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Volatility in financial markets presents complex forecasting challenges for investors,
particularly within emerging economies such as Indonesia. This study proposes an
optimized Long Short-Term Memory (LSTM) model for forecasting the stock prices
of five significant Indonesian banks: BBCA, BBRI, BMRI, BBNI, and BBTN,
utilizing daily OHLCV data (Open, High, Low, Close, Volume) and technical
indicators from 2020 to 2025. The dataset comprises over 6,000 daily records,
segmented using a sliding window approach to preserve temporal structure and
enhance learning efficiency. Concurrently, the model architecture comprising dual
LSTM layers with dropout regularization was refined through systematic
hyperparameter tuning to enhance predictive performance. Model evaluation
employed 5-fold Time Series Cross-Validation (TSCV), a sequential validation
technique that mitigates data leakage and explicitly overcomes the limitations of
conventional k-fold methods by preserving chronological integrity. Performance
metrics included MSE, RMSE, MAE, R? and MAPE. The experiment results
demonstrate the model’s robustness in capturing long-term dependencies within
financial time series. BBCA and BMRI achieved superior accuracy (R? > 0.95), with
BBCA recording the lowest MAPE of 2.34%. Despite market fluctuations, the model
maintained consistent reliability across all test folds. This study overcomes a
methodological limitation by integrating LSTM with TSCV in expanding markets,
offering actionable insights for investors, analysts, and policymakers, and serving as
a reference for adaptive Al-based, more informed forecasting tools. Moreover, the
proposed framework holds promise for broader application across other financial
sectors and regional markets with similar volatility characteristics.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

The capital market holds a vital role in a nation’s financial
system by mobilizing public funds and allocating them to
entities needing capital [1]. In Indonesia, stock market
activity has significantly expanded in recent years, marked by
a sharp increase in retail investor participation and
consistently high daily transaction volumes at the Indonesia
Stock Exchange (IDX) [2]. However, stock price movements
remain highly volatile, influenced by internal corporate
performance, macroeconomic  policies, government
interventions, and global developments [3]. This volatility
challenges investors, who rely on accurate analytical insights
and reliable forecasts to make well-informed decisions [4].

Although conventional forecasting techniques are widely
used and effective for many applications, they often fail to
capture nonlinear relationships and long-term dependencies
among explanatory variables. These limitations reduce
predictive accuracy and increase exposure to investment risk
[5]. Recent advances in artificial intelligence (AI), especially
in machine learning (ML) and deep learning (DL), present
promising alternatives. In particular, the Long Short-Term
Memory (LSTM) network, an enhanced form of Recurrent
Neural Networks (RNNs), has demonstrated strong
capabilities in modeling sequential data and preserving
temporal dependencies [6]. These characteristics make
LSTM particularly suitable for capturing the dynamic
behavior of stock prices [7].
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Empirical research has consistently confirmed the
effectiveness of LSTM-based approaches in forecasting
Indonesian stock prices, particularly due to their strength in
learning sequential patterns and handling non-linear market
behavior. For instance, one study integrated anomaly
detection with LSTM for leading banking stocks (BBCA,
BBRI, BMRI) and achieved an exceptionally low Mean
Squared Error (MSE) of 0.003 for BBCA, indicating strong
predictive accuracy under volatile conditions [8]. Another
investigation using an enhanced LSTM model reported
promising results, with BBCA recording a Mean Absolute
Percentage Error (MAPE) of 0.0099 and a Root Mean
Squared Error (RMSE) of 128.02 [9]. In contrast, research on
the mining sector employing ETSFormer with Time Series
Cross-Validation (TSCV) revealed difficulties in handling
short-term price fluctuations [10]. Similarly, studies
conducted during the COVID-19 pandemic showed
inconsistent RMSE values for stocks such as BBCA and
BBRI [11]. Previous studies have shown that the ARIMA
model applied to the LQ45 index produced an average MAPE
0f 10.09%, with considerable variation in performance across
different stocks, where BBCA recorded the lowest error of
2.18% [12]. Meanwhile, the study conducted by Beno Jange
(2022) using the XGBoost algorithm to predict BBCA stock
prices demonstrated better performance, achieving a MAPE
0f 4.01% [13].

Despite promising outcomes reported in previous studies,
important methodological limitations and unexplored areas
remain open and unaddressed [14]. As far as the literature
reveals, the existing literature has yet to examine the
optimization of LSTM hyperparameter combinations for
forecasting Indonesian banking stocks using TSCV [15]. This
validation technique is particularly well-suited for sequential
data, as it mitigates overfitting (data leakage) and enables a
more reliable assessment of model performance [16].

The present study addresses this methodological
shortcoming by constructing and validating an optimized
LSTM-based framework to refine the accuracy of stock price
prediction for five major Indonesian banks: BBCA, BBRI,
BMRI, BBNI, and BBTN. In addition to hyperparameter
tuning to identify the best model configuration, this research
compares predictive performance across the selected banks.
The study contributes to the growing literature on deep
learning-based financial forecasting and offers practical
guidance for investors, market analysts, and policymakers. It
also serves as a reference for technology developers seeking
to build Al-based forecasting tools that are adaptive to
dynamic market conditions and relevant to emerging
financial markets.

II. METHODS
This section presents a systematic overview of the research
stages, as illustrated in Figure 1, highlighting the
methodological approach followed throughout the study.

This study adopts a quantitative research design, utilizing
advanced deep learning techniques, specifically the Long
Short-Term Memory (LSTM) architecture, to forecast stock
price movements within Indonesia’s banking sector. The
methodological workflow is systematically illustrated
through a process diagram, comprising key stages: data
collection, cleansing and preprocessing, feature engineering,
model development via hyperparameter optimization, and
performance evaluation using a time series split cross-
validation strategy.
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Figure 1. Research Flow Diagram

A. Data Collection

This study utilizes daily stock price time series obtained
from prominent publicly traded companies banking stocks
listed on the Indonesia Stock Exchange (IDX) [17]. The
analysis focuses on five major state-owned banks: PT Bank
Central Asia Tbk (BBCA), PT Bank Rakyat Indonesia Tbk
(BBRI), PT Bank Mandiri Tbk (BMRI), PT Bank Negara
Indonesia Tbk (BBNI), and PT Bank Tabungan Negara Tbk
(BBTN). Historical data were retrieved from Yahoo Finance
using the yfinance Python library, covering the period from
January 1, 2020, to September 1, 2025. The dataset includes
daily OHLCV (Open, High, Low, Close, and Volume) values
essential for capturing market dynamics. During the
observation period, 6,670 equities were actively traded on the
IDX, with the selected banking stocks serving as the primary
objects of analysis.

B. Data Preprocessing

The data preprocessing procedure in this study comprises
three primary stages:

1) Data Cleansing: The dataset is carefully examined
to detect and remove missing values and duplicate entries
[18]. This step is critical to prevent distortions and biases that
may compromise the accuracy and reliability of model
training.

2) Data Normalization: All numerical features are
preprocessed through Min-Max normalization, effectively
transforming the raw values into a normalized range between
0 and 1, thereby preserving relative relationships while

preventing the dominance of variables with larger
magnitudes. This transformation facilitates  faster
convergence during model training and enhances
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computational efficiency [19]. Normalization is performed
using Eq. (1).

XXy
X'= min
Xmax 'Xmin

Where:

X'= Normalized value

X= Original value before normalization
Xmin= Minimum value variable X
Xmax= Maximum value variable X

3) Time Series Transformation (Sliding Window): A
sliding window approach is employed to model temporal
dependencies within the historical dataset. This technique
divides the time series into overlapping sequences of a
predetermined length, enabling the model to extract insights
from recent trends and forecast subsequent stock prices [7].
By organizing the input data in this manner, the LSTM model
is able to effectively capture sequential patterns and short-
term market fluctuations [18].

M

C. Feature Engineering

To achieve higher predictive fidelity and improve the
generalization capacity of the model, a set of widely adopted
technical indicators is integrated into the dataset during the
feature engineering phase. These indicators include the
Simple Moving Average (SMA), Exponential Moving
Average (EMA), Relative Strength Index (RSI), Bollinger
Bands (BB), and Moving Average Convergence Divergence
(MACD) [20]. Each indicator reflects a specific dimension of
market behavior, including trend direction, momentum, and
volatility, thereby supplying the model with enhanced input
features that facilitate learning of complex patterns in stock
price dynamics.

1) Simple Moving Average (SMA): In technical
analysis, the SMA is a fundamental tool used to smooth short-
term volatility and reveal long-term price trends. It is
computed by averaging a specified number of past closing
prices over a defined time window, as shown in Equation (2).

t
1
SMAFN Z Close; 2)

i=t-N+1

Where:

SMA= Moving average value at time -t
N= Number of observation periods
Close;= Closing price at time -i

2) Exponential Moving Average (EMA): Building on
the SMA, the EMA incorporates an exponential weighting
mechanism that emphasizes recent observations. This
approach enhances its sensitivity to rapid price movements,
rendering it a useful tool for analyzing markets with
significant short-term volatility. The calculation of the EMA
is presented in Equation (3).

EMA =a-Close,+(1-a) EMA, 3)

Where:

a= Smoothing or weighting factor
Close= Closing price at period -t
EMA ;= EMA in the previous period

3) Relative Strength Index (RSI): The Relative
Strength Index (RSI) operates as a momentum oscillator
designed to measure both the speed and amplitude of price
fluctuations. By identifying periods when market conditions
approach overbought or oversold thresholds, the RSI
provides insights into potential price reversals and allows for
assessment of the durability of prevailing market trends. The
RSI is calculated using the formula presented in Equation (4).

“4)

100 Average Gain
RSI=100- —— =

1+RS’ ~ Average Loss

Where:
Average Gain= Average price increase over
Average Loss= Average price decrease over

4) Bollinger Bands (BB): In technical analysis,
Bollinger Bands (BB) are employed as volatility indicators,
consisting of two bands plotted at a fixed distance from a
central moving average. The upper band reflects the moving
average plus a specified multiple of the standard deviation,
whereas the lower band represents the equivalent deviation
below. Such a configuration enables analysts to discern shifts
in market volatility and to anticipate possible reversals or
breakout events. The mathematical formulation of Bollinger
Bands is presented in Eq. (5).

UpperBand,=SMA +k-c,, 5)
LowerBand=SMA-k-c,

Where:

SMA = Simple moving average at time t
o= Standard deviation of price at time t
k= Factor applied to the standard deviation

5) Moving  Average  Convergence  Divergence
(MACD): The MACD is a trend-following momentum
indicator derived from the difference between two
Exponential Moving Averages (EMAs) calculated over
distinct timeframes, typically a short-term and a long-term
period. To enhance its interpretability, a Signal Line, defined
as the exponential moving average (EMA) of the MACD
values, is employed to detect potential trend reversals and to
validate shifts in market momentum. The mathematical
formulation of MACD and its Signal Line is presented in
Equation (6).

MACD{:EMAshon (t) 'EMAlong (t) (6)

Where:
EMA ;.= Exponential moving average short period
EMA,,,,= Exponential moving average long period
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D. Time Series Split Cross-Validation

In recognition of the sequential dependencies that
characterize financial market data, this study employs Time
Series Split Cross-Validation (TSCV). Unlike conventional
k-fold cross-validation, TSCV preserves the temporal order
of observations, making it particularly suitable for time-
dependent datasets. In this approach, the data is partitioned
chronologically, This approach ensures that training is
conducted on earlier segments of the series and validation on
later portions, thereby strengthening the model’s capacity to
learn temporal dependencies and yielding a more rigorous
and realistic assessment of its predictive performance [21].
E. Long Short-Term Memory Modeling

The predictive framework uses a sequential deep learning
architecture comprising two stacked LSTM layersThe
architecture specifies the number of hidden units per LSTM
layer to optimize the extraction of temporal relationships
within financial time series. Furthermore, dropout
regularization is incorporated between layers to minimize
overfitting tendencies and enhance the model’s
generalization performance. The final output is generated
through a fully connected dense layer, transforming the
learned temporal representations into the target prediction.

Dropout LSTM Layer 2

LSTM Layer 1
Input Data ]—>
I o | (units=150, return_sequences=True) |—'I (0.3) ]—'| (return_sequences=False)
Dense Layer Dropout
tout
l Outpu (units=1) 0.3)

Figure 2. LSTM Model Architecture

The model processes normalized historical stock price data
structured within a predefined lookback window. Input
sequences are initially passed through an LSTM layer,
followed by dropout regularization to address overfitting. It
is succeeded by a second LSTM layer and an additional
dropout layer, enhancing the model’s generalization
capability. The final output is produced through a fully
connected dense layer with a single neuron responsible for
generating the predicted stock price. Model training uses the
Adam optimization algorithm, with MSE as the loss function
to evaluate regression performance [6].

F. Hyperparameter Optimization

The process of selecting and fine-tuning hyperparameters
is fundamental to enhancing the performance of an LSTM
model, as these parameters govern both the learning behavior
and the predictive capability of the network. In this study,
particular attention is directed toward optimizing critical
hyperparameters including the number of LSTM units, the
lookback window length, the dropout rate, the batch size, and
the total number of training epochs. Systematic
experimentation and validation are conducted to identify the
optimal configuration that yields the most robust and
generalizable predictive outcomes [22].

1) Number of LSTM Units: The number of LSTM
units, defined as the hidden neurons within each layer,
governs the model’s capacity to capture temporal dynamics.
Although increasing the units allows the network to learn
more complex structures, it may also induce overfitting. To
balance accuracy with generalization, this study employs a
data-driven approach to hyperparameter tuning instead of
predetermined settings.

2) Lookback Window Length: The lookback window
length defines the span of historical data the model utilizes to
generate future price predictions. It is critical to select an
appropriate window size, as it influences the model’s ability
to capture relevant temporal patterns. A longer window may
incorporate broader market trends, but risks diluting short-
term signals and increasing computational overhead due to
redundant information. Conversely, a shorter window may
enhance responsiveness to recent fluctuations but potentially
overlook meaningful long-term dependencies. Therefore, this
study emphasizes a balanced configuration to ensure
predictive precision and computational efficiency.

3) Dropout Rate: Dropout is a regularization method
employed to mitigate overfitting in neural network training.
During each iteration, a specified fraction of neurons is
randomly deactivated according to a predetermined
probability, which serves to reduce co-adaptation among
network units and promote more robust feature learning. The
adopted mechanism encourages the model to learn varied and
stable feature encodings rather than depending on a limited
set of pathways. This reduction in pathway-specific reliance
mitigates overfitting and leads to demonstrably better
generalization when evaluated on out-of-sample data. The
dropout rate must be carefully tuned to balance model
complexity and predictive stability.

4) Batch Size: Refers to the quantity of training
instances employed to fit the model propagated through the
network during each feedforward and backpropagation cycle.
Smaller batch sizes introduce higher gradient variance,
enabling the model to adapt more rapidly to fluctuations in
the data, which may be beneficial in volatile environments.
However, larger batch sizes tend to produce more stable and
consistent gradient updates, improving convergence
reliability at the cost of increased computational demand.
This study explores a range of batch sizes to identify an

optimal trade-off between training stability and
responsiveness.
5) Number of Epochs: In machine learning contexts, an

epoch denotes a full traversal of the training dataset, typically
segmented into batches to support iterative parameter
updates. An inadequate epoch configuration can result in
underfitting, indicating insufficient learning of data
regularities, whereas an excessive number may lead to
overfitting, whereby the model achieves high training
accuracy but performs inadequately on unseen data.

JAIC Vol. 9, No. 6, December 2025: 3575 — 3587



JAIC

e-ISSN: 2548-6861

3579

Consequently, the choice of epoch number should be
optimized with reference to convergence dynamics,
commonly observed through validation loss trajectories
across training cycles.

G. Model Performance Evaluation

The proposed model's performance is assessed using a
comprehensive set of error metrics commonly employed in
time-series forecasting. These include Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Coefficient of Determination (R?), and Mean
Absolute Percentage Error (MAPE). Each metric provides a
distinct perspective on the model's predictive accuracy,
robustness, and generalization capability, thereby enabling a
multidimensional evaluation of its effectiveness in
forecasting stock price movements [9].

1) Mean Squared Error (MSE): The Mean Squared
Error (MSE) serves as a fundamental criterion in regression
modeling, calculated as the average of squared deviations
between predicted outputs and observed data. Its formulation
disproportionately penalizes larger errors, thus ensuring that
significant deviations are emphasized in the evaluation
process. Models with lower MSE values are generally

regarded as demonstrating stronger accuracy and
generalization ability [23], as shown in Eq. (7).
IC, v
MSE=HZ(yi-yi) @)
i=1

Where:

v, = Observed value for the i-th observation
¥, = Predicted value for the i-th observation
n= Total number of observations

2) Root Mean Squared Error (RMSE): RMSE
measures the square root of the average squared deviations
between predicted and observed values, providing an
indicator of prediction accuracy in the data’s original scale.
Its primary advantage lies in its unit consistency with the
target variable, facilitating intuitive interpretation,
particularly in financial forecasting contexts such as stock
price prediction. A lower RMSE value reflects higher
predictive accuracy and indicates that the model’s outputs
closely approximate the observed data [23], as shown in Eq.

(8).
1
RMSE= n Z (Yi'yi)z ®)
\‘ i=1

Where:

v, = Observed value for the i-th observation
¥. = Predicted value for the i-th observation
n= Total number of observations

3) Mean Absolute Error (MAE): MAE represents the
mean of the absolute differences between predicted and actual

values, providing a direction-independent assessment of
prediction error. Unlike metrics that square deviations, MAE
is less sensitive to extreme outliers, providing a robust
assessment of overall predictive accuracy. Lower MAE values
reflect improved model precision and greater consistency in
forecasting performance [23], as formulated in Eq. (9).

1 n
MAE=HZ|yi-§/i| ©)
i=1

Where:

Y, = Observed value for the i-th observation
¥, = Predicted value for the i-th observation
n= Total number of observations

4) Coefficient of Determination (R’): The R* score
quantifies the extent to which the variability in the observed
data can be accounted for by the model’s predictions. It
indicates the model’s explanatory power, with values ranging
from 0 to 1. An R? coefficient approaching unity denotes a
pronounced alignment between model predictions and
empirical observations, thereby evidencing the model’s
efficacy in capturing and explaining the intrinsic variability
and structure of the dataset. This metric is beneficial for
assessing goodness-of-fit in regression tasks [23], as
formulated in Eq. (10).

(10)

Where:
v, = Observed value for the i-th observation

¥, = Predicted value for the i-th observation
n= Total number of observations

5) Mean Absolute Percentage Error (MAPE):
Expressed in percentage form, this metric provides a scale-
free evaluation of forecasting error, making it highly
interpretable across diverse contexts. It is obtained by
computing the average of the absolute differences between
predicted and observed values, subsequently normalized by
the corresponding actual observations. As such, it facilitates
robust comparisons of predictive accuracy across datasets
that differ in units or magnitude. A lower MAPE value
reflects superior predictive performance, while higher values
indicate greater divergence between model outputs and
observed data [23], as formulated in Eq. (11).

1 .
MAPE- - E '|u
n Y;
i=1

Where:

Y, = Observed value for the i-th observation
¥. = Predicted value for the i-th observation
n= Total number of observations

x100% (11)
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III. RESULT AND DISCUSSION

This section presents the empirical results derived from the
processed dataset, which form the foundation for subsequent
analysis and interpretation. The model’s predictive
performance is assessed through previously defined
evaluation metrics, allowing for a thorough and systematic
appraisal of its forecasting accuracy. Comparative insights
are drawn to highlight the effectiveness of the proposed
architecture, and the implications of hyperparameter
configurations are discussed in relation to forecasting
accuracy, generalization, and computational efficiency.

To ensure the robustness of the proposed predictive
framework, the methodological design was deliberately
structured to capture variations observed during both stable
and volatile market environments. The dataset utilized spans
several consecutive years of trading observations, notably
including the COVID-19 period (2020), which represented a
phase of substantial market turbulence and irregular
behavior. Although the research did not implement a
separate, predefined stress-testing mechanism, the inclusion
of data from such unstable intervals effectively allowed the
model to learn and generalize from diverse market dynamics.
In addition, the application of Time-Series Cross-Validation
(TSCV) provided a systematic approach for assessing model
performance across different temporal partitions, thereby
reinforcing the model’s robustness against abrupt structural
and behavioral shifts within financial markets. Looking
ahead, future studies may refine this approach by
incorporating dedicated stress-testing analyses under specific
macroeconomic or sectoral disruptions, such as monetary
tightening episodes or sudden liquidity shocks, to further
evaluate the model’s resilience and adaptive capacity.

A. Dataset Description

This study utilizes historical stock price data from five
major Indonesian banking institutions, BBCA, BBRI, BMRI,
BBNI and BBTN from January 1, 2020, to September, 2025.

The selection of BBCA, BBRI, BMRI, BBNI, and BBTN
was Dbased on their economic significance and
representativeness within Indonesia’s banking sector. These
institutions are among the largest and most liquid constituents
of the IDX Financials Index, accounting for a substantial
share of market capitalization and trading activity. Their
inclusion captures both systemic stability and market
diversity, as they differ in terms of ownership structure, asset
scale, and risk exposure, making them suitable benchmarks
for comparative forecasting performance within the national
financial market.

B. Data Sanitization and Feature Development

Before analysis, the raw dataset exhibited missing values
and duplicate records, necessitating a rigorous data cleansing
process. Subsequently, Feature engineering techniques were
employed to improve the dataset’s ability to support accurate
predictions. The input variables comprised standard OHLCV
(Open, High, Low, Close, Volume) data augmented by a set

of technical indicators, including the Simple Moving
Average (SMA), Exponential Moving Average (EMA),
Bollinger Bands, Relative Strength Index (RSI), Moving
Average Convergence Divergence (MACD), and the MACD
Signal Line.

A sliding window technique was employed to capture
temporal dependencies with a retrospective duration of 90
days. This transformation yielded a final dataset of 1,244
samples, each representing a 90-day sequence and
encompassing 13 input features. Summary tables detailing
the raw data characteristics for each bank are presented in the
subsequent section to provide contextual grounding for
model development and evaluation.

As shown in Table I — Table V, the observation period for
all five banking stocks was standardized to span from January
2020 to September 2025, ensuring uniformity in the number
of trading days across samples. Although minor
discrepancies exist due to temporary market suspensions and
variations in liquidity, these differences were statistically
insignificant and did not affect the training consistency of the
model. Consequently, each banks dataset contains
approximately the same volume of daily records, allowing for
a fair comparison of forecasting accuracy and model
robustness across the selected institutions.

TABLEI

BBCA Stock
Date Open High Low Close Volume
2020- | 5825.27 | 5899.24 | 5812.23 | 5820.93 | 49,445,000
01-02
00:00
2020- | 5873.13 | 5916.64 | 5851.38 | 5916.64 | 47,755,500
01-03
00:00
2020- | 5847.02 | 5873.13 | 5820.93 | 5860.08 | 27,300,000
01-06
00:00

TABLE II

BBRI STOCK
Date Open High Low Close Volume
2020- | 2954.13 | 2960.84 | 2927.27 | 2960.84 | 45,886,302
01-02
00:00
2020- | 2967.56 | 2980.99 | 2947.42 | 2967.56 | 91,189,705
01-03
00:00
2020- | 2927.27 | 2947.42 | 2900.42 | 2933.99 | 48,648,450
01-06
00:00

The model’s performance was evaluated using a 5-fold
TSCV strategy. This validation technique preserves the
temporal structure of the dataset by ensuring that training is
consistently performed on earlier observations, while testing
is conducted on subsequent data points. Such chronological
integrity is essential in time-series forecasting, as it prevents
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data leakage and ensures that future information does not
inadvertently influence the training process. Compared to
conventional k-fold cross-validation, TSCV offers a more
robust and realistic assessment of predictive performance in
sequential data environments.

TABLE III

BMRI STOCK
Date Open High Low Close Volume
2020- | 2772.93 | 2809.06 | 2763.90 | 2800.03 | 37,379,800
01-02
00:00
2020- | 2800.03 | 2827.12 | 2754.86 | 2790.99 | 70,294,600
01-03
00:00
2020- | 2763.90 | 2772.93 | 2718.73 | 2745.83 | 61,892,000
01-06
00:00

TABLE IV

BBNI STOCK
Date Open High Low Close Volume
2020- | 3127.14 | 3127.14 | 3087.43 | 3087.43 | 18,602,600
01-02
00:00
2020- | 3097.36 | 3127.14 | 3037.80 | 3097.36 | 32,251,400
01-03
00:00
2020- | 3077.50 | 3077.50 | 3017.94 | 3027.87 | 26,249,200
01-06
00:00

TABLE V

BBTN STOCK
Date Open High Low Close Volume
2020- | 3087.43 | 3127.14 | 3087.43 | 1631.68 | 6116029
01-02
00:00
2020- | 3097.36 | 3127.14 | 3037.80 | 1647.00 | 32,251,400
01-03
00:00
2020- | 3027.87 | 3077.50 | 3017.94 | 1631.68 | 26,249,200
01-06
00:00

C. Hyperparameter Optimization

Prior to finalizing the model configuration, a Random
Search approach was employed to identify optimal
hyperparameter settings. This method enables efficient
exploration of the hyperparameter space by randomly
sampling combinations, thereby reducing computational
burden compared to exhaustive grid search. The results
indicated that LSTM unit sizes of [50, 100, 150] consistently
yielded superior performance across validation folds,
outperforming alternative configurations. Accordingly, this
setup was adopted as the core architecture for subsequent
experiments. The model design was carefully structured to

establish a robust foundation for comparative analysis and
performance benchmarking.
D. Comparative Analysis

This study employs an LSTM architecture combined with
TSCV to evaluate the predictive performance across five
major banking stocks listed on the Indonesia Stock Exchange
(IDX): BBCA, BBRI, BMRI, BBNI, and BBTN. The TSCV
framework ensures temporal integrity by validating the
model across sequential data splits, thereby enhancing the
reliability of performance assessment. The data splitting
procedure in this study followed a fully sequential approach.
Model training and validation were performed using Time
Series Cross-Validation (TSCV) with expanding folds,
ensuring that each fold respected the temporal ordering of the
data. No random partitioning was used at any stage. After
completing the TSCV process, a separate chronological
holdout set was used solely for the final out-of-sample test to
evaluate the model’s generalization performance.

1) BBCA Stock

Closing Price Actual vs Predicted (TS-CV)

— diose
o000 |
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Figure 3. BBCA Stock Chart

Figure 3 illustrates the BBCA plot exhibits a clear upward
trajectory across the 2020-2025 period, with comparatively
mild intra-period fluctuations. The prediction line closely
tracks the observed price series for most of the timeline,
indicating that the model captures the stock’s dominant trend
and short-term momentum with a high degree of visual
fidelity. Only at a few sharp inflection points does the
forecast diverge noticeably from the actual series, suggesting
a limited lag in reacting to abrupt market moves but strong
alignment for medium- to long-term behavior.

The evaluation results presented in Table VI indicate that
the BBCA prediction model exhibits a high level of
consistency and reliability, as reflected by an average R?
value of 0.9631. Although Fold 4 and Fold 5 show slightly
lower R? scores compared to the other folds, the model
overall maintains a commendable degree of accuracy, with a
mean MAPE of 2.34%. Such a low error margin demonstrates
the model’s robustness in capturing the underlying patterns
of stock price movements. These findings suggest that the
model performs effectively across varying data partitions,
maintaining  stability even under fluctuating market
conditions.
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TABLE VI
BBCA FOLD EVALUATION
Fold MSE RMSE | MAE R? MAPE
1 58,685.47 24225 | 193.40 | 0.8312 | 0.02949
2 48,941.63 221.23 | 182.42 | 0.8082 | 0.02428
3 15,570.89 124.78 97.01 0.8466 | 0.01178
4 68,098.28 260.96 | 220.21 | 0.7430 | 0.02304
5 93,566.94 305.89 | 251.17 | 0.7624 | 0.02817
Mean 56,972.64 238.69 | 188.84 | 0.9631 | 0.0234
TABLE VII
COMPARASION OF ACTUAL AND PREDICTED BBCA
Date Actual | Predicted | Price Difference
2021-05-07 | 5,761.67 | 5,757.83 3.85
2021-05-10 | 5,779.68 | 5,767.46 12.22
2021-05-11 | 5,833.70 | 5,776.96 56.73
2021-05-17 | 5,851.70 | 5,791.03 60.68
2021-05-18 | 5,752.67 | 5,806.30 -53.62

As shown in Table VII, the predicted BBCA stock prices
closely align with the actual values, indicating strong model
performance. Most deviations remain relatively small,
suggesting consistent accuracy in stable market conditions.
Minor fluctuations, such as on May 17 and May 18, reflect
the models sensitivity to short-term market movements.
Overall, the model effectively tracks price trends with limited
prediction error.

TABLE VIII
HoLDOUT (CHRONOLOGICAL) EVALUATION FOR BBCA
MSE RMSE | MAE R? MAPE
87617.84 | 296.00 | 253.33 | 0.692 | 0.0288

As shown in Table VIII, the holdout evaluation provides
an assessment of the model’s performance on out-of-sample
data, which was not used during training. The results indicate
that the model successfully captures long-term price trends of
BBCA, though prediction errors increase in periods of high
volatility. An R? value of 0.692 suggests that approximately
69.2% of the price variance is explained by the model.
Moreover, a MAPE of 2.88% confirms a reasonably accurate
predictive performance.

In conclusion, the combination of TS-CV and holdout
evaluations highlights the robustness of the LSTM model in
forecasting BBCA stock prices, showing optimal
performance for medium-term trends while demonstrating
limited responsiveness to abrupt price spikes.

Figure 4 illustrates the SHAP analysis reveals that the
Signal, BB upper, and Low features exert the strongest
influence on the BBCA stock price prediction model.

As depicted in Figure 5, the historical closing price of
BBRI has exhibited a steady upward trajectory accompanied
by pronounced volatility in recent years. The right panel of
the figure compares actual price movements and those
predicted by the LSTM model, revealing that the model
effectively captures the overarching trend. While

discrepancies are observed during abrupt price surges or
declines, the predicted curve generally aligns with the actual
data. These findings suggest that the model demonstrates
strong capability in modeling long-term temporal patterns,
albeit with limited responsiveness to short-term fluctuations
in stock prices.
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Figure 5. BBRI Stock Chart

TABLE IX
BBRI FOLD EVALUATION
Fold MSE RMSE | MAE R? MAPE
1 18,082.13 | 134.47 | 109.77 | 0.7553 | 0.0344
2 12,761.97 | 112.97 | 87.98 | 0.6161 | 0.0234
3 8,935.91 94.53 72.92 | 09315 | 0.0163
4 55,817.10 | 236.26 | 201.25 | 0.7360 | 0.0420
5 18,081.02 | 134.47 | 109.52 | 0.7382 | 0.0282
Mean | 22,735.62 | 150.78 | 116.29 | 0.9472 | 0.0289
TABLE X
COMPARASION OF ACTUAL AND PREDICTED BBRI
Date Actual | Predicted | Price Difference
2021-05-07 | 2,893.35 | 2,905.66 -12.31
2021-05-10 | 2,893.35 | 2,889.17 4.18
2021-05-11 | 2,850.49 | 2,872.97 -22.48
2021-05-17 | 2,786.19 | 2,859.57 -73.39
2021-05-18 | 2,786.19 | 2,848.27 -62.08

As presented in Table IX, the BBRI model demonstrates
fluctuating predictive performance across folds. The lowest
errors are recorded in Fold 3, indicating strong model
accuracy, while Fold 4 shows the highest error values, likely
due to increased market volatility. Despite these variations,
the model maintains a low mean MAPE of 2.89%, signifying
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good overall predictive stability. Hence, the model is
effective in capturing the general trend of BBRI’s stock
prices across different time segments.

BBRI stock yielded reliable forecast outcomes, as
evidenced by the relatively low mean price difference
reported in Table X. The model demonstrated strong
capability in capturing short-term market movements,
effectively aligning with transient fluctuations in the stock’s
trajectory. However, compared to BBCA, the predictive
outputs for BBRI exhibited greater volatility, indicating a
higher degree of sensitivity to abrupt market changes. It
suggests that while the model performs well in identifying
immediate trends, its stability may vary depending on the
underlying asset’s volatility profile.

TABLE XI
HOLDOUT (CHRONOLOGICAL) EVALUATION FOR BBRI
MSE RMSE | MAE R? MAPE
14,826.57 | 121.76 | 96.80 | 0.6747 | 0.0253

As shown in Table IX, the holdout evaluation for the BBRI
model demonstrates satisfactory predictive accuracy. The
model achieves an R? of 0.6747, indicating that it explains a
substantial portion of the variance in actual stock prices. With
an RMSE of 121.76 and a MAPE of 2.53%, the prediction
errors remain relatively low. Overall, the model performs
reliably in forecasting unseen (out-of-sample) data within
acceptable error margins.
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Figure 6. SHAP BBRI

Figure 6 illustrates the SHAP analysis for the BBRI stock
prediction model indicates that the Open and Returns features
have the highest impact on model performance. These
variables significantly influence the prediction results,
suggesting that the model heavily relies on recent price
movements and daily opening prices.

3) BMRI Stock

As illustrated in Figure 7, the model’s predictions for
BMRI exhibit a consistently stable trend, particularly during
consolidation phases where price movements are gradual and
range-bound. The LSTM architecture accurately captures
these slow dynamics, aligning closely with actual price
behavior. However, its responsiveness diminishes during

abrupt upward shifts, indicating a lag in adapting to rapid
market changes. It suggests that the model is better suited for
forecasting steady price trajectories rather than reacting to
short-term volatility.
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Figure 7. BMRI Stock Chart
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TABLE XII
BMRI FOLD EVALUATION
Fold MSE RMSE | MAE R? MAPE
1 11,390.45 | 106.73 87.34 | 0.8433 | 0.0325
2 46,496.48 | 215.63 | 179.24 | 0.7184 | 0.0471
3 26,117.50 | 161.61 | 133.36 | 0.8489 | 0.0280
4 79,057.48 | 281.17 | 239.91 | 0.6578 | 0.0398
5 78,551.25 | 280.27 | 230.28 | 0.7648 | 0.0468
Mean | 48,322.63 | 219.82 | 174.02 | 0.9681 | 0.0388

Table XII indicates that BMRI demonstrates noticeable
variation in predictive performance across the five folds. Fold
1 shows solid accuracy with a MAPE of 3.25%, and Fold 3
records the lowest error at 2.80%. In contrast, Fold 2 and Fold
5 display higher error levels, with MAPE values of 4.71%
and 4.68%, respectively. This variation suggests that
although the model is capable of capturing BMRI’s overall
price movement patterns, its sensitivity to differing market
conditions remains evident. While the model performs well
in tracking long-term trends, its ability to handle short-term
fluctuations or periods of increased volatility appears less
robust.

TABLE XIII
COMPARASION OF ACTUAL AND PREDICTED BMRI
Date Actual | Predicted | Price Difference
2021-05-07 | 2,335.32 | 2,376.20 -40.87
2021-05-10 | 2,345.14 | 2.,370.88 -25.74
2021-05-11 | 2,315.70 | 2,366.94 -51.24
2021-05-17 | 2,325.51 2,362.74 -37.23
2021-05-18 | 2,315.70 | 2,359.69 -43.99

Table XIII shows the prediction results for BMRI,
highlighting the model’s relatively consistent performance
during periods of price consolidation. Across the selected
dates, the predicted values remain close to the actual prices,
with only moderate deviations observed. This indicates that
the model is capable of capturing gradual, stable movements
in the market. However, when prices shift more abruptly, the
gap between predicted and actual values tends to widen,
reflecting the model’s reduced responsiveness to sudden
market changes. While the LSTM architecture effectively

Optimized LSTM with TSCV for Forecasting Indonesian Bank Stocks

(Rizka Mars Salsabila, Amiq Fahmi, Farrikh Al Zami)



3584

e-ISSN: 2548-6861

learns long-term temporal patterns, its ability to adapt to
short-term volatility remains limited.

TABLE XIV
HoLDOUT (CHRONOLOGICAL) EVALUATION FOR BMRI
MSE RMSE | MAE R? MAPE
99,896.04 | 316.06 | 265.50 | 0.4925 | 0.0545

As shown in Table XIV, the BMRI model exhibits
moderate predictive performance, with an R? value of 0.4925,
indicating that nearly half of the price variance is explained
by the model. The relatively high RMSE and MAPE (5.45%)
suggest that prediction errors increase under volatile market
conditions. Nonetheless, the model captures the general stock
price direction adequately.
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Figure 8. SHAP BMRI

As illustrated in Figure 8 the SHAP analysis for the BMRI
stock prediction model shows that the Low, SMA 10,
EMA 10, and Volume features have the highest influence on
model performance.
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Figure 9. BBNI Stock Chart
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Figure 9 overlays actual BBNI prices with model
predictions, revealing generally strong correspondence
between the two series. Minor deviations occur during
periods of elevated volatility, yet predicted values
consistently reflect the stocks directional movement. This
observation, combined with the fold-wise evaluation metrics,
suggests that the model can produce reliable forecasts under
typical market conditions, albeit with reduced precision
during extreme fluctuations.

TABLE XV
BBNI FOLD EVALUATION
Fold MSE RMSE | MAE R? MAPE
1 11,202.48 | 105.84 81.30 | 0.9383 | 0.0316
2 28,535.08 | 168.92 | 144.15 | 0.5499 | 0.0389
3 6,152.37 78.44 59.97 | 0.8762 | 0.0148
4 44,739.10 | 211.52 | 173.42 | 0.6478 | 0.0362
5 40,080.94 | 200.20 | 156.07 | 0.6429 | 0.0378
Mean | 26,141.99 | 161.68 | 122.98 | 0.9610 | 0.0319

Table XV indicates that BBNI’s predictive performance
varies across folds, with error metrics showing a moderately
wide range. Fold 3 demonstrates the highest accuracy,
reflected by the lowest MAPE of 1.48% and the smallest
RMSE of 78.44. In contrast, Folds 4 and 5 record higher error
levels, with RMSE values exceeding 200 and MAPE values
around 3.6-3.8%. Despite this variation, the model maintains
generally stable performance, with mean MAPE remaining
relatively low at 3.19%. These results suggest that while the
model is capable of generating reliable forecasts for BBNI,
its accuracy may still be influenced by fluctuations in market
conditions, especially during periods of elevated volatility.

TABLE XVI
COMPARASION OF ACTUAL AND PREDICTED BBNI

Date Actual | Predicted | Price Difference
2021-05-07 | 2,308.60 | 2,333.32 -24.71
2021-05-10 | 2,298.30 | 2,324.04 -25.74
2021-05-11 | 2,277.68 | 2,313.08 -35.39
2021-05-17 | 2,267.38 | 2,303.59 -36.21
2021-05-18 | 2,246.77 | 2,300.44 -53.68

Table XVI shows a strong alignment between the actual
and predicted BBNI prices, with only moderate deviations
observed across the selected dates. The predicted values
consistently remain slightly above the actual prices, resulting
in relatively small price differences that indicate stable model
performance. While discrepancies may become more
pronounced during periods of heightened market volatility,
the LSTM model still succeeds in capturing the overall
direction and underlying trend of the stock’s movement. The
consistently low error metrics further support the model’s
reliability in generating accurate forecasts under normal
market conditions.

TABLE XVII
HoLDOUT (CHRONOLOGICAL) EVALUATION BBNI
MSE RMSE | MAE R? MAPE
20,946.89 | 144.73 | 114.01 | 0.6438 | 0.0278

As presented in Table XVII, the BBNI model achieves
solid predictive accuracy with an R? of 0.6438, indicating
strong explanatory power. The low MAPE (2.78%) reflects
that the predicted prices closely align with actual values. This
demonstrates the model’s reliability in capturing stock price
movements with reasonable precision.
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Figure 8. SHAP BBNI

Figure 8 shows the SHAP analysis for the BBTN stock
prediction model indicates that the Signal and Low features
have the most significant impact on the model’s output.
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Figure 9 presents the prediction outcomes for BBTN,
which exhibit slightly lower accuracy than the other banking
stocks analyzed in this study. This performance discrepancy
is likely attributable to BBTN’s elevated volatility, which
poses greater challenges for temporal modeling. Despite
these limitations, the LSTM model successfully captures the
overarching trend, indicating its capacity to generalize long-
term price movements even under unstable market
conditions.

Table XVIII shows that BBTN’s predictive performance
varies across folds, with RMSE ranging from 31.10 to 55.84.
Despite this variation, all MAPE values remain below 3.9%,
indicating that the model maintains a satisfactory level of
accuracy. Overall, the results suggest that the model reliably
captures medium-term price movements, even amid shifts in
market conditions.

Table XIX shows that although noticeable gaps exist
between the actual and predicted BBTN prices, the model
still captures the overall trend. Larger deviations appear
during more volatile periods, indicating reduced
responsiveness to sudden price changes, yet the general
trajectory remains accurately reflected.

TABLE XVIII
BBTN FOLD EVALUATION
Fold MSE RMSE | MAE R? MAPE
1 3,118.34 | 55.84 | 45.78 | 0.8225 | 0.0386
2 2,299.47 | 4795 | 36.98 | 0.6620 | 0.0305

3 966.96 31.10 | 23.73 | 0.4366 | 0.0209

4 1,529.48 | 39.11 | 27.95 | 0.8081 | 0.0220

5 1,455.71 | 38.15 | 30.09 | 0.9501 | 0.0279

Mean | 1,873.99 | 43.29 | 32.91 | 0.8773 | 0.0280
TABLE XIX

COMPARASION OF ACTUAL AND PREDICTED BBTN

Date Actual | Predicted | Price Difference
2021-05-07 | 1,239.76 1,272.75 -32.99
2021-05-10 | 1,258.95 1,272.50 -13.55
2021-05-11 | 1,251.28 1,273.00 -21.72
2021-05-17 | 1,216.73 1,273.44 -56.71
2021-05-18 | 1,209.06 1,269.83 -60.78

TABLE XX
HoLDOUT (CHRONOLOGICAL) EVALUATION BBTN
MSE RMSE | MAE R? MAPE
1,397.41 | 37.38 28.88 | 0.9419 | 0.0274

As indicated in Table XX, the BBTN model performs
exceptionally well with an R? of 0.9419, meaning it explains
over 94% of the variance in actual stock prices. The small
error values (RMSE, MAE, and MAPE) confirm the model’s
high precision and stability. Overall, this model provides the
most accurate and consistent predictions among all evaluated
datasets.
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Figure 10. SHAP BBTN

Figure 10 the SHAP analysis for the BBTN stock
prediction model shows that the Low, BB _lower, and
EMA 10 features have the highest influence on the model’s
predictions.

The performance metrics in Table XXI confirm the strong
forecasting capability of the LSTM model across all five
banking stocks. With MAPE values consistently below 5%,
the model demonstrates high predictive accuracy. BBCA and
BMRI stand out with the highest R? scores above 0.96,
reflecting the model’s strong ability to capture long-term
price movements. Overall, the results indicate that the LSTM
framework performs reliably in modeling stock price
dynamics within the Indonesian banking sector.

Optimized LSTM with TSCV for Forecasting Indonesian Bank Stocks

(Rizka Mars Salsabila, Amiq Fahmi, Farrikh Al Zami)



3586

e-ISSN: 2548-6861

TABLE XXI
COMPARATIVE PERFORMANCE OF LSTM PREDICTIONS

Stock | MAE | MAPE | RMSE R?

BBCA | 188.84 | 2.34% 238.69 | 0.9631
BBRI 116.29 | 2.89% 150.78 | 0.9472
BMRI | 174.02 | 3.88% 219.82 | 0.9681
BBNI 122.98 | 3.19% 161.68 | 0.9610
BBTN | 32.91 2.80% 43.29 0.8773

Table XXI shows positive results are also seen for BBRI
and BBNI, though both exhibit slightly higher sensitivity to
market fluctuations, indicating moderate exposure to
volatility-related forecasting risk. In comparison, BBTN
poses a greater modeling challenge due to its more
pronounced price variability, reflected in the lower R? value
0f 0.8773.

The variation in predictive accuracy observed among the
five banking stocks is closely linked to differences in their
fundamental economic and market characteristics. Banks
with larger capitalization, such as BBCA and BBRI, typically
exhibit higher liquidity levels and more consistent trading
activity, resulting in smoother price movements that the
model can learn with greater precision. In contrast, institutions
like BBTN, which operate with relatively lower liquidity and
higher volatility, present more irregular price dynamics that
challenge the model’s forecasting stability. This pattern aligns
with established evidence in financial econometrics, where
asset liquidity, volatility, and capitalization are recognized as
key determinants of price predictability. Accordingly, the
observed disparities in accuracy should not be viewed as
methodological shortcomings but rather as reflections of the
inherent heterogeneity and structural diversity within
Indonesia’s banking market.

These findings underscore the critical role of price stability
in enhancing model reliability. The LSTM architecture
demonstrates superior capability in learning long-term
sequential patterns, while its responsiveness to short-term
stochastic changes remains limited. Nonetheless, the model’s
ability to preserve temporal dependencies offers practical
value for investors and financial analysts, providing a robust
framework for informed and strategically conservative
investment decision-making.

In addition to delivering strong predictive accuracy, the
LSTM-TSCV model also offers concise financial insights.
The SHAP analyses indicate that price-based features such as
Low, trading volume, and trend indicators including SMA,
EMA, and Bollinger Bands play the most influential roles in
shaping forecast outcomes, particularly for BBCA and BBRI.
The operational results show that BUY signals appear when
the predicted price exceeds the current market value, while
SELL signals occur when the model anticipates limited or
negative movement, as seen for BBTN. These patterns are
consistent with core principles of technical and behavioral
finance, underscoring the importance of liquidity, trend

strength, and investor trading behavior in short-term price
dynamics.

TABLE XXII
OPERATIONAL IMPLEMENTATION RESULTS BASED ON LSTM FORECASTS
Bank | Current | Predicted | Expected Result
Price Price Change
(%)
BBCA | 8075.00 8650.90 7.13 BUY
BBRI | 4050.00 4182.65 3.28 BUY
BMRI | 4730.00 4950.75 4.67 BUY
BBNI | 4380.00 4515.98 3.10 BUY
BBTN | 1300.00 1299.34 -0.05 SELL

The operational application of the LSTM-TSCV model is
shown in Table XXII. The table provides an overview of how
the model’s prediction results can be used for stock trading
recommendations by comparing the latest actual prices with
the predicted values. The Expected Change (%) indicates the
percentage difference between the prices and serves as the
basis for determining trading actions. A positive percentage
indicates a potential price increase, corresponding to a BUY
signal, while a negative percentage suggests a possible
decline, resulting in a SELL recommendation.

In this analysis, the model indicates potential price growth
for BBCA, BBRI, BMRI, and BBNI, resulting in BUY
signals. In contrast, BBTN shows a minor decrease and is
categorized as a SELL. These findings demonstrate that the
developed model can be operationalized within a stock
recommendation or decision-support dashboard, providing
investors and analysts with quantitative insights for informed
short-term trading decisions.

TABLE XXIII
BASELINE COMPARASION XGBOOST

Bank | MAE | RMSE | MAPE R?
BBCA | 586.0 | 791.2 6.12% | -0.7022
BBRI | 1264 | 202.7 2.69% | 0.8474
BMRI | 925.6 | 1112.0 | 16.08% | -2.0281
BBNI | 366.9 | 507.0 7.64% | -0.4354
BBTN | 174 23.9 1.51% | 0.9698

To establish a non-sequential baseline, XGBoost was
implemented using the same feature set and sliding-window
configuration as the proposed LSTM-TSCV model. As
shown in Table XXIII, XGBoost delivered competitive
performance for BBRI and BBTN, achieving high R? values
of 0.8474 and 0.9698, respectively. However, its
performance deteriorated sharply for BBCA, BMRI, and
BBNI, where the R? values were negative, indicating that the
model performed worse than a simple mean predictor. These
results highlight the limitations of tree-based models in
capturing temporal dependencies and complex nonlinear
patterns in stock price movements. Consequently, the
findings reinforce the suitability of the LSTM-TSCV
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approach, which provides more stable and accurate
predictions across all five banking stocks.

IV. CONCLUSION

This study investigated the forecasting of stock price
movements in the highly volatile Indonesian banking sector
using LSTM networks, enhanced through hyperparameter
optimization and TSCV. The empirical findings confirm that
LSTM models effectively capture long-term dependencies
within sequential financial data, yielding reliable and
interpretable predictions.

BBCA and BMRI exhibited the most stable performance
among the evaluated stocks, with R? values exceeding 0.95
and consistently low error rates. BBCA, in particular,
achieved the lowest MAPE of 2.34%, highlighting the
model’s precision in tracking long-term price trajectories.
Although the model encountered challenges during periods
of extreme volatility, it maintained robust accuracy across
most conditions, reinforcing its potential as a dependable
forecasting framework.

Overall, the study successfully validated the applicability
of LSTM for predicting Indonesian banking stock prices,
emphasizing the importance of hyperparameter tuning and
TSCV in ensuring methodological rigor. The findings
theoretically and practically support investors, market
analysts, and policymakers in making data-driven decisions
while enriching the knowledge in Al-driven financial
forecasting. Furthermore, the study establishes a foundation
for future improvements in predictive modeling, particularly
in enhancing responsiveness to short-term market
fluctuations and volatility.
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