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Named Entity Recognition (NER) is vital for structuring medical texts by identifying
entities such as diseases, symptoms, and drugs. However, research on Indonesian
medical NER remain limited due to the lack of annotated corpora and linguistic
resources. This scarcity often leads to difficulties in learning meaningful word
representations, which are crucial for accurate entity identification. This research
aims to compare the effectiveness of static and contextual embeddings in enhancing
entity recognition on Indonesian biomedical text. The experimental setup involved
utilizing both static (Word2Vec) and contextual (IndoBERT) embeddings in
conjunction with neural architectures (BiLSTM) along with Conditional Random
Fields (CRF). The BiLSTM architecture was selected for its ability to capture
bidirectional dependencies in language sequences. Specifically, four models:
Word2Vec-BiLSTM, Word2Vec-BiLSTM-CRF, IndoBERT-BiLSTM, and
IndoBERT-BiLSTM-CRF were evaluated to assess the impact of contextual
representations and structured decoding. The models were trained on a manually
annotated DetikHealth corpus, where specific medical entities such as diseases,
symptoms, and drugs were labeled with the BIO-tagging scheme. Performance was
subsequently evaluated based on standard metrics: precision, recall, and F1-score.
Results indicate that IndoBERT’s contextual embeddings significantly outperform
static Word2Vec features. The IndoBERT-BiLSTM-CRF model achieved the
highest performance micro-F1 0.4330, macro-F1 0.3297, with the Disease entity
reaching an F1-score of 0.5882. Combining contextual embeddings with CRF-based
decoding enhances semantic understanding and boundary consistency,
demonstrating superior performance for Indonesian biomedical NER. Future work
should explore domain-adaptive pretraining and larger biomedical corpora to further
improve contextual accuracy.

This is an open access article under the CC-BY-SA license.

I. INTRODUCTION

The rise of digital media has led to an explosion of health-
related news articles. Many of these articles are typically
written in an unstructured format, meaning that crucial
information such as the names of diseases, specific
symptoms, or drug mentions is embedded within free-form
text without standardized tags, categories, or database-
friendly fields. This lack of structure makes automated
extraction and analysis particularly challenging. Extracting
medical entities such as diseases, drugs, and symptoms from

these unstructured texts is a crucial step in transforming
narrative health information into structured data. Once
structured, this information can be systematically analyzed to
support clinical research, enable disease surveillance, and
strengthen evidence-based decision-making in public health.
Through such extraction, it becomes possible to detect
outbreak trends automatically, identify frequently mentioned
medications, and understand symptom progression in real-
world discourse. Consequently, automatically identifying
relevant entities from textual health data is critical for tasks
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such as information retrieval, knowledge graph construction,
and large-scale public health monitoring.

Named Entity Recognition (NER) directly addresses this
challenge by identifying and categorizing specific spans of
text, such as diseases, symptoms, or medical procedures,
enabling the conversion of unstructured content into a
structured format. Historically, NER systems were built upon
symbolic rules or statistical models. However, these
conventional approaches demonstrate limitations when faced
with the dynamic terminology and long-range dependencies
prevalent in real-world textual data, particularly within
specialized domains like medicine [1], [2]. Recent researches
have demonstrated that modern deep learning architectures
can achieve substantial performance gains in NER,
effectively addressing the limitations of earlier approaches
and motivating the present investigation [3].

Conventional machine learning approaches to NER depend
heavily on handcrafted features and domain specific lexicons.
Rule based systems are interpretable and precise but require
extensive manual effort and lack generality statistical models
such as Hidden Markov Models or Conditional Random
Fields (CRF) improved scalability, yet they still depend on
feature engineering and large annotated datasets [4]. The
limitations of these approaches are particularly evident in
specialized domains such as medicine, where new
terminologies emerge rapidly and labelled data are scarce.
While the integration of symbolic knowledge with deep
learning in hybrid methods has been explored to mitigate
existing challenges, the imperative for robust Medical NER
systems that demonstrate superior generalization across
domains and precisely capture complex contextual nuances
persists [5].

The emergence of deep neural has been revolutionary.
Specifically, Bidirectional Long Short-Term Memory
(BiLSTM) networks facilitate the assimilation of extensive
contextual data by processing input sequences in both forward
and backward directions, thereby enriching each token's
representation with both antecedent and subsequent
information [6]. To optimize the output sequence, the
incorporation of a Conditional Random Field (CRF) layer is
highly beneficial. This layer allows the model to leverage
global label dependencies and ensure the generation of valid
tag sequences, thereby enhancing the overall consistency and
reliability of detected entity boundaries. However, simple
stacking of BiLSTM and CRF may not fully exploit the
representational capacity of transformer based embeddings
[7]. For example, dynamic attention network (Dyn-Att Net)
proposed by Hou et al. [8] for traditional Chinese medical
NER. Their model, which rearranges the BERT-BiLSTM-
CRF architecture to better capture semantic and sequential
relations, achieved an F1-score of 81.91% and an accuracy of
92.06% on benchmark data. This outcome, along with similar
enhancements observed in other specialized domains,
highlights that careful architectural design is crucial for
significantly boosting NER performance.

Pre-trained language models have emerged as the
dominant foundational technology for modern NER.
Specifically, models like BERT generate highly
contextualized word embeddings, which are instrumental in
capturing rich semantic nuances derived from their
surrounding text [9]. In medical NER, hybrid architectures
such as BERT-BILSTM-CRF and BERT-BiGRU-CRF have
demonstrated superior performance compared to -earlier
neural models. This advantage stems from their capacity to
effectively leverage pre-training on extensive corpora,
thereby capturing nuanced contextual representations crucial
for the domain [10]. Furthermore, hybrid models that
integrate attention mechanisms and trigger matching have
demonstrated the capacity to further reduce data
requirements. For instance, Tu et al. [11] showed that their
attention-based NER model outperformed a traditional
BiLSTM-CREF baseline using merely 20% of the training data.
These advances collectively underscore the critical
importance of contextual embeddings and prominently
highlight the substantial potential of transfer learning,
particularly in low-resource settings.

Research in Indonesian NLP has been accelerated by the
release of IndoBERT [12] pre-trained model. IndoBERT is
trained on a large corpus of Indonesian news and social media
and has achieved state of the art results across a range of
language understanding tasks. However, Indonesian presents
unique challenges stemming from its linguistic diversity,
which includes more than 700 regional languages, pervasive
code-switching, and under-resourced dialects [13]. For
example, NusaBERT extends IndoBERT by expanding the
vocabulary and pre training on a multilingual corpus, this
model demonstrates improved performance on tasks covering
multiple Indonesian languages [14]. IndoBERTweet adapts
IndoBERT for Twitter data by introducing domain specific
vocabulary, the authors show that initializing new
embeddings with averages of IndoBERT subwords yields
better efficiency than projecting Word2Vec vectors [15].

Despite these advances, the majority of Indonesian NER
researches continue to focus on general news or social media.
While progress has been made, domain-specific efforts
remain relatively limited. Notable recent contributions
include the IPerFEX dataset, which targets personal financial
entities and effectively demonstrates the utility of IndoBERT-
BiLSTM-CRF models [15]. Another significant development
is the TWCAM model, which integrates Transformers,
Word2Vec, convolutional layers, and attention mechanisms
to enhance NER in general Indonesian news. This model
achieved an F1-score of 0.8178, a considerable improvement
over a BILSTM baseline score of 0.72 [16], [17].

While significant progress has been achieved in general-
domain Indonesian NER, prior works have primarily focused
on generic or social media texts and have rarely explored
domain-specific contexts such as health journalism. Existing
studies have demonstrated the effectiveness of hybrid deep
learning architectures (e.g., BERT-BILSTM-CRF) and
multilingual biomedical models such as BioBERT and
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Clinical BERT, however, none have systematically examined
their applicability to Indonesian medical texts. Furthermore,
no previous research has conducted a comparative analysis
between static and contextual embeddings for Indonesian
biomedical NER, leaving an open question regarding which
representation  strategy is most effective for this
morphologically rich and low-resource language. Another
gap concerns the lack of a publicly available, manually
annotated corpus that specifically captures medically relevant
entities disease, symptom, and drug within the Indonesian
health-news domain. These gaps collectively highlight the
need for a domain-specific benchmark and an empirical
comparison across embedding paradigms to establish a
foundation for future biomedical NLP research in Indonesian.
To address these issues, the present research introduces a new
manually annotated DetikHealth corpus and evaluates four
model configurations (Word2Vec-BiLSTM, Word2Vec-
BILSTM-CRF, IndoBERT-BiLSTM, and IndoBERT-
BiLSTM-CRF) to investigate the relative contributions of
contextual embeddings and structured decoding in Indonesian
medical NER.

II. METHOD

This research adopts a supervised comparative framework
to evaluate Word2Vec and IndoBERT based BiLSTM, and
BiLSTM-CRF architectures for Indonesian medical NER.
The research workflow, illustrated in Figure I, includes data
preparation, embedding integration, model training, and
performance evaluation.
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Figure I workflow of the proposed Indonesian health-news NER pipeline
A. Dataset

The dataset used in this research was developed to
evaluate Named Entity Recognition (NER) systems on
Indonesian health-news texts. The corpus was collected from
DetikHealth, one of Indonesia’s major online health news
portals that regularly publishes articles on disease prevention,

treatment updates, healthy lifestyles, and public health
policies. Data collection was conducted over a two-week
period preceding August 13, 2025, resulting in a total of 272
articles.

Each sentence was annotated with three medical entity
types Disease, Symptom, and Drug using Label Studio,
followed by tokenization with a rule-based Indonesian
tokenizer. As illustrated in Figure I, the annotation workflow
began with the definition of medical entity categories and the
preparation of detailed annotation guidelines based on the
BIO (Begin-Inside—Outside) tagging convention. The
process continued with span-based tagging in Label Studio,
performed by two trained undergraduate annotators from the
Information Systems program. Prior to full annotation, both
annotators received instruction and practice using guidelines
derived from the ICD-10 (Ministry of Health, Indonesia), the
Kamus Kesehatan Indonesia, and the BPOM RI national drug
registry to ensure consistency in identifying medical terms.
To evaluate reliability, a random 10% subset of sentences was
double-annotated and inter-annotator agreement was
measured using Cohen’s Kappa (x = 0.81), indicating
substantial agreement. Discrepancies were resolved through
discussion until consensus was reached [18]. The finalized
annotations were then exported to BIO format for model
training and evaluation, ensuring consistent labeling and
linguistic coherence of medically relevant entities within the
health-news context [13], [17].

Medical entities
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articles » Symplom
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Labeled medical
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Figure II Entity annotation workflow

To ensure consistency and alignment with established
medical terminology, the annotation guidelines for each entity
category referred to authoritative national health sources. The
Disease category followed the ICD-10 Indonesian adaptation
issued by the Ministry of Health (Kementerian Kesehatan RI),
which includes recognized pathological and infectious
conditions such as demam berdarah dengue, diabetes melitus,
and tuberkulosis paru. The Symptom category was defined
based on terminology from the Pusat Data dan Informasi
Kesehatan (Infodatin) and the Kamus Kesehatan Indonesia,
encompassing clinical indicators such as batuk kering, sesak
napas, and demam tinggi. Meanwhile, the Drug category was
based on the Badan Pengawas Obat dan Makanan (BPOM RI)
registry (Daftar Obat dan Bahan Aktif Terdaftar 2024),
covering pharmaceutical substances such as parasetamol,
amoksisilin, and ibuprofen.

Each entity label adhered to the BIO tagging standard,
where “B-" denotes the beginning of an entity, “I-” indicates
continuation within the same entity span, and “O” refers to
non-entity tokens, providing a structured and linguistically
coherent annotation framework.
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B. Data Preprocessing

To prepare the raw news articles for modelling, a series of
cleaning and normalization steps were applied. HTML tags
and other nontextual elements were removed from the scraped
pages, and the remaining content was converted to lowercase.
Regular expressions were then used to normalize whitespace
and unicode characters, and quotation marks and dash
characters were standardized. Promotional or unrelated
content (e.g., advertisements) was filtered out to retain only
informational text [19]. Careful preprocessing is essential for
NER because high quality, consistent input improves the
ability of neural models to learn contextual patterns and is
considered a prerequisite for reliable sequence labelling
pipelines in biomedical NLP [20].

C. Data Splitting

To ensure a reliable evaluation process, the annotated
corpus was divided into training (80 %), validation (10 %) and
testing (10 %) subsets. To prevent information leakage across
splits, a stratified anti leakage splitting strategy was applied.
Sentences were first grouped by their source article, and a
multilabel stratification algorithm was used to balance the
distribution of the Disease, Symptom and Drug entities across
the three subsets.

Long sentences were divided into overlapping chunks
with a maximum length of 384 tokens so that entity
boundaries were not fragmented. The splitting procedure was
iterated over multiple random seeds and the configuration
with the lowest variance in entity ratios across splits was
selected. Such careful splitting ensures that the evaluation
reflects model generalization rather than memorization and
adheres to best practices for biomedical and health related
NER task [21].

D. Word Embedding Method

Two embedding methods were investigated to assess the
impact of static versus contextual word representations. The
first approach used Word2Vec, a static embedding model
trained on the training portion of the health news corpus using
the skip gram architecture. Word2Vec captures semantic
similarity by predicting neighboring words and produces
dense vector representations that are invariant across contexts
[22].

The second approach employed IndoBERT, a pre trained
monolingual transformer model for the Indonesian language.
IndoBERT provides contextual embeddings in which each
word representation depends on its surrounding context,
offering superior modelling of polysemy and long-range
dependencies. For contextual embedding, IndoBERT’s
WordPiece tokenizer was applied to segment text into sub-
word units before feeding the input into the model this
approach preserves morphological information and handles
out of vocabulary words effectively, as recommended in
transformer based NER studies [23].

E. Model Architecture

NER models were constructed using Bidirectional Long
Short-Term Memory (BiLSTM) networks, optionally
combined with a Conditional Random Field (CRF) layer.
BiLSTMs process sequences in both forward and backward
directions, allowing the model to capture long distance
contextual dependencies across tokens [24].When a CRF
layer is added on top of the BILSTM output, it models the
joint probability of the entire label sequence and enforces
valid tag transitions, providing a globally optimal decoding
for sequence labelling tasks.

For reproducibility and comparability, the network
hyperparameters were fixed across all experiments. Table I
lists the values used for the embedding dimension, hidden
size, number of BiLSTM layers, dropout rate, batch size,
maximum epochs, learning rate, weight decay, gradient
clipping threshold and early stopping patience. Setting fixed
hyperparameters across models is a common practice in
sequence labelling research, as it isolates the effects of
embedding representations and architectural components.
Models were trained using the AdamW optimizer on a single
NVIDIA P100 GPU on Kaggle

TABLE I
PARAMETER SETTING OF BILSTM MODEL

Parameter Setting Value
embedding dimension 300
hidden size 256
Layers 2
batch 32
learning rate 2x1073
early-stopping patience 6
Optimizer AdamW
Max Epoch 12

Four model configurations were evaluated Word2Vec and
BiLSTM, Word2Vec and BIiLSTM-CRF, IndoBERT and
BiLSTM, and IndoBERT and BiLSTM-CRF. The first two
settings use static embeddings to examine the effect of adding
a CRF decoding layer, while the latter two employ contextual
embeddings to assess the impact of IndoBERT.

F. Evaluation

Model performance was evaluated using three standard
NER metrics: precision, recall, and F1-score. These metrics
were computed at both the token level and the entity level. At
the entity level, a prediction is considered correct only if the
predicted span exactly matches the ground-truth span in both
boundaries and label token-level evaluation, by contrast,
assesses each token independently and may reward partial
matches [25].

To account for class imbalance among entity types such
as frequent symptoms versus rare diseases we report both
macro-averaged and micro-averaged F1-scores. Micro-
averaging aggregates true positive, false positive, and false
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negative counts across all entity classes before computing
precision and recall, thereby weighting each prediction
equally [26]. Macro-averaging computes the metrics
separately for each class and then takes the unweighted mean,
giving equal importance to both frequent and rare categories.

The formal definitions of these metrics are given in
Equations (1)-(3), where TP, FP, and FN denote the number
of true positives, false positives, and false negatives,
respectively

Precision = TP (1)
recision = 5
TP
- 2
Recall TP T FN 2)

FL.S 5 Precision X Recall 3)
- = X
core Precision + Recall

These evaluation protocols are widely adopted in
biomedical and clinical NER research and provide a robust
and fair basis for comparing models with different embedding
strategies and architectural designs [27].

II1. RESULT AND DISCUSSION
A. Dataset Exploration

The final corpus comprises 272 health-related articles
collected from DetikHealth, containing approximately 90,951
tokens written entirely in Bahasa Indonesia. Each sentence
was manually annotated and resulted in three medical entity
categories Disease, Symptom, and Drug.

As illustrated in Figure III, the dataset shows a clear
imbalance in entity distribution, with Disease entities
occurring most frequently, followed by Symptom and Drug.
The corpus contains 87,965 (O) non-entity tokens, 898 (B-
DISEASE) and 842 (I-DISEASE) disease tokens, 468 (B-
SYMPTOM) and 530 (I-SYMPTOM) symptom tokens, and
139 (B-DRUG) and 109 (I-DRUG) drug tokens. This
imbalance reflects the linguistic characteristics of Indonesian
health journalism, where diseases are mentioned more often
than symptoms or medications, and thus introduces a realistic
challenge for model generalization in medical NER.
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Figure III Label distribution across the DetikHealth corpus

To illustrate the annotation style and linguistic diversity of
the corpus, Table II presents representative examples of
annotated sentences using the BIO tagging scheme. These
examples demonstrate how Indonesian medical terminology
appears in compound noun phrases and colloquial phrasing,
highlighting the morphological richness of the language and
the contextual complexity encountered in automatic entity
recognition.

TABLE II
EXAMPLES OF ANNOTATED SENTENCES FROM THE DETIKHEALTH CORPUS.

Tokens
Hong Kong melaporkan kasus
demam chikungunya ...

Labels length
O O O O B-|427
DISEASE I-
DISEASE O...
00000000 | 504

Badan Pengawas Obat dan

Makanan (BPOMRI) ... O...
Belakangan  game  Roblox | OO0 0O0O... 279
menjadi perbincangan ...

Overall, the dataset provides a linguistically diverse and
domain-specific benchmark for evaluating Indonesian NER
systems in the healthcare domain. This analysis also
establishes a quantitative foundation for the comparative
evaluation of model architectures discussed in the subsequent
sections

B. Performance result of Word2Vec-BiLSTM

The baseline configuration utilizing Word2Vec
embeddings combined with a BiLSTM network was
implemented to evaluate the fundamental capability of static
word representations in identifying medical entities within
Indonesian health-related texts.

As summarized in Table III, the model achieved a micro-
average Fl-score of 0.2777, with individual class
performances of 0.3971 for Disease, 0.1503 for Symptom,
and 0.0426 for Drug. The substantial difference between
Disease and the two other categories (approximately 0.25-
0.35 points) illustrates a pronounced class imbalance effect,
where frequent and lexically distinct entities are captured
more effectively. Precision and recall for the Disease class
reached 0.3793 and 0.4167, respectively, indicating relatively
stable detection, while both Symptom and Drug entities
exhibited weaker precision-recall trade-offs due to their
sparsity and semantic overlap with common non-entity
expressions.

TABLE III
ENTITY LEVEL PERFORMANCE METRICS OF THE WORD2VEC-BILSTM

MODEL ON THE TEST SET.

Precision Recall F1-Score | Support
Disease 0.3793 0.4167 0.3971 132
Drug 0.0370 0.0500 0.0426 20
Symptom 0.1238 0.1912 0.1503 68
micro avg 0.2491 0.3136 0.2777 220
macro avg 0.1801 0.2193 0.1967 220
weighted avg 0.2692 0.3136 0.2886 220
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To further interpret these results, Figure IV presents the
confusion matrix that visualizes token-level prediction
distributions across the seven output classes, including entity
boundaries (B-, I-) and the non-entity category (O). The
matrix highlights a strong dominance of the non-entity (O)
class, which accounts for 13,013 correctly predicted tokens,
confirming that the model’s learning dynamics are largely
governed by the overrepresentation of neutral text. This heavy
skew toward non-entity tokens causes the model to favor
conservative predictions, where uncertain or contextually
ambiguous tokens are defaulted to the O class. The highest
confusion occurs between B-DISEASE and I-DISEASE, with
67 and 48 correctly predicted instances but 57 and 55 false
transitions respectively, indicating that while the model
identifies the presence of disease-related information, it fails
to consistently recognize the start and continuation of multi-
token spans. This irregular boundary detection is typical of
BiLSTM architectures trained on unbalanced corpora, as the
recurrent context window is insufficient to differentiate entity
onset patterns from internal entity tokens, especially when
both occur in similar syntactic positions.

Further analysis of Figure IV shows that Symptom entities
exhibit scattered misclassifications, with 35 B-SYMPTOM
and 38 I-SYMPTOM tokens predicted incorrectly as O. The
model tends to under-recognize symptom terms that share
overlapping linguistic structures with general descriptive
expressions, leading to uncertainty in entity assignment.
Additionally, 22 B-SYMPTOM tokens were confused with
B-DISEASE, suggesting a systematic overlap between
disease and symptom mentions where boundary distinctions
are not clearly learned. This cross-entity confusion
demonstrates that the static Word2Vec embeddings fail to
encode contextual distinctions between medically related
terms. The Drug entity class shows the weakest structural
integrity: 14 B-DRUG and 13 I-DRUG tokens were
misclassified as O, and only 2 instances of B-DRUG were
correctly identified. This near-absence of correct Drug
detection indicates that the BiLSTM relies primarily on
surface-level frequency patterns rather than semantic cues,
resulting in limited discrimination of low-frequency entities.
The misclassification patterns in Figure 3 reveal that while the
model captures partial semantic grouping for frequent classes,
it lacks contextual precision and boundary consistency across
minority medical entities.

0413013

12000
B-DISEASE 10000
-DISEASE 8000
]
2 B-SYMPTOM
= 6000
FSYMPTOM
4000
B-DRUG
2000
FDRUG
0

s <& Q- Q-
& F PR
<& X (b,‘v N
Predicted

Figure IV Confusion matrix of the Word2Vec-BiLSTM model

A broader view of model behavior is provided by the
Precision Recall (PR) curves illustrated in Figure V, which
depict how the model’s confidence changes across varying
recall thresholds. The B-DISEASE and I-DISEASE curves
occupy the largest area under the curve (AUC), maintaining
precision above 0.8 up to recall levels of approximately 0.6.
The B-SYMPTOM and [I-SYMPTOM curves drop steeply
beyond recall 0.4, demonstrating that the model rapidly loses
discriminative ability as it attempts to generalize symptom
terms. The B-DRUG and I-DRUG curves cluster near the
lower left corner, representing near-random precision and
confirming that low-frequency entities are effectively
neglected during training. This visual trend reinforces the
numerical results in Table IV, showing that static Word2Vec
embeddings lack contextual adaptability, and that entity
recognition is primarily driven by token frequency rather than
semantic structure.

B-DISEASE
FDISEASE
B-SYMPTOM
FSYMPTOM
B-DRUG
FDRUG

L/I/
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Figure V Precision-Recall curves for each entity category produced by the
Word2Vec-BiLSTM model.
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C. Effect of the CRF Layer on the Word2Vec-BiLSTM
Model

The integration of a CRF layer atop the BiLSTM
architecture was intended to assess whether structured
decoding could enhance label sequence consistency and
improve entity boundary detection. The performance
outcomes presented in Table IV show that the Word2Vec-
BiLSTM-CRF configuration achieved a micro-average F1-
score of 0.2357 and a macro-average F1-score of 0.2387. At
the entity level, the F1-scores were 0.3538 for Disease, 0.2909
for Symptom, and 0.0714 for Drug.

TABLE IV ENTITY LEVEL PERFORMANCE METRICS OF THE WORD2VEC-

BILSTM-CRF MODEL ON THE TEST SET.

Precision | Recall F1-Score | Support
Disease 0.3594 0.3485 0.3538 132
Drug 0.0392 0.4000 0.0714 20
Symptom 0.3810 0.2353 0.2909 68
micro avg 0.1872 0.3182 0.2357 220
macro avg 0.2598 0.3279 0.2387 220
weighted avg | 0.3369 0.3182 0.3087 220

Compared with the baseline, the inclusion of CRF slightly
lowered the Disease F1 (from 0.3971 to 0.3538) but improved
Symptom recognition (from 0.1503 to 0.2909) and notably
raised the Drug recall (from 0.05 to 0.40). This suggests that
the CRF layer better captures sequential dependencies
between entity boundaries, particularly for multi-token
expressions, although at the cost of overgeneralization in low-
frequency classes. The enhancement in recall for Drug entities
is accompanied by reduced precision (0.0392), implying that
the layer increased sensitivity to entity cues but also
introduced a higher false-positive rate in ambiguous contexts.

To further analyze these outcomes, Figure VI illustrates
the confusion matrix visualizing token-level distributions
across the seven output labels. The non-entity (O) class
remains dominant, accounting for 12,794 correct predictions,
which demonstrates that the model still prioritizes majority-
class stability over entity differentiation. A clearer pattern of
structured labeling can be observed within the Disease and
Symptom categories: 55 B-DISEASE and 39 I-DISEASE
tokens were correctly identified, indicating improved
continuity of multi-token spans. However, 51 I-DISEASE
tokens were still misclassified as O, showing that CRF alone
could not fully eliminate context dilution. Symptom entities
display better boundary consistency, with 19 B-SYMPTOM
and 11 I-SYMPTOM predictions aligning correctly, though
several false transitions remain. An unusual spike occurs in
Drug-related predictions, where 167 non-entity tokens were

misclassified as B-DRUG, explaining the rise in recall but
sharp drop in precision. This shift demonstrates that while
CREF strengthens sequential label coherence, it also amplifies
mislabeling for classes with limited contextual examples.
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Figure VI Confusion matrix of the Word2Vec-BiLSTM-CRF model

The behavioral dynamics of precision and recall across
entity types are further clarified in Figure VII, which presents
the Precision-Recall (PR) curves for each tag. The curves for
B-DISEASE and [-DISEASE appear smoother and maintain
higher precision stability up to a recall of 0.6, signifying more
reliable positive predictions compared with the baseline
model. The B-SYMPTOM and I-SYMPTOM curves display
broader coverage, indicating enhanced detection of symptom
sequences with fewer fragmented boundaries. By contrast, the
B-DRUG and I-DRUG curves remain unstable and
concentrated near the lower-left corner of the plot, revealing
erratic detection behavior driven by sparse data. The overall
curve patterns suggest that the CRF decoding mechanism
introduces structured prediction benefits but cannot fully
compensate for the semantic rigidity of static Word2Vec
embeddings.

These findings establish a stronger foundation for
comparing the contribution of contextualized embeddings in
the next configuration. The subsequent analysis therefore
evaluates how replacing static representations with contextual
embeddings from IndoBERT can further enhance semantic
understanding and boundary precision in medical entity
recognition
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Figure VII Precision-Recall (PR) curves for each entity category produced
by the Word2Vec-BiLSTM-CRF model.

D. Performance of the IndoBERT-BiLSTM Model

The adoption of contextualized embeddings through
IndoBERT combined with a BiLSTM network marks a
substantial ~shift from static to dynamic semantic
representation. As shown in Table V, this configuration
achieved a micro-average Fl-score of 0.3937 and a macro-
average F1-score 0f 0.3525, representing a clear improvement
over both the Word2Vec-BiLSTM and Word2Vec-BiLSTM-
CRF models.

Class-level results reveal F1-scores of 0.4632 for Disease,
0.3085 for Symptom, and 0.2857 for Drug, demonstrating
consistent gains across all categories. The contextual
embeddings enable the model to generalize more effectively
to varied medical terms by capturing both lexical and
syntactic dependencies. Precision values rose notably for
Drug (from 0.0392 to 0.3333) and Symptom (from 0.1238 to
0.2417), while recall increased for Symptom from 0.1912 to
0.4265. These improvements suggest that IndoBERT’s
bidirectional attention mechanism successfully provides
richer contextual cues, enhancing discrimination among
overlapping medical entities. The improvement can also be
attributed to IndoBERT’s subword-level tokenization, which
captures morphological and affix variations common in
Indonesian medical terminology, allowing the model to better
represent nuanced linguistic structures and achieve higher
lexical adaptability.

TABLE V

ENTITY LEVEL PERFORMANCE METRICS OF THE INDOBERT-
BILSTM MODEL ON THE TEST SET

Precision | Recall F1-Score | Support
Disease 0.4314 0.5000 0.4632 132
Drug 0.3333 0.2500 0.2857 20
Symptom 0.2417 0.4265 0.3085 68
micro avg 0.3472 0.4545 0.3937 220
macro avg 0.3355 0.3922 0.3525 220
weighted avg | 0.3638 0.4545 0.3992 220

To complement the quantitative metrics, Figure VIII
visualizes the distribution of token-level predictions,
providing a clearer view of how contextual embeddings
influence boundary consistency and inter-entity confusion.
The confusion matrix indicates that the IndoBERT-BiLSTM
system effectively reduces misclassification at entity
boundaries compared with static embedding models. The
non-entity (O) label remains dominant, with 13,024 correctly
predicted tokens, yet its proportion of false positives against
entity classes has decreased relative to earlier architectures.
The Disease entity category demonstrates improved
consistency, with 77 correctly classified B-DISEASE tokens
and 75 I-DISEASE tokens, indicating stronger sequence
continuity within disease mentions. Misclassifications
between B- and I-boundaries were notably fewer (50 and 29,
respectively), evidencing that the contextual encoder allows
the BiILSTM to better capture intra-entity token relations.
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Figure VIII Confusion matrix of the Indobert-BiLSTM model

Similarly, Symptom entities show a marked improvement
in boundary detection, with 36 B-SYMPTOM and 23 I-
SYMPTOM tokens correctly predicted an indication that
IndoBERT effectively distinguishes subtle contextual
variations among symptom-related expressions. In contrast,
the Drug entity still faces sparsity-related limitations, with
only 6 correctly predicted B-DRUG tokens out of 20 samples,
suggesting that while contextualization aids recognition, the
scarcity of examples constrains precision stability.

A more nuanced interpretation of the model’s behavior is
captured in Figure IX, which depicts the Precision-Recall
(PR) curves across all entity tags. The B-DISEASE and I-
DISEASE curves show the largest and smoothest areas under
the curve, maintaining precision above 0.8 across a broad
recall range up to 0.7, confirming robust and consistent
detection of disease terms. The B-SYMPTOM and I-
SYMPTOM curves also expand significantly compared with
previous models, indicating better trade-offs between recall
and precision, especially in cases of overlapping or
semantically related tokens.
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Figure IX Precision-Recall (PR) curves for each entity category produced

by the Indobert-BiLSTM.

For the Drug class, the curves have improved curvature
compared with the baseline, reflecting IndoBERT’s
contribution to semantic understanding, although instability
persists due to limited training data. The overall PR patterns
emphasize that contextual embedding integration enhances
the discriminative capacity of the BiLSTM, yielding a more
stable and semantically aware tagging process that better
represents domain-specific nuances in Indonesian medical
text. These consistent improvements suggest that contextual
representations substantially enhance the sequential modeling
capabilities of BIiLSTM networks, motivating further
evaluation of how structured decoding through CRF can
refine label coherence and entity boundary precision.

E. Integrating CRF with IndoBERT-BiLSTM

The integration of a Conditional Random Field (CRF) layer
on top of the IndoBERT-BiLSTM architecture was designed
to combine the contextual understanding of transformer
embeddings with structured sequence decoding. The
quantitative results presented in Table VI show a micro-
average F1-score of 0.4330 and a macro-average F1-score of
0.3297, representing a clear improvement compared to the
IndoBERT-BiLSTM configuration without CRF (micro-F1 =
0.3937).

TABLE VI
ENTITY LEVEL PERFORMANCE METRICS OF THE INDOBERT-
BILSTM-CRF MODEL ON THE TEST SET

Precision | Recall F1-Score | Support |
Disease 0.5414 0.6439 0.5882 132
Drug 0.1250 0.1500 0.1364 20
Symptom 0.2066 0.3676 0.2646 68
micro avg 0.3742 0.5136 0.4330 220
macro avg 0.2910 0.3872 0.3297 220
weighted avg | 0.4001 0.5136 0.4471 220

The Disease category achieved the highest Fl-score of
0.5882, followed by Symptom at 0.2646 and Drug at 0.1364.
These gains, particularly for Disease entities, demonstrate the
positive interaction between contextualized embeddings and

structured decoding, which enables the model to enforce valid
label transitions within entity spans. Precision and recall also
improved for Disease, from 0.4314 and 0.5000 to 0.5414 and
0.6439, respectively, reflecting a more balanced and
confident classification process. This enhancement indicates
that the CRF layer effectively consolidates IndoBERT’s
semantic features by learning transition probabilities between
BIO tags, thus strengthening boundary coherence across
sequences.

Beyond leveraging IndoBERT’s WordPiece tokenizer, this
research acknowledges the morphological complexity of the
Indonesian  language, which involves  affixation,
reduplication, and compounding that often obscure medical
entity boundaries. Although explicit morphological
preprocessing or customized tokenization rules were not
implemented, IndoBERT’s  subword-level,  context-
dependent representations proved well suited to these
linguistic characteristics. The model effectively handled
multiword disease names, affixation patterns (such as meN-,
di-, -kan, -nya), and colloquial variations commonly found in
health news. By encoding each token relative to its
surrounding words, IndoBERT successfully disambiguates
polysemous terms for instance, distinguishing demam as a
symptom from its idiomatic usage and reduces data sparsity
through WordPiece segmentation.

This enables more accurate handling of rare or
morphologically complex medical terms and spelling
variants, yielding embeddings that are more discriminative
between entity and non-entity spans. These capabilities
explain the consistent improvement across all entity types and
the particularly strong performance in recognizing Disease
entities, where multi-token phrases occur frequently.

At the same time, the inclusion of the Conditional Random
Field (CRF) layer plays a critical role in refining prediction
consistency. The BIO tagging scheme imposes sequential
constraints for example, I-DISEASE cannot validly follow O
and the CRF layer explicitly models such transition
regularities. This mechanism penalizes illegal label sequences
and rewards coherent spans, addressing typical BiLSTM
limitations such as fragmented entities, B/I label inversions,
and the excessive prediction of the O class. The result is
improved boundary integrity and higher recall for longer
medical expressions such as demam berdarah dengue, where
maintaining correct span structure is essential for semantic
accuracy.

The combination of IndoBERT’s contextual embeddings
and CRF-based decoding thus creates a synergistic effect.
IndoBERT contributes deep semantic representations that
reduce token-level ambiguity, while the CRF layer enforces
globally  consistent label sequences over these
representations. This complementary interaction stabilizes
prediction boundaries, leading to a micro-F1 of 0.4330 and a
Disease F1 of 0.5882, along with fewer B—I confusions and
reduced misclassification into the non-entity category. In a
low-resource setting like the present corpus of 272 articles
with class imbalance, such synergy becomes particularly
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valuable. IndoBERT distributes contextual information
across morphologically related terms, while the CRF acts as a
structured prior that enhances label coherence under limited
supervision.

To complement these metrics, Figure X presents the
confusion matrix, which provides a detailed view of token-
level prediction distributions across the seven output labels.
The non-entity (O) class remains dominant, with 12,962
correctly predicted tokens; however, the reduced number of
false positives demonstrates improved model precision
compared with previous configurations. The Disease entity
category shows the most substantial refinement, with 96 B-
DISEASE and 68 I-DISEASE tokens correctly identified and
a marked decrease in misclassifications across adjacent
labels.

This confirms that the CRF layer stabilizes boundary
consistency, particularly in cases where entity spans are
longer or semantically dense. The Symptom class also
benefits from the structured decoding mechanism, achieving
35 correct B-SYMPTOM and 21 I-SYMPTOM predictions
figures that indicate improved recognition of multi-token
phrases related to physiological conditions. Although Drug
entities remain the most challenging due to limited data, the
model successfully recognized 5 I-DRUG and 5 B-DRUG
instances, showing marginal but steady gains over the
IndoBERT-BILSTM model. These observations highlight
that CRF’s transition modeling alleviates label fragmentation
and enhances intra-entity consistency, particularly in high-
frequency classes.
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Figure X Confusion matrix of the Indobert-BiLSTM-CRF model

The behavior of the model across precision-recall trade-
offs is illustrated in Figure XI, which shows smoother and
more stable PR curves for all major entity categories. The B-
DISEASE and I-DISEASE curves maintain precision above
0.8 for recall levels up to 0.6, indicating a more reliable and
context-aware disease extraction process. The B-SYMPTOM
and I-SYMPTOM curves exhibit broader coverage and
reduced volatility, suggesting that structured decoding

improves detection confidence for
expressions while mitigating false positives.
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Figure XI Precision-Recall (PR) curves for each entity category produced
by the Indobert-BiLSTM-CRF

The Drug curves, while still less stable, show visible
improvement in curvature compared with earlier models,
implying that the CRF enhances class boundary
discrimination even for rare entities. IndoBERT’s subword-
level contextualization, combined with CRF’s transition-level
regularization, produces a complementary effect semantic
depth from transformer embeddings is grounded by syntactic
discipline through sequential decoding.

IV. CONCLUSION

This research systematically evaluated neural architectures
for Indonesian medical named entity recognition, progressing
from static embeddings to contextualized models with
structured decoding. The results demonstrated that contextual
embeddings from IndoBERT substantially outperformed
Word2Vec, particularly in capturing complex entities such as
diseases and symptoms. Incorporating a Conditional Random
Field (CRF) further improved boundary consistency and
reduced fragmented predictions. Among all configurations,
the IndoBERT-BiLSTM-CRF model achieved the best
performance, with a micro-average F1-score of 0.4330 and a
macro-average Fl-score of 0.3297, confirming the
effectiveness of combining contextual semantics with
structured decoding. Paired t-tests across model F1-scores
indicated statistically significant differences (p < 0.05)
between contextual and static embeddings, confirming that
the observed performance gains were not due to random
variation. However, these F1-scores remain relatively modest,
largely due to the inherent complexity of medical entities
which often appear as multiword or morphologically rich
expressions and their low frequency in health-news data,
making them more difficult for the model to generalize.

Despite these promising results, several limitations remain.
The dataset is relatively small and imbalanced, which may
limit generalization across diverse clinical narratives.
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IndoBERT’s pretraining corpus is not fully biomedical,
reducing coverage for rare technical terms. Moreover, the
evaluation focused mainly on sequence labeling performance,
without testing downstream interpretability or clinical utility.
Addressing these issues through domain-adaptive pretraining
and larger annotated corpora is an essential direction for
improvement.

Overall, the findings affirm that Indonesian biomedical text
benefits from subword-level contextualization and sequence
regularization, reflecting its linguistic complexity. Integrating
semantic depth from transformers with CRF-based structural
discipline yields coherent and context-aware entity
recognition. Future studies should expand this approach with
domain-specific corpora and hierarchical tagging to enhance
semantic precision and support practical biomedical NLP
applications such as information retrieval and knowledge
extraction.
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