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 Lung cancer poses a significant global mortality challenge, with early clinical 

detection hindered by non-specific symptoms making accurate diagnosis dependent 

on extracting subtle patterns from often complex medical tabular data. Traditional 

machine learning approaches often fall short in capturing intricate patterns within 

such heterogeneous datasets, hindering effective clinical decision support. This 

research introduces TabNet, an interpretable deep learning architecture, for 

multiclass lung cancer severity prediction (low, medium, high). Utilizing the Kaggle 

Lung Cancer dataset, our methodology leverages TabNet's unique attention-based 

feature selection for end-to-end processing of tabular data, enabling adaptive 

identification of key predictors and crucial model interpretability. To effectively 

assess its predictive capabilities and ensure robust performance, the model was 

trained with default configurations and validated through stratified 5-fold cross-

validation, achieving outstanding performance on the test set: 98.50% accuracy, a 

0.98 F1-score, and a 0.9996 macro-AUC-ROC. Beyond its robustness, confirmed by 

stable learning curves, interpretability analysis highlighted 'Genetic Risk' and 

'Shortness of Breath' as dominant factors. Our results underscore TabNet's efficacy 

as a reliable, robust, and inherently interpretable solution, offering significant 

potential to improve the precision and transparency of lung cancer severity 

assessment in clinical practice. 
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I. INTRODUCTION 

Lung cancer is one of the most prevalent diseases 

worldwide. It is the leading cause of cancer-related mortality, 

with an increasing incidence rate annually in both developed 

and developing countries [1]. Biologically, lung cancer is 

caused by genetic alterations in epithelial cells of the 

respiratory tract [2]. These alterations lead to abnormal and 

uncontrolled proliferation, which may originate directly from 

the lung tissue (primary) or from other organs (metastasis) [3]. 

In its early stages, lung cancer symptoms are generally 

nonspecific and are often misinterpreted as minor respiratory 

disorders, resulting in delayed diagnosis and treatment. 

Additionally, the low level of awareness among medical 

personnel regarding the need for further examination of 

suspicious symptoms is also a factor that can worsen the 

condition [4]. These issues underscore the urgency of more 

effective strategies for prevention and early detection [5]. 

Early detection plays a crucial role in reducing mortality rates 

by enabling more appropriate control measures and 

significantly improving lung cancer patients survival rates 

[6]. According to data from the Global Cancer Observatory 

(GLOBOCAN) in 2022, lung cancer accounts for 12.4% of 

all cancer cases worldwide, representing approximately 2.4 

million cases, with a mortality rate is 18.7%, resulting in 

1,817,469 deaths [7]. In Indonesia, lung cancer is the second 

most prevalent case, accounting for 38,904 or 9.5% of cases, 

with a mortality rate of 34,339 or 14.1% of all deaths from 

mailto:112202206930@mhs.dinus.ac.id
mailto:danang.wu@dsn.dinus.ac.id
mailto:aseharsoyo@dsn.dinus.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


JAIC e-ISSN: 2548-6861   

 

Enhancing Interpretable Multiclass Lung Cancer Severity Classification using TabNet (Maria Bernadette Chayeenee 

Norman, Ika Novita Dewi, Abu Salam, Danang Wahyu Utomo, Sindhu Rakasiwi, Asih Rohmani) 

3455 

lung cancer [8]. The high incidence rate is influenced by 

various risk factors, with smoking being the main cause in 

85% of cases for both active and passive smokers [9]. Other 

factors such as air pollution, exposure to carcinogens in the 

workplace, alcohol consumption, obesity, and genetic 

predisposition also increase the risk of lung cancer.  

Various research has applied machine learning algorithms 

to support the early detection of lung cancer. Deepa Yadav’s 

research used supervised machine learning algorithms and 

achieved an accuracy rate of 87% using logistic regression 

[10]. Sinaga et al.’s research, which combined AdaBoost and 

Random Forest, resulted in an accuracy value of 95.4%, with 

a precision of 96%, and a recall of 96.3% [11]. Research 

conducted by Septhya et al., using the Decision Tree and 

Support Vector Machine with Forward Selection the accuracy 

was 62.3% [12]. Meanwhile, Marzuq et al.’s research, which 

used a Random Forest Decision Tree with 5-fold cross 

validation, obtained an accuracy of 88.9% [13]. Analysis of 

previous research shows that, despite significant progress, 

there are still limitations that indicating a research gap that 

needs to be addressed. Most previous research relied on 

conventional algorithms such as Random Forest and Decision 

Tree, which are less than optimal in handling highly complex 

medical data [4], [12]. Although other approaches using 

combination of algorithms are able to improve accuracy, but 

most are still limited to binary classification and have not 

explored more specific predictions of lung cancer severity or 

stage [11]. 

To overcome the limitations of existing lung cancer 

diagnostic methods, this research introduces the TabNet deep 

learning architecture, which is specifically designed for 

tabular data. Unlike conventional models, which treat features 

uniformly, TabNet uses an attention-based sparse feature 

selection mechanism that adapts to identify the most relevant 

predictors at each decision step. This mechanism enhances 

predictive performance and improves interpretability, which 

is critical in medical applications. Previous research have 

demonstrated of Chronic Kidney Disease (CKD), achieving 

accuracy rates above 94% in multiclass CKD stage 

classification [14]. Similarly, in fetal health analysis, TabNet 

achieved 94.36% accuracy, surpassing classical machine 

learning algorithms while maintaining interpretability in 

feature importance [15]. These findings validate TabNer’s 

ability to handle complex medical tabular data and highlight 

its potential for broader clinical applications. 

Building upon this foundation, the novelty of this research 

lies in applying TabNet to multiclass classification of lung 

cancer severity (low, medium, high). To further strengthen 

model robustness, Stratified K-fold Cross Validation is 

employes, ensuring balanced class proportions across folds 

and reducing evaluation bias [16]. Consequently, this research 

contributes not only improving the accuracy of early detection 

but also expanding the scope of diagnostics towards more 

accurate, interpretable, and clinically meaningful framework 

that support precision medicine and personalized treatment 

strategies for lung cancer patients. 

II. RESEARCH METHODS 

This research aims to develop and evaluate a deep 

learning-based prediction model using TabNet to classify the 

severity of lung cancer into three classes, namely low, 

medium, and high. The research procedure, as illustrated in 

Figure 1, consists of several stages: data preprocessing, data 

splitting, model training and validation, and final evaluation. 

In the training and validation phase, the TabNet model is 

combined with stratified 5-fold cross validation to enhance 

model generalization, minimize the risk of overfitting, and 

ensure a more robust performance evaluation. This 

methodological approach is expected to not only improve the 

accuracy and reliability of multi-level lung cancer severity 

prediction but also provide interpretability in feature 

selection, thereby contributing to a more comprehensive early 

detection framework. 

 

Figure 1. Research Flow Diagram 

A. Dataset 

The dataset used in this research was sourced from Kaggle 

via the following link: 

https://www.kaggle.com/datasets/thedevastator/cancer-

patients-and-air-pollution-a-new-link/data. This dataset 

consists of 1000 data entries of lung cancer patients with their 

respective potential linkages. As illustrated in Figure 2, the 

distribution of the target variable "Level" is well-balanced, 

with the 'high', 'medium', and 'low' classes accounting for 

36.5%, 33.2%, and 30.3% of the data, respectively. This 

balanced composition is ideal for classification tasks as it 
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minimizes the risk of model bias towards a majority class and 

enables a more robust and equitable learning process. 

 

Figure 1. Distribution of Lung Cancer Level 

The dataset structure has 25 predictor features with 1 

target feature. The predictor features include various clinical 

and demographic attributes of patients relevant to the 

diagnosis of lung cancer. Meanwhile, the target feature is the 

categorical variable “Level”, which categorizes the severity 

of lung cancer into three classes, namely low, medium, and 

high. The 25 predictor features encompass a range of patient 

data as detailed in Table 1. The use of this dataset aims to test 

the ability of the TabNet model to perform multiclass 

classification on complex medical tabular data by leveraging 

these diverse attributes. 

TABEL I 

PREDICTOR FEATURES IN THE LUNG CANCER DATASET 

Category Features Names 

Identifiers & 

Demographics 
Patient Id, index, Age, Gender 

Lifestyle & 

Environment 

Air Pollution, Alcohol use, Dust Allergy, 

Occupational Hazards, Genetic Risk, chronic 

Lung Disease, Balanced Diet, Obesity, 

Smoking, Passive Smoker 

Clinical 

Symptoms 

Chest Pain, Coughing of Blood, Fatigue, 

Weight Loss, Shortness of Breath, Wheezing, 

Swallowing Difficulty, Clubbing of finger 

nails, Frequent Cold, Dry Cough, Snoring 

B. Preprocessing Data 

The data preprocessing stage is a fundamental step in deep 

learning modeling to improve data quality, increase the 

performance and computational efficiency of predictive 

models [18]. In this research, there are a series of data 

preprocessing techniques that will be applied to the lung 

cancer dataset before it is used to train the TabNet model, 

consisting of: 

1)   Identifier Feature Removal: Identifier features are 

features in the dataset that are used to uniquely identify each 

data entry, such as Patient Id and index. The presence of such 

features can add complexity to the model without providing 

relevant or predictive information to the target variable [19]. 

As such, this rarity aims to prevent the model from overfitting 

and ensure that the model learns from features that are 

relevant to the target prediction. 

2)   Label Encoding: One of the transformation 

techniques used to convert the categorical value of a target 

feature into a numerical representation in order to be 

processed by models that can generally only accept numerical 

inputs [20]. In this research, the target variable used is Level, 

as a representation of the severity of lung cancer which 

consists of three categorical classes, namely low, medium, 

and high. The label encoding process is performed by 

converting the categorical labels in text form into numeric, 

namely 0 for the Low class, 1 for the medium class, and 2 for 

the High class, as listed in Table 2. This technique is 

necessary to enable TabNet modeling to perform multiclass 

classification of target variables with numeric inputs [21]. 

TABEL II 

RESULT FROM LABEL ENCODING TARGET FEATURE 

Class label before encoding Class label after encoding 

Low 0 

Medium 1 

High 2 

C. Split Data 

After preprocessing, the dataset was divided while 

maintaining a consistent data size and retaining 23 features. 

An 80:20 ratio was applied to the splitting process, resulting 

in three primary subsets: training, validation, and testing.  

Specifically, 64% of the data was allocated for training, 16% 

for validation, and 20% for testing. The training subset was 

used to fit the model and learn feature target relationship. The 

validation subset was used to monitor performance during 

training and prevent overfitting. The testing subset provided 

an objective measure of the final model’s performance [22]. 

Table 3 presents the distribution of data after splitting. 

TABEL III 

RESULT FROM LABEL ENCODING TARGET FEATURE 

Subset Count 

Training 640 

Validation 160 

Testing 200 

 

D. TabNet Model 

The TabNet model was chosen as the main approach in 

this research due to its superior ability to accurately handle 

tabular data end-to-end, as well as its good interpretability. 

TabNet is a deep learning architecture that processes tabular 

data by integrating an attention-based sparse feature selection 

mechanism. This mechanism allows the model to sequentially 

select the most relevant subset of features at each decision 

step [21], [23]. 

TabNet architecture consists of three main components: 

feature transformer, attentive transformer, and decision step. 

The feature transformer functions to process features into an 
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initial latent representation, which is then passed to the 

Attentive Transformer to determine relevant features that will 

be focused on in the next decision step. Equation (1) is the 

formula of TabNet's working mechanism. 

𝑎[𝑖 − 1] ∶ 𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑖 − 1] . ℎ𝑖([𝑎 − 1]))     (1) 

Where 𝑎 [ 𝑖 −  1] is the process from the previous 

step, 𝑃 [ 𝑖 −  1] is the scale prior of feature usage, and  
ℎ𝑖  ( [ 𝑎 −  1 ] ) is the result of the attentive transformer, 

which takes the representation from the previous step and 

transforms it. Thus, TabNet can provide good performance by 

performing sparse feature selection to support model 

interpretability [24]. 

This research implemented a classification model for lung 

cancer severity was implemented using the PyTorch-based 

TabNetClassifier with the default parameter configuration, 

without any modifications of the network structure. The 

model was trained from scratch, meaning all network 

parameters were randomly initialized without utilizing pre-

trained weights. This approach was chosen to purely evaluate 

the baseline performance of the TabNet architecture on 

tabular medical data, without applying extensive 

hyperparameter tuning. However, some parameters in the 

training process (model.fit) were adjusted to accommodate 

data characteristics and improve training efficiency. Table 4 

presents details of the default parameters used in the TabNet 

model architecture. Training parameters such as the 

maximum number of epochs, batch size, and the early 

stopping mechanism were configured according to 

experiment requirements. It should be emphasized that 

explicit parameter tuning was not performed in this research, 

so the obtained results reflect the model’s performance with 

the default settings from the PyTorch-TabNet library. 

TABEL III 

PARAMETER SETTINGS OF TABNET MODEL 

 Parameter Value 

Model 

Parameters 

n_d 8 

n_a 8 

n_steps 3 

gamma 1.3 

optimizer_fn Adam 

optimizer_params lr=2e-2 

scheduler_params step_size=50, gamma=0.9 

mask_type ‘sparsemax’ 

Training 

Parameters 

(model.fit) 

patience 10 

max_epoch 50 

batch_size 512 

virtual_batch_size 256 

num_workers 0 

eval_metric ‘accuracy’ 

 

E. K-fold Cross Validation 

In machine learning, model evaluation is often conducted 

through cross-validation method to measure how well a 

model can generalize to unseen data. In K-fold cross 

validation, the dataset is partitioned into k subsets or folds of 

equal size. In each iteration, one fold is used as validation 

data, while the remaining k-1 folds are used for training set 

[25]. Altough effective, this method has a drawback since the 

random partitioning of data may fail to preserve the original 

distribution of target classes. To address this issue, Stratified 

K-fold Cross Validation is employed, ensuring that each fold 

maintains the sam class proportion as the entire dataset, 

thereby providing a more reliable representation of the overall 

distribution [26]. 

In this research, stratified 5-fold Cross Validation is 

applied which involves dividing the training data into five 

balanced folds based on the target class distribution. At each 

iteration, the TabNet model is trained on four folds and 

validated on the fifth fold, until the combination is completed. 

Thus, stratified 5-fold CV helps to thoroughly evaluate the 

model's performance on a proportional representation of 

classes, as well as prevent potential overfitting due to class 

imbalance during training. 

F. Model Evaluation 

In this research, the performance of the TabNet model in 

predicting the severity of lung cancer was assessed using 

evaluation metrics including accuracy, precision, recall, F1-

score and AUC-ROC [26], [27].  

Accuracy reflects the ratio of correctly classififed samples 

to the total predictions. The formula for accuracy is presented 

in Equation (2). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
        (2) 

Precision indicates the proportion of true positive 

predictions among all instances predictes as positive as shown 

in Equation (3). Recall measures the model’s ability to 

correctly detect positive cases, as shown in Equation (4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
          (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         (4) 

The F1-score, presented in Equation (5), represents the 

harmonic mean of precision and recall, providing a balanced 

evaluation of the two metrics.  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
       (5) 

To complement these metrics, the Receiver Operating 

Characteristic (ROC) was also used, which illustrates the 

trade-off between the True Positive Rate (TPR) and the False 

Positive Rate (FPR), as shown in Equation (6). 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
        (6) 
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For multiclass classification, the One-vs-Rest (OvR) 

scheme was applied, where each class is alternately treated as 

the positive category while the remaining classes are 

considered as negative. This approach enables a more 

comprehensive evaluation of the model’s performance in 

predicting lung cancer severity. 

III. RESULTS AND DISCUSSION 

A. Exploratory Data Analysis 

An Exploratory Data Analysis (EDA) visualized in Figure 

3, was conducted as a preliminary step to understand the 

dataset’s fundamental characteristics and identify initial 

patterns. Analysis of demographic features, such as age 

(Figure 3(a)) and gender (Figure 3(b)), indicates relatively 

uniform distributions across the severity levels, suggesting 

these variables may have limited predictive power when 

considered independently. In contrast, more significant 

insights emerged from examining the relationship between 

clinical risk factors and symptoms with the target variable. 

Features such as ‘Genetic Risk’ (Figure 3(c)), ‘Shortness 

of Breath’ (Figure 3(d)), ‘Fatigue’ (Figure 3(e)) demonstrated 

a strong and progressive visual correlation with the severity 

levels. As the values of these features increase, there is a 

notable and consistent rise in the proportion of patients 

classified under the medium and high severity categories, 

highlighting their strong discriminative capacity. 

Collectively, this EDA validates the dataset’s suitability for 

the severity prediction task and establishes a solid framework 

for interpreting the feature importance results that will be 

subsequently derived from the trained model. 

 
(a) Distribution Age of Lung Cancer 

Level 

 
(b) Distribution Gender of Lung 

Cancer Level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c) Distribution of Genetic Risk vs 

Level 
 

 
(d) Distribution of Shortness of 

Breath vs Level 
 

 
(e) Distribution of Fatigue vs Level 

Figure 3. Exploratory Data Analysis 

The correlation analysis, visualized in Figure 4, was 

conducted to evaluate the linear relationship between the 

variables and support the modeling strategy. The analysis 

revealed several features that had strong positive correlations 

with the target variable 'Level', including Coughing of Blood 

(0.78), Alcohol Use (0.72), and Genetic Risk (0.70). These 

strong correlations provide initial validation that learnable 

patterns exist in the data, thus reinforcing the model’s 

potential success in classifying lung cancer severity. The 

correlation matrix also revealed high correlations between 

certain predictor features, such as 'OccuPational Hazards' and 

'Genetic Risk' (0.89).  

However, the matrix also shows a wide variation in the 

degree of correlation between features, with many features 

showing weak or moderate correlations. This indicates that 

not all features have an equal predictive contribution. This 

insight further justifies selecting the TabNet model for this 

research. With the attention mechanism, TabNet can perform 

automatic feature selection during training. This capability 

allows the model to dynamically assign greater importance to 

the most informative features while reducing the influence of 

less relevant ones. Therefore, manual feature selection is 

unnecessary to handle the complexity and variation in feature 

relevance present in medical tabular data. 
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Figure 4. Correlation Matrix 

B. Model Evaluation on Lung Cancer 

Evaluation of the stability and consistency of the TabNet 

model performance was conducted by analyzing the accuracy 

of the validation set for each of the five folds in the stratified 

5-fold cross validation scheme. Figure 5 presents a 

visualization of the inter-fold validation accuracy 

comparison.  

 

Figure 5. Comparison of The Accuracy Validation of each Fold Cross-

Validation 

As illustrated in Figure 5, the TabNet model shows a very 

high level of accuracy and is relatively consistent in most of 

the validation folds. Specifically, on the 1st and 2nd folds, the 

model achieved a perfect accuracy of 100%. The performance 

slightly decreased on the 3rd fold, with 97.66% accuracy. 

However, it was again optimized in the 4th fold with 100% 

accuracy, followed by the 5th fold with 99.22% accuracy. The 

average cross validation accuracy of these five folds is 

99.38% with a standard deviation of 0.0097, showing the 

stability of the model's performance and generalization before 

the final evaluation on the testing data. 

The performance of the TabNet model was 

comprehensively evaluated using a testing set of 200 

independent entries. The evaluation was conducted using 

standard evaluation metrics for multiclass classification, 

which are listed in Table 5. They include accuracy, precision, 

recall, F1-score, and AUC. 

TABEL V 

TABNET MODEL EVALUATION RESULT 

 Precision Recall 
F1-

score 
Support 

0 1.00 0.97 0.98 61 

1 0.96 1.00 0.98 66 

2 1.00 0.99 0.98 73 

Accuracy 0.98 200 

Macro avg 0.99 0.98 0.98 200 

Weighted avg 0.99 0.98 0.99 200 

AUC-ROC : 0.9996 

Accuracy  : 0.9850 

Based on Table 5, the TabNet model performed 

excellently on the testing set, achieving an accuracy of 

98.50%. This result was obtained from the final evaluation of 

the test data, rather than from the average of the cross-

validation folds. The macro average scores for precision, 

recall and the F1-score were 0.99, 0.98, and 0.98, 

respectively. Similar results were observed in the weighted 

averages of these metrics, confirming consistent performance 

of the model across all three lung cancer severity classes.  

C. Analysis of the Dynamic Training Curve and Validation 

of the Model’s 

The average training loss curve, as illustrated in Figure 6. 

shows a significant and consistent decrease as the number of 

training epochs increases. Starting from an initial value of 

1.11, the training loss reaches a minimum value of 0.01 at the 

28th epoch, indicating that the TabNet model has learned the 

data representation effectively. 

 

Figure 6. Average Training Loss Curve 

Furthermore, Figure 7 shows a comparison between the 

training average accuracy curve and the validation average 

accuracy curve. Both curves show substantial performance 

improvement. The training accuracy increases progressively, 

reaching a value above 0.95 towards the end of the training 

period after the 34th epoch. The validation accuracy curve 

also shows a similar upward trend, reaching a value of 0.96 at 

the same epoch.  
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Figure 7. Comparison of Average Accuracy Training and Validation Curve 

The close alignment and absence of divergence between 

the traning and validation accuracy curves indicates that the 

model generalizes well to unseen data. Futhermore, the 

gradual reduction in training loss without a sudden increase in 

validation loss suggests that the model is neither overfitting 

nor underfitting. These results imply that the TabNet model 

achieves a balanced learning state, maintaining high accuracy 

and stable generalization throughout the training process.  

D. Evaluation of the Model’s with AUC-ROC Analysis 

The discriminative ability of the TabNet model in 

distinguishing between lung cancer severity classes was 

further evaluated through AUC-ROC values. The ROC curve 

visualizes the trade-off between True Positive Rate (TPR) or 

sensitivity and False Positive Rate (FPR) at various 

classification thresholds. Figure 8. presents the macro 

averaged ROC curve for the TabNet model on the testing set. 

 

Figure 8. Average of Macro Receiver Operating Characteristic (ROC) 

Curve 

As illustrated in Figure 8, the macro averaged ROC curve 

shows a very close to perfect performance, with an AUC 

value recorded at 0.9996. This confirms that the TabNet 

model has an excellent capacity to accurately discriminate 

between lung cancer severities. This strong AUC 

performance is in line with the results of other evaluation 

metrics, further strengthening the potential of the TabNet 

model as a reliable and effective clinical decision support tool. 

E. Confusion Matric 

The visualization of TabNet modeling in classifying each 

sample in the testing set is presented using the confusion 

matrix in Figure 9. This matrix compares the actual lung 

cancer severity class on the vertical axis (actual) with the class 

predicted by the model on the horizontal axis (predicted) for 

all three classes. 

 

Figure 9. Confusion Matrix 

Based on Figure 9, the main diagonal of the matrix shows 

the dominant number of correct predictions for each class, i.e. 

for class 0 (actual ‘low’) out of a total of 61 samples, 59 were 

correctly classified, for class 1 (actual ‘medium’) it was 

perfectly classified, where 66 ‘medium’ samples were 

correctly identified and for class 2 (actual ‘high’) out of 73 

samples, 72 were correctly classified. The majority of 

samples (197 out of 200) showed that misclassification tended 

to occur between ordinal adjacent classes, between ‘low’ and 

‘medium’, and between ‘high’ and ‘medium’. Overall, the 

confusion matrix shows that the TabNet model has a very high 

accuracy in classifying the severity of lung cancer in the 

dataset used. 

F. Error Analysis 

To gain a deeper understanding of the limitations and 

specific error patterns of the TabNet model, an error analysis 

was performed based on the confusion matrix generated from 

the evaluation on the testing set. Out of a total of 200 samples 

in the test data, the TabNet model made three 

misclassifications, equivalent to an overall error rate of 1.5%. 

Further analysis of the off-diagonal elements in the confusion 

matrix are listed in Table 6, revealed the following error 

patterns: 

1) Misclassification of Class ‘Low’ to ‘Medium’: 

There were 2 instances where samples actually belonging to 

the ‘Low’ severity category (Class 0) were incorrectly 

predicted by the model as ‘Medium’ (Class 1). These errors 

indicate a tendency for the model to slightly overestimate the 

severity of few ‘Low’ cases or misinterpret features 

similarities between some ‘Low’ cases and the characteristics 

of ‘Medium’ cases, thereby confusing the model. 

2) Misclassification of ‘High’ Class to ‘Medium’: 

There was 1 instance where a sample actually belonging to 

the ‘High’ severity category (Class 2) was misclassified by 
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the model as ‘Medium’ (Class 1). This error suggests a 

potential for the model to underestimate severity in certain 

‘High’ cases, or the overlap of features between that ‘High’ 

case and the ‘Medium’ case. 

TABEL VI 

MISCLASSIFICATION OF ERROR ANALYSIS 

 

Predicted 

Low 

(Class 0) 

Medium 

(Class 1) 

High 

(Class 2) 

Actual 

Low 

(Class 0) 
59 2 0 

Medium 

(Class 1) 
0 66 0 

High 

(Class 2) 
0 1 72 

The concentration of misclassifications in the ‘Medium’ 

class suggests that the decision boundaries between ordinally 

adjacent severity levels (Low-Medium and Medium-High) 

have overlapping feature characteristics compared to the 

distinction between “Low” and “High” classes. Nevertheless, 

the very low total number of errors generally reinforces the 

robustness and high accuracy of the TabNet models in 

classifying lung cancer severity on the tested dataset. 

G. Feature Importance 

A significant advantage of TabNet modeling is its ability 

to provide insight into the feature importance that influences 

the model's decision-making process. TabNet's attention 

mechanism enables the extraction of feature importance 

scores, which indicate the relative contribution of each 

predictor feature to the lung cancer severity classification 

result. As shown in Figure 10, the top ten importance features 

include Genetic Risk, Shortness of Breath, Dust Allergy, 

Wheezing, Chest Pain, Fatigue, Air Pollution, Smoking, 

Obesity, and Coughing of Blood, with Genetic Risk and 

Shortness of Breath stand out as the most dominant predictors. 

These findings align with the medical literature, which 

emphasizes that genetic predisposition significantly increases 

tsusceptibility to lung cancer through inherited mutations 

affecting tumor suppression and DNA repair pathways. 

Shortness of breath is also a major clinical indicator of disease 

progression due to reduced pulmonary capacity and airway 

obstruction. These results highlight the combined impact of 

genetic, clinical, and lifestyle-related factors. They also 

demonstrate TabNet’s interpretability in supporting medical 

experts in better understanding the relative contribution of 

each feature to lung cancer severity classification. 

 

Figure 10. Feature Importance of TabNet Model 

The identification of feature importance not only provides 

interpretability to the model, but also impacts the potential for 

wider clinical application. These features can be used as a 

focus of attention in the process of early diagnosis and 

assessment of the severity of lung cancer patients, as well as 

a basis for consideration in the development of data-based 

medical decision support systems. The test results of this 

research demonstrate the successful development and 

evaluation of the TabNet deep learning model, which can 

accurately classify lung cancer severity. The model achieved 

outstanding performance on the testing set: 98.50% accuracy, 

a macro F1 score of 0.98, and a macro-averaged AUC-ROC 

of 0.9996. These results were obtained using the model's 

default settings and without hyperparameter tuning. These 

metrics underscore TabNet’s robust predictive and 

discriminative capabilities. 

The model's stability was further confirmed through 

stratified 5-fold cross-validation, which showed consistent 

validation accuracy averaging 99.38% with a very low 

standard deviation. The model also demonstrated good 

generalization and exhibited no signs of overfitting, as 

evidenced by stable convergence in the loss and accuracy 

curves. Confusion matrix analysis revealed that most 

misclassifications occurred between adjacent severity levels 

(e.g., low vs. medium, medium vs. high), as would be 

expected given the overlap in clinical symptoms. 

Nevertheless, only three misclassifications were recorded out 

of 200 samples, which reinforces the model's reliability in 

clinical classification tasks. 

H. Comparison with Previous Researches 

The TabNet model proposed in this research outperforms 

baseline models by a significant margin. Previous research 

have evaluated lung cancer severity classification using 

conventional machine learning algorithms and ensemble 

learning methods such as logostic regrssion, decision tree 

combined with support vector machine (SVM), random 

forest, and adaboost-random forest ensemble.  As shown in 

Table 7, the TabNet model achieved an accuracy of 98.50%, 

which is significantly higher than the performance of Logistic 

Regression (87%), Decision Tree + SVM (63.2%), and 
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Random Forest (88.9%). Although the ensemble approach 

proposed by Roy et al. using Adaboost and Random Forest 

achieved relatively high accuracy (95.40%), the TabNet 

model developed in this research still outperformed it. These 

results higlights the advantege of TabNet’s deep learning 

architecture’s in capturing complex nonlinear interactions 

within tabular medical data, resulting in a more accurate and 

reliable classification of lung cancer severity. 

TABEL VII 

COMPARISON WITH PREVIOUS RESEARCH 

Author Model Algoritma Result 

Deepa Yadav Logistic Regression 87% 

Roy et al. Adaboost + Random Forest 95.40% 

Septhya et al. Decision Tree + SVM 63.2% 

Marzuq et al. Random Forest Decision Tree 88.9% 

Ours TabNet 98.50% 

 

IV. CONCLUSION 

This research successfully demonstrated the effectiveness 

of the TabNet deep learning model for multiclass 

classification of lung cancer severity. Utilizing default 

parameter configuration and a stratified 5-fold cross 

validation scheme, the model showed high performance 

stability.  The average cross validation accuracy reached 

99.38% (+- 0.0097), with no indication of significant 

overfitting. Comprehensive evaluation on the testing set 

yielded excellent classification performance, with an 

accuracy of 98.50%, a macro average F1-score of 0.98, and a 

macro average AUC-ROC value of 0.9996. These results 

confirm the potential of TabNet as a reliable approach for 

predictions on medical tabular data. 

Error analysis of the 3 misclassifications (1.5% error rate) 

revealed that errors occurred towards the ordinally adjacent 

‘Medium’ class, with no extreme misclassifications between 

the ‘Low’ and ‘High’ classes, and perfect identification of the 

‘Medium’ class. This indicates the model’s strong 

discriminative ability, although it suggests a potential for 

overlapping or borderline features between adjacent severity 

levels. Future development should focus on extensive TabNet 

hyperparameters optimization to maximize the model’s 

potential performance and direct clinical integration by 

medical experts to assess the relevance and potential 

implementation in real world diagnostic practice. Such efforts 

will further solidify its considerable potential for clinical 

decision support systems, particularly in enabling more 

precise, data driven early detection and risk management of 

lung cancer. 
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