicitly model
rain streak orientation. Unlike standard self-attention treating
all spatial relationships equally, our mechanism adaptively
suppresses attention along streak directions where occlusion
is maximal while enhancing attention perpendicular to streaks
where clear image regions alternate. This orientation-aware
processing represents the first architecture explicitly
modeling rain's directional structure. Second, we develop
accumulation-aware processing mechanisms specifically
handling lens droplet distortions through gated features and
specialized pooling operations. These components identify
and downweight severely corrupted regions, preventing lens
distortions from overwhelming the classification process.
Third, we design adaptive cross-scale fusion that learns
degradation-dependent integration of multi-resolution
features. Our fusion mechanism balances fine-scale spatial
precision with coarse-scale semantic robustness based on
estimated rain intensity, enabling graceful performance
degradation as conditions worsen.

Beyond architectural innovations, we contribute a
comprehensive physics-based rain simulation framework
modeling four distinct rain types—drizzle, moderate rain,
heavy rain, and storm conditions—with realistic geometric
and photometric properties grounded in atmospheric optics
and raindrop dynamics [38, 39]. Our simulation captures
rain's full complexity including oriented streaks following
Marshall-Palmer drop size distributions [39], lens droplet
accumulation with refraction effects [5], atmospheric
scattering [6], and photometric variations including
brightness reduction, color desaturation, and temperature
shifts. To enable efficient learning across this diverse
degradation space, we propose a four-stage rain-aware
curriculum learning strategy that progressively introduces
rain complexity during training. Our curriculum starts with
simple drizzle, gradually incorporates directional variation
through moderate rain, adds intensity scaling via heavy rain,
and culminates with chaotic storm conditions combining all
degradation mechanisms. This principled difficulty
progression enables 17% faster convergence and 3.4% better
final performance compared to uniform rain sampling.

Extensive experiments on CIFAR-10 across 17 rain
conditions (1 clean and 16 rain-degraded) demonstrate
EDCST-Rain's substantial improvements in classification
robustness under diverse rainfall scenarios. Our method

achieves 83.1% accuracy on clean images while maintaining
71.8% under severe rain (80% intensity), representing 86.4%
performance retention and a 10.0 percentage point
improvement over state-of-the-art baselines including
preprocessing approaches (RESCAN+EfficientNet: 76.4%),
standard transformers (Swin-Tiny: 73.3%), and generic
robustness methods. Importantly, EDCST-Rain achieves this
superior robustness with only 15.8M parameters and 14.3ms
GPU inference time supporting real-time processing at 70
FPS, making it practically deployable in autonomous systems.

Our contributions advance weather-robust computer vision
through: (1) novel rain-specific architectural components
addressing directional occlusion, lens accumulation, and
multi-scale degradation; (2) comprehensive physics-based
rain simulation enabling diverse training data generation; (3)
principled curriculum learning strategy for efficient
robustness acquisition; and (4) extensive experimental
validation demonstrating substantial improvements over
existing approaches. The remainder of this paper is organized
as follows: Section 2 provides background on rain
characteristics and their impact on vision systems, Section 3
details our methodology including architecture and training
strategies, Section 4 describes the experimental setup, Section
5 presents results and discussion, and Section 6 concludes
with future directions.

I1. MATERIALS AND METHODS

EDCST-Rain adopts an end-to-end paradigm mapping
rain-degraded images directly to class predictions. The
architecture comprises five integrated components: (1) Rain
Density Encoding Module, (2) Swin-Tiny Backbone for
hierarchical feature extraction, (3) Directional Attention
Modules, (4) Accumulation-Aware Processing, and (5)
Adaptive Cross-Scale Fusion.

A. Rain Density Encoding Module
. These descriptors feed forward through skip connections
to downstream modules.
The rain density encoding module is designed to extract and
quantify three critical rain characteristics
that directly impact object visibility: streak density (p),
accumulation level (), and orientation
distribution (6). Unlike previous approaches that treat rain as
uniform noise, our module provides
fine-grained environmental awareness to guide the network’s
attention mechanism.

A.1. Rain Feature Extraction Architecture
Given input x € R224X224x3  three
convolutions extract rain characteristics:

x; = ReLU (BN(Convi(xi_l))), i €{1,2,3} (D
with x,=x , kernels{7 x 7,5 x 5,3 x 3}, and

channels {64,128, 256}. Three parallel 1 x 1 convolutions
generate degradation descriptors:

progressive
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Drain = O-(WD xS)'Alens = O-(WA x3):
0 = arCtanZ(Vy Drain' VxDrain) (2)

producing rain density map D, € R%*%¢, lens
accumulation probability A, € R56%56, and orientation
field 8 € R>%*5% via Sobel gradients.
To generate global rain descriptors, we aggregate the spatial
maps. Rain density is computed as:
1
P =i D) 3
L
producing a scalar p € [0, 1] representing the percentage of
image area affected by rain. During
training, ground-truth values are:
pgt — Nstreaks X Aavg (4)
Accumulation level o captures global severity of water
accumulation:

1
a = H % WZAlens(i:j) %)
i

For orientation, we compﬁte a histogram over 8 bins (0, 45,
90, ... 315) and select the dominant direction:

gdominant = aTgMax(Z Drain (i:j) . 1[9(i:j) € bink) (6)
ij
A.2. Integration with Transformer Backbone
The extracted parameters (p, @, 0 gominant) are projected to
match the transformer’s embedding dimension (d,pqe; =
384):
Erqin = MLP([p, a, edominant]) (7)
These rain-aware embeddings are added to positional
encodings:
Erain—aware = Epatches + Eposition + Erain (8)
Additionally, Drain modulates attention weights to focus on
less-degraded regions:

kT
Attmodified = softmax (Q_Jd_k+/1 (1 - Drain)>V %)

where A is a learnable parameter.

A.3. Training the Rain Estimation Module
The module is pre-trained on 50,000 synthetic rain images
using multi-task loss:

Liotal = ll.MSE(p, pgt) + /12.MSE(a, agt)

+ /13- CE(gdominantJ ggt) (10)
with weights 4, = 1.0,4, = 0.8,1; = 0.5. After pre-
training (20 epochs, Adam optimizer, Ir = 0.001), the module
is fine-tuned end-to-end with EDCST-Rain for 50 epochs
using reduced learning rate (Ir = 0.0001) to prevent
catastrophic forgetting.

A.4. Simulation Validation

To assess simulation realism, we collected 200 real rainy
images from public dashcam datasets (Waymo

Open, BDD100K) and compared their statistical properties
with our synthetic images:

TABLE 1.
SIMULATION REALISM VALIDATION

Metric Real Rain Simulated Diff
Avg streak length (px) 27.3%6.2 26.1+5.8 - 4.4%
Brightness reduction 184+7.1% 169+63% -8.2%
Contrast reduction 22.7+£89% 20.3+7.6% -10.6%
Dominant orientation 8820+ 124  89.7°+11.8 +1.7%

These results suggest reasonable alignment with real rain in
basic visual statistics. We also conducted a perceptual
validation study with 20 participants (10 computer vision
researchers, 10 general observers) viewing 50 image pairs.
Overall discrimination accuracy was 61.2% (experts: 68.7%,
non-experts: 53.8%), indicating our simulation is perceptually
convincing, though experts can detect subtle unrealistic
patterns.

B. Directional Attention with Orientation Modulation
Standard self-attention treats spatial relationships
uniformly. For rain, positions aligned with streak direction
share occlusion and should receive suppressed attention.
Given feature map F € RV*¢ with N = Hp W, spatial
positions, we compute queries, keys, and values via learned
projections Wq, Wy, Wy, € RE* %k :
Q = FWy,K = FW,,V = FW, (11)
For positions i, j with coordinates (x;,y;), (X, y; ), the spatial
angle is:
els'patial

i (12)
Angular misalignment between spatial direction and rain
orientation determines attention modulation:

A0;; = min(|9; — Bisjpa”all mod 2m, 2w — |6; — Hisl.pa”all mod 2m)
with 6; interpolated from the orientation field. Directional
weights follow a Gaussian envelope:
wiit = exp(—21(46;;)2) (14)

With A = 2.0, emphasizing perpendicular attention
(A0 = m/2,w = 1) while suppressing parallel
attention (A6 =~ 0,w = 0.14). The directional attention
mechanism combines content-based and

orientation-based weighting:

=arctan 2(y; — yi,xj — X;)

T
Attentiony;,. (Q,K,V) = softmax (% ) Wdir) vV (15)
with Wy, € RV >V containing wi™ and © denoting
element-wise multiplication. Eight attention heads capture
multiple orientations in complex storm conditions:
F,i. = Concat(head,,..., headg)W, (16)

C. Accumulation-Aware Processing
Lens droplet distortions differ qualitatively from airborne

streaks, requiring specialized handling. Feature gating
modulates activations based on accumulation probability:

Fgated = Fgir O (1 - aAlens) (17)

JAIC Vol. 10, No. 1, February 2026: 33 —45



JAIC

e-1SSN: 2548-6861

37

Witha = 0.7 and 4,,,, spatially aligned to F;,. This soft
gating preserves information from reliable regions (4,,,s ~
0) while attenuating corrupted areas (4., = 1).

Global pooling incorporates accumulation-dependent
weighting:
IiV:1 (1 - Alens (l)) . Fgated (l)
fpool = (18)

IiV:1 (1 - Alens (l))

ensuring final representations emphasize clean regions.

D. Adaptive Cross-Scale Fusion

The Swin-Tiny backbone extracts features at four
resolutions: F1 € R56%56x96  pp g R28x28x192 |3 ¢
R14x14x384 4 e R7X7X768  Each scale undergoes
directional attention and accumulation-aware
processing before fusion. Scale-specific importance weights
adapt to rain conditions:
fi = GAP(F)),d; = GAP(Resize(Dyqin, H; X W;)) (19)

w; = o(MLP([f; lld;D) (12)

with [-||-] denoting concatenation and a two-layer MLP
(hidden dimension 128). Under light rain,
high-resolution scales receive elevated weights preserving
fine details; under heavy rain, coarse scales
dominate as fine structures become unreliable. Multi-scale
fusion combines upsampled features:

4
Frysea = Z w;. Upsample (F;, 14 x 14) (20)

i=1

E. Classification and Loss Functions

Two fully-connected layers with dropout (p = 0.4) map

f oo € R38*to class logits:

P

h = RelLU (Dropout(Wlfpoo, + bl)),

logits = W,h + b, (22)
with W, € R>12%384 gnd W, € R10%512
The loss  function incorporates  rain-specific

regularization:

Ltotal = LLCE + )\consisthonsist + )\accumLaccum
+ )\dirLdir

with cross-entropy £ g, consistency loss:

a2
Lconsist = %Z§=1 ||f(xglean) - f(xl};aln)”Z (24)

encouraging similar embeddings under varying
conditions, accumulation regularization:

N
1 o
[’accum = NZ Aspatial(i)-Alens(l) (25)
i=1

discouraging attention to corrupted regions, and
directional regularization:

L=z Y WEIA-FIE 26)
dir — N2 ij i jh2
ij

promoting smooth features along streak directions.
Hyperparametersare L, nsist = 0.5, Lgccum = 0.1,
Lgir = 0.05

F. Rain-Aware Curriculum Learning
To improve the model’s generalization across diverse rainfall
conditions, we implement a structured curriculum learning
approach that progressively increases rain complexity during
training. This strategy prevents the model from overfitting to
either clean or heavily degraded images, ensuring balanced
performance across the entire rain spectrum.

1. Complexity Stages

Our curriculum is divided into four progressive stages,
each characterized by increasing rain severity:

Stage 1 - Light Rain (Epochs 1-15):

Rain density: p € [0.1,0.3] Accumulation: @ € [0.0,0.2]
Streak length: 10-20 pixels

Objective: Build foundational rain-robust features while
maintaining high clean-image accuracy

Stage 2 - Moderate Rain (Epochs 16-30):

Rain density: p € [0.3,0.5] Accumulation: @ € [0.2,0.4]
Streak length: 20-35 pixels

Objective: Strengthen cross-scale feature integration under
medium degradation

Stage 3 - Heavy Rain (Epochs 31-45):

Rain density: p € [0.5,0.7] Accumulation: @ € [0.4,0.7]
Streak length: 35-50 pixels

Added fog effects: visibility reduction up to 50% Objective:
Enhance resilience to severe occlusion and atmospheric
scattering

Stage 4 - Mixed Conditions (Epochs 46-70):

Rain density: p € [0.1,0.8] (full range) Accumulation: @ €
[0.0,0.8] (full range)

Random orientation mixing Objective: Final adaptation to
unpredictable real-world variability.

EDCST-Rain: Enhanced Density-Aware Cross-Scale Transformer for Robust Object Classification Under Diverse Rainfall
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2. Transition Mechanism
Rather than abrupt transitions between stages, we implement
a smooth blending approach. Duringthe transition period (last
3 epochs of each stage), we gradually introduce 20% samples
from the next complexity level:

Mix ratio(epoch) = 0.2 X (epoch - Stzge end+3) 27
For example, at epochs 13-15 of Stage 1, the training batches
contain 80% light rain and 20%

moderate rain samples, preparing the model for the upcoming

difficulty increase.

3. Empirical Validation

To validate the effectiveness of curriculum learning, we
conducted an ablation study comparing three training
strategies: (1) Baseline - random mixing of all rain conditions
from epoch 1, (2) Reverse curriculum - starting with heavy
rain, ending with light rain, and (3) Our curriculum
progressive light-to-heavy training.

Table 1 shows that our progressive strategy achieves the best
balance between clean-image performance and rain
robustness (78.5% average vs. 75.8% baseline), validating the
effectiveness of gradual complexity introduction.

TABLE 2.
CURRICULUM LEARNING ABLATION STUDY
Training Strategy | Clean | Light Rain | Heavy Avg
Rain
Baseline (random | 81.2% 76.8% 69.4% 75.8%
mix)
Reverse 79.5% 74.2% 71.1% | 74.9%
curriculum
Our curriculum | 83.1% 78.9% 73.6% | 78.5%

G. Training Configuration

AdamW optimizer with OneCycleLR scheduling: warmup
(epochs 1-5) t0 Npmax = 1 X 1073 | sustained plateau
(epochs 5-30), cosine decay (epochs 30-100) toN i, = 1 X
10~° . Weight decay A,, = 0.05, batch size B = 32,
gradient clipping at IVl = 1.0. Mixed-precision training
(FP16) accelerates computation. Each batch contains 50%
clean and 50% rain-degraded samples ensuring balanced
exposure.

H. Architectural Data Flow
The density encoding module broadcasts D4, Ajens, and 6
to all downstream components via parallel skip connections.
The Swin backbone processes input independently, producing
four feature scales. Each scale receives orientation maps 0 for
directional attention, then accumulation maps A4,.,s, for
gating (Eq. 9) before global pooling (Eg. 10). Processed scales
enter adaptive fusion (Eq. 12) conditioned on density D,,i,.
No skip connections bypass directional attention or
accumulation processing, ensuring all features undergo rain-
specific modulation. Final fusion occurs after accumulation-
aware  pooling, integrating  denoised  multi-scale

representations
classification.

into unified feature wvector f,,, for

I11. RESULTS AND DISCUSSION
A. Dataset Configuration and Justification

We use CIFAR-10 as the main evaluation benchmark,
consisting of 60,000 color images (32x32) evenly distributed
across ten classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. The dataset includes 50,000
training and 10,000 test images, with 6,000 per class.

Although low-resolution, CIFAR-10 is chosen for its
computational efficiency, allowing large-scale experiments
across 17 rain conditions (1 clean + 4 types x 4 intensities),
its established baselines for fair comparison, and its semantic
diversity between rigid (vehicles) and organic (animals)
objects useful for understanding how rain affects different
shapes and textures.

Images are upsampled to 224x224 using bicubic
interpolation to match Swin-Tiny input size and normalized
with ImageNet statistics. Data augmentation includes
horizontal flips, random crops, rotations (+15°), color
jittering, and light erasing, while test images are only resized
and normalized.

Synthetic rain is applied after resizing for four rain types
drizzle, moderate, heavy, and storm each at 20-80% intensity.
From 50,000 samples, 48,000 are used for training and 2,000
for validation, keeping class balance.

Upsampling may introduce minor artifacts, and simulated
rain shows a 5-8% synthetic-to-real gap despite 87% feature
correlation with real rain (validated on ACDC). These trade-
offs enable controlled and scalable robustness evaluation
applicable to higher-resolution domains.

B. Results
1. Overall Performance Analysis

Table 3 summarizes overall accuracy across all methods and
rain conditions. EDCST-Rain achieves 83.1% accuracy on
clean images while maintaining 71.8% under severe rain
(80% intensity averaged across types), representing 86.4%

71.8% . . .
(ﬁ) retention a substantial improvement over all
. (V]

baselines.

EDCST-Rain achieves 86.4% average retention compared to
best baseline RESCAN+EfficientNet at 76.4%, representing
+10.0 percentage points improvement (p < 0.001, paired t-
test). Under severe conditions (80% intensity), EDCST-Rain
maintains 67.0% average accuracy versus best baseline 57.6%
(+9.4 points absolute, +16.3% relative improvement). This
validates our rain-specific architectural enhancements beyond
generic robustness approaches.
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TABLE 3.
OVERALL CLASSIFICATION ACCURACY (%) ACROSS RAIN CONDITIONS AND METHODS
Params Drizzle (20/40/60/80) Moderate (20/40/60/80) Heavy (20/40/60/80) Storm (20/40/60/80) .
Method M) |1 o0 40 60 80 |20 |40 |60 |80 |20 40 60 80 |20 |40 |60 |so |/V9 | Retention (%)
ResNet-50 23.5 84.2 75.3 68.5 | 621 | 578 | 728 | 64.3 | 58.6 | 53.2 | 68.7 | 56.4 | 493 | 43.1 | 66.2 | 54.8 | 475 | 41.3 | 58.9 | 66.4
ResNet-50+Aug 23.5 83.8 78.9 73.1 | 675 | 624 | 756 | 689 | 63.2 | 58.7 | 723 | 61.7 | 54.8 | 49.2 | 69.8 | 59.4 | 52.3 | 46.8 | 63.8 | 73.3
EfficientNet-B3 10.7 85.6 79.2 71.2 | 653 | 608 | 76.4 | 67.8 | 615 | 569 | 735 | 60.8 | 53.7 | 479 | 70.9 | 58.2 | 51.1 | 45.6 | 63.3 | 69.2
ViT-Small 22.1 82.4 77.8 69.8 | 635 | 59.2 | 749 |66.3 | 60.8 | 56.3 | 71.2 | 58.9 | 52.3 | 47.1 | 68.5 | 56.7 | 50.2 | 45.3 | 61.3 | 70.5
Swin-Tiny 28.3 84.7 80.1 726 | 668 | 623 | 77.3 | 65.2 | 59.2 | 541 | 745 | 62.8 | 56.7 | 51.2 | 71.8 | 59.7 | 53.8 | 48.6 | 64.8 | 73.3
DeiT-Small 22.1 83.9 79.5 714 | 657 | 612 | 76.8 | 67.1 | 614 | 570 | 736 | 62.1 | 56.1 | 50.8 | 70.5 | 59.8 | 53.6 | 48.9 | 63.8 | 72.2
RESCAN-+Eff 24.8 85.6 82.7 76.3 | 70.2 | 654 | 80.1 | 728 |66.9 | 623 | 775 | 66.2 | 59.8 | 543 | 74.8 | 63.5 | 57.2 | 51.9 | 68.7 | 76.4
EDCST-Fog [43] 19.8 86.1 82.9 749 | 68.7 | 642 | 798 | 715 | 658 | 615 | 77.1 | 654 | 59.2 | 53.9 | 74.3 | 62.8 | 56.7 | 51.6 | 67.3 | 74.7
EDCST-Rain (Ours)| 15.8 83.9 82.7 79.2 763 738 | 815 |758 | 712 |679 | 789 735 687 643 |778 | 714 668 |621 | 725 | 86.4
TABLE 4.
ACCURACY (%) BY RAIN TYPE AND INTENSITY EDCST-RAIN VS. BEST BASELINE (SWIN-TINY)
Rain Type Method 20%0 40% 60% 80% | Avg Retention
Swin-Tiny 80.1 726 66.8 62.3 70.5 82.3%
Drizzle EDCST-Rain 827 79.2 76.3 73.8 78.0 93.9%
Improvement +2.6 +6.6 +9.5 +115 | 475 +10. 7%
Swin-Tiny 773 652 59.2 54.1 64.0 75.5%
Moderate EDCST-Rain 815 75.8 71.2 67.9 74.1 89.2%
Improvement +4.2 +10.6 +12.0 +13.8 | +10.1 +13.7%
Swin-Tiny 745 628 56.7 51.2 61.3 72.4%
Heavy EDCST-Rain 789 735 68.7 64.3 71.4 85.9%
Improvement +4.4 +10.7 +12.0 +13.1 | +10.1 +13.5%
Swin-Tiny 71.8 59.7 53.8 48.6 58.5 69.1%
Storm EDCST-Rain 778 714 66.8 62.1 69.5 83.7%
Improvement +6.0 +11.7 +13.0 +135 | +11.0 +14.6%
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While baselines show dramatic degradation at high rain
intensities (dropping to 40-52% accuracy under storm 80%),
EDCST-Rain maintains 62.1% accuracy an improvement of
+13.5 points over the best baseline. Performance degradation
is near-linear for EDCST-Rain (AAcc =~ 3.5% per 20%
intensity) versus AAcc = 6.8% for baseline average,
demonstrating graceful degradation rather than catastrophic
failure.

Preprocessing  approaches (RESCAN-+EfficientNet:
76.4%) perform competitively under light-moderate rain but
degrade significantly under heavy rain/storm where deraining
becomes unreliable. At storm 80%, preprocessing methods
achieve 51.9% versus EDCST-Rain’s 62.1% (+10.2 points
advantage), highlighting end-to-end learning’s superiority for
avoiding error propagation.

Vision transformer baselines (ViT: 70.5%, Swin: 73.3%,
DeiT: 72.2%) outperform CNN baselines (ResNet: 66.4%,
EfficientNet: 69.2%) by +2.8 to +3.9% average retention,
suggesting transformers’ global attention provides inherent
rain robustness advantages. However, vanilla transformers
still  degrade substantially (26.7-29.5% degradation),
requiring our rain-specific enhancements for comprehensive
robustness.

EDCST-Rain achieves superior robustness with fewer
parameters (15.8M versus 19.8-28.3M for comparable
methods), demonstrating efficiency alongside effectiveness.
Inference time (14.3ms GPU) supports real-time processing
at 70 FPS, 52% faster than preprocessing methods (23.7-
31.5ms)

2. State-of-the-Art Comparison

we clarify that RESCAN+EfficientNet serves as our primary
benchmark, representing the best-performing baseline among
evaluated methods (Table 3). This preprocessing-based
approach combines deraining with classification, a common
paradigm in weather-robust vision.

Our claimed 10-point improvement” refers to robustness
retention rate: EDCST-Rain maintains 86.4% of clean
accuracy under heavy rain  versus 76.4% for
RESCAN-+EfficientNet, yielding a +10.0 percentage point
advantage. This metric quantifies robustness rather than
absolute accuracy, as our end-to-end architecture prioritizes
degradation resilience over peak clean-image performance.

Direct comparison with recent deraining transformers [?] is
addressed via preprocessing baselines, as these methods
output restored images rather than classifications. Our end-to-
end approach eliminates this two-stage pipeline, achieving
superior parameter efficiency (15.8M vs 24.8M) while
maintaining robustness gains.

3. Rain Type Comparative Analysis

Table 4 present detailed breakdown by rain type,
revealing differential impacts and EDCST-Rain’s adaptive
behavior.

Empirical  degradation  increases  monotonically
confirming our curriculum design (Section 5.7): Drizzle:
6.1% degradation (D = 0.25), Moderate: 10.8% (D = 0.50),
Heavy: 14.1% (D = 0.75), Storm: 16.4% (D = 1.0). The near-
linear relationship (R2 = 0.97) between assigned difficulty
and empirical degradation validates our theoretical difficulty
metric.

TABLE 5.

CLASS-WISE PERFORMANCE—EDCST-RAIN UNDER CLEAN VS. HEAVY
RAIN (60%) Vs. STORM (80%)

class Clean Heavy Retentio Stor Retenti Sensitivi
60% n m on ty
80%
Airplane | 87.2 | 76.8 88.1% | 71.3 | 81.8% | 18.2%
Automob | 91.5 | 82.7 90.4% | 78.9 | 86.2% | 13.8%
Bird 79.3 | 63.5 80.1% | 56.8 | 71.6% | 28.4%
Cat 75.8 | 60.2 79.4% | 53.7 | 70.9% | 29.1%
Deer 78.6 | 61.9 78.8% | 55.2 | 70.2% | 29.8%
Dog 77.2 | 62.8 81.3% | 56.9 | 73.7% | 26.3%
Frog 82.4 | 70.6 85.7% | 65.3 | 79.2% | 20.8%
Horse 819 | 67.3 82.2% | 61.5 | 75.1% | 24.9%
Ship 89.7 | 80.3 89.5% | 75.8 | 84.5% | 15.5%
Truck 87.3 | 785 89.9% | 73.4 | 84.1% | 15.9%
Average | 83.1 | 70.5 84.8% | 64.9 | 78.1% | 22.3%

EDCST-Rain’s advantage over baselines increases with
rain intensity across all types: Average improvement at 20%:
+4.3 points, at 40%: +9.8 points, at 60%: +10.9 points, at
80%: +11.0 points. This pattern indicates EDCST-Rain’s
rain-specific mechanisms (directional attention, accumulation
processing) provide increasing value as degradation severity
increases.

4. Class-Wise Sensitivity Analysis

Table 5. reveals class-specific rain vulnerability patterns,
providing insights into which object categories are most
challenging under rain.

Low Sensitivity (20%): Automobile (13.8%), Truck
(15.9%), Ship (15.5%) demonstrate superior rain robustness.
These vehicles share characteristics enabling resilience: large
size occupying 40-60% of image area reducing relative
occlusion impact, strong geometric features with rectangular
bodies and distinct profiles remaining recognizable despite
partial occlusion, high contrast edges maintained even under
rain  (contrast ratio > 3 : 1preserved), and color
uniformity with solid body colors partially preserved despite
desaturation. Pearson correlation analysis confirms size
correlation with robustness: p = 0.71 between object size
and retention (p < 0.01). These classes achieve > 84%

EDCST-Rain: Enhanced Density-Aware Cross-Scale Transformer for Robust Object Classification Under Diverse Rainfall
Conditions (Oshasha Oshasha Fiston, Djungu Ahuka Saint Jean, Mwamba Kande Franklin, Simboni Simboni Tege, Biaba
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retention under storm conditions, suitable for safety-critical
applications like autonomous driving.

High Sensitivity (25%): Bird (28.4%), Cat (29.1%), Deer
(29.8%), Dog (26.3%) are most vulnerable. Common
vulnerability factors include: small size where birds
especially (15-25% image area) suffer proportionally more
occlusion from rain streaks, texture dependence with
fur/feather patterns completely obscured by heavy rain
eliminating key discriminative features, organic shapes
lacking distinctive geometric features unlike manufactured
objects, and high intra-class variation where different breeds
and poses complicate learning under additional rain variation.
Regression analysis quantifies factors: Sensitivity =
45.2 — 0.38 - Size + 0.52 - TextureDep — 0.29 -
EdgeStrength + 0.18 - IntraVar (R* = 0.84,

all coef ficientsp < 0.05).

5. Ablation Study Results

Figure 2. Ablation Study Component Contributions
(Accuracy % and Retention)

Ablation Study: Compenent Contributions to A

Ablation Study: Performance Retention Across Rain Conditions
@

[

Configuration

Figure 2. quantifies individual components’ contributions through
systematic ablation experiments.

Directional Attention provides largest impact (A=
—4.3%), especially on moderate/heavy rain where oriented
streaks dominate. Removing directional attention causes:
Moderate 60%: —4.4% absolute (—5.2% retention), Heavy
80%: —5.4% absolute (—6.4%retention), Storm 80%: —5.8%
absolute (—6.9% retention), validating its critical role in
handling streak-oriented occlusion. Rain Curriculum provides
second-largest contribution (A = —3.4%) with surprisingly
uniform impact across conditions, suggesting curriculum
improves overall feature learning rather than just handling
specific rain types. Cross-Scale Fusion ranks third (A =
—3.0%) with larger impact on heavy/storm conditions
demonstrating the need for integrating multiple semantic
levels when fine details are obscured.

Removing multiple components simultaneously causes
near-additive degradation. For example, removing both
directional attention and cross-scale fusion yields —9.1%
degradation versus —9.2% from sum of individual effects,
indicating components operate relatively independently
though slight super-additivity (9.1% > 9.2% expected)
suggests some synergy where directional attention identifies

streak-aligned features and cross-scale fusion integrates them
across semantic levels.

6. Computational Efficiency Analysis

One of the key advantages of EDCST-Rain is its ability to
process images efficiently, making it suitable for real-time
applications such as autonomous driving systems. We provide
a comprehensive analysis of computational performance
under realistic deployment conditions.

Hardware and Software Configuration: All inference time
measurements were conducted on the following setup: GPU:
NVIDIA RTX 3090 (24GB VRAM), CPU: Intel Core i9
12900K, Framework:PyTorch 2.0.1 with CUDA 11.8,
Precision: FP16 (mixed precision for optimal throughput),
Batch size:1 (simulating real-time single-frame processing),
Input resolution: 224 x 224 pixels.

Inference Time Breakdown: The total inference pipeline
consists of four main stages: preprocessing (image
normalization, resizing): 1.2 ms, rain density encoding: 2.8
ms, transformer forward pass: 9.1 ms, and classification head:
1.2 ms, yielding total inference time of 14.3 ms (~70 FPS).

Notably, 63.6% of the computational cost comes from the
transformer backbone, while the rain density encoding
module adds only 2.8 ms overhead—a reasonable trade-off
for significant robustness gains.

Comparative Analysis: Table 6 demonstrates EDCST-Rain’s
practical deployability. GPU inference at 14.3ms per image
supports approximately 70 FPS throughput, sufficient for
real-time video processing in autonomous vehicles (typically
30-60 FPS required). Comparison to preprocessing methods
shows: DerainNet+ResNet: 23.7ms  (1.66x  slower),
RESCAN-+EfficientNet: 31.5ms (2.20x slower). EDCST-
Rain’s end-to-end approach provides 52-70% latency
reduction by eliminating separate deraining stage. CPU
inference at 74.8ms (~13 FPS) enables deployment on edge
devices without GPUs for less time-critical applications.

TABLE 6.

COMPUTATIONAL EFFICIENCY COMPARISON

Method Params | FLOPs | GPU | CPU | FPS (GPU)
(M) G) (ms) | (ms)

ResNet-50 23.5 4.1 8.2 | 453 [ 122(GPUL)
EfficientNet- 10.7 1.8 7.5 38.6 | 133 (GPU)
B3
Swin-Tiny 28.3 4.5 9.8 52.7 | 102 (GPU)
DerainNet+R50 | 28.2 8.9 23.7 | 1425 | 42 (GPU)
RESCAN+Eff | 24.8 12.3 31.5 | 167.3 | 32 (GPU)
EDCST-Fog 19.8 4.8 12.1 | 58.4 | 83(GPU)
EDCST-Rain 15.8 5.2 14.3 | 74.8 | 70 (GPU)

C. Discussion and Critical Analysis

Our superior performance stems from three synergis-
tic factors. First, rain-specific architectural innovations
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directly address rain’s unique characteristics directional
attention  exploits  predictable  streak  orientations,
accumulation processing handles lens distortions, and
adaptive cross-scale fusion combines local preservation with
global robustness. Second, end-to-end learning optimizes
directly for classification rather than perceptual quality,
avoiding objective misalignment plaguing preprocessing
approaches. Third, rain-aware curriculum enables efficient
learning through  principled difficulty progression,
accelerating convergence 17% while improving final
performance 3.4%.

Recent state-of-the-art methods report: Hu et al. [40]
(CVPR 2021): 71.2% retention, Chen etal. [42] (ICCV 2022):
74.0% retention, Zhang et al. [41] (NeurlPS 2024): 76.2%
retention. EDCST-Rain’s 86.4% retention represents +10.2 to
+15.2 percentage points improvement over these recent
works, demonstrating substantial advancement in rain-robust
classification.

Despite strong performance, limitations remain. Small
object performance (birds: 56.8% under storm) remains
challenging, requiring novel solutions like object detection
integration or super-resolution preprocessing. Synthetic-to-
real gap (5-8% accuracy drop on real rain) indicates
simulation limitations despite 87% feature correlation,
motivating domain adaptation research. Single-frame
processing cannot leverage temporal consistency available in
video streams, where preliminary experiments show 2.8-4.2%
improvements through 3-frame temporal aggregation. These
limitations represent engineering challenges addressable
through continued research rather than fundamental barriers.

All reported improvements are statistically significant.
Paired t-tests comparing EDCST-Rain against best baseline
(RESCAN+EfficientNet) across 10,000 test samples yield t =
47.3, p < 0.001 with Bonferroni correction for multiple
comparisons (acorrected = 0.005 for 10 comparisons). 95%
confidence intervals using Wilson score method confirm
improvements: EDCST-Rain retention 86.4% [85.8%,
87.0%] versus baseline 76.4% [75.7%, 77.1%], with non-
overlapping intervals confirming significant difference.

EDCST-Rain achieves substantial improvements in rain-
robust classification through principled integration of rain-
specific architectural innovations, end-to-end learning, and
curriculum  training  strategies, while  maintaining
computational efficiency suitable for real-world deployment.

IV. Limitations and Future Work

While EDCST-Rain demonstrates strong performance on
synthetic rain benchmarks, we acknowledge several
limitations that define directions for future research.

A. Dataset Limitations: CIFAR-10 vs Real-World

Autonomous Driving

CIFAR-10’s 32 x 32 pixel resolution is significantly lower
than typical autonomous vehicle perception systems
(1280%720 or higher). This resolution mismatch creates two
concerns:

(1) Oversimplification: small object details crucial for real-
world decision-making are lost at low resolution, and

(2) Scalability uncertainty: performance on low-resolution
images may not transfer to high-resolution inputs.

Additionally, CIFAR-10 contains generic object categories
(animals, vehicles, common objects) that do not reflect the
specific challenges of autonomous driving perception: no
pedestrian detection under rain, no traffic sign recognition in
degraded visibility, and no lane marking detection with water
accumulation.

We plan comprehensive evaluation on automotive-specific
datasets including KITTI (7,481 frames with weather
metadata), BDD100K (100,000 diverse scenes with 13,000+
rainy conditions), and nuScenes (multi-sensor weather data).
Early experiments on ImageNet (224x224) show EDCST-
Rain maintains its robustness advantage at higher resolutions
(12.3% accuracy gap vs 15.7% for ResNet-50).

B. Domain Gap: Synthetic vs Real-World Rain

Our primary experiments rely on physics-based rain
simulation, introducing a fundamental limitation, the domain
gap between simulated and real rainfall. Real rain exhibits
complexities difficult to fully capture, lighting variations
(overcast skies, artificial lights, reflections), wind dynamics
(irregular, turbulent patterns), camera artifacts (motion blur,
lens flare, sensor noise), and material interactions (rain on
glass, asphalt, foliage).

To quantify this limitation, we tested on 500 real-world rainy
dashcam images, revealing noticeable performance drops:

TABLE 7.
DOMAIN GAP ANALYSIS: SYNTHETIC VS REAL RAIN

Condition CIFAR-10 Simulated Real Dashcam
Clean weather 83.1% 79.4%
Light rain 78.9% 72.6%
Heavy rain 73.6% 65.1%

The increasing gap under heavier rain (3.7% — 8.5%)
suggests domain-specific overfitting. Mitigation strategies:
(1) Domain adaptation techniques (ADDA, DANN) to align
feature distributions,

(2) Hybrid training with pre-training on simulation + fine-
tuning on real data, (3) Domain randomization during
training. Preliminary results show fine-tuning on 1,000 real

EDCST-Rain: Enhanced Density-Aware Cross-Scale Transformer for Robust Object Classification Under Diverse Rainfall
Conditions (Oshasha Oshasha Fiston, Djungu Ahuka Saint Jean, Mwamba Kande Franklin, Simboni Simboni Tege, Biaba
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rain images improves accuracy from 65.1% to 71.8%,
indicating domain adaptation can close the gap.

C. Clean Accuracy Trade-off: Robustness vs Peak

Performance

Our clean-image accuracy (83.1%) is lower than state-of-the-
art CIFAR-10 models (>95%). This reflects a conscious
architectural choice: we prioritize robustness over peak clean-
image performance. Our cross-scale attention and rain-aware
encoding add inductive biases that slightly reduce
performance on pristine images but significantly improve
resilience under degradation.

This trade-off is acceptable for safety-critical applications like
autonomous driving, where worst case performance matters
more than best-case accuracy. While MobileNetV3 achieves
higher FPS (196 vs 70), it suffers 21.5% accuracy drop under
heavy rain versus our 9.5% drop. For safety systems,
maintaining 86.4% retention under adverse conditions is more
valuable than achieving 95% only in ideal weather.

We are exploring techniques to narrow this gap through
knowledge distillation from high-accuracy teacher models,
hybrid CNN-Transformer architectures combining efficiency
with robustness, and advanced augmentation strategies
(MixUp, CutMix).

These limitations do not undermine the value of our
contributions EDCST-Rain introduces novel architectural
ideas and demonstrates strong performance on controlled
benchmarks. However, they define a clear roadmap for future
work, transitioning from simulation to real-world validation,
scaling to automotive datasets, and closing the clean-accuracy
gap without sacrificing robustness. We believe transparent
acknowledgment of these challenges enables the research
community to build upon our work effectively.

V. CONCLUSION

This work introduces EDCST-Rain, an Enhanced Density-
Aware Cross-Scale Transformer specifically engineered for
robust object classification under diverse rainfall conditions.
Through comprehensive experiments on CIFAR-10 across 17
rain conditions, we demonstrate that EDCST-Rain achieves
83.1% clean accuracy while maintaining 71.8% under severe
rain (80% intensity), representing 86.4% performance
retention—a substantial 10.0 percentage point improvement
over state-of-the-art methods.

Our key contributions advance weather-robust computer
vision through three synergistic innovations. First, we
introduce rain-specific architectural components: directional
attention modules adapting to rain streak orientation (4.3%
retention contribution), accumulation-aware processing
handling lens droplet distortions (1.8% contribution), and
adaptive cross-scale fusion integrating multi-resolution
information (3.0% contribution). Second, we develop a
comprehensive physics-based rain simulation framework

modeling four distinct rain types with realistic properties,
achieving 87% feature correlation with real rain. Third, we
propose a four-stage curriculum learning strategy enabling
17% faster convergence and 3.4% better final performance.

Beyond quantitative improvements, EDCST-Rain
demonstrates a fundamental shift in approach, rather than
treating weather degradation as noise to be removed, we
design architectures that directly learn robust representations
under adverse conditions. This end-to-end paradigm
eliminates the error propagation inherent in preprocessing
pipelines while achieving superior parameter efficiency
(15.8M parameters, 14.3ms inference) suitable for real-time
deployment.

As autonomous systems increasingly operate in
uncontrolled  outdoor  environments,  weather-robust
perception becomes essential for safety and reliability.
EDCST-Rain provides a practical framework addressing this
challenge, with transparent acknowledgment of current

limitations defining clear directions for continued
advancement  toward truly weather-agnostic  visual
perception.
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