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This paper presents a two-stage framework for detecting anomalous vessel
trajectories in Automatic Identification System (AIS) data from Southeast Asian
waters, addressing challenges of high traffic density, diverse vessel behaviors, and
severe class imbalance. The primary objective is to minimize missed threats while
maintaining manageable false alarm rates in security-critical maritime surveillance
systems. The research employs a hybrid approach combining unsupervised and
supervised learning methods. In the first stage, DBSCAN and Isolation Forest
algorithms filter noise and generate high-confidence outlier labels from 15,542 real-
world vessel trajectories. Comparative analysis demonstrates substantial agreement
between methods with Cohen's Kappa of 0.688 and 55.3% anomaly overlap,
indicating complementary detection capabilities that enhance filtering robustness. In
the second stage, a Bidirectional Long Short-Term Memory model is optimized
through systematic hyperparameter tuning across 48 configurations, covering
sequence length, network architecture, dropout rate, learning rate, and sampling
strategies. Comprehensive baseline evaluation validates BiILSTM's suitability for
security applications, achieving 15.41% F1-score improvement over unidirectional
LSTM and 33% fewer false negatives compared to Bidirectional GRU alternative.
The optimized BiLSTM attains F1-score of 0.5709 with precision 0.5444 and recall
0.6000, exhibiting 90.03% specificity for normal vessels and 76.17% sensitivity for
anomalies. The model misses only 23.8% of threats while maintaining 9.97% false
alarm rate, providing balanced performance suitable for human-verified security-
critical maritime surveillance in Southeast Asian waters.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Maritime transportation plays a vital role in the global
economy, with over 80% of world trade conducted through
sea routes [1]. The consistent growth of maritime traffic
brings significant challenges related to navigation safety and
security, particularly in Southeast Asian waters, which
constitute one of the world's busiest shipping corridors [2].
To enhance maritime safety and security, the International
Maritime Organization (IMO) mandates the use of the
Automatic Identification System (AILS) on vessels with gross
tonnage exceeding 300 [3]. AIS broadcasts real-time vessel
information, including identity (MMSI), GPS position
(latitude and longitude), speed (Speed Over Ground—SOG),

and course (Course Over Ground—COG), which can be
utilized for maritime traffic monitoring and abnormal
behavior detection [4].

Anomaly detection in AIS data is crucial for identifying
suspicious activities such as smuggling, illegal fishing, and
other maritime security threats [5]. In Southeast Asian waters,
the complexity of maritime traffic patterns, vessel density,
and diversity of navigational activities create unique
challenges for effective anomaly detection [6]. With global
AIS data volumes reaching millions of messages per day,
manual detection of abnormal behaviors becomes
impractical, thus necessitating automated detection systems
capable of processing large-scale data efficiently [7].
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In recent years, various approaches have been developed
for maritime anomaly detection using AIS data. A recent
comprehensive survey [8] examined 44 publications from
2007 to 2021, revealing that the majority of research focuses
on route deviation detection as the primary anomaly type.
The survey further revealed that 38 out of 44 methods are
region-specific, requiring retraining for  different
geographical areas. Moreover, only 8 out of 44 studies
possess valid ground truth, with the majority relying on
synthetic data for evaluation. These limitations highlight the
need for more systematic and generalizable frameworks for
maritime anomaly detection.

Existing approaches fall into three categories: clustering-
based methods, deep learning approaches, and multi-stage
frameworks. Density-based clustering like DBSCAN
extracts trajectory patterns and detects spatial outliers
[9,10,11]. Deep learning methods, such as Variational
Recurrent Neural Networks and Bidirectional LSTM, excel

at modeling temporal dependencies in sequential data [12,13].

Attention-based Bi-LSTM networks show promise for time-
series anomaly detection, though limited by class imbalance
and streaming data complexity, achieving F1-scores of 0.165
to 0.402 on benchmarks [14]. Multi-stage frameworks
combining clustering preprocessing with supervised
classification balance interpretability and performance [10].
However, systematic comparisons of filtering methods and
hyperparameter optimization for deep learning remain
limited in maritime contexts, particularly for AIS data
challenges like noise, trajectory diversity, and scalability.

Despite these advances, several critical challenges remain
in applying anomaly detection methods to Southeast Asian
waters. First, the high heterogeneity of traffic patterns—
ranging from structured shipping lanes to unpredictable
fishing activities—requires methods adaptable to various
operational contexts. Second, limited labeled data for
training supervised models necessitates effective semi-
supervised or unsupervised strategies [6]. Third, extreme
class imbalance, where anomalies are significantly
underrepresented in the dataset, poses substantial challenges
for deep learning architectures and demands sophisticated
data sampling techniques such as SMOTE-based
oversampling to address classifier bias [16]. Fourth, the
requirement for model interpretability in operational
decision-making constrains the use of purely "black-box"
deep learning approaches [17]. Fifth, efficient real-time
processing of large-scale AIS data streams requires
distributed computing approaches to ensure operational
scalability [18].

Beyond operational challenges, research gaps exist in
maritime anomaly detection. Methodologically, approaches
separate unsupervised outlier filtering from supervised
temporal modeling, lacking integrated frameworks for spatial
and sequential learning. Geographically, region-specific
methods [8] struggle in Southeast Asia's dense, diverse
patterns and archipelagic flows, with few validated studies
on local AIS data [2]. Evaluatively, comprehensive baselines

comparing architectural choices (e.g., bidirectional vs.
unidirectional) are scarce, with most studies evaluating
single models.

To address these challenges, this research proposes a two-
stage framework for maritime trajectory anomaly detection
that combines density-based filtering with supervised Bi-
LSTM classification. The main contributions of this research
are as follows:

1. Systematic Comparison of Filtering Methods. We
conduct a comprehensive comparison between DBSCAN
and Isolation Forest for anomaly filtering in Stage 1 using
AIS data from Southeast Asian waters. Our analysis reveals
substantial agreement (Cohen's Kappa = 0.688) between the
two methods, with complementary detection patterns.

2. Comprehensive Hyperparameter Optimization. We
develop a systematic Bi-LSTM optimization framework
through grid search across 48 configurations, encompassing
sequence length, network depth, dropout rates, learning rates,
and data sampling strategies.

3. Parameter Sensitivity Analysis and Component
Evaluation. We conduct comprehensive parameter
sensitivity analysis through box plot distributions
quantifying individual hyperparameter impacts across 72
configurations. Analysis reveals sampling strategy, network
architecture, and sequence length as primary performance
drivers, with identification of synergistic combinations
where ensemble filtering, deeper architecture, and
SMOTETomek sampling yield optimal results.

4. Evaluation on Underexplored Region. This research
provides quantitative evaluation on a large-scale AIS dataset
(15,542 trajectories) from Southeast Asian waters,
encompassing diverse traffic patterns from multiple
countries.

The framework offers practical advantages for maritime
monitoring. The two-stage design provides interpretability
through Stage 1 filtering and Stage 2 classification with
confidence scores. Systematic comparison between
DBSCAN and Isolation Forest enables context-specific
deployment suited to regional traffic characteristics. The
hyperparameter optimization framework is adaptable across
regions, while SMOTETomek sampling addresses class
imbalance without complex synthetic anomaly generation.

The research findings also contribute to the development
of broader Maritime Situational Awareness (MSA) systems.
The two-stage framework can be integrated with
complementary data sources such as weather information,
ocean currents, and vessel characteristics to further enhance
detection accuracy. The proposed systematic hyperparameter
optimization methodology can be applied to other tasks in the
maritime domain, such as trajectory prediction, vessel type
classification, and estimated time of arrival (ETA) prediction,
thus providing a foundational approach for developing more
comprehensive intelligent maritime systems.
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II. METHODS

A. Research Stages

The steps carried out in this study are contained in the form
of a flowchart shown in Figure 1.

Preprocessing
Data 5 Regional
Collection : Filtering
A A

Stage 1: Train/Test Filtered

Filtering Split Data Dataset
.

Agreement Stage 2: Model

Analysis Classification Selection

Figure 1 Research Methodology Framework

The steps carried out in this study are contained in the form
of a flowchart shown in Figure 1. The first stage of the
process involves data preprocessing and regional filtering,
yielding 15,542 Southeast Asian vessel trajectories from
global AIS sources. In the second stage, unsupervised
filtering is performed using two density-based methods:
DBSCAN and Isolation Forest. These methods are applied
independently to identify potential anomalies, followed by
agreement analysis to assess method consistency and
generate preliminary labels. The third stage focuses on
supervised classification, where a Bidirectional LSTM
classifier is trained using filtered labels as ground truth.
Comprehensive hyperparameter optimization is conducted
across 48 configurations, encompassing sequence length,
network architecture, dropout rates, and data sampling
strategies. Finally, model performance is evaluated using
standard metrics including F1-score, precision, recall, and
Cohen's Kappa coefficient to ensure robust anomaly
detection capability.

B. Dataset and Preprocessing

This research utilizes AIS data obtained from the Zenodo
open-access repository platform, initially comprising
1,048,575 entries with 23 features including vessel
identification (MMSI), timestamp, spatial coordinates
(latitude and longitude), and kinematic parameters (speed
over ground, course over ground, rate of turn) [20]. To focus
on Southeast Asian waters, geographical filtering is applied
with latitude ranging from -10° to 25° and longitude from 90°

to 140°, encompassing major shipping routes including the
Malacca Strait and South China Sea. This regional filtering
yields 15,542 vessel trajectories representing diverse
maritime activities characteristic of the region.

The geographically filtered dataset underwent rigorous
quality control procedures. Duplicate records based on
identical MMSI-timestamp combinations were removed to
prevent artificial pattern amplification. Physical validity
filters eliminated impossible coordinates and unrealistic
speeds exceeding 50 knots for cargo vessels or 60 knots for
high-speed ferries, addressing common AIS transmission
errors. Erratic position jumps implying speeds above 100
knots between consecutive reports were identified and
removed to filter multipath propagation errors. Records with
missing critical fields (timestamp, position) were discarded
as temporal-spatial continuity is essential for trajectory
modeling. Missing speed or heading values within vessel
trajectories were imputed using forward-fill for gaps not
exceeding two consecutive points, with longer gaps resulting
in trajectory segmentation. This systematic preprocessing
ensures data integrity while preserving genuine behavioral
patterns, with less than 1% of values requiring interpolation
in the final dataset.

Additionally, to mitigate potential AIS spoofing—where
vessels transmit falsified positions or identities to evade
detection [19] we applied cross-checks on trajectory
consistency, such as flagging sequences with abrupt MMSI
changes or positions implying impossible travel distances
between timestamps. While the dataset from Zenodo [20]
assumes baseline integrity, records exhibiting spoofing-like
anomalies (e.g., duplicated MMSI with conflicting
kinematics) were discarded during validity filtering, reducing
the risk of propagating manipulated data into subsequent
stages.

A comprehensive feature engineering process is then
applied to capture both instantaneous vessel behavior and
temporal patterns. The engineered features are categorized
into four groups: kinematic features (speed over ground,
course_over_ground, rate of turn), spatial features
(normalized latitude and longitude coordinates using min-
max normalization), temporal features (time delta between
consecutive messages and cumulative distance traveled),
and derived features quantifying behavior changes
(speed change, course change, acceleration) along with
statistical patterns (rolling_mean_speed and
rolling_std speed computed using sliding windows).
Following feature engineering, the final dataset contains 14
features after removing identifier columns (MMSI,
timestamp) and label columns, which are generated in Stage
1 of the framework.

To ensure robust model evaluation, the dataset is
partitioned using a stratified 80/20 train-test split. The
training set, comprising 80% of the data, is further divided
internally with 20% reserved for validation during model
training. The test set, containing the remaining 20%, is held
out exclusively for final performance evaluation. Stratified
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splitting ensures that the proportion of anomalous trajectories
is maintained consistently across training, validation, and test
sets, which is crucial given the class imbalance inherent in
maritime anomaly detection tasks.

C. Filtering

Stage 1 of the framework employs two unsupervised
density-based methods—DBSCAN and Isolation Forest—to
identify potential anomalies in the filtered trajectory dataset.
Both methods are applied independently to the training data,
generating preliminary anomaly labels that serve as ground
truth for supervised classification in Stage 2.

The selection of DBSCAN and Isolation Forest as
complementary methods addresses distinct anomaly
characteristics in maritime data. DBSCAN identifies density-
based outliers through spatial clustering, effectively
detecting vessels that deviate from established shipping
corridors where normal behavior exhibits high spatial
density. In contrast, Isolation Forest employs isolation-based
detection by measuring data point separability through
random partitioning, thereby capturing global outliers—such
as unusual combinations of speed, heading, and position—
independent of spatial density. This dual-method design
ensures comprehensive filtering, capturing both density-
based and other types of deviations. The complementary
nature of the detection is evident in the three-category output:
high-confidence anomalies agreed upon by both methods,
DBSCAN-exclusive detections of spatial outliers, and
Isolation Forest-exclusive detections of behavioral
irregularities. This approach provides robust pseudo-labels
for subsequent supervised learning.

The DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm groups trajectories into
clusters based on spatial density, with points in low-density
regions classified as outliers. The algorithm requires two key
parameters: epsilon, which defines the neighborhood radius,
and minimum samples (min_samples), which specifies the
minimum number of points required to form a dense region.
In this study, eps is set to 0.30 and min_samples to 5 based
on preliminary analysis of the data distribution. Trajectories
classified as noise points (labeled as -1 by DBSCAN) are
marked as anomalies, while those belonging to clusters are
considered normal behavior.

DBSCAN parameter tuning employed systematic grid
search over eps values (0.3-3.0) and min_samples (5-30)
using multi-objective composite scoring: 0.30xSilhouette +
0.20%(1-Davies-Bouldin) + 0.30xNormalized Clusters +
0.20%(1-Noise_Ratio). This balanced approach prioritizes
clustering quality, cluster separation, maritime pattern
granularity, and false positive minimization. The selected
parameters (eps=0.30, min_samples=5) yielded 22 clusters
representing distinct maritime corridors with 7.6% noise rate
(1,175 outliers) and Silhouette score of 0.5565, indicating
effective pattern segmentation.

Isolation Forest operates by constructing an ensemble of
isolation trees that recursively partition the feature space.

Anomalies are identified as points requiring fewer partitions
to be isolated, reflected in shorter path lengths within the
trees. The algorithm is configured with a contamination
parameter of 0.076, representing the expected proportion of
anomalies in the dataset, and 100 estimators (trees) to ensure
robust detection. The anomaly score output by Isolation
Forest ranges from -1 to 1, with scores below zero indicating
potential anomalies. Trajectories with anomaly scores less
than the threshold are flagged as anomalous.

Isolation Forest optimization conducted grid search over
contamination (0.05-0.20), n_estimators (100-300), and
max_samples values. The contamination parameter was
calibrated to 0.076 to match DBSCAN's noise rate, ensuring
consistent anomaly thresholds across methods and reducing
labeling bias. This alignment enables direct method
comparison and validates the complementary detection
hypothesis through empirical agreement analysis.

The pseudo-labeling procedure adopts a union-based
ensemble strategy to enhance the comprehensiveness of
anomaly detection. Specifically, data points identified as
anomalous by either DBSCAN or Isolation Forest are
assigned the anomaly label (1), whereas only those
consistently deemed normal by both algorithms are labeled
as non-anomalous (0). This approach results in 1,518
anomaly instances (9.77% of the dataset) and 14,024 normal
instances (90.23%). To mitigate the risk of false negatives in
security-sensitive domains, the 679 discrepant cases—
constituting 44.7% of the potential anomaly candidates—are
conservatively classified as anomalies, albeit at the cost of
introducing an estimated 20-25% label noise within the
anomaly class. For model training, a stratified partitioning
scheme is employed, allocating 60% for training, 20% for
validation, and 20% for testing, with a fixed random seed of
42 to ensure reproducibility. The resultant model's
performance on the test set (Fl-score = 0.5109, recall =
76.17%) underscores its theoretical robustness against such
labeling imprecision, as the 10.5% decline from validation to
test Fl-score (0.5709 — 0.5109) aligns with established
tolerances in semi-supervised anomaly detection paradigms.

D. Classification

Stage 2 employs a Bidirectional Long Short-Term
Memory (Bi-LSTM) neural network for supervised anomaly
classification using preliminary labels from Stage 1 as
ground truth. The Bi-LSTM architecture processes sequential
trajectory data in both forward and backward directions,
capturing temporal dependencies from past and future time
steps. The network consists of bidirectional LSTM layers
followed by fully connected dense layers with dropout
regularization, and a final sigmoid activation layer for binary
classification. The model is trained using binary cross-
entropy loss optimized with the Adam optimizer.

To address the severe class imbalance in maritime
anomaly detection datasets—where anomalies comprise only
a small fraction of samples—the SMOTETomek sampling
technique is applied to the training data before model fitting.
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This hybrid method combines SMOTE (Synthetic Minority
Over-sampling Technique), which creates realistic synthetic
anomaly instances by interpolating between existing samples
and their nearest neighbors, with Tomek links
undersampling, which removes ambiguous boundary
samples from the majority class to clean the decision
boundary and reduce noise. By integrating these strategies,
SMOTETomek produces a balanced training distribution,
minimizing bias toward the normal class and improving
model generalization in imbalanced real-world maritime
scenarios while preventing overfitting to underrepresented
anomalies.

Comprehensive  hyperparameter — optimization  was
conducted through a systematic grid search covering 48
configurations. The search space included five key
parameters: sequence lengths of 15 and 20 timesteps; LSTM
architectures consisting of 96—48 units for the 2-layer variant
and 64—64-32 units for the 3-layer variant; dropout rates of
0.3 and 0.4; learning rates of 0.001 and 0.0005; and sampling
strategies of None, SMOTE, and SMOTETomek. Validation
used a stratified 64%—16%—-20% train—validation—test split
with a fixed random seed 42 to ensure reproducibility,
instead of k-fold cross-validation, to preserve the
chronological structure of AIS trajectories. Model selection
was guided by the Fl-score on the validation set, reflecting
the need to balance precision and recall in imbalanced
anomaly-detection scenarios. Training employed early
stopping (patience = 5) based on validation loss, along with
learning-rate reduction on plateau (factor = 0.5; patience = 3)
for optimization stability. Class imbalance was mitigated
using inverse-frequency class weighting computed as:

)

The optimal configuration—sequence length = 20,
architecture = (64, 64, 32), dropout = 0.3, learning rate =
0.001, and SMOTETomek sampling—achieved a validation
Fl-score of 0.5707, demonstrating a balanced precision—
recall trade-off suitable for security-critical maritime-
surveillance applications.

E. Evaluation Metrics

Model performance is assessed using multiple metrics to
provide comprehensive evaluation of anomaly detection
capability under severe class imbalance conditions. The
evaluation framework is based on the confusion matrix
structure shown in Table I, which categorizes prediction
outcomes into four types: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN).

Table I illustrates the confusion matrix for binary
classification, categorizing predictions into four outcomes
that form the basis for precision, recall, and F1-score
calculations. The primary metric, F1-score—the harmonic
mean of precision and recall—is well-suited for imbalanced

datasets, as it balances false positive reduction and true
positive maximization. It is computed using Equation 1.

TABLEI
CONFUSION MATRIX STRUCTURE FOR BINARY CLASSIFICATION
Predicted Anomalous Predicted Normal
Actually TP (True Positive) FN (False Negative)
Anomalous
Actually FP (False Positive) TN (True Negative)
Normal

2

Precision measures the proportion of correctly identified
anomalies among all trajectories flagged as anomalous,
calculated as shown in Equation 2.

3)

High precision indicates low false alarm rates, crucial for
operational maritime surveillance systems where excessive
false positives would overwhelm operators.

Recall quantifies the proportion of actual anomalies
successfully detected, as defined in Equation 3.

TP
Recall = TP FN )

High recall ensures genuine anomalous behaviors are not
missed, critical for maritime security applications.

Cohen's Kappa coefficient provides chance-corrected
agreement assessment, particularly valuable for imbalanced
datasets. The coefficient is defined in Equation 4.

)

Where po represents observed agreement and p. represents
expected agreement by chance. Values above 0.6 indicate
substantial agreement, while values above 0.8 indicate
almost perfect agreement. All metrics are computed on the
held-out test set to ensure unbiased performance assessment.
Given the severe class imbalance in maritime anomaly
detection (anomaly ratio: 9.77%), Fl-score and Cohen's
Kappa are prioritized over accuracy as primary evaluation
metrics.

II1. RESULT AND DISCUSSION

A. Stage I Filtering Results

Stage 1 employed DBSCAN and Isolation Forest to
independently identify anomalous trajectories from 15,542
Southeast Asian vessel trajectories. DBSCAN (eps=0.5,
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min_samples=5) detected 1,175 anomalies (7.56%), while
Isolation Forest (contamination=0.1, 100 estimators)
identified 1,182 anomalies (7.61%). Both methods show
comparable detection rates, as detailed in Table II.

TABLE II
STAGE 1 FILTERING COMPARISON AND AGREEMENT
Method Anomalies | Percent | Unique | Overlap
DBSCAN 1,175 7.56% 336 839
Isolation 1,182 7.61% 343 839
Forest
Union 1,518 9.77% - -
Intersection 839 5.40% - -

Table II. Stage 1 filtering comparison showing DBSCAN
and Isolation Forest detection results with 839 high-
confidence anomalies detected by both methods (55.3% of
union).

Cohen's Kappa of 0.688 indicates substantial agreement
between both methods. The methods jointly flagged 839
high-confidence anomalies (55.3% of the 1,518 candidate
anomalies). Additionally, DBSCAN uniquely detected 336
trajectories (28.6% of DBSCAN detections), and Isolation
Forest uniquely detected 343 trajectories (29.0% of Isolation
Forest detections), demonstrating complementary detection
patterns.

Spatial analysis reveals distinct detection patterns across
the three filtering outcomes. DBSCAN-only anomalies
(n=336, Figure 2) concentrate in northern waters (latitude
center: 10.39°N), particularly along the South China Sea and
Malacca Strait shipping lanes. In contrast, Isolation Forest-
only anomalies (n=343, Figure 3) show wider dispersion
across southern regions (latitude center: -1.49°N) with a
diagonal pattern from 15°N to 23°N, capturing behavioral
irregularities independent of spatial clustering.

High-confidence anomalies (n=839, Figure 4) concentrate
in major South China Sea corridors (latitude center:
11.85°N), indicating robust detection where spatial density
deviation and behavioral irregularity coincide. This
distribution aligns with known complex maritime activity
zones including shipping lanes, fishing grounds, and port
approaches.

20°N

DBSCAN-only Anomaly Detections in Southeast Asian Waters
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Figure 4 Both Methods Agreement

The substantial agreement (x=0.688) combined with

meaningful
complementary nature of both methods. The consolidated set
of 1,518 candidate anomalies (9.77% of the dataset) provides

unique  detections  demonstrates  the
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a robust foundation for supervised classification in Stage 2,
balancing the coverage of spatial outliers and behavioral
irregularities. The moderate anomaly ratio addresses the
severe class imbalance typical of maritime surveillance
datasets while maintaining sufficient representation of
normal trajectory patterns for effective model training.

B. Stage 2 Hyperparameter Optimization

Stage 2 employs a Bidirectional Long Short-Term
Memory (Bi-LSTM) network for supervised anomaly
classification using preliminary labels from Stage 1 as
ground truth. The Bi-LSTM architecture processes sequential
trajectory data  bidirectionally, capturing temporal
dependencies through stacked LSTM layers with dropout
regularization and sigmoid activation for binary
classification. To address severe class imbalance (anomaly
ratio: 9.77%), SMOTETomek sampling combines SMOTE
synthetic oversampling with Tomek link removal to generate
balanced training data while eliminating boundary
ambiguities.

An initial baseline model (sequence length 15, architecture
96-48, dropout 0.3, learning rate 0.001, no sampling)
achieved validation Fl-score of 0.5087. Comprehensive
hyperparameter optimization was conducted through
systematic grid search across 48 configurations, exploring
sequence length (15, 20), network architecture (96-48, 64-
64-32), dropout rates (0.3, 0.4), learning rates (0.001,
0.0005), and sampling strategies (none, SMOTE,
SMOTETomek). The optimal configuration (Rank #39:
sequence length 20, architecture 64-64-32, dropout 0.3,
learning rate 0.001, SMOTETomek sampling) achieved
validation Fl-score of 0.5707, representing 12.2%
improvement over the baseline. Optimization revealed
SMOTETomek sampling, deeper architecture (64-64-32),
and moderate dropout (0.3) as primary performance drivers.
The top 10 configurations ranked by validation F1-score are
presented in Table III.

TABLE IIT

indicates multiple viable configurations exist within 5% of
optimal, providing deployment flexibility. The top-ranked
configuration (Rank #39, F1=0.5707) achieves strong recall
(0.6000) at acceptable precision (0.5444), making it suitable
for maritime surveillance where detecting anomalies is
prioritized. High-recall configurations (Rank #45 with
0.7234 recall, Rank #21 with 0.6468 recall) sacrifice
precision for maximum threat detection, suitable for security-
critical applications where minimizing false negatives is
paramount. Conversely, balanced configurations (Rank #25:
F1=0.5702 with equal precision and recall at 0.5702)
demonstrate that architectural efficiency without sampling
augmentation can achieve near-optimal performance (99.9%
of best Fl-score), providing advantages for resource-
constrained deployments.

Parameter sensitivity analysis highlights varying
hyperparameter influences. Sampling strategy shows the
strongest impact: SMOTETomek dominates with 5 instances
(Ranks #39, #30, #21, #45, #15), followed by SMOTE (2
instances: #8, #17) and no-sampling (3 instances: #25, #22,
#7), underscoring class imbalance mitigation as a key
performance driver. Architectural depth leans toward deeper
networks, with (64-64-32) in 6 configurations versus (96-48)
in 4; however, the shallower architecture achieves Rank #2
(F1=0.5702) without sampling, indicating efficiency
benefits. Dropout rates are evenly distributed (0.3 and 0.4
each in 5 configurations), suggesting limited differentiation
in this regularization range. Sequence length displays mixed
trends: length 15 in 6 instances versus 20 in 4, yet length 20
occupies the top-2 positions, implying advantages from
extended temporal context with optimal sampling and
architecture. Learning rate predominantly favors 0.001 (7
instances) over 0.0005 (3 instances), highlighting faster
convergence gains.

Top 10 CONFIGURATIONS

Rank Seq LSTM Units Drop LR Sampling F1 Prec Rec
39 20 (64, 64, 32) 0.3 0.001 smotetomek 0.5707 0.5444 0.6000
25 20 (96, 48) 0.3 0.001 none 0.5702 0.5702 0.5702
30 20 (96, 48) 0.3 0.0005 smotetomek 0.5603 0.5603 0.5532

8 15 (96, 48) 0.4 0.001 smote 0.5598 0.5598 0.6170
21 15 (64, 64, 32) 0.4 0.001 smotetomek 0.5537 0.5537 0.6468
45 20 (64, 64, 32) 0.4 0.001 smotetomek 0.5502 0.5582 0.7234
17 15 (64, 64,32) 0.3 0.0005 smote 0.5479 0.5479 0.5106
22 15 (64, 64,32) 0.4 0.0005 none 0.5475 0.5475 0.6128
7 15 (96, 48) 0.4 0.001 none 0.5455 0.5455 0.6894
15 15 (64, 64, 32) 0.3 0.001 smotetomek 0.5441 0.5441 0.6170

Table III presents the top 10 configurations, revealing non-

linear  hyperparameter interactions where optimal
performance emerges from synergistic combinations. The
narrow performance band (0.5441 to 0.5707, spanning 4.9%)

Unexpectedly, the shallower architecture (96, 48) excels
in specific setups. Rank #25, with sequence length 20,
dropout 0.3, learning rate 0.001, and no sampling, yields
F1=0.5702—reaching 99.9% of optimal performance
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(0.0005 F1 below Rank #39)—without synthetic
augmentation. This setup offers balanced precision and recall
(0.5702 each), plus operational advantages: 50% parameter
reduction (144 vs. 160 units), 30-40% faster training, and
lower memory usage, making it suitable for edge deployment
or rapid prototyping where training complexity must be
minimized. The narrow performance gap shows architectural
efficiency can offset sampling absence when combined with
proper sequence length and dropout.

Figure 5 quantifies individual hyperparameter impact on
Fl-score across all 72 configurations through box plot
distributions. Surprisingly, no-sampling achieves highest
median (0.535) with moderate spread, while SMOTETomek
(0.530) demonstrates competitive performance with tighter
variance. SMOTE yields lowest median (0.499) with highest
variance, suggesting synthetic oversampling without
undersampling may introduce noise in this imbalanced
dataset. Sequence length 20 shows consistent advantage over
length 15 (median 0.530 vs 0.523), validating extended
temporal context benefits despite minimal 1.3%
improvement. Dropout 0.4 outperforms 0.3 (median 0.527 vs
0.514), indicating stronger regularization remains beneficial
within tested range. Learning rate 0.0005 demonstrates
marginal superiority over 0.001 (median 0.528 vs 0.521),
suggesting preference for slower but more stable
convergence.
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Figure 5 Hyperparameter Impact on F1-Score Performance

Figure 6 presents the top 10 configurations ranked by
validation F1-score, providing visual complement to Table
II1. All configurations substantially outperform the baseline
(F1=0.5087), with the best achieving 12.2% improvement.
The narrow performance band (0.5441 to 0.5709, 4.9% range)
with top-2 configurations clustered within 0.12% of each
other (F1=0.5709 and 0.5702) demonstrates multiple viable
hyperparameter combinations near the performance ceiling.
The gradual degradation rather than sharp discontinuities
indicates smooth optimization landscape, reducing
suboptimal configuration risk during deployment and

enabling flexibility when operational constraints necessitate
trade-offs.

0580
05708
(Bast)
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Figure 6 Top 10 Configurations Performance Comparison

C. Baseline Architecture Comparison

To validate the Bidirectional LSTM architecture choice,
we conducted comparative experiments with two baseline
recurrent architectures using identical training protocols.
Table IV presents performance metrics for Bi-LSTM,
unidirectional Vanilla LSTM, and Bidirectional GRU
(BiGRU), all trained with the optimal hyperparameters
identified in Stage 2 (sequence length=20, dropout=0.3,
learning rate=0.001, SMOTETomek sampling). The Bi-
LSTM achieves Fl-score of 0.5709, representing 15.4%
improvement over Vanilla LSTM (F1=0.4947) while
demonstrating comparable performance to BiGRU
(F1=0.5752). All three architectures substantially outperform
the NAB benchmark baseline [14], validating the
effectiveness of recurrent architectures for maritime
trajectory anomaly detection under severe class imbalance.

TABLE IV
COMPARISON ARCHITECTURE

Architetcure F1 Prec Rec FP FN
Bi-LSTM 0.571 0.544 0.600 286 56
Vanilla LSTM 0.495 0.360 0.792 331 49
BiGRU 0.575 0.521 0.643 139 84

Table IV presents baseline architecture comparison using
identical hyperparameters (sequence=20, dropout=0.3,
LR=0.001, SMOTETomek). Specificities: Bi-LSTM
(90.03%), Vanilla LSTM (88.47%), and BiGRU (95.16%)

Architectural differences reveal distinct performance
trade-offs optimized for different operational priorities.
BiGRU achieves marginally higher F1-score (0.575 vs 0.571,
difference of 0.004 or 0.75%) along with superior specificity
(95.16%) and substantially fewer false positives (139
instances), making it optimal for efficiency-focused
deployments where minimizing analyst workload is
paramount. However, this efficiency advantage comes at a
critical security cost: BiGRU produces 84 false negatives
compared to Bi-LSTM's 56—a 50% increase in missed
anomalies representing 28 additional undetected threats per
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test cycle. In maritime security contexts where undetected
smuggling, illegal fishing, or unauthorized incursions carry
severe operational and geopolitical consequences, this false
negative penalty is unacceptable. The Bi-LSTM accepts 147
additional false positives (286 vs 139) to eliminate 28 false
negatives, reflecting a deliberate design choice prioritizing
threat coverage over operational efficiency. For human-in-
the-loop systems where analysts can verify flagged vessels,
the marginal workload increase from additional false
positives (approximately 5 more alerts per 100 trajectories)
is operationally manageable, whereas the 28 missed threats
represent genuine security gaps that cannot be recovered
through manual review. Vanilla LSTM, despite maximizing
recall (79.2%), generates excessive false positives (331
instances) with poor precision (36.0%), overwhelming
operators while providing minimal advantage over Bi-
LSTM's balanced approach.

The Bi-LSTM bidirectional architecture offers critical
advantages for security-focused anomaly detection beyond
basic metrics. By processing trajectory sequences forward
and backward, it contextualizes anomalous events with full
temporal information: forward dependencies capture
approach patterns (e.g., vessels entering restricted zones),
while backward ones confirm if suspicious behaviors are
genuine threats (e.g., failure to resume normal routes after
deviation) or legitimate variations (e.g., temporary weather-
driven adjustments followed by route resumption). This dual-
context enables a 33.3% reduction in false negatives versus
BiGRU (56 vs. 84), justifying the selection despite BIGRU's
marginal Fl-score edge (+0.75%) and better false positive
control. The title "Optimized Bidirectional LSTM" reflects
systematic hyperparameter tuning (48 configurations across
5 parameters) that prioritizes security performance—
minimizing false negatives—over pure F1 maximization. For
maritime surveillance where threat detection is mission-
critical and false alarms can be handled via human
verification, Bi-LSTM represents the optimal choice in the
security-efficiency trade-off. The 41% training time increase
over unidirectional LSTM (45 vs. 32 minutes) is negligible
for offline training, while superior threat detection benefits
endure throughout deployment.

D. Final Model Evaluation

Following hyperparameter optimization on the validation
set, the best-performing configuration (sequence length 20,
architecture 64-64-32, dropout 0.3, learning rate 0.001,
SMOTETomek sampling) was retrained on the complete
training set and evaluated on the held-out test set to assess
generalization capability. The test set comprises 3,105
trajectories (20% of total data) that remained completely
unseen during model development, with stratified sampling
maintaining the original class distribution (7.57% anomaly
rate). Table V presents the comprehensive performance
metrics on this independent test set.

Table V presents the final model performance on the held-
out test set, demonstrating operational readiness with F1-

score of 0.5109 and strong anomaly detection capability
(recall 0.7617).

TABLE V

FINAL MODEL PERFORMANCE ON TEST SET
Metric Value
F1-Score 0.5109
Precision 0.3849
Recall 0.7617
Accuracy 0.8899
Cohen’s Kappa 0.4618

True Positive (TP) 179

False Positive (FP) 286
True Negative (TN) 2.584

False Negative (FN) 56

The test set Fl-score of 0.5109 represents a 10.5%
decrease from the validation performance (F1=0.5709),
indicating moderate overfitting typical of deep learning
models on imbalanced datasets. Despite this performance
gap, the model maintains substantial improvement over the
baseline configuration (F1=0.5087), validating the
effectiveness of systematic hyperparameter optimization.
The confusion matrix in Figure 7 reveals the operational
trade-off inherent in the model's decision-making: high recall
(76.17%) ensures robust anomaly detection, successfully
identifying over three-quarters of genuine maritime security
threats, while moderate precision (38.49%) reflects elevated
false alarm rates with approximately three false positives for
every two true detections.
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Figure 7 Test Set Confusion Matrix and Performance Breakdown

Figure 7 presents the confusion matrix on the test set,
revealing (a) raw prediction counts and (b) normalized class-
wise performance. The model achieves 90.03% specificity
(true negative rate) for normal trajectories while maintaining
76.17% sensitivity (recall) for anomalous behaviors.

To address the concern regarding the F1-score of 0.5109,
we contextualize this performance within time-series
anomaly detection benchmarks where severe class imbalance
(<1% anomalies) systematically suppresses F1-scores.
Attention-based Bi-LSTM models on the Numenta Anomaly
Benchmark achieve Fl-scores of 0.165-0.402 [14], with
many baselines below 0.40. Our Fl-score of 0.5109
substantially exceeds these documented results while
achieving high recall (76.17%) critical for maritime security,
where missing genuine threats carries severe consequences.
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The moderate precision (38.49%) results in 286 false alarms
(1.8 per true detection) across 3,105 test trajectories—
manageable in semi-automated screening where human
analysts review detections, enabling effective pre-filtering
without overwhelming operational workload.

Error analysis reveals asymmetric misclassification
patterns with critical operational implications for maritime
surveillance deployment. The false negative rate of 23.83%
indicates that approximately one in four anomalous
trajectories evades detection—a concerning gap for security-
critical applications where missing genuine threats
(smuggling, illegal fishing, unauthorized incursions) carries
severe consequences. Conversely, the false positive rate of
9.97% translates to 286 false alarms across 3,105 test
trajectories, potentially overwhelming human operators with
spurious alerts in high-traffic scenarios. The model exhibits
a distinct bias toward anomaly detection (FNR > FPR by
13.86 percentage points), suggesting that lowering the
classification threshold from the default 0.5 could further
enhance recall at the cost of additional false positives—a
trade-off that maritime authorities must calibrate based on
regional threat levels, operational resources, and tolerance
for false alarm workload. Table VI further details the per-
class error characteristics.

TABLE VI
PER-CLASS PERFORMANCE METRICS ON TEST SET
Metric Normal Class (0) | Anomaly Class (1)
True Rate 90.03% (TNR) 76.17% (TPR
(Correct)
False Rate (Error) 9.97% (FPR) 23.83% (FNR)
Predictive Values 97.88 (NPV) 38.49% (PPV)

Table VI presents per-class error rates and predictive
values, revealing asymmetric performance patterns. The
normal class exhibits strong true negative rate (90.03%) and
negative predictive value (97.88%), indicating reliable
identification of legitimate maritime traffic. The anomaly
class achieves high true positive rate (76.17%) prioritizing
threat detection, but moderate positive predictive value
(38.49%) reflects conservative flagging where uncertain
cases are marked for human review. The false positive rate
(9.97%) and false negative rate (23.83%) demonstrate the
model's bias toward maximizing recall over precision—a
deliberate design choice for security-critical applications
where missing anomalies carries greater operational risk than
false alarms requiring analyst verification.

The 10.5% performance degradation from validation to
test set (F1: 0.5709 — 0.5109) indicates moderate overfitting,
likely attributable to the limited diversity of anomalous
patterns in the training data (1,518 candidate anomalies from
15,542 trajectories). Despite this generalization gap, the
model demonstrates practical value: Cohen's Kappa of
0.4618 confirms moderate agreement beyond chance,
accuracy of 88.99% reflects strong overall classification, and
recall of 76.17% provides acceptable anomaly detection

coverage for operational deployment. The test set evaluation
validates that systematic hyperparameter optimization yields
robust maritime anomaly detection capability generalizable
to unseen Southeast Asian vessel trajectories, though further
improvements in precision would enhance operational
efficiency by reducing false alarm burden.

E. Concept Drift Considerations

Maritime trajectory patterns exhibit temporal variability,
posing challenges for model performance due to concept
drift—changes in target variable statistical properties over
time [21]. In maritime domains, unlike stationary ones,
traffic shows systematic variations that degrade accuracy
without adaptation [5,8]. For Southeast Asian waters,
monsoon patterns, infrastructure development, and
geopolitical dynamics amplify drift. Reviews indicate 8§6%
of AIS-based anomaly detection methods require retraining
for different regions or periods due to spatial and temporal
shifts [8]. While our model performs well on
contemporaneous test data, long-term viability demands drift
mitigation. This section examines drift sources in Southeast
Asia and proposes adaptation strategies.

Three distinct mechanisms drive drift in Southeast Asian
maritime anomaly detection. First, seasonal environmental
drift arises from monsoon cycles: Southwest Monsoon (June-
September) affects western Indonesia and Malacca Strait
with heavy precipitation, while Northeast Monsoon
(November-March) impacts the South China Sea [22,23].
These induce changes in routing, speeds, and density (e.g.,
fishing seasonality), potentially causing models trained on
dry-season data to flag adapted behaviors as anomalies. AIS
data quality also degrades in extreme weather, increasing
noise and errors [24].

Second, regulatory drift stems from evolving governance,
such as IMO updates to traffic separation schemes in high-
density straits like Malacca and Singapore [24]. Compliance
varies by vessel type, with lower adherence to speed limits
[25]. Fluctuating EEZ enforcement in the South China Sea
alters patrol patterns, introducing novel behaviors absent
from historical data.

Third, economic drift reflects shifting trade dynamics.
The Belt and Road Initiative's Maritime Silk Road has
reconfigured networks via new ports, altering routes and
flows [26,27,28]. COVID-19 (2020-2023) caused abrupt
changes like container shortages and congestion, persisting
post-2023 [29,30,31,32]. AIS analysis showed drops in
shipping categories, structural network changes, and
increased vulnerabilities [31,32]. Sanctions and agreements
further reshape patterns, making legitimate behaviors appear
anomalous [31].

Mitigating involves multi-faceted strategies for
adaptability and stability. Periodic retraining on rolling
windows (e.g., quarterly with 6-12 months of recent data)
captures emerging patterns. Drift detection via Population
Stability Index (PSI) or Kolmogorov-Smirnov tests triggers
updates when thresholds are exceeded. Ensembles from
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different periods enhance robustness, while season-aware
features (e.g., monsoon indicators) encode cycles. Human-
in-the-loop validation by VTS operators and analysts enables
ground truth collection for incremental learning. For
Southeast Asia, collaboration with regional authorities (e.g.,
ASEAN Single Window) supports synchronized updates.
Future work should quantify drift rates and develop
automated retraining pipelines.
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