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Lung cancer poses a significant global mortality challenge, with early clinical
detection hindered by non-specific symptoms making accurate diagnosis dependent
on extracting subtle patterns from often complex medical tabular data. Traditional
machine learning approaches often fall short in capturing intricate patterns within
such heterogeneous datasets, hindering effective clinical decision support. This
research introduces TabNet, an interpretable deep learning architecture, for
multiclass lung cancer severity prediction (low, medium, high). Utilizing the Kaggle
Lung Cancer dataset, our methodology leverages TabNet's unique attention-based
feature selection for end-to-end processing of tabular data, enabling adaptive
identification of key predictors and crucial model interpretability. To effectively
assess its predictive capabilities and ensure robust performance, the model was
trained with default configurations and validated through stratified 5-fold cross-
validation, achieving outstanding performance on the test set: 98.50% accuracy, a
0.98 F1-score, and a 0.9996 macro-AUC-ROC. Beyond its robustness, confirmed by
stable learning curves, interpretability analysis highlighted 'Genetic Risk' and
'Shortness of Breath' as dominant factors. Our results underscore TabNet's efficacy
as a reliable, robust, and inherently interpretable solution, offering significant
potential to improve the precision and transparency of lung cancer severity
assessment in clinical practice.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Lung cancer is one of the most prevalent diseases
worldwide. It is the leading cause of cancer-related mortality,
with an increasing incidence rate annually in both developed
and developing countries [1]. Biologically, lung cancer is
caused by genetic alterations in epithelial cells of the
respiratory tract [2]. These alterations lead to abnormal and
uncontrolled proliferation, which may originate directly from
the lung tissue (primary) or from other organs (metastasis) [3].
In its early stages, lung cancer symptoms are generally
nonspecific and are often misinterpreted as minor respiratory
disorders, resulting in delayed diagnosis and treatment.
Additionally, the low level of awareness among medical

personnel regarding the need for further examination of
suspicious symptoms is also a factor that can worsen the
condition [4]. These issues underscore the urgency of more
effective strategies for prevention and early detection [5].
Early detection plays a crucial role in reducing mortality rates
by enabling more appropriate control measures and
significantly improving lung cancer patients survival rates
[6]. According to data from the Global Cancer Observatory
(GLOBOCAN) in 2022, lung cancer accounts for 12.4% of
all cancer cases worldwide, representing approximately 2.4
million cases, with a mortality rate is 18.7%, resulting in
1,817,469 deaths [7]. In Indonesia, lung cancer is the second
most prevalent case, accounting for 38,904 or 9.5% of cases,
with a mortality rate of 34,339 or 14.1% of all deaths from
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lung cancer [8]. The high incidence rate is influenced by
various risk factors, with smoking being the main cause in
85% of cases for both active and passive smokers [9]. Other
factors such as air pollution, exposure to carcinogens in the
workplace, alcohol consumption, obesity, and genetic
predisposition also increase the risk of lung cancer.

Various research has applied machine learning algorithms
to support the early detection of lung cancer. Deepa Yadav’s
research used supervised machine learning algorithms and
achieved an accuracy rate of 87% using logistic regression
[10]. Sinaga et al.’s research, which combined AdaBoost and
Random Forest, resulted in an accuracy value of 95.4%, with
a precision of 96%, and a recall of 96.3% [11]. Research
conducted by Septhya et al., using the Decision Tree and
Support Vector Machine with Forward Selection the accuracy
was 62.3% [12]. Meanwhile, Marzuq et al.’s research, which
used a Random Forest Decision Tree with 5-fold cross
validation, obtained an accuracy of 88.9% [13]. Analysis of
previous research shows that, despite significant progress,
there are still limitations that indicating a research gap that
needs to be addressed. Most previous research relied on
conventional algorithms such as Random Forest and Decision
Tree, which are less than optimal in handling highly complex
medical data [4], [12]. Although other approaches using
combination of algorithms are able to improve accuracy, but
most are still limited to binary classification and have not
explored more specific predictions of lung cancer severity or
stage [11].

To overcome the limitations of existing lung cancer
diagnostic methods, this research introduces the TabNet deep
learning architecture, which is specifically designed for
tabular data. Unlike conventional models, which treat features
uniformly, TabNet uses an attention-based sparse feature
selection mechanism that adapts to identify the most relevant
predictors at each decision step. This mechanism enhances
predictive performance and improves interpretability, which
is critical in medical applications. Previous research have
demonstrated of Chronic Kidney Disease (CKD), achieving
accuracy rates above 94% in multiclass CKD stage
classification [14]. Similarly, in fetal health analysis, TabNet
achieved 94.36% accuracy, surpassing classical machine
learning algorithms while maintaining interpretability in
feature importance [15]. These findings validate TabNer’s
ability to handle complex medical tabular data and highlight
its potential for broader clinical applications.

Building upon this foundation, the novelty of this research
lies in applying TabNet to multiclass classification of lung
cancer severity (low, medium, high). To further strengthen
model robustness, Stratified K-fold Cross Validation is
employes, ensuring balanced class proportions across folds
and reducing evaluation bias [16]. Consequently, this research
contributes not only improving the accuracy of early detection
but also expanding the scope of diagnostics towards more
accurate, interpretable, and clinically meaningful framework
that support precision medicine and personalized treatment
strategies for lung cancer patients.

II. RESEARCH METHODS

This research aims to develop and evaluate a deep
learning-based prediction model using TabNet to classify the
severity of lung cancer into three classes, namely low,
medium, and high. The research procedure, as illustrated in
Figure 1, consists of several stages: data preprocessing, data
splitting, model training and validation, and final evaluation.
In the training and validation phase, the TabNet model is
combined with stratified 5-fold cross validation to enhance
model generalization, minimize the risk of overfitting, and
ensure a more robust performance evaluation. This
methodological approach is expected to not only improve the
accuracy and reliability of multi-level lung cancer severity
prediction but also provide interpretability in feature
selection, thereby contributing to a more comprehensive early
detection framework.

@ - :) Preprocessing Data
Lung Cancer ‘
Dataset
@
. Level
0:Low 1 Medium 2 High
Figure 1. Research Flow Diagram
A. Dataset
The dataset used in this research was sourced from Kaggle
via the following link:
https://www .kaggle.com/datasets/thedevastator/cancer-
patients-and-air-pollution-a-new-link/data. ~ This  dataset

consists of 1000 data entries of lung cancer patients with their
respective potential linkages. As illustrated in Figure 2, the
distribution of the target variable "Level" is well-balanced,
with the 'high', 'medium', and 'low' classes accounting for
36.5%, 33.2%, and 30.3% of the data, respectively. This
balanced composition is ideal for classification tasks as it
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minimizes the risk of model bias towards a majority class and
enables a more robust and equitable learning process.

Distribution of Lung Cancer Level
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30.3%
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high med‘ium Io‘w
Level

Figure 1. Distribution of Lung Cancer Level

The dataset structure has 25 predictor features with 1
target feature. The predictor features include various clinical
and demographic attributes of patients relevant to the
diagnosis of lung cancer. Meanwhile, the target feature is the
categorical variable “Level”, which categorizes the severity
of lung cancer into three classes, namely low, medium, and
high. The 25 predictor features encompass a range of patient
data as detailed in Table 1. The use of this dataset aims to test
the ability of the TabNet model to perform multiclass
classification on complex medical tabular data by leveraging
these diverse attributes.

TABEL1
PREDICTOR FEATURES IN THE LUNG CANCER DATASET

As such, this rarity aims to prevent the model from overfitting
and ensure that the model learns from features that are
relevant to the target prediction.

2) Label Encoding: One of the transformation
techniques used to convert the categorical value of a target
feature into a numerical representation in order to be
processed by models that can generally only accept numerical
inputs [20]. In this research, the target variable used is Level,
as a representation of the severity of lung cancer which
consists of three categorical classes, namely low, medium,
and high. The label encoding process is performed by
converting the categorical labels in text form into numeric,
namely 0 for the Low class, 1 for the medium class, and 2 for
the High class, as listed in Table 2. This technique is
necessary to enable TabNet modeling to perform multiclass
classification of target variables with numeric inputs [21].

TABEL II
RESULT FROM LABEL ENCODING TARGET FEATURE

Class label before encoding | Class label after encoding
Low 0
Medium 1
High 2

C. Split Data

After preprocessing, the dataset was divided while
maintaining a consistent data size and retaining 23 features.
An 80:20 ratio was applied to the splitting process, resulting
in three primary subsets: training, validation, and testing.
Specifically, 64% of the data was allocated for training, 16%
for validation, and 20% for testing. The training subset was
used to fit the model and learn feature target relationship. The

B. Preprocessing Data

The data preprocessing stage is a fundamental step in deep
learning modeling to improve data quality, increase the
performance and computational efficiency of predictive
models [18]. In this research, there are a series of data
preprocessing techniques that will be applied to the lung
cancer dataset before it is used to train the TabNet model,
consisting of:

1) Identifier Feature Removal: ldentifier features are
features in the dataset that are used to uniquely identify each
data entry, such as Patient Id and index. The presence of such
features can add complexity to the model without providing
relevant or predictive information to the target variable [19].

Category Features Names validation subset was used to monitor performance during
Identifiers & Patient Id. index. Age. Gend training and prevent overfitting. The testing subset provided
Demographics atient 1d, index, Age, Gender an objective measure of the final model’s performance [22].

Air Pollution, Alcohol use, Dust Allergy, Table 3 presents the distribution of data after splitting.
Lifestyle & Occupational Hazards, Genetic Risk, chronic
Environment Lung Disease, Balanced Diet, Obesity TABEL 1T

. . ’ ’ RESULT FROM LABEL ENCODING TARGET FEATURE

Smoking, Passive Smoker

Chest Pain, Coughing of Blood, Fatigue, Subset Count
Clinical Weight Loss, Shortness of Breath, Wheezing, Training 640
Symptoms Swallowing Difficulty, Clubbing of finger Validation 160

nails, Frequent Cold, Dry Cough, Snoring Testing 200

D. TabNet Model

The TabNet model was chosen as the main approach in
this research due to its superior ability to accurately handle
tabular data end-to-end, as well as its good interpretability.
TabNet is a deep learning architecture that processes tabular
data by integrating an attention-based sparse feature selection
mechanism. This mechanism allows the model to sequentially
select the most relevant subset of features at each decision
step [21], [23].

TabNet architecture consists of three main components:
feature transformer, attentive transformer, and decision step.
The feature transformer functions to process features into an
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initial latent representation, which is then passed to the
Attentive Transformer to determine relevant features that will
be focused on in the next decision step. Equation (1) is the
formula of TabNet's working mechanism.
al[i — 1] : M[i] = sparsemax(P[i — 1] .h;([a = 1])) (1)
Where a [i — 1] is the process from the previous
step, P[i — 1] is the scale prior of feature usage, and
h; ([a — 1]) is the result of the attentive transformer,
which takes the representation from the previous step and
transforms it. Thus, TabNet can provide good performance by
performing sparse feature selection to support model
interpretability [24].

This research implemented a classification model for lung
cancer severity was implemented using the PyTorch-based
TabNetClassifier with the default parameter configuration,
without any modifications of the network structure. The
model was trained from scratch, meaning all network
parameters were randomly initialized without utilizing pre-
trained weights. This approach was chosen to purely evaluate
the baseline performance of the TabNet architecture on
tabular medical data, without applying extensive
hyperparameter tuning. However, some parameters in the
training process (model.fit) were adjusted to accommodate
data characteristics and improve training efficiency. Table 4
presents details of the default parameters used in the TabNet
model architecture. Training parameters such as the
maximum number of epochs, batch size, and the early
stopping mechanism were configured according to
experiment requirements. It should be emphasized that
explicit parameter tuning was not performed in this research,
so the obtained results reflect the model’s performance with
the default settings from the PyTorch-TabNet library.

TABEL 111
PARAMETER SETTINGS OF TABNET MODEL

Parameter Value

n d 8

n a 8

n_steps 3
Model gamma 1.3
Parameters | optimizer fn Adam

optimizer params Ir=2e-2

scheduler params step_size=50, gamma=0.9

mask type ‘sparsemax’

patience 10
Training max_epo ch >0
Parameters bgtch S1ze p 512

virtual batch size 256
(model.fit)

num_workers 0

eval metric ‘accuracy’

E. K-fold Cross Validation

In machine learning, model evaluation is often conducted
through cross-validation method to measure how well a

model can generalize to unseen data. In K-fold cross
validation, the dataset is partitioned into k subsets or folds of
equal size. In each iteration, one fold is used as validation
data, while the remaining k-1 folds are used for training set
[25]. Altough effective, this method has a drawback since the
random partitioning of data may fail to preserve the original
distribution of target classes. To address this issue, Stratified
K-fold Cross Validation is employed, ensuring that each fold
maintains the sam class proportion as the entire dataset,
thereby providing a more reliable representation of the overall
distribution [26].

In this research, stratified 5-fold Cross Validation is
applied which involves dividing the training data into five
balanced folds based on the target class distribution. At each
iteration, the TabNet model is trained on four folds and
validated on the fifth fold, until the combination is completed.
Thus, stratified 5-fold CV helps to thoroughly evaluate the
model's performance on a proportional representation of
classes, as well as prevent potential overfitting due to class
imbalance during training.

F. Model Evaluation

In this research, the performance of the TabNet model in
predicting the severity of lung cancer was assessed using
evaluation metrics including accuracy, precision, recall, F1-
score and AUC-ROC [26], [27].

Accuracy reflects the ratio of correctly classififed samples
to the total predictions. The formula for accuracy is presented
in Equation (2).

TP+ TN

Accuracy = —
y TP +TN + FP + FN

@
Precision indicates the proportion of true positive
predictions among all instances predictes as positive as shown
in Equation (3). Recall measures the model’s ability to
correctly detect positive cases, as shown in Equation (4).

TP

Precision = 3)
TP + FP
Recall = —= “)
TP + FN

The Fl-score, presented in Equation (5), represents the
harmonic mean of precision and recall, providing a balanced
evaluation of the two metrics.

Precision x Recall

F1—Score = 2 X 5)

Precision + Recall

To complement these metrics, the Receiver Operating

Characteristic (ROC) was also used, which illustrates the

trade-off between the True Positive Rate (TPR) and the False
Positive Rate (FPR), as shown in Equation (6).

TPR = —X FPR =
TP + FN

FP
FP +TN

(6)
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For multiclass classification, the One-vs-Rest (OvR)
scheme was applied, where each class is alternately treated as
the positive category while the remaining classes are
considered as negative. This approach enables a more
comprehensive evaluation of the model’s performance in
predicting lung cancer severity.

II1. RESULTS AND DISCUSSION

A. Exploratory Data Analysis

An Exploratory Data Analysis (EDA) visualized in Figure
3, was conducted as a preliminary step to understand the
dataset’s fundamental characteristics and identify initial
patterns. Analysis of demographic features, such as age
(Figure 3(a)) and gender (Figure 3(b)), indicates relatively
uniform distributions across the severity levels, suggesting
these variables may have limited predictive power when
considered independently. In contrast, more significant
insights emerged from examining the relationship between
clinical risk factors and symptoms with the target variable.

Features such as ‘Genetic Risk’ (Figure 3(c)), ‘Shortness
of Breath’ (Figure 3(d)), ‘Fatigue’ (Figure 3(e)) demonstrated
a strong and progressive visual correlation with the severity
levels. As the values of these features increase, there is a
notable and consistent rise in the proportion of patients
classified under the medium and high severity categories,
highlighting  their  strong  discriminative  capacity.
Collectively, this EDA validates the dataset’s suitability for
the severity prediction task and establishes a solid framework
for interpreting the feature importance results that will be
subsequently derived from the trained model.

Distribution Age of Lung Cancer Level Distributian Gender of Lung Cancer Level

o

mEE e

o edum o 1
el censer

(b) Distribution Gender of Lung
Cancer Level

(a) Distribution Age of Lung Cancer
Level

Distribution of Genetic Risk vs Level Distribution of Shartness of Breath vs Level

o4 Level 10 Level
- righ - gh

medium medim
iow oW

Genenc Risk ‘Shartness of Breatn

(c) Distribution of Genetic Risk vs
Level

(d) Distribution of Shortness of
Breath vs Level

Distribution of Fatigue vs Level

Percentage

Fabigue

(e) Distribution of Fatigue vs Level

Figure 3. Exploratory Data Analysis

The correlation analysis, visualized in Figure 4, was
conducted to evaluate the linear relationship between the
variables and support the modeling strategy. The analysis
revealed several features that had strong positive correlations
with the target variable 'Level', including Coughing of Blood
(0.78), Alcohol Use (0.72), and Genetic Risk (0.70). These
strong correlations provide initial validation that learnable
patterns exist in the data, thus reinforcing the model’s
potential success in classifying lung cancer severity. The
correlation matrix also revealed high correlations between
certain predictor features, such as 'OccuPational Hazards' and
'Genetic Risk' (0.89).

However, the matrix also shows a wide variation in the
degree of correlation between features, with many features
showing weak or moderate correlations. This indicates that
not all features have an equal predictive contribution. This
insight further justifies selecting the TabNet model for this
research. With the attention mechanism, TabNet can perform
automatic feature selection during training. This capability
allows the model to dynamically assign greater importance to
the most informative features while reducing the influence of
less relevant ones. Therefore, manual feature selection is
unnecessary to handle the complexity and variation in feature
relevance present in medical tabular data.
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TABEL V
TABNET MODEL EVALUATION RESULT
.. F1-
Precision Recall Support
score

0 1.00 0.97 0.98 61
1 0.96 1.00 0.98 66
2 1.00 0.99 0.98 73
Accuracy 0.98 200
Macro avg 0.99 0.98 0.98 200
Weighted avg 0.99 0.98 0.99 200
AUC-ROC : 0.9996
Accuracy : 0.9850

Figure 4. Correlation Matrix

B. Model Evaluation on Lung Cancer

Evaluation of the stability and consistency of the TabNet
model performance was conducted by analyzing the accuracy
of the validation set for each of the five folds in the stratified
S5-fold cross wvalidation scheme. Figure 5 presents a
visualization of the inter-fold wvalidation accuracy
comparison.

Comparison of Cross-Validation Accuracy

—&~ Crossalidation Fold Accuracy

10 15 2.0 25 30 35 40 45 50
Fold

Figure 5. Comparison of The Accuracy Validation of each Fold Cross-
Validation

As illustrated in Figure 5, the TabNet model shows a very
high level of accuracy and is relatively consistent in most of
the validation folds. Specifically, on the 1st and 2nd folds, the
model achieved a perfect accuracy of 100%. The performance
slightly decreased on the 3rd fold, with 97.66% accuracy.
However, it was again optimized in the 4th fold with 100%
accuracy, followed by the 5th fold with 99.22% accuracy. The
average cross validation accuracy of these five folds is
99.38% with a standard deviation of 0.0097, showing the
stability of the model's performance and generalization before
the final evaluation on the testing data.

The performance of the TabNet model was
comprehensively evaluated using a testing set of 200
independent entries. The evaluation was conducted using
standard evaluation metrics for multiclass classification,
which are listed in Table 5. They include accuracy, precision,
recall, F1-score, and AUC.

Based on Table 5, the TabNet model performed
excellently on the testing set, achieving an accuracy of
98.50%. This result was obtained from the final evaluation of
the test data, rather than from the average of the cross-
validation folds. The macro average scores for precision,
recall and the Fl-score were 0.99, 098, and 0.98,
respectively. Similar results were observed in the weighted
averages of these metrics, confirming consistent performance
of the model across all three lung cancer severity classes.

C. Analysis of the Dynamic Training Curve and Validation
of the Model’s

The average training loss curve, as illustrated in Figure 6.
shows a significant and consistent decrease as the number of
training epochs increases. Starting from an initial value of
1.11, the training loss reaches a minimum value of 0.01 at the
28th epoch, indicating that the TabNet model has learned the
data representation effectively.

Average Training Loss

—e— Average Train Loss

1.0+

0.2 4

0.0 4

o 5 10 15 20 25 30 35 40
Epoch

Figure 6. Average Training Loss Curve

Furthermore, Figure 7 shows a comparison between the
training average accuracy curve and the validation average
accuracy curve. Both curves show substantial performance
improvement. The training accuracy increases progressively,
reaching a value above 0.95 towards the end of the training
period after the 34th epoch. The validation accuracy curve
also shows a similar upward trend, reaching a value of 0.96 at
the same epoch.
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Figure 7. Comparison of Average Accuracy Training and Validation Curve

The close alignment and absence of divergence between
the traning and validation accuracy curves indicates that the
model generalizes well to unseen data. Futhermore, the
gradual reduction in training loss without a sudden increase in
validation loss suggests that the model is neither overfitting
nor underfitting. These results imply that the TabNet model
achieves a balanced learning state, maintaining high accuracy
and stable generalization throughout the training process.

D. Evaluation of the Model’s with AUC-ROC Analysis

The discriminative ability of the TabNet model in
distinguishing between lung cancer severity classes was
further evaluated through AUC-ROC values. The ROC curve
visualizes the trade-off between True Positive Rate (TPR) or
sensitivity and False Positive Rate (FPR) at wvarious
classification thresholds. Figure 8. presents the macro
averaged ROC curve for the TabNet model on the testing set.

Receiver Operating Characteristic (ROC) Curve

08 -

True Positive Rate
\

00 —— ROC Curve (Macro AUC = 0,9996)

0.0 02 0.4 0.6 0.8 10
False Positive Rate

Figure 8. Average of Macro Receiver Operating Characteristic (ROC)
Curve

As illustrated in Figure 8, the macro averaged ROC curve
shows a very close to perfect performance, with an AUC
value recorded at 0.9996. This confirms that the TabNet
model has an excellent capacity to accurately discriminate
between lung cancer severities. This strong AUC
performance is in line with the results of other evaluation
metrics, further strengthening the potential of the TabNet
model as a reliable and effective clinical decision support tool.

E. Confusion Matric

The visualization of TabNet modeling in classifying each
sample in the testing set is presented using the confusion
matrix in Figure 9. This matrix compares the actual lung
cancer severity class on the vertical axis (actual) with the class
predicted by the model on the horizontal axis (predicted) for
all three classes.

Confusion Matrix

Actual

0 1
Predicted

Figure 9. Confusion Matrix

Based on Figure 9, the main diagonal of the matrix shows
the dominant number of correct predictions for each class, i.e.
for class 0 (actual ‘low’) out of a total of 61 samples, 59 were
correctly classified, for class 1 (actual ‘medium’) it was
perfectly classified, where 66 ‘medium’ samples were
correctly identified and for class 2 (actual ‘high’) out of 73
samples, 72 were correctly classified. The majority of
samples (197 out of 200) showed that misclassification tended
to occur between ordinal adjacent classes, between ‘low’ and
‘medium’, and between ‘high’ and ‘medium’. Overall, the
confusion matrix shows that the TabNet model has a very high
accuracy in classifying the severity of lung cancer in the
dataset used.

F. Error Analysis

To gain a deeper understanding of the limitations and
specific error patterns of the TabNet model, an error analysis
was performed based on the confusion matrix generated from
the evaluation on the testing set. Out of a total of 200 samples
in the test data, the TabNet model made three
misclassifications, equivalent to an overall error rate of 1.5%.
Further analysis of the off-diagonal elements in the confusion
matrix are listed in Table 6, revealed the following error
patterns:

1) Misclassification of Class ‘Low’ to ‘Medium’:
There were 2 instances where samples actually belonging to
the ‘Low’ severity category (Class 0) were incorrectly
predicted by the model as ‘Medium’ (Class 1). These errors
indicate a tendency for the model to slightly overestimate the
severity of few ‘Low’ cases or misinterpret features
similarities between some ‘Low’ cases and the characteristics
of ‘Medium’ cases, thereby confusing the model.

2) Misclassification of ‘High’ Class to ‘Medium’:
There was 1 instance where a sample actually belonging to
the ‘High’ severity category (Class 2) was misclassified by
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the model as ‘Medium’ (Class 1). This error suggests a
potential for the model to underestimate severity in certain
‘High’ cases, or the overlap of features between that ‘High’
case and the ‘Medium’ case.

TABEL VI
MISCLASSIFICATION OF ERROR ANALYSIS
Predicted
Low Medium High
(Class 0) (Class 1) (Class 2)
Low
(Class 0) 39 2 0
Medium
Actual (Class 1) 0 66 0
High
(Class 2) 0 ! 2

The concentration of misclassifications in the ‘Medium’
class suggests that the decision boundaries between ordinally
adjacent severity levels (Low-Medium and Medium-High)
have overlapping feature characteristics compared to the
distinction between “Low” and “High” classes. Nevertheless,
the very low total number of errors generally reinforces the
robustness and high accuracy of the TabNet models in
classifying lung cancer severity on the tested dataset.

G. Feature Importance

A significant advantage of TabNet modeling is its ability
to provide insight into the feature importance that influences
the model's decision-making process. TabNet's attention
mechanism enables the extraction of feature importance
scores, which indicate the relative contribution of each
predictor feature to the lung cancer severity classification
result. As shown in Figure 10, the top ten importance features
include Genetic Risk, Shortness of Breath, Dust Allergy,
Wheezing, Chest Pain, Fatigue, Air Pollution, Smoking,
Obesity, and Coughing of Blood, with Genetic Risk and
Shortness of Breath stand out as the most dominant predictors.
These findings align with the medical literature, which
emphasizes that genetic predisposition significantly increases
tsusceptibility to lung cancer through inherited mutations
affecting tumor suppression and DNA repair pathways.
Shortness of breath is also a major clinical indicator of disease
progression due to reduced pulmonary capacity and airway
obstruction. These results highlight the combined impact of
genetic, clinical, and lifestyle-related factors. They also
demonstrate TabNet’s interpretability in supporting medical
experts in better understanding the relative contribution of
each feature to lung cancer severity classification.

Feature Importance dari TabNet
Genstic Risk
Shartness of Breath
Dust Allergy
\Wheezing
Chest Pain
Fatigue
Air Pollution
Smoking
Obesity
Coughing of Blaod
2 chronic Lung Disease
Swallowing Difficulty

Dry Cough

Frequent Cold
Ciubbing of Finger Nais
Gender

Figure 10. Feature Importance of TabNet Model

The identification of feature importance not only provides
interpretability to the model, but also impacts the potential for
wider clinical application. These features can be used as a
focus of attention in the process of early diagnosis and
assessment of the severity of lung cancer patients, as well as
a basis for consideration in the development of data-based
medical decision support systems. The test results of this
research demonstrate the successful development and
evaluation of the TabNet deep learning model, which can
accurately classify lung cancer severity. The model achieved
outstanding performance on the testing set: 98.50% accuracy,
a macro F1 score of 0.98, and a macro-averaged AUC-ROC
of 0.9996. These results were obtained using the model's
default settings and without hyperparameter tuning. These
metrics underscore TabNet’s robust predictive and
discriminative capabilities.

The model's stability was further confirmed through
stratified 5-fold cross-validation, which showed consistent
validation accuracy averaging 99.38% with a very low
standard deviation. The model also demonstrated good
generalization and exhibited no signs of overfitting, as
evidenced by stable convergence in the loss and accuracy
curves. Confusion matrix analysis revealed that most
misclassifications occurred between adjacent severity levels
(e.g., low vs. medium, medium vs. high), as would be
expected given the overlap in clinical symptoms.
Nevertheless, only three misclassifications were recorded out
of 200 samples, which reinforces the model's reliability in
clinical classification tasks.

H. Comparison with Previous Researches

The TabNet model proposed in this research outperforms
baseline models by a significant margin. Previous research
have evaluated lung cancer severity classification using
conventional machine learning algorithms and ensemble
learning methods such as logostic regrssion, decision tree
combined with support vector machine (SVM), random
forest, and adaboost-random forest ensemble. As shown in
Table 7, the TabNet model achieved an accuracy of 98.50%,
which is significantly higher than the performance of Logistic
Regression (87%), Decision Tree + SVM (63.2%), and
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Random Forest (88.9%). Although the ensemble approach
proposed by Roy et al. using Adaboost and Random Forest
achieved relatively high accuracy (95.40%), the TabNet
model developed in this research still outperformed it. These
results higlights the advantege of TabNet’s deep learning
architecture’s in capturing complex nonlinear interactions
within tabular medical data, resulting in a more accurate and
reliable classification of lung cancer severity.

TABEL VII
COMPARISON WITH PREVIOUS RESEARCH
Author Model Algoritma Result
Deepa Yadav Logistic Regression 87%

Roy et al. Adaboost + Random Forest | 95.40%
Septhya et al. Decision Tree + SVM 63.2%
Marzug et al. | Random Forest Decision Tree | 88.9%
Ours TabNet 98.50%

IV. CONCLUSION

This research successfully demonstrated the effectiveness
of the TabNet deep Ilearning model for multiclass
classification of lung cancer severity. Utilizing default
parameter configuration and a stratified 5-fold cross
validation scheme, the model showed high performance
stability. The average cross validation accuracy reached
99.38% (+- 0.0097), with no indication of significant
overfitting. Comprehensive evaluation on the testing set
yielded excellent classification performance, with an
accuracy of 98.50%, a macro average F1-score of 0.98, and a
macro average AUC-ROC value of 0.9996. These results
confirm the potential of TabNet as a reliable approach for
predictions on medical tabular data.

Error analysis of the 3 misclassifications (1.5% error rate)
revealed that errors occurred towards the ordinally adjacent
‘Medium’ class, with no extreme misclassifications between
the ‘Low’ and ‘High’ classes, and perfect identification of the
‘Medium’ class. This indicates the model’s strong
discriminative ability, although it suggests a potential for
overlapping or borderline features between adjacent severity
levels. Future development should focus on extensive TabNet
hyperparameters optimization to maximize the model’s
potential performance and direct clinical integration by
medical experts to assess the relevance and potential
implementation in real world diagnostic practice. Such efforts
will further solidify its considerable potential for clinical
decision support systems, particularly in enabling more
precise, data driven early detection and risk management of
lung cancer.
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