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 Named Entity Recognition (NER) is vital for structuring medical texts by identifying 

entities such as diseases, symptoms, and drugs. However, research on Indonesian 

medical NER remain limited due to the lack of annotated corpora and linguistic 

resources. This scarcity often leads to difficulties in learning meaningful word 

representations, which are crucial for accurate entity identification. This research 

aims to compare the effectiveness of static and contextual embeddings in enhancing 

entity recognition on Indonesian biomedical text. The experimental setup involved 

utilizing both static (Word2Vec) and contextual (IndoBERT) embeddings in 

conjunction with neural architectures (BiLSTM) along with Conditional Random 

Fields (CRF). The BiLSTM architecture was selected for its ability to capture 

bidirectional dependencies in language sequences. Specifically, four models: 

Word2Vec-BiLSTM, Word2Vec-BiLSTM-CRF, IndoBERT-BiLSTM, and 

IndoBERT-BiLSTM-CRF were evaluated to assess the impact of contextual 

representations and structured decoding. The models were trained on a manually 

annotated DetikHealth corpus, where specific medical entities such as diseases, 

symptoms, and drugs were labeled with the BIO-tagging scheme. Performance was 

subsequently evaluated based on standard metrics: precision, recall, and F1-score. 

Results indicate that IndoBERT’s contextual embeddings significantly outperform 

static Word2Vec features. The IndoBERT-BiLSTM-CRF model achieved the 

highest performance micro-F1 0.4330, macro-F1 0.3297, with the Disease entity 

reaching an F1-score of 0.5882. Combining contextual embeddings with CRF-based 

decoding enhances semantic understanding and boundary consistency, 

demonstrating superior performance for Indonesian biomedical NER. Future work 

should explore domain-adaptive pretraining and larger biomedical corpora to further 

improve contextual accuracy. 
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I. INTRODUCTION 

The rise of digital media has led to an explosion of health-

related news articles. Many of these articles are typically 

written in an unstructured format, meaning that crucial 

information such as the names of diseases, specific 

symptoms, or drug mentions is embedded within free-form 

text without standardized tags, categories, or database-

friendly fields. This lack of structure makes automated 

extraction and analysis particularly challenging. Extracting 

medical entities such as diseases, drugs, and symptoms from 

these unstructured texts is a crucial step in transforming 

narrative health information into structured data. Once 

structured, this information can be systematically analyzed to 

support clinical research, enable disease surveillance, and 

strengthen evidence-based decision-making in public health. 

Through such extraction, it becomes possible to detect 

outbreak trends automatically, identify frequently mentioned 

medications, and understand symptom progression in real-

world discourse. Consequently, automatically identifying 

relevant entities from textual health data is critical for tasks 
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such as information retrieval, knowledge graph construction, 

and large-scale public health monitoring.  

Named Entity Recognition (NER) directly addresses this 

challenge by identifying and categorizing specific spans of 

text, such as diseases, symptoms, or medical procedures, 

enabling the conversion of unstructured content into a 

structured format. Historically, NER systems were built upon 

symbolic rules or statistical models. However, these 

conventional approaches demonstrate limitations when faced 

with the dynamic terminology and long-range dependencies 

prevalent in real-world textual data, particularly within 

specialized domains like medicine [1], [2]. Recent researches 

have demonstrated that modern deep learning architectures 

can achieve substantial performance gains in NER, 

effectively addressing the limitations of earlier approaches 

and motivating the present investigation [3].  

Conventional machine learning approaches to NER depend 

heavily on handcrafted features and domain specific lexicons. 

Rule based systems are interpretable and precise but require 

extensive manual effort and lack generality statistical models 

such as Hidden Markov Models or Conditional Random 

Fields (CRF) improved scalability, yet they still depend on 

feature engineering and large annotated datasets [4]. The 

limitations of these approaches are particularly evident in 

specialized domains such as medicine, where new 

terminologies emerge rapidly and labelled data are scarce. 

While the integration of symbolic knowledge with deep 

learning in hybrid methods has been explored to mitigate 

existing challenges, the imperative for robust Medical NER 

systems that demonstrate superior generalization across 

domains and precisely capture complex contextual nuances 

persists [5]. 

The emergence of deep neural has been revolutionary. 

Specifically, Bidirectional Long Short-Term Memory 

(BiLSTM) networks facilitate the assimilation of extensive 

contextual data by processing input sequences in both forward 

and backward directions, thereby enriching each token's 

representation with both antecedent and subsequent 

information [6]. To optimize the output sequence, the 

incorporation of a Conditional Random Field (CRF) layer is 

highly beneficial. This layer allows the model to leverage 

global label dependencies and ensure the generation of valid 

tag sequences, thereby enhancing the overall consistency and 

reliability of detected entity boundaries. However, simple 

stacking of BiLSTM and CRF may not fully exploit the 

representational capacity of transformer based embeddings 

[7]. For example, dynamic attention network (Dyn-Att Net) 

proposed by Hou et al. [8] for traditional Chinese medical 

NER. Their model, which rearranges the BERT-BiLSTM-

CRF architecture to better capture semantic and sequential 

relations, achieved an F1-score of 81.91% and an accuracy of 

92.06% on benchmark data. This outcome, along with similar 

enhancements observed in other specialized domains, 

highlights that careful architectural design is crucial for 

significantly boosting NER performance. 

Pre-trained language models have emerged as the 

dominant foundational technology for modern NER. 

Specifically, models like BERT generate highly 

contextualized word embeddings, which are instrumental in 

capturing rich semantic nuances derived from their 

surrounding text [9]. In medical NER, hybrid architectures 

such as BERT-BiLSTM-CRF and BERT-BiGRU-CRF have 

demonstrated superior performance compared to earlier 

neural models. This advantage stems from their capacity to 

effectively leverage pre-training on extensive corpora, 

thereby capturing nuanced contextual representations crucial 

for the domain [10]. Furthermore, hybrid models that 

integrate attention mechanisms and trigger matching have 

demonstrated the capacity to further reduce data 

requirements. For instance, Tu et al. [11] showed that their 

attention-based NER model outperformed a traditional 

BiLSTM-CRF baseline using merely 20% of the training data. 

These advances collectively underscore the critical 

importance of contextual embeddings and prominently 

highlight the substantial potential of transfer learning, 

particularly in low-resource settings. 

Research in Indonesian NLP has been accelerated by the 

release of IndoBERT [12]  pre-trained model. IndoBERT is 

trained on a large corpus of Indonesian news and social media 

and has achieved state of the art results across a range of 

language understanding tasks. However, Indonesian presents 

unique challenges stemming from its linguistic diversity, 

which includes more than 700 regional languages, pervasive 

code-switching, and under-resourced dialects [13]. For 

example, NusaBERT extends IndoBERT by expanding the 

vocabulary and pre training on a multilingual corpus, this 

model demonstrates improved performance on tasks covering 

multiple Indonesian languages [14]. IndoBERTweet adapts 

IndoBERT for Twitter data by introducing domain specific 

vocabulary, the authors show that initializing new 

embeddings with averages of IndoBERT subwords yields 

better efficiency than projecting Word2Vec vectors [15]. 

Despite these advances, the majority of Indonesian NER 

researches continue to focus on general news or social media. 

While progress has been made, domain-specific efforts 

remain relatively limited. Notable recent contributions 

include the IPerFEX dataset, which targets personal financial 

entities and effectively demonstrates the utility of IndoBERT-

BiLSTM-CRF models [15]. Another significant development 

is the TWCAM model, which integrates Transformers, 

Word2Vec, convolutional layers, and attention mechanisms 

to enhance NER in general Indonesian news. This model 

achieved an F1-score of 0.8178, a considerable improvement 

over a BiLSTM baseline score of 0.72 [16], [17]. 

While significant progress has been achieved in general-

domain Indonesian NER, prior works have primarily focused 

on generic or social media texts and have rarely explored 

domain-specific contexts such as health journalism. Existing 

studies have demonstrated the effectiveness of hybrid deep 

learning architectures (e.g., BERT-BiLSTM-CRF) and 

multilingual biomedical models such as BioBERT and 
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ClinicalBERT, however, none have systematically examined 

their applicability to Indonesian medical texts. Furthermore, 

no previous research has conducted a comparative analysis 

between static and contextual embeddings for Indonesian 

biomedical NER, leaving an open question regarding which 

representation strategy is most effective for this 

morphologically rich and low-resource language. Another 

gap concerns the lack of a publicly available, manually 

annotated corpus that specifically captures medically relevant 

entities disease, symptom, and drug within the Indonesian 

health-news domain. These gaps collectively highlight the 

need for a domain-specific benchmark and an empirical 

comparison across embedding paradigms to establish a 

foundation for future biomedical NLP research in  Indonesian. 

To address these issues, the present research introduces a new 

manually annotated DetikHealth corpus and evaluates four 

model configurations (Word2Vec-BiLSTM, Word2Vec-

BiLSTM-CRF, IndoBERT-BiLSTM, and IndoBERT-

BiLSTM-CRF) to investigate the relative contributions of 

contextual embeddings and structured decoding in Indonesian 

medical NER. 

II. METHOD  

This research adopts a supervised comparative framework 

to evaluate Word2Vec and IndoBERT based BiLSTM, and 

BiLSTM-CRF architectures for Indonesian medical NER. 

The research workflow, illustrated in Figure I, includes data 

preparation, embedding integration, model training, and 

performance evaluation. 

 

 

Figure I workflow of the proposed Indonesian health-news NER pipeline 

A. Dataset 

The dataset used in this research was developed to 

evaluate Named Entity Recognition (NER) systems on 

Indonesian health-news texts. The corpus was collected from 

DetikHealth, one of Indonesia’s major online health news 

portals that regularly publishes articles on disease prevention, 

treatment updates, healthy lifestyles, and public health 

policies. Data collection was conducted over a two-week 

period preceding August 13, 2025, resulting in a total of 272 

articles.  

Each sentence was annotated with three medical entity 

types Disease, Symptom, and Drug using Label Studio, 

followed by tokenization with a rule-based Indonesian 

tokenizer. As illustrated in Figure II, the annotation workflow 

began with the definition of medical entity categories and the 

preparation of detailed annotation guidelines based on the 

BIO (Begin–Inside–Outside) tagging convention. The 

process continued with span-based tagging in Label Studio, 

performed by two trained undergraduate annotators from the 

Information Systems program. Prior to full annotation, both 

annotators received instruction and practice using guidelines 

derived from the ICD-10 (Ministry of Health, Indonesia), the 

Kamus Kesehatan Indonesia, and the BPOM RI national drug 

registry to ensure consistency in identifying medical terms. 

To evaluate reliability, a random 10% subset of sentences was 

double-annotated and inter-annotator agreement was 

measured using Cohen’s Kappa (κ = 0.81), indicating 

substantial agreement. Discrepancies were resolved through 

discussion until consensus was reached [18]. The finalized 

annotations were then exported to BIO format for model 

training and evaluation, ensuring consistent labeling and 

linguistic coherence of medically relevant entities within the 

health-news context [13], [17]. 

 
Figure II Entity annotation workflow 

To ensure consistency and alignment with established 

medical terminology, the annotation guidelines for each entity 

category referred to authoritative national health sources. The 

Disease category followed the ICD-10 Indonesian adaptation 

issued by the Ministry of Health (Kementerian Kesehatan RI), 

which includes recognized pathological and infectious 

conditions such as demam berdarah dengue, diabetes melitus, 

and tuberkulosis paru. The Symptom category was defined 

based on terminology from the Pusat Data dan Informasi 

Kesehatan (Infodatin) and the Kamus Kesehatan Indonesia, 

encompassing clinical indicators such as batuk kering, sesak 

napas, and demam tinggi. Meanwhile, the Drug category was 

based on the Badan Pengawas Obat dan Makanan (BPOM RI) 

registry (Daftar Obat dan Bahan Aktif Terdaftar 2024), 

covering pharmaceutical substances such as parasetamol, 

amoksisilin, and ibuprofen.  

Each entity label adhered to the BIO tagging standard, 

where “B-” denotes the beginning of an entity, “I-” indicates 

continuation within the same entity span, and “O” refers to 

non-entity tokens, providing a structured and linguistically 

coherent annotation framework. 
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B. Data Preprocessing 

To prepare the raw news articles for modelling, a series of 

cleaning and normalization steps were applied. HTML tags 

and other nontextual elements were removed from the scraped 

pages, and the remaining content was converted to lowercase. 

Regular expressions were then used to normalize whitespace 

and unicode characters, and quotation marks and dash 

characters were standardized. Promotional or unrelated 

content (e.g., advertisements) was filtered out to retain only 

informational text [19]. Careful preprocessing is essential for 

NER because high quality, consistent input improves the 

ability of neural models to learn contextual patterns and is 

considered a prerequisite for reliable sequence labelling 

pipelines in biomedical NLP [20]. 

C. Data Splitting 

To ensure a reliable evaluation process, the annotated 

corpus was divided into training (80 %), validation (10 %) and 

testing (10 %) subsets. To prevent information leakage across 

splits, a stratified anti leakage splitting strategy was applied. 

Sentences were first grouped by their source article, and a 

multilabel stratification algorithm was used to balance the 

distribution of the Disease, Symptom and Drug entities across 

the three subsets.  

Long sentences were divided into overlapping chunks 

with a maximum length of 384 tokens so that entity 

boundaries were not fragmented. The splitting procedure was 

iterated over multiple random seeds and the configuration 

with the lowest variance in entity ratios across splits was 

selected. Such careful splitting ensures that the evaluation 

reflects model generalization rather than memorization and 

adheres to best practices for biomedical and health related 

NER task [21]. 

D. Word Embedding Method 

Two embedding methods were investigated to assess the 

impact of static versus contextual word representations. The 

first approach used Word2Vec, a static embedding model 

trained on the training portion of the health news corpus using 

the skip gram architecture. Word2Vec captures semantic 

similarity by predicting neighboring words and produces 

dense vector representations that are invariant across contexts 

[22].  

The second approach employed IndoBERT, a pre trained 

monolingual transformer model for the Indonesian language. 

IndoBERT provides contextual embeddings in which each 

word representation depends on its surrounding context, 

offering superior modelling of polysemy and long-range 

dependencies. For contextual embedding, IndoBERT’s 

WordPiece tokenizer was applied to segment text into sub-

word units before feeding the input into the model this 

approach preserves morphological information and handles 

out of vocabulary words effectively, as recommended in 

transformer based NER studies [23].  

E. Model Architecture 

NER models were constructed using Bidirectional Long 

Short-Term Memory (BiLSTM) networks, optionally 

combined with a Conditional Random Field (CRF) layer. 

BiLSTMs process sequences in both forward and backward 

directions, allowing the model to capture long distance 

contextual dependencies across tokens [24].When a CRF 

layer is added on top of the BiLSTM output, it models the 

joint probability of the entire label sequence and enforces 

valid tag transitions, providing a globally optimal decoding 

for sequence labelling tasks. 

For reproducibility and comparability, the network 

hyperparameters were fixed across all experiments. Table I 

lists the values used for the embedding dimension, hidden 

size, number of BiLSTM layers, dropout rate, batch size, 

maximum epochs, learning rate, weight decay, gradient 

clipping threshold and early stopping patience. Setting fixed 

hyperparameters across models is a common practice in 

sequence labelling research, as it isolates the effects of 

embedding representations and architectural components. 

Models were trained using the AdamW optimizer on a single 

NVIDIA P100 GPU on Kaggle 

TABLE I  

PARAMETER SETTING OF BILSTM MODEL 

Parameter Setting Value 

embedding dimension 300 

hidden size 256 

Layers 2 

batch 32 

learning rate 2 × 10⁻³ 

early-stopping patience 6 

Optimizer AdamW 

Max Epoch 12 

Four model configurations were evaluated Word2Vec and 

BiLSTM, Word2Vec and BiLSTM-CRF, IndoBERT and 

BiLSTM, and IndoBERT and BiLSTM-CRF. The first two 

settings use static embeddings to examine the effect of adding 

a CRF decoding layer, while the latter two employ contextual 

embeddings to assess the impact of IndoBERT.  

F. Evaluation  

Model performance was evaluated using three standard 

NER metrics: precision, recall, and F1-score. These metrics 

were computed at both the token level and the entity level. At 

the entity level, a prediction is considered correct only if the 

predicted span exactly matches the ground-truth span in both 

boundaries and label token-level evaluation, by contrast, 

assesses each token independently and may reward partial 

matches [25]. 

To account for class imbalance among entity types such 

as frequent symptoms versus rare diseases we report both 

macro-averaged and micro-averaged F1-scores. Micro-

averaging aggregates true positive, false positive, and false 
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negative counts across all entity classes before computing 

precision and recall, thereby weighting each prediction 

equally [26]. Macro-averaging computes the metrics 

separately for each class and then takes the unweighted mean, 

giving equal importance to both frequent and rare categories. 

The formal definitions of these metrics are given in 

Equations (1)-(3), where TP, FP, and FN denote the number 

of true positives, false positives, and false negatives, 

respectively 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 (3) 

These evaluation protocols are widely adopted in 

biomedical and clinical NER research and provide a robust 

and fair basis for comparing models with different embedding 

strategies and architectural designs [27]. 

III. RESULT AND DISCUSSION 

A. Dataset Exploration 

The final corpus comprises 272 health-related articles 

collected from DetikHealth, containing approximately 90,951 

tokens written entirely in Bahasa Indonesia. Each sentence 

was manually annotated and resulted in three medical entity 

categories Disease, Symptom, and Drug.  

As illustrated in Figure III, the dataset shows a clear 

imbalance in entity distribution, with Disease entities 

occurring most frequently, followed by Symptom and Drug. 

The corpus contains 87,965 (O) non-entity tokens, 898 (B-

DISEASE) and 842 (I-DISEASE) disease tokens, 468 (B-

SYMPTOM) and 530 (I-SYMPTOM) symptom tokens, and 

139 (B-DRUG) and 109 (I-DRUG) drug tokens. This 

imbalance reflects the linguistic characteristics of Indonesian 

health journalism, where diseases are mentioned more often 

than symptoms or medications, and thus introduces a realistic 

challenge for model generalization in medical NER. 

 

Figure III Label distribution across the DetikHealth corpus 

To illustrate the annotation style and linguistic diversity of 

the corpus, Table II presents representative examples of 

annotated sentences using the BIO tagging scheme. These 

examples demonstrate how Indonesian medical terminology 

appears in compound noun phrases and colloquial phrasing, 

highlighting the morphological richness of the language and 

the contextual complexity encountered in automatic entity 

recognition. 

TABLE II   

EXAMPLES OF ANNOTATED SENTENCES FROM THE DETIKHEALTH CORPUS. 

Tokens Labels length 

Hong Kong melaporkan kasus 

demam chikungunya ... 

O O O O B-

DISEASE I-

DISEASE O... 

427 

Badan Pengawas Obat dan 

Makanan ( BPOM RI ) ... 

O O O O O O O O 

O… 

504 

Belakangan game Roblox 

menjadi perbincangan ... 

O O O O O… 279 

Overall, the dataset provides a linguistically diverse and 

domain-specific benchmark for evaluating Indonesian NER 

systems in the healthcare domain. This analysis also 

establishes a quantitative foundation for the comparative 

evaluation of model architectures discussed in the subsequent 

sections 

B. Performance result of Word2Vec-BiLSTM  

The baseline configuration utilizing Word2Vec 

embeddings combined with a BiLSTM network was 

implemented to evaluate the fundamental capability of static 

word representations in identifying medical entities within 

Indonesian health-related texts. 

As summarized in Table III, the model achieved a micro-

average F1-score of 0.2777, with individual class 

performances of 0.3971 for Disease, 0.1503 for Symptom, 

and 0.0426 for Drug. The substantial difference between 

Disease and the two other categories (approximately 0.25-

0.35 points) illustrates a pronounced class imbalance effect, 

where frequent and lexically distinct entities are captured 

more effectively. Precision and recall for the Disease class 

reached 0.3793 and 0.4167, respectively, indicating relatively 

stable detection, while both Symptom and Drug entities 

exhibited weaker precision-recall trade-offs due to their 

sparsity and semantic overlap with common non-entity 

expressions. 

TABLE III  

ENTITY LEVEL PERFORMANCE METRICS OF THE WORD2VEC-BILSTM 

MODEL ON THE TEST SET. 

 Precision Recall F1-Score Support 

Disease 0.3793 0.4167 0.3971 132 

Drug 0.0370 0.0500 0.0426 20 

Symptom 0.1238 0.1912 0.1503 68 

micro avg 0.2491 0.3136 0.2777 220 

macro avg 0.1801 0.2193 0.1967 220 

weighted avg 0.2692 0.3136 0.2886 220 
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To further interpret these results, Figure IV presents the 

confusion matrix that visualizes token-level prediction 

distributions across the seven output classes, including entity 

boundaries (B-, I-) and the non-entity category (O). The 

matrix highlights a strong dominance of the non-entity (O) 

class, which accounts for 13,013 correctly predicted tokens, 

confirming that the model’s learning dynamics are largely 

governed by the overrepresentation of neutral text. This heavy 

skew toward non-entity tokens causes the model to favor 

conservative predictions, where uncertain or contextually 

ambiguous tokens are defaulted to the O class. The highest 

confusion occurs between B-DISEASE and I-DISEASE, with 

67 and 48 correctly predicted instances but 57 and 55 false 

transitions respectively, indicating that while the model 

identifies the presence of disease-related information, it fails 

to consistently recognize the start and continuation of multi-

token spans. This irregular boundary detection is typical of 

BiLSTM architectures trained on unbalanced corpora, as the 

recurrent context window is insufficient to differentiate entity 

onset patterns from internal entity tokens, especially when 

both occur in similar syntactic positions. 

Further analysis of Figure IV shows that Symptom entities 

exhibit scattered misclassifications, with 35 B-SYMPTOM 

and 38 I-SYMPTOM tokens predicted incorrectly as O. The 

model tends to under-recognize symptom terms that share 

overlapping linguistic structures with general descriptive 

expressions, leading to uncertainty in entity assignment. 

Additionally, 22 B-SYMPTOM tokens were confused with 

B-DISEASE, suggesting a systematic overlap between 

disease and symptom mentions where boundary distinctions 

are not clearly learned. This cross-entity confusion 

demonstrates that the static Word2Vec embeddings fail to 

encode contextual distinctions between medically related 

terms. The Drug entity class shows the weakest structural 

integrity: 14 B-DRUG and 13 I-DRUG tokens were 

misclassified as O, and only 2 instances of B-DRUG were 

correctly identified. This near-absence of correct Drug 

detection indicates that the BiLSTM relies primarily on 

surface-level frequency patterns rather than semantic cues, 

resulting in limited discrimination of low-frequency entities. 

The misclassification patterns in Figure 3 reveal that while the 

model captures partial semantic grouping for frequent classes, 

it lacks contextual precision and boundary consistency across 

minority medical entities. 

 

Figure IV Confusion matrix of the Word2Vec-BiLSTM model 

A broader view of model behavior is provided by the 

Precision Recall (PR) curves illustrated in Figure V, which 

depict how the model’s confidence changes across varying 

recall thresholds. The B-DISEASE and I-DISEASE curves 

occupy the largest area under the curve (AUC), maintaining 

precision above 0.8 up to recall levels of approximately 0.6. 

The B-SYMPTOM and I-SYMPTOM curves drop steeply 

beyond recall 0.4, demonstrating that the model rapidly loses 

discriminative ability as it attempts to generalize symptom 

terms. The B-DRUG and I-DRUG curves cluster near the 

lower left corner, representing near-random precision and 

confirming that low-frequency entities are effectively 

neglected during training. This visual trend reinforces the 

numerical results in Table IV, showing that static Word2Vec 

embeddings lack contextual adaptability, and that entity 

recognition is primarily driven by token frequency rather than 

semantic structure. 

 
Figure V Precision-Recall curves for each entity category produced by the 

Word2Vec-BiLSTM model. 
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C. Effect of the CRF Layer on the Word2Vec-BiLSTM 

Model 

The integration of a CRF layer atop the BiLSTM 

architecture was intended to assess whether structured 

decoding could enhance label sequence consistency and 

improve entity boundary detection. The performance 

outcomes presented in Table IV show that the Word2Vec-

BiLSTM-CRF configuration achieved a micro-average F1-

score of 0.2357 and a macro-average F1-score of 0.2387. At 

the entity level, the F1-scores were 0.3538 for Disease, 0.2909 

for Symptom, and 0.0714 for Drug.  

TABLE IV ENTITY LEVEL PERFORMANCE METRICS OF THE WORD2VEC-

BILSTM-CRF MODEL ON THE TEST SET. 

 Precision Recall F1-Score Support 

Disease 0.3594      0.3485      0.3538         132 

Drug 0.0392 0.4000     0.0714         20 

Symptom 0.3810     0.2353  0.2909 68 

micro avg 0.1872 0.3182     0.2357        220 

macro avg 0.2598     0.3279     0.2387        220 

weighted avg 0.3369  0.3182 0.3087 220 

Compared with the baseline, the inclusion of CRF slightly 

lowered the Disease F1 (from 0.3971 to 0.3538) but improved 

Symptom recognition (from 0.1503 to 0.2909) and notably 

raised the Drug recall (from 0.05 to 0.40). This suggests that 

the CRF layer better captures sequential dependencies 

between entity boundaries, particularly for multi-token 

expressions, although at the cost of overgeneralization in low-

frequency classes. The enhancement in recall for Drug entities 

is accompanied by reduced precision (0.0392), implying that 

the layer increased sensitivity to entity cues but also 

introduced a higher false-positive rate in ambiguous contexts. 

To further analyze these outcomes, Figure VI illustrates 

the confusion matrix visualizing token-level distributions 

across the seven output labels. The non-entity (O) class 

remains dominant, accounting for 12,794 correct predictions, 

which demonstrates that the model still prioritizes majority-

class stability over entity differentiation. A clearer pattern of 

structured labeling can be observed within the Disease and 

Symptom categories: 55 B-DISEASE and 39 I-DISEASE 

tokens were correctly identified, indicating improved 

continuity of multi-token spans. However, 51 I-DISEASE 

tokens were still misclassified as O, showing that CRF alone 

could not fully eliminate context dilution. Symptom entities 

display better boundary consistency, with 19 B-SYMPTOM 

and 11 I-SYMPTOM predictions aligning correctly, though 

several false transitions remain. An unusual spike occurs in 

Drug-related predictions, where 167 non-entity tokens were 

misclassified as B-DRUG, explaining the rise in recall but 

sharp drop in precision. This shift demonstrates that while 

CRF strengthens sequential label coherence, it also amplifies 

mislabeling for classes with limited contextual examples. 

 
Figure VI Confusion matrix of the Word2Vec-BiLSTM-CRF model 

The behavioral dynamics of precision and recall across 

entity types are further clarified in Figure VII, which presents 

the Precision-Recall (PR) curves for each tag. The curves for 

B-DISEASE and I-DISEASE appear smoother and maintain 

higher precision stability up to a recall of 0.6, signifying more 

reliable positive predictions compared with the baseline 

model. The B-SYMPTOM and I-SYMPTOM curves display 

broader coverage, indicating enhanced detection of symptom 

sequences with fewer fragmented boundaries. By contrast, the 

B-DRUG and I-DRUG curves remain unstable and 

concentrated near the lower-left corner of the plot, revealing 

erratic detection behavior driven by sparse data. The overall 

curve patterns suggest that the CRF decoding mechanism 

introduces structured prediction benefits but cannot fully 

compensate for the semantic rigidity of static Word2Vec 

embeddings. 

These findings establish a stronger foundation for 

comparing the contribution of contextualized embeddings in 

the next configuration. The subsequent analysis therefore 

evaluates how replacing static representations with contextual 

embeddings from IndoBERT can further enhance semantic 

understanding and boundary precision in medical entity 

recognition 



JAIC e-ISSN: 2548-6861   

 

Medical Named Entity Recognition from Indonesian Health-News using BiLSTM-CRF with Static and Contextual 

Embeddings (Darnell Ignasius, Ika Novita Dewi, Maria Bernadette Chayeenee Norman, Ramadhan Rakhmat Sani) 

2981 

 
Figure VII Precision-Recall (PR) curves for each entity category produced 

by the Word2Vec-BiLSTM-CRF model. 

D. Performance of the IndoBERT-BiLSTM Model 

The adoption of contextualized embeddings through 

IndoBERT combined with a BiLSTM network marks a 

substantial shift from static to dynamic semantic 

representation. As shown in Table V, this configuration 

achieved a micro-average F1-score of 0.3937 and a macro-

average F1-score of 0.3525, representing a clear improvement 

over both the Word2Vec-BiLSTM and Word2Vec-BiLSTM-

CRF models.  

Class-level results reveal F1-scores of 0.4632 for Disease, 

0.3085 for Symptom, and 0.2857 for Drug, demonstrating 

consistent gains across all categories. The contextual 

embeddings enable the model to generalize more effectively 

to varied medical terms by capturing both lexical and 

syntactic dependencies. Precision values rose notably for 

Drug (from 0.0392 to 0.3333) and Symptom (from 0.1238 to 

0.2417), while recall increased for Symptom from 0.1912 to 

0.4265. These improvements suggest that IndoBERT’s 

bidirectional attention mechanism successfully provides 

richer contextual cues, enhancing discrimination among 

overlapping medical entities. The improvement can also be 

attributed to IndoBERT’s subword-level tokenization, which 

captures morphological and affix variations common in 

Indonesian medical terminology, allowing the model to better 

represent nuanced linguistic structures and achieve higher 

lexical adaptability. 

TABLE V   
ENTITY LEVEL PERFORMANCE METRICS OF THE INDOBERT-

BILSTM MODEL ON THE TEST SET 

 Precision Recall F1-Score Support 

Disease 0.4314     0.5000     0.4632         132 

Drug 0.3333     0.2500     0.2857         20 

Symptom 0.2417     0.4265     0.3085         68 

micro avg 0.3472     0.4545     0.3937        220 

macro avg 0.3355     0.3922     0.3525        220 

weighted avg 0.3638     0.4545     0.3992        220 

To complement the quantitative metrics, Figure VIII 

visualizes the distribution of token-level predictions, 

providing a clearer view of how contextual embeddings 

influence boundary consistency and inter-entity confusion. 

The confusion matrix indicates that the IndoBERT-BiLSTM 

system effectively reduces misclassification at entity 

boundaries compared with static embedding models. The 

non-entity (O) label remains dominant, with 13,024 correctly 

predicted tokens, yet its proportion of false positives against 

entity classes has decreased relative to earlier architectures. 

The Disease entity category demonstrates improved 

consistency, with 77 correctly classified B-DISEASE tokens 

and 75 I-DISEASE tokens, indicating stronger sequence 

continuity within disease mentions. Misclassifications 

between B- and I-boundaries were notably fewer (50 and 29, 

respectively), evidencing that the contextual encoder allows 

the BiLSTM to better capture intra-entity token relations. 

 
Figure VIII Confusion matrix of the Indobert-BiLSTM model 

Similarly, Symptom entities show a marked improvement 

in boundary detection, with 36 B-SYMPTOM and 23 I-

SYMPTOM tokens correctly predicted an indication that 

IndoBERT effectively distinguishes subtle contextual 

variations among symptom-related expressions. In contrast, 

the Drug entity still faces sparsity-related limitations, with 

only 6 correctly predicted B-DRUG tokens out of 20 samples, 

suggesting that while contextualization aids recognition, the 

scarcity of examples constrains precision stability. 

A more nuanced interpretation of the model’s behavior is 

captured in Figure IX, which depicts the Precision-Recall 

(PR) curves across all entity tags. The B-DISEASE and I-

DISEASE curves show the largest and smoothest areas under 

the curve, maintaining precision above 0.8 across a broad 

recall range up to 0.7, confirming robust and consistent 

detection of disease terms. The B-SYMPTOM and I-

SYMPTOM curves also expand significantly compared with 

previous models, indicating better trade-offs between recall 

and precision, especially in cases of overlapping or 

semantically related tokens.  



               e-ISSN: 2548-6861  

JAIC Vol. 9, No. 6, December 2025:  2974 – 2985 

2982 

 
Figure IX Precision-Recall (PR) curves for each entity category produced 

by the Indobert-BiLSTM. 

For the Drug class, the curves have improved curvature 

compared with the baseline, reflecting IndoBERT’s 

contribution to semantic understanding, although instability 

persists due to limited training data. The overall PR patterns 

emphasize that contextual embedding integration enhances 

the discriminative capacity of the BiLSTM, yielding a more 

stable and semantically aware tagging process that better 

represents domain-specific nuances in Indonesian medical 

text. These consistent improvements suggest that contextual 

representations substantially enhance the sequential modeling 

capabilities of BiLSTM networks, motivating further 

evaluation of how structured decoding through CRF can 

refine label coherence and entity boundary precision. 

E. Integrating CRF with IndoBERT-BiLSTM 

The integration of a Conditional Random Field (CRF) layer 

on top of the IndoBERT-BiLSTM architecture was designed 

to combine the contextual understanding of transformer 

embeddings with structured sequence decoding. The 

quantitative results presented in Table VI show a micro-

average F1-score of 0.4330 and a macro-average F1-score of 

0.3297, representing a clear improvement compared to the 

IndoBERT-BiLSTM configuration without CRF (micro-F1 = 

0.3937).  
TABLE VI  

ENTITY LEVEL PERFORMANCE METRICS OF THE INDOBERT-

BILSTM-CRF MODEL ON THE TEST SET 

 Precision Recall F1-Score Support 

Disease 0.5414     0.6439     0.5882         132 

Drug 0.1250     0.1500     0.1364         20 

Symptom 0.2066     0.3676     0.2646         68 

micro avg 0.3742     0.5136     0.4330        220 

macro avg 0.2910     0.3872     0.3297        220 

weighted avg 0.4001     0.5136     0.4471        220 

 

The Disease category achieved the highest F1-score of 

0.5882, followed by Symptom at 0.2646 and Drug at 0.1364. 

These gains, particularly for Disease entities, demonstrate the 

positive interaction between contextualized embeddings and 

structured decoding, which enables the model to enforce valid 

label transitions within entity spans. Precision and recall also 

improved for Disease, from 0.4314 and 0.5000 to 0.5414 and 

0.6439, respectively, reflecting a more balanced and 

confident classification process. This enhancement indicates 

that the CRF layer effectively consolidates IndoBERT’s 

semantic features by learning transition probabilities between 

BIO tags, thus strengthening boundary coherence across 

sequences. 

Beyond leveraging IndoBERT’s WordPiece tokenizer, this 

research acknowledges the morphological complexity of the 

Indonesian language, which involves affixation, 

reduplication, and compounding that often obscure medical 

entity boundaries. Although explicit morphological 

preprocessing or customized tokenization rules were not 

implemented, IndoBERT’s subword-level, context-

dependent representations proved well suited to these 

linguistic characteristics. The model effectively handled 

multiword disease names, affixation patterns (such as meN-, 

di-, -kan, -nya), and colloquial variations commonly found in 

health news. By encoding each token relative to its 

surrounding words, IndoBERT successfully disambiguates 

polysemous terms for instance, distinguishing demam as a 

symptom from its idiomatic usage and reduces data sparsity 

through WordPiece segmentation.  

This enables more accurate handling of rare or 

morphologically complex medical terms and spelling 

variants, yielding embeddings that are more discriminative 

between entity and non-entity spans. These capabilities 

explain the consistent improvement across all entity types and 

the particularly strong performance in recognizing Disease 

entities, where multi-token phrases occur frequently. 

At the same time, the inclusion of the Conditional Random 

Field (CRF) layer plays a critical role in refining prediction 

consistency. The BIO tagging scheme imposes sequential 

constraints for example, I-DISEASE cannot validly follow O 

and the CRF layer explicitly models such transition 

regularities. This mechanism penalizes illegal label sequences 

and rewards coherent spans, addressing typical BiLSTM 

limitations such as fragmented entities, B/I label inversions, 

and the excessive prediction of the O class. The result is 

improved boundary integrity and higher recall for longer 

medical expressions such as demam berdarah dengue, where 

maintaining correct span structure is essential for semantic 

accuracy. 

The combination of IndoBERT’s contextual embeddings 

and CRF-based decoding thus creates a synergistic effect. 

IndoBERT contributes deep semantic representations that 

reduce token-level ambiguity, while the CRF layer enforces 

globally consistent label sequences over these 

representations. This complementary interaction stabilizes 

prediction boundaries, leading to a micro-F1 of 0.4330 and a 

Disease F1 of 0.5882, along with fewer B–I confusions and 

reduced misclassification into the non-entity category. In a 

low-resource setting like the present corpus of 272 articles 

with class imbalance, such synergy becomes particularly 
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valuable. IndoBERT distributes contextual information 

across morphologically related terms, while the CRF acts as a 

structured prior that enhances label coherence under limited 

supervision. 

To complement these metrics, Figure X presents the 

confusion matrix, which provides a detailed view of token-

level prediction distributions across the seven output labels. 

The non-entity (O) class remains dominant, with 12,962 

correctly predicted tokens; however, the reduced number of 

false positives demonstrates improved model precision 

compared with previous configurations. The Disease entity 

category shows the most substantial refinement, with 96 B-

DISEASE and 68 I-DISEASE tokens correctly identified and 

a marked decrease in misclassifications across adjacent 

labels. 

This confirms that the CRF layer stabilizes boundary 

consistency, particularly in cases where entity spans are 

longer or semantically dense. The Symptom class also 

benefits from the structured decoding mechanism, achieving 

35 correct B-SYMPTOM and 21 I-SYMPTOM predictions 

figures that indicate improved recognition of multi-token 

phrases related to physiological conditions. Although Drug 

entities remain the most challenging due to limited data, the 

model successfully recognized 5 I-DRUG and 5 B-DRUG 

instances, showing marginal but steady gains over the 

IndoBERT-BiLSTM model. These observations highlight 

that CRF’s transition modeling alleviates label fragmentation 

and enhances intra-entity consistency, particularly in high-

frequency classes. 

 
Figure X  Confusion matrix of the Indobert-BiLSTM-CRF model 

The behavior of the model across precision-recall trade-

offs is illustrated in Figure XI, which shows smoother and 

more stable PR curves for all major entity categories. The B-

DISEASE and I-DISEASE curves maintain precision above 

0.8 for recall levels up to 0.6, indicating a more reliable and 

context-aware disease extraction process. The B-SYMPTOM 

and I-SYMPTOM curves exhibit broader coverage and 

reduced volatility, suggesting that structured decoding 

improves detection confidence for symptom-related 

expressions while mitigating false positives.  

 
Figure XI Precision-Recall (PR) curves for each entity category produced 

by the Indobert-BiLSTM-CRF 

 

The Drug curves, while still less stable, show visible 

improvement in curvature compared with earlier models, 

implying that the CRF enhances class boundary 

discrimination even for rare entities. IndoBERT’s subword-

level contextualization, combined with CRF’s transition-level 

regularization, produces a complementary effect semantic 

depth from transformer embeddings is grounded by syntactic 

discipline through sequential decoding. 

 

IV. CONCLUSION 

This research systematically evaluated neural architectures 

for Indonesian medical named entity recognition, progressing 

from static embeddings to contextualized models with 

structured decoding. The results demonstrated that contextual 

embeddings from IndoBERT substantially outperformed 

Word2Vec, particularly in capturing complex entities such as 

diseases and symptoms. Incorporating a Conditional Random 

Field (CRF) further improved boundary consistency and 

reduced fragmented predictions. Among all configurations, 

the IndoBERT-BiLSTM-CRF model achieved the best 

performance, with a micro-average F1-score of 0.4330 and a 

macro-average F1-score of 0.3297, confirming the 

effectiveness of combining contextual semantics with 

structured decoding. Paired t-tests across model F1-scores 

indicated statistically significant differences (p < 0.05) 

between contextual and static embeddings, confirming that 

the observed performance gains were not due to random 

variation. However, these F1-scores remain relatively modest, 

largely due to the inherent complexity of medical entities 

which often appear as multiword or morphologically rich 

expressions and their low frequency in health-news data, 

making them more difficult for the model to generalize. 

Despite these promising results, several limitations remain. 

The dataset is relatively small and imbalanced, which may 

limit generalization across diverse clinical narratives. 
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IndoBERT’s pretraining corpus is not fully biomedical, 

reducing coverage for rare technical terms. Moreover, the 

evaluation focused mainly on sequence labeling performance, 

without testing downstream interpretability or clinical utility. 

Addressing these issues through domain-adaptive pretraining 

and larger annotated corpora is an essential direction for 

improvement. 

Overall, the findings affirm that Indonesian biomedical text 

benefits from subword-level contextualization and sequence 

regularization, reflecting its linguistic complexity. Integrating 

semantic depth from transformers with CRF-based structural 

discipline yields coherent and context-aware entity 

recognition. Future studies should expand this approach with 

domain-specific corpora and hierarchical tagging to enhance 

semantic precision and support practical biomedical NLP 

applications such as information retrieval and knowledge 

extraction. 
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