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 Volatility in financial markets presents complex forecasting challenges for investors, 

particularly within emerging economies such as Indonesia. This study proposes an 

optimized Long Short-Term Memory (LSTM) model for forecasting the stock prices 

of five significant Indonesian banks: BBCA, BBRI, BMRI, BBNI, and BBTN, 

utilizing daily OHLCV data (Open, High, Low, Close, Volume) and technical 

indicators from 2020 to 2025. The dataset comprises over 6,000 daily records, 

segmented using a sliding window approach to preserve temporal structure and 

enhance learning efficiency. Concurrently, the model architecture comprising dual 

LSTM layers with dropout regularization was refined through systematic 

hyperparameter tuning to enhance predictive performance. Model evaluation 

employed 5-fold Time Series Cross-Validation (TSCV), a sequential validation 

technique that mitigates data leakage and explicitly overcomes the limitations of 

conventional k-fold methods by preserving chronological integrity. Performance 

metrics included MSE, RMSE, MAE, R², and MAPE. The experiment results 

demonstrate the model’s robustness in capturing long-term dependencies within 

financial time series. BBCA and BMRI achieved superior accuracy (R² > 0.95), with 

BBCA recording the lowest MAPE of 2.34%. Despite market fluctuations, the model 

maintained consistent reliability across all test folds. This study overcomes a 

methodological limitation by integrating LSTM with TSCV in expanding markets, 

offering actionable insights for investors, analysts, and policymakers, and serving as 

a reference for adaptive AI-based, more informed forecasting tools. Moreover, the 

proposed framework holds promise for broader application across other financial 

sectors and regional markets with similar volatility characteristics. 
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I. INTRODUCTION 

The capital market holds a vital role in a nation’s financial 

system by mobilizing public funds and allocating them to 

entities needing capital [1]. In Indonesia, stock market 

activity has significantly expanded in recent years, marked by 

a sharp increase in retail investor participation and 

consistently high daily transaction volumes at the Indonesia 

Stock Exchange (IDX) [2]. However, stock price movements 

remain highly volatile, influenced by internal corporate 

performance, macroeconomic policies, government 

interventions, and global developments [3]. This volatility 

challenges investors, who rely on accurate analytical insights 

and reliable forecasts to make well-informed decisions [4]. 

 Although conventional forecasting techniques are widely 

used and effective for many applications, they often fail to 

capture nonlinear relationships and long-term dependencies 

among explanatory variables. These limitations reduce 

predictive accuracy and increase exposure to investment risk 

[5]. Recent advances in artificial intelligence (AI), especially 

in machine learning (ML) and deep learning (DL), present 

promising alternatives. In particular, the Long Short-Term 

Memory (LSTM) network, an enhanced form of Recurrent 

Neural Networks (RNNs), has demonstrated strong 

capabilities in modeling sequential data and preserving 

temporal dependencies [6]. These characteristics make 

LSTM particularly suitable for capturing the dynamic 

behavior of stock prices [7]. 
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Empirical research has consistently confirmed the 

effectiveness of LSTM-based approaches in forecasting 

Indonesian stock prices, particularly due to their strength in 

learning sequential patterns and handling non-linear market 

behavior. For instance, one study integrated anomaly 

detection with LSTM for leading banking stocks (BBCA, 

BBRI, BMRI) and achieved an exceptionally low Mean 

Squared Error (MSE) of 0.003 for BBCA, indicating strong 

predictive accuracy under volatile conditions [8]. Another 

investigation using an enhanced LSTM model reported 

promising results, with BBCA recording a Mean Absolute 

Percentage Error (MAPE) of 0.0099 and a Root Mean 

Squared Error (RMSE) of 128.02 [9]. In contrast, research on 

the mining sector employing ETSFormer with Time Series 

Cross-Validation (TSCV) revealed difficulties in handling 

short-term price fluctuations [10]. Similarly, studies 

conducted during the COVID-19 pandemic showed 

inconsistent RMSE values for stocks such as BBCA and 

BBRI [11]. Previous studies have shown that the ARIMA 

model applied to the LQ45 index produced an average MAPE 

of 10.09%, with considerable variation in performance across 

different stocks, where BBCA recorded the lowest error of 

2.18% [12]. Meanwhile, the study conducted by Beno Jange 

(2022) using the XGBoost algorithm to predict BBCA stock 

prices demonstrated better performance, achieving a MAPE 

of 4.01% [13]. 

Despite promising outcomes reported in previous studies, 

important methodological limitations and unexplored areas 

remain open and unaddressed [14]. As far as the literature 

reveals, the existing literature has yet to examine the 

optimization of LSTM hyperparameter combinations for 

forecasting Indonesian banking stocks using TSCV [15]. This 

validation technique is particularly well-suited for sequential 

data, as it mitigates overfitting (data leakage) and enables a 

more reliable assessment of model performance [16].  

The present study addresses this methodological 

shortcoming by constructing and validating an optimized 

LSTM-based framework to refine the accuracy of stock price 

prediction for five major Indonesian banks: BBCA, BBRI, 

BMRI, BBNI, and BBTN. In addition to hyperparameter 

tuning to identify the best model configuration, this research 

compares predictive performance across the selected banks. 

The study contributes to the growing literature on deep 

learning-based financial forecasting and offers practical 

guidance for investors, market analysts, and policymakers. It 

also serves as a reference for technology developers seeking 

to build AI-based forecasting tools that are adaptive to 

dynamic market conditions and relevant to emerging 

financial markets. 

II. METHODS  

This section presents a systematic overview of the research 

stages, as illustrated in Figure 1, highlighting the 

methodological approach followed throughout the study. 

This study adopts a quantitative research design, utilizing 

advanced deep learning techniques, specifically the Long 

Short-Term Memory (LSTM) architecture, to forecast stock 

price movements within Indonesia’s banking sector. The 

methodological workflow is systematically illustrated 

through a process diagram, comprising key stages: data 

collection, cleansing and preprocessing, feature engineering, 

model development via hyperparameter optimization, and 

performance evaluation using a time series split cross-

validation strategy. 

 

 
Figure 1. Research Flow Diagram 

 

A. Data Collection 

This study utilizes daily stock price time series obtained 

from prominent publicly traded companies banking stocks 

listed on the Indonesia Stock Exchange (IDX) [17]. The 

analysis focuses on five major state-owned banks: PT Bank 

Central Asia Tbk (BBCA), PT Bank Rakyat Indonesia Tbk 

(BBRI), PT Bank Mandiri Tbk (BMRI), PT Bank Negara 

Indonesia Tbk (BBNI), and PT Bank Tabungan Negara Tbk 

(BBTN). Historical data were retrieved from Yahoo Finance 

using the yfinance Python library, covering the period from 

January 1, 2020, to September 1, 2025. The dataset includes 

daily OHLCV (Open, High, Low, Close, and Volume) values 

essential for capturing market dynamics. During the 

observation period, 6,670 equities were actively traded on the 

IDX, with the selected banking stocks serving as the primary 

objects of analysis.  

B. Data Preprocessing 

The data preprocessing procedure in this study comprises 

three primary stages: 

1) Data Cleansing: The dataset is carefully examined 

to detect and remove missing values and duplicate entries 

[18]. This step is critical to prevent distortions and biases that 

may compromise the accuracy and reliability of model 

training. 

2) Data Normalization: All numerical features are 

preprocessed through Min-Max normalization, effectively 

transforming the raw values into a normalized range between 

0 and 1, thereby preserving relative relationships while 

preventing the dominance of variables with larger 

magnitudes. This transformation facilitates faster 

convergence during model training and enhances 
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computational efficiency [19]. Normalization is performed 

using Eq. (1). 

X'=
X-Xmin

Xmax-Xmin

                                       (1) 

Where: 

X'= Normalized value 

X= Original value before normalization  

Xmin= Minimum value variable X 

Xmax= Maximum value variable X 

3) Time Series Transformation (Sliding Window): A 

sliding window approach is employed to model temporal 

dependencies within the historical dataset. This technique 

divides the time series into overlapping sequences of a 

predetermined length, enabling the model to extract insights 

from recent trends and forecast subsequent stock prices [7]. 

By organizing the input data in this manner, the LSTM model 

is able to effectively capture sequential patterns and short-

term market fluctuations [18]. 

C. Feature Engineering 

To achieve higher predictive fidelity and improve the 

generalization capacity of the model, a set of widely adopted 

technical indicators is integrated into the dataset during the 

feature engineering phase. These indicators include the 

Simple Moving Average (SMA), Exponential Moving 

Average (EMA), Relative Strength Index (RSI), Bollinger 

Bands (BB), and Moving Average Convergence Divergence 

(MACD) [20]. Each indicator reflects a specific dimension of 

market behavior, including trend direction, momentum, and 

volatility, thereby supplying the model with enhanced input 

features that facilitate learning of complex patterns in stock 

price dynamics. 

1) Simple Moving Average (SMA): In technical 

analysis, the SMA is a fundamental tool used to smooth short-

term volatility and reveal long-term price trends. It is 

computed by averaging a specified number of past closing 

prices over a defined time window, as shown in Equation (2). 

SMAt=
1

N
∑ Closei                                                  (2)

t

i=t-N+1

 

Where: 

SMAt= Moving average value at time -t 

N= Number of observation periods 

Closei= Closing price at time -i  

2) Exponential Moving Average (EMA): Building on 

the SMA, the EMA incorporates an exponential weighting 

mechanism that emphasizes recent observations. This 

approach enhances its sensitivity to rapid price movements, 

rendering it a useful tool for analyzing markets with 

significant short-term volatility. The calculation of the EMA 

is presented in Equation (3). 

EMAt=α⋅Closet+(1-α)⋅EMAt-1                                 (3) 

Where: 

α= Smoothing or weighting factor 

Closet= Closing price at period -t 
EMAt-1= EMA in the previous period 

3) Relative Strength Index (RSI): The Relative 

Strength Index (RSI) operates as a momentum oscillator 

designed to measure both the speed and amplitude of price 

fluctuations. By identifying periods when market conditions 

approach overbought or oversold thresholds, the RSI 

provides insights into potential price reversals and allows for 

assessment of the durability of prevailing market trends. The 

RSI is calculated using the formula presented in Equation (4). 

RSI=100-
100

1+RS
,    RS=

Average Gain

Average Loss
   (4) 

Where: 

Average Gain= Average price increase over 
Average Loss= Average price decrease over  

4) Bollinger Bands (BB): In technical analysis, 

Bollinger Bands (BB) are employed as volatility indicators, 

consisting of two bands plotted at a fixed distance from a 

central moving average. The upper band reflects the moving 

average plus a specified multiple of the standard deviation, 

whereas the lower band represents the equivalent deviation 

below. Such a configuration enables analysts to discern shifts 

in market volatility and to anticipate possible reversals or 

breakout events. The mathematical formulation of Bollinger 

Bands is presented in Eq. (5). 

UpperBandt=SMAt+k⋅σt,                        (5) 

LowerBandt=SMAt-k⋅σt 

Where: 

SMAt= Simple moving average at time t 
σt= Standard deviation of price at time t 
k= Factor applied to the standard deviation 

5) Moving Average Convergence Divergence 

(MACD): The MACD is a trend-following momentum 

indicator derived from the difference between two 

Exponential Moving Averages (EMAs) calculated over 

distinct timeframes, typically a short-term and a long-term 

period. To enhance its interpretability, a Signal Line, defined 

as the exponential moving average (EMA) of the MACD 

values, is employed to detect potential trend reversals and to 

validate shifts in market momentum. The mathematical 

formulation of MACD and its Signal Line is presented in 

Equation (6). 

MACDt=EMAshort(t)-EMAlong(t)            (6) 

Where: 

EMAshort= Exponential moving average short period 

EMAlong= Exponential moving average long period 
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D. Time Series Split Cross-Validation 

In recognition of the sequential dependencies that 

characterize financial market data, this study employs Time 

Series Split Cross-Validation (TSCV). Unlike conventional 

k-fold cross-validation, TSCV preserves the temporal order 

of observations, making it particularly suitable for time-

dependent datasets. In this approach, the data is partitioned 

chronologically, This approach ensures that training is 

conducted on earlier segments of the series and validation on 

later portions, thereby strengthening the model’s capacity to 

learn temporal dependencies and yielding a more rigorous 

and realistic assessment of its predictive performance [21]. 

E. Long Short-Term Memory Modeling 

The predictive framework uses a sequential deep learning 

architecture comprising two stacked LSTM layersThe 

architecture specifies the number of hidden units per LSTM 

layer to optimize the extraction of temporal relationships 

within financial time series. Furthermore, dropout 

regularization is incorporated between layers to minimize 

overfitting tendencies and enhance the model’s 

generalization performance. The final output is generated 

through a fully connected dense layer, transforming the 

learned temporal representations into the target prediction. 

 

 
Figure 2. LSTM Model Architecture 

 

The model processes normalized historical stock price data 

structured within a predefined lookback window. Input 

sequences are initially passed through an LSTM layer, 

followed by dropout regularization to address overfitting. It 

is succeeded by a second LSTM layer and an additional 

dropout layer, enhancing the model’s generalization 

capability. The final output is produced through a fully 

connected dense layer with a single neuron responsible for 

generating the predicted stock price. Model training uses the 

Adam optimization algorithm, with MSE as the loss function 

to evaluate regression performance [6]. 

F. Hyperparameter Optimization 

The process of selecting and fine-tuning hyperparameters 

is fundamental to enhancing the performance of an LSTM 

model, as these parameters govern both the learning behavior 

and the predictive capability of the network. In this study, 

particular attention is directed toward optimizing critical 

hyperparameters including the number of LSTM units, the 

lookback window length, the dropout rate, the batch size, and 

the total number of training epochs. Systematic 

experimentation and validation are conducted to identify the 

optimal configuration that yields the most robust and 

generalizable predictive outcomes [22]. 

1) Number of LSTM Units: The number of LSTM 

units, defined as the hidden neurons within each layer, 

governs the model’s capacity to capture temporal dynamics. 

Although increasing the units allows the network to learn 

more complex structures, it may also induce overfitting. To 

balance accuracy with generalization, this study employs a 

data-driven approach to hyperparameter tuning instead of 

predetermined settings. 

2) Lookback Window Length: The lookback window 

length defines the span of historical data the model utilizes to 

generate future price predictions. It is critical to select an 

appropriate window size, as it influences the model’s ability 

to capture relevant temporal patterns. A longer window may 

incorporate broader market trends, but risks diluting short-

term signals and increasing computational overhead due to 

redundant information. Conversely, a shorter window may 

enhance responsiveness to recent fluctuations but potentially 

overlook meaningful long-term dependencies. Therefore, this 

study emphasizes a balanced configuration to ensure 

predictive precision and computational efficiency. 

3) Dropout Rate: Dropout is a regularization method 

employed to mitigate overfitting in neural network training. 

During each iteration, a specified fraction of neurons is 

randomly deactivated according to a predetermined 

probability, which serves to reduce co-adaptation among 

network units and promote more robust feature learning. The 

adopted mechanism encourages the model to learn varied and 

stable feature encodings rather than depending on a limited 

set of pathways. This reduction in pathway-specific reliance 

mitigates overfitting and leads to demonstrably better 

generalization when evaluated on out-of-sample data. The 

dropout rate must be carefully tuned to balance model 

complexity and predictive stability. 

4) Batch Size: Refers to the quantity of training 

instances employed to fit the model propagated through the 

network during each feedforward and backpropagation cycle. 

Smaller batch sizes introduce higher gradient variance, 

enabling the model to adapt more rapidly to fluctuations in 

the data, which may be beneficial in volatile environments. 

However, larger batch sizes tend to produce more stable and 

consistent gradient updates, improving convergence 

reliability at the cost of increased computational demand. 

This study explores a range of batch sizes to identify an 

optimal trade-off between training stability and 

responsiveness. 

5) Number of Epochs: In machine learning contexts, an 

epoch denotes a full traversal of the training dataset, typically 

segmented into batches to support iterative parameter 

updates. An inadequate epoch configuration can result in 

underfitting, indicating insufficient learning of data 

regularities, whereas an excessive number may lead to 

overfitting, whereby the model achieves high training 

accuracy but performs inadequately on unseen data. 
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Consequently, the choice of epoch number should be 

optimized with reference to convergence dynamics, 

commonly observed through validation loss trajectories 

across training cycles. 

G. Model Performance Evaluation 

The proposed model's performance is assessed using a 

comprehensive set of error metrics commonly employed in 

time-series forecasting. These include Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), Coefficient of Determination (R²), and Mean 

Absolute Percentage Error (MAPE). Each metric provides a 

distinct perspective on the model's predictive accuracy, 

robustness, and generalization capability, thereby enabling a 

multidimensional evaluation of its effectiveness in 

forecasting stock price movements [9]. 

1) Mean Squared Error (MSE): The Mean Squared 

Error (MSE) serves as a fundamental criterion in regression 

modeling, calculated as the average of squared deviations 

between predicted outputs and observed data. Its formulation 

disproportionately penalizes larger errors, thus ensuring that 

significant deviations are emphasized in the evaluation 

process. Models with lower MSE values are generally 

regarded as demonstrating stronger accuracy and 

generalization ability  [23], as shown in Eq. (7). 

MSE=
1

n
∑(y

i
-y

î
)

2

n

i=1

                                      (7) 

Where: 

γ
i
 = Observed value for the i-th observation 

γ̂
i
 = Predicted value for the i-th observation 

n= Total number of observations 

2) Root Mean Squared Error (RMSE): RMSE 

measures the square root of the average squared deviations 

between predicted and observed values, providing an 

indicator of prediction accuracy in the data’s original scale. 

Its primary advantage lies in its unit consistency with the 

target variable, facilitating intuitive interpretation, 

particularly in financial forecasting contexts such as stock 

price prediction. A lower RMSE value reflects higher 

predictive accuracy and indicates that the model’s outputs 

closely approximate the observed data [23], as shown in Eq. 

(8). 

RMSE=√
1

n
∑(y

i
-ŷ

i
)

2

i=1

             (8) 

Where: 

γ
i
 = Observed value for the i-th observation 

γ̂
i
 = Predicted value for the i-th observation 

n= Total number of observations 

3) Mean Absolute Error (MAE): MAE represents the 

mean of the absolute differences between predicted and actual 

values, providing a direction-independent assessment of 

prediction error. Unlike metrics that square deviations, MAE 

is less sensitive to extreme outliers, providing a robust 

assessment of overall predictive accuracy. Lower MAE values 

reflect improved model precision and greater consistency in 

forecasting performance [23], as formulated in Eq. (9). 

MAE=
1

n
∑|y

i
-ŷ

i
|

n

i=1

              (9) 

Where: 

γ
i
 = Observed value for the i-th observation 

γ̂
i
 = Predicted value for the i-th observation 

n= Total number of observations 

4) Coefficient of Determination (R2): The R2 score 

quantifies the extent to which the variability in the observed 

data can be accounted for by the model’s predictions. It 

indicates the model’s explanatory power, with values ranging 

from 0 to 1. An R2 coefficient approaching unity denotes a 

pronounced alignment between model predictions and 

empirical observations, thereby evidencing the model’s 

efficacy in capturing and explaining the intrinsic variability 

and structure of the dataset. This metric is beneficial for 

assessing goodness-of-fit in regression tasks [23], as 

formulated in Eq. (10). 

.R2=1-
∑ (yi-ŷi)

2n

i=1

∑ (yi-y̅)
2n

i=1

                                (10) 

Where: 

γ
i
 = Observed value for the i-th observation 

γ̂
i
 = Predicted value for the i-th observation 

n= Total number of observations 

5) Mean Absolute Percentage Error (MAPE): 

Expressed in percentage form, this metric provides a scale-

free evaluation of forecasting error, making it highly 

interpretable across diverse contexts. It is obtained by 

computing the average of the absolute differences between 

predicted and observed values, subsequently normalized by 

the corresponding actual observations. As such, it facilitates 

robust comparisons of predictive accuracy across datasets 

that differ in units or magnitude. A lower MAPE value 

reflects superior predictive performance, while higher values 

indicate greater divergence between model outputs and 

observed data [23], as formulated in Eq. (11). 

MAPE=
1

n
∑ |

γ
i
-γ̂

i

γ
i

|

n

i=1

×100%             (11) 

Where: 

γ
i
 = Observed value for the i-th observation 

γ̂
i
 = Predicted value for the i-th observation 

n= Total number of observations 
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III. RESULT AND DISCUSSION 

This section presents the empirical results derived from the 

processed dataset, which form the foundation for subsequent 

analysis and interpretation. The model’s predictive 

performance is assessed through previously defined 

evaluation metrics, allowing for a thorough and systematic 

appraisal of its forecasting accuracy. Comparative insights 

are drawn to highlight the effectiveness of the proposed 

architecture, and the implications of hyperparameter 

configurations are discussed in relation to forecasting 

accuracy, generalization, and computational efficiency. 

To ensure the robustness of the proposed predictive 

framework, the methodological design was deliberately 

structured to capture variations observed during both stable 

and volatile market environments. The dataset utilized spans 

several consecutive years of trading observations, notably 

including the COVID-19 period (2020), which represented a 

phase of substantial market turbulence and irregular 

behavior. Although the research did not implement a 

separate, predefined stress-testing mechanism, the inclusion 

of data from such unstable intervals effectively allowed the 

model to learn and generalize from diverse market dynamics. 

In addition, the application of Time-Series Cross-Validation 

(TSCV) provided a systematic approach for assessing model 

performance across different temporal partitions, thereby 

reinforcing the model’s robustness against abrupt structural 

and behavioral shifts within financial markets. Looking 

ahead, future studies may refine this approach by 

incorporating dedicated stress-testing analyses under specific 

macroeconomic or sectoral disruptions, such as monetary 

tightening episodes or sudden liquidity shocks, to further 

evaluate the model’s resilience and adaptive capacity. 

A. Dataset Description 

This study utilizes historical stock price data from five 

major Indonesian banking institutions, BBCA, BBRI, BMRI, 

BBNI and BBTN from January 1, 2020, to September, 2025.  

The selection of BBCA, BBRI, BMRI, BBNI, and BBTN 

was based on their economic significance and 

representativeness within Indonesia’s banking sector. These 

institutions are among the largest and most liquid constituents 

of the IDX Financials Index, accounting for a substantial 

share of market capitalization and trading activity. Their 

inclusion captures both systemic stability and market 

diversity, as they differ in terms of ownership structure, asset 

scale, and risk exposure, making them suitable benchmarks 

for comparative forecasting performance within the national 

financial market. 

B. Data Sanitization and Feature Development 

Before analysis, the raw dataset exhibited missing values 

and duplicate records, necessitating a rigorous data cleansing 

process. Subsequently, Feature engineering techniques were 

employed to improve the dataset’s ability to support accurate 

predictions. The input variables comprised standard OHLCV 

(Open, High, Low, Close, Volume) data augmented by a set 

of technical indicators, including the Simple Moving 

Average (SMA), Exponential Moving Average (EMA), 

Bollinger Bands, Relative Strength Index (RSI), Moving 

Average Convergence Divergence (MACD), and the MACD 

Signal Line. 

A sliding window technique was employed to capture 

temporal dependencies with a retrospective duration of 90 

days. This transformation yielded a final dataset of 1,244 

samples, each representing a 90-day sequence and 

encompassing 13 input features. Summary tables detailing 

the raw data characteristics for each bank are presented in the 

subsequent section to provide contextual grounding for 

model development and evaluation. 

As shown in Table I – Table V, the observation period for 

all five banking stocks was standardized to span from January 

2020 to September 2025, ensuring uniformity in the number 

of trading days across samples. Although minor 

discrepancies exist due to temporary market suspensions and 

variations in liquidity, these differences were statistically 

insignificant and did not affect the training consistency of the 

model. Consequently, each banks dataset contains 

approximately the same volume of daily records, allowing for 

a fair comparison of forecasting accuracy and model 

robustness across the selected institutions. 

TABLE I 

BBCA STOCK 

Date Open High Low Close Volume 

2020-

01-02 

00:00 

5825.27 5899.24 5812.23 5820.93 49,445,000 

2020-

01-03 

00:00 

5873.13 5916.64 5851.38 5916.64 47,755,500 

2020-

01-06 

00:00 

5847.02 5873.13 5820.93 5860.08 27,300,000 

TABLE II 

BBRI STOCK 

Date Open High Low Close Volume 

2020-

01-02 

00:00 

2954.13 2960.84 2927.27 2960.84 45,886,302 

2020-

01-03 

00:00 

2967.56 2980.99 2947.42 2967.56 91,189,705 

2020-

01-06 

00:00 

2927.27 2947.42 2900.42 2933.99 48,648,450 

 

The model’s performance was evaluated using a 5-fold 

TSCV strategy. This validation technique preserves the 

temporal structure of the dataset by ensuring that training is 

consistently performed on earlier observations, while testing 

is conducted on subsequent data points. Such chronological 

integrity is essential in time-series forecasting, as it prevents 
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data leakage and ensures that future information does not 

inadvertently influence the training process. Compared to 

conventional k-fold cross-validation, TSCV offers a more 

robust and realistic assessment of predictive performance in 

sequential data environments. 

TABLE III 

BMRI STOCK 

Date Open High Low Close Volume 

2020-

01-02 

00:00 

2772.93 2809.06 2763.90 2800.03 37,379,800 

2020-

01-03 

00:00 

2800.03 2827.12 2754.86 2790.99 70,294,600 

2020-

01-06 

00:00 

2763.90 2772.93 2718.73 2745.83 61,892,000 

TABLE IV 

BBNI STOCK 

Date Open High Low Close Volume 

2020-

01-02 

00:00 

3127.14 3127.14 3087.43 3087.43 18,602,600 

2020-

01-03 

00:00 

3097.36 3127.14 3037.80 3097.36 32,251,400 

2020-

01-06 

00:00 

3077.50 3077.50 3017.94 3027.87 26,249,200 

TABLE V 

BBTN STOCK 

Date Open High Low Close Volume 

2020-

01-02 

00:00 

3087.43 3127.14 3087.43 1631.68 6116029 

2020-

01-03 

00:00 

3097.36 3127.14 3037.80 1647.00 32,251,400 

2020-

01-06 

00:00 

3027.87 3077.50 3017.94 1631.68 26,249,200 

 

C.  Hyperparameter Optimization 

Prior to finalizing the model configuration, a Random 

Search approach was employed to identify optimal 

hyperparameter settings. This method enables efficient 

exploration of the hyperparameter space by randomly 

sampling combinations, thereby reducing computational 

burden compared to exhaustive grid search. The results 

indicated that LSTM unit sizes of [50, 100, 150] consistently 

yielded superior performance across validation folds, 

outperforming alternative configurations. Accordingly, this 

setup was adopted as the core architecture for subsequent 

experiments. The model design was carefully structured to 

establish a robust foundation for comparative analysis and 

performance benchmarking. 

D. Comparative Analysis  

This study employs an LSTM architecture combined with 

TSCV to evaluate the predictive performance across five 

major banking stocks listed on the Indonesia Stock Exchange 

(IDX): BBCA, BBRI, BMRI, BBNI, and BBTN. The TSCV 

framework ensures temporal integrity by validating the 

model across sequential data splits, thereby enhancing the 

reliability of performance assessment. The data splitting 

procedure in this study followed a fully sequential approach. 

Model training and validation were performed using Time 

Series Cross-Validation (TSCV) with expanding folds, 

ensuring that each fold respected the temporal ordering of the 

data. No random partitioning was used at any stage. After 

completing the TSCV process, a separate chronological 

holdout set was used solely for the final out-of-sample test to 

evaluate the model’s generalization performance. 

1) BBCA Stock 

 

 
Figure 3. BBCA Stock Chart 

 

Figure 3 illustrates the BBCA plot exhibits a clear upward 

trajectory across the 2020–2025 period, with comparatively 

mild intra-period fluctuations. The prediction line closely 

tracks the observed price series for most of the timeline, 

indicating that the model captures the stock’s dominant trend 

and short-term momentum with a high degree of visual 

fidelity. Only at a few sharp inflection points does the 

forecast diverge noticeably from the actual series, suggesting 

a limited lag in reacting to abrupt market moves but strong 

alignment for medium- to long-term behavior. 

The evaluation results presented in Table VI indicate that 

the BBCA prediction model exhibits a high level of 

consistency and reliability, as reflected by an average R² 

value of 0.9631. Although Fold 4 and Fold 5 show slightly 

lower R² scores compared to the other folds, the model 

overall maintains a commendable degree of accuracy, with a 

mean MAPE of 2.34%. Such a low error margin demonstrates 

the model’s robustness in capturing the underlying patterns 

of stock price movements. These findings suggest that the 

model performs effectively across varying data partitions, 

maintaining stability even under fluctuating market 

conditions. 
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TABLE VI 

BBCA FOLD EVALUATION 

Fold MSE RMSE MAE R² MAPE 

1 58,685.47 242.25 193.40 0.8312 0.02949 

2 48,941.63 221.23 182.42 0.8082 0.02428 

3 15,570.89 124.78 97.01 0.8466 0.01178 

4 68,098.28 260.96 220.21 0.7430 0.02304 

5 93,566.94 305.89 251.17 0.7624 0.02817 

Mean 56,972.64 238.69 188.84 0.9631 0.0234 

TABLE VII 

COMPARASION OF ACTUAL AND PREDICTED BBCA 

Date Actual Predicted Price Difference 

2021-05-07 5,761.67 5,757.83 3.85 

2021-05-10 5,779.68 5,767.46 12.22 

2021-05-11 5,833.70 5,776.96 56.73 

2021-05-17 5,851.70 5,791.03 60.68 

2021-05-18 5,752.67 5,806.30 -53.62 

 

As shown in Table VII, the predicted BBCA stock prices 

closely align with the actual values, indicating strong model 

performance. Most deviations remain relatively small, 

suggesting consistent accuracy in stable market conditions. 

Minor fluctuations, such as on May 17 and May 18, reflect 

the models sensitivity to short-term market movements. 

Overall, the model effectively tracks price trends with limited 

prediction error. 

TABLE VIII 

HOLDOUT (CHRONOLOGICAL) EVALUATION FOR BBCA 

MSE RMSE MAE R² MAPE 

87617.84 296.00 253.33 0.692 0.0288 

 

As shown in Table VIII, the holdout evaluation provides 

an assessment of the model’s performance on out-of-sample 

data, which was not used during training. The results indicate 

that the model successfully captures long-term price trends of 

BBCA, though prediction errors increase in periods of high 

volatility. An R² value of 0.692 suggests that approximately 

69.2% of the price variance is explained by the model. 

Moreover, a MAPE of 2.88% confirms a reasonably accurate 

predictive performance. 

In conclusion, the combination of TS-CV and holdout 

evaluations highlights the robustness of the LSTM model in 

forecasting BBCA stock prices, showing optimal 

performance for medium-term trends while demonstrating 

limited responsiveness to abrupt price spikes. 

Figure 4 illustrates the SHAP analysis reveals that the 

Signal, BB_upper, and   Low features exert the strongest 

influence on the BBCA stock price prediction model. 

As depicted in Figure 5, the historical closing price of 

BBRI has exhibited a steady upward trajectory accompanied 

by pronounced volatility in recent years. The right panel of 

the figure compares actual price movements and those 

predicted by the LSTM model, revealing that the model 

effectively captures the overarching trend. While 

discrepancies are observed during abrupt price surges or 

declines, the predicted curve generally aligns with the actual 

data. These findings suggest that the model demonstrates 

strong capability in modeling long-term temporal patterns, 

albeit with limited responsiveness to short-term fluctuations 

in stock prices. 

 

 
Figure 4. SHAP BBCA 

 

2) BBRI Stock 

 
Figure 5. BBRI Stock Chart  

 

TABLE IX 

BBRI FOLD EVALUATION 

Fold MSE RMSE MAE R² MAPE 

1 18,082.13 134.47 109.77 0.7553 0.0344 

2 12,761.97 112.97 87.98 0.6161 0.0234 

3 8,935.91 94.53 72.92 0.9315 0.0163 

4 55,817.10 236.26 201.25 0.7360 0.0420 

5 18,081.02 134.47 109.52 0.7382 0.0282 

Mean 22,735.62 150.78 116.29 0.9472 0.0289 

TABLE X 

COMPARASION OF ACTUAL AND PREDICTED BBRI 

Date Actual Predicted Price Difference 

2021-05-07 2,893.35 2,905.66 -12.31 

2021-05-10 2,893.35 2,889.17 4.18 

2021-05-11 2,850.49 2,872.97 -22.48 

2021-05-17 2,786.19 2,859.57 -73.39 

2021-05-18 2,786.19 2,848.27 -62.08 

 

As presented in Table IX, the BBRI model demonstrates 

fluctuating predictive performance across folds. The lowest 

errors are recorded in Fold 3, indicating strong model 

accuracy, while Fold 4 shows the highest error values, likely 

due to increased market volatility. Despite these variations, 

the model maintains a low mean MAPE of 2.89%, signifying 
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good overall predictive stability. Hence, the model is 

effective in capturing the general trend of BBRI’s stock 

prices across different time segments. 

BBRI stock yielded reliable forecast outcomes, as 

evidenced by the relatively low mean price difference 

reported in Table X. The model demonstrated strong 

capability in capturing short-term market movements, 

effectively aligning with transient fluctuations in the stock’s 

trajectory. However, compared to BBCA, the predictive 

outputs for BBRI exhibited greater volatility, indicating a 

higher degree of sensitivity to abrupt market changes. It 

suggests that while the model performs well in identifying 

immediate trends, its stability may vary depending on the 

underlying asset’s volatility profile. 

TABLE XI 

HOLDOUT (CHRONOLOGICAL) EVALUATION FOR BBRI 

MSE RMSE MAE R² MAPE 

14,826.57 121.76 96.80 0.6747 0.0253 

 

As shown in Table IX, the holdout evaluation for the BBRI 

model demonstrates satisfactory predictive accuracy. The 

model achieves an R² of 0.6747, indicating that it explains a 

substantial portion of the variance in actual stock prices. With 

an RMSE of 121.76 and a MAPE of 2.53%, the prediction 

errors remain relatively low. Overall, the model performs 

reliably in forecasting unseen (out-of-sample) data within 

acceptable error margins. 

 

 
Figure 6. SHAP BBRI 

 

Figure 6 illustrates the SHAP analysis for the BBRI stock 

prediction model indicates that the Open and Returns features 

have the highest impact on model performance. These 

variables significantly influence the prediction results, 

suggesting that the model heavily relies on recent price 

movements and daily opening prices. 

3) BMRI Stock 

As illustrated in Figure 7, the model’s predictions for 

BMRI exhibit a consistently stable trend, particularly during 

consolidation phases where price movements are gradual and 

range-bound. The LSTM architecture accurately captures 

these slow dynamics, aligning closely with actual price 

behavior. However, its responsiveness diminishes during 

abrupt upward shifts, indicating a lag in adapting to rapid 

market changes. It suggests that the model is better suited for 

forecasting steady price trajectories rather than reacting to 

short-term volatility. 

 

 
Figure 7. BMRI Stock Chart  

TABLE XII 

BMRI FOLD EVALUATION 

Fold MSE RMSE MAE R² MAPE 

1 11,390.45 106.73 87.34 0.8433 0.0325 

2 46,496.48 215.63 179.24 0.7184 0.0471 

3 26,117.50 161.61 133.36 0.8489 0.0280 

4 79,057.48 281.17 239.91 0.6578 0.0398 

5 78,551.25 280.27 230.28 0.7648 0.0468 

Mean 48,322.63 219.82 174.02 0.9681 0.0388 

 

Table XII indicates that BMRI demonstrates noticeable 

variation in predictive performance across the five folds. Fold 

1 shows solid accuracy with a MAPE of 3.25%, and Fold 3 

records the lowest error at 2.80%. In contrast, Fold 2 and Fold 

5 display higher error levels, with MAPE values of 4.71% 

and 4.68%, respectively. This variation suggests that 

although the model is capable of capturing BMRI’s overall 

price movement patterns, its sensitivity to differing market 

conditions remains evident. While the model performs well 

in tracking long-term trends, its ability to handle short-term 

fluctuations or periods of increased volatility appears less 

robust. 

TABLE XIII 

COMPARASION OF ACTUAL AND PREDICTED BMRI 

Date Actual Predicted Price Difference 

2021-05-07 2,335.32 2,376.20 -40.87 

2021-05-10 2,345.14 2,370.88 -25.74 

2021-05-11 2,315.70 2,366.94 -51.24 

2021-05-17 2,325.51 2,362.74 -37.23 

2021-05-18 2,315.70 2,359.69 -43.99 

 

Table XIII shows the prediction results for BMRI, 

highlighting the model’s relatively consistent performance 

during periods of price consolidation. Across the selected 

dates, the predicted values remain close to the actual prices, 

with only moderate deviations observed. This indicates that 

the model is capable of capturing gradual, stable movements 

in the market. However, when prices shift more abruptly, the 

gap between predicted and actual values tends to widen, 

reflecting the model’s reduced responsiveness to sudden 

market changes. While the LSTM architecture effectively 
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learns long-term temporal patterns, its ability to adapt to 

short-term volatility remains limited. 

TABLE XIV 

HOLDOUT (CHRONOLOGICAL) EVALUATION FOR BMRI 

MSE RMSE MAE R² MAPE 

99,896.04 316.06 265.50 0.4925 0.0545 

 

As shown in Table XIV, the BMRI model exhibits 

moderate predictive performance, with an R² value of 0.4925, 

indicating that nearly half of the price variance is explained 

by the model. The relatively high RMSE and MAPE (5.45%) 

suggest that prediction errors increase under volatile market 

conditions. Nonetheless, the model captures the general stock 

price direction adequately. 

 

 
Figure 8. SHAP BMRI 

 

As illustrated in Figure 8 the SHAP analysis for the BMRI 

stock prediction model shows that the Low, SMA_10, 

EMA_10, and Volume features have the highest influence on 

model performance. 

4) BBNI Stock 

 
Figure 9. BBNI Stock Chart  

 

Figure 9 overlays actual BBNI prices with model 

predictions, revealing generally strong correspondence 

between the two series. Minor deviations occur during 

periods of elevated volatility, yet predicted values 

consistently reflect the stocks directional movement. This 

observation, combined with the fold-wise evaluation metrics, 

suggests that the model can produce reliable forecasts under 

typical market conditions, albeit with reduced precision 

during extreme fluctuations. 

 

TABLE XV 

BBNI FOLD EVALUATION 

Fold MSE RMSE MAE R² MAPE 

1 11,202.48 105.84 81.30 0.9383 0.0316 

2 28,535.08 168.92 144.15 0.5499 0.0389 

3 6,152.37 78.44 59.97 0.8762 0.0148 

4 44,739.10 211.52 173.42 0.6478 0.0362 

5 40,080.94 200.20 156.07 0.6429 0.0378 

Mean 26,141.99 161.68 122.98 0.9610 0.0319 

 

Table XV indicates that BBNI’s predictive performance 

varies across folds, with error metrics showing a moderately 

wide range. Fold 3 demonstrates the highest accuracy, 

reflected by the lowest MAPE of 1.48% and the smallest 

RMSE of 78.44. In contrast, Folds 4 and 5 record higher error 

levels, with RMSE values exceeding 200 and MAPE values 

around 3.6–3.8%. Despite this variation, the model maintains 

generally stable performance, with mean MAPE remaining 

relatively low at 3.19%. These results suggest that while the 

model is capable of generating reliable forecasts for BBNI, 

its accuracy may still be influenced by fluctuations in market 

conditions, especially during periods of elevated volatility. 

TABLE XVI 

COMPARASION OF ACTUAL AND PREDICTED BBNI 

Date Actual Predicted Price Difference 

2021-05-07 2,308.60 2,333.32 -24.71 

2021-05-10 2,298.30 2,324.04 -25.74 

2021-05-11 2,277.68 2,313.08 -35.39 

2021-05-17 2,267.38 2,303.59 -36.21 

2021-05-18 2,246.77 2,300.44 -53.68 

 

Table XVI shows a strong alignment between the actual 

and predicted BBNI prices, with only moderate deviations 

observed across the selected dates. The predicted values 

consistently remain slightly above the actual prices, resulting 

in relatively small price differences that indicate stable model 

performance. While discrepancies may become more 

pronounced during periods of heightened market volatility, 

the LSTM model still succeeds in capturing the overall 

direction and underlying trend of the stock’s movement. The 

consistently low error metrics further support the model’s 

reliability in generating accurate forecasts under normal 

market conditions. 

TABLE XVII 

HOLDOUT (CHRONOLOGICAL) EVALUATION BBNI 

MSE RMSE MAE R² MAPE 

20,946.89 144.73 114.01 0.6438 0.0278 

 

As presented in Table XVII, the BBNI model achieves 

solid predictive accuracy with an R² of 0.6438, indicating 

strong explanatory power. The low MAPE (2.78%) reflects 

that the predicted prices closely align with actual values. This 

demonstrates the model’s reliability in capturing stock price 

movements with reasonable precision. 
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Figure 8. SHAP BBNI 

 

Figure 8 shows the SHAP analysis for the BBTN stock 

prediction model indicates that the Signal and Low features 

have the most significant impact on the model’s output. 

5) BBTN Stock 

 
Figure 9. BBTN Stock Chart  

 

Figure 9 presents the prediction outcomes for BBTN, 

which exhibit slightly lower accuracy than the other banking 

stocks analyzed in this study. This performance discrepancy 

is likely attributable to BBTN’s elevated volatility, which 

poses greater challenges for temporal modeling. Despite 

these limitations, the LSTM model successfully captures the 

overarching trend, indicating its capacity to generalize long-

term price movements even under unstable market 

conditions. 

Table XVIII shows that BBTN’s predictive performance 

varies across folds, with RMSE ranging from 31.10 to 55.84. 

Despite this variation, all MAPE values remain below 3.9%, 

indicating that the model maintains a satisfactory level of 

accuracy. Overall, the results suggest that the model reliably 

captures medium-term price movements, even amid shifts in 

market conditions. 

Table XIX shows that although noticeable gaps exist 

between the actual and predicted BBTN prices, the model 

still captures the overall trend. Larger deviations appear 

during more volatile periods, indicating reduced 

responsiveness to sudden price changes, yet the general 

trajectory remains accurately reflected. 

TABLE XVIII 

BBTN FOLD EVALUATION 

Fold MSE RMSE MAE R² MAPE 

1 3,118.34 55.84 45.78 0.8225 0.0386 

2 2,299.47 47.95 36.98 0.6620 0.0305 

3 966.96 31.10 23.73 0.4366 0.0209 

4 1,529.48 39.11 27.95 0.8081 0.0220 

5 1,455.71 38.15 30.09 0.9501 0.0279 

Mean 1,873.99 43.29 32.91 0.8773 0.0280 

TABLE XIX 

COMPARASION OF ACTUAL AND PREDICTED BBTN 

Date Actual Predicted Price Difference 

2021-05-07 1,239.76 1,272.75 -32.99 

2021-05-10 1,258.95 1,272.50 -13.55 

2021-05-11 1,251.28 1,273.00 -21.72 

2021-05-17 1,216.73 1,273.44 -56.71 

2021-05-18 1,209.06 1,269.83 -60.78 

TABLE XX 

HOLDOUT (CHRONOLOGICAL) EVALUATION BBTN 

MSE RMSE MAE R² MAPE 

1,397.41 37.38 28.88 0.9419 0.0274 

 

As indicated in Table XX, the BBTN model performs 

exceptionally well with an R² of 0.9419, meaning it explains 

over 94% of the variance in actual stock prices. The small 

error values (RMSE, MAE, and MAPE) confirm the model’s 

high precision and stability. Overall, this model provides the 

most accurate and consistent predictions among all evaluated 

datasets. 

 
Figure 10. SHAP BBTN  

 

Figure 10 the SHAP analysis for the BBTN stock 

prediction model shows that the Low, BB_lower, and 

EMA_10 features have the highest influence on the model’s 

predictions. 

The performance metrics in Table XXI confirm the strong 

forecasting capability of the LSTM model across all five 

banking stocks. With MAPE values consistently below 5%, 

the model demonstrates high predictive accuracy. BBCA and 

BMRI stand out with the highest R² scores above 0.96, 

reflecting the model’s strong ability to capture long-term 

price movements. Overall, the results indicate that the LSTM 

framework performs reliably in modeling stock price 

dynamics within the Indonesian banking sector. 
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TABLE XXI 

COMPARATIVE PERFORMANCE OF LSTM PREDICTIONS 

Stock MAE MAPE RMSE R² 

BBCA 188.84 2.34% 238.69 0.9631 

BBRI 116.29 2.89% 150.78 0.9472 

BMRI 174.02 3.88% 219.82 0.9681 

BBNI 122.98 3.19% 161.68 0.9610 

BBTN 32.91 2.80% 43.29 0.8773 

 

Table XXI shows positive results are also seen for BBRI 

and BBNI, though both exhibit slightly higher sensitivity to 

market fluctuations, indicating moderate exposure to 

volatility-related forecasting risk. In comparison, BBTN 

poses a greater modeling challenge due to its more 

pronounced price variability, reflected in the lower R² value 

of 0.8773. 

The variation in predictive accuracy observed among the 

five banking stocks is closely linked to differences in their 

fundamental economic and market characteristics. Banks 

with larger capitalization, such as BBCA and BBRI, typically 

exhibit higher liquidity levels and more consistent trading 

activity, resulting in smoother price movements that the 

model can learn with greater precision. In contrast, institutions 

like BBTN, which operate with relatively lower liquidity and 

higher volatility, present more irregular price dynamics that 

challenge the model’s forecasting stability. This pattern aligns 

with established evidence in financial econometrics, where 

asset liquidity, volatility, and capitalization are recognized as 

key determinants of price predictability. Accordingly, the 

observed disparities in accuracy should not be viewed as 

methodological shortcomings but rather as reflections of the 

inherent heterogeneity and structural diversity within 

Indonesia’s banking market. 

These findings underscore the critical role of price stability 

in enhancing model reliability. The LSTM architecture 

demonstrates superior capability in learning long-term 

sequential patterns, while its responsiveness to short-term 

stochastic changes remains limited. Nonetheless, the model’s 

ability to preserve temporal dependencies offers practical 

value for investors and financial analysts, providing a robust 

framework for informed and strategically conservative 

investment decision-making. 

In addition to delivering strong predictive accuracy, the 

LSTM–TSCV model also offers concise financial insights. 

The SHAP analyses indicate that price-based features such as 

Low, trading volume, and trend indicators including SMA, 

EMA, and Bollinger Bands play the most influential roles in 

shaping forecast outcomes, particularly for BBCA and BBRI. 

The operational results show that BUY signals appear when 

the predicted price exceeds the current market value, while 

SELL signals occur when the model anticipates limited or 

negative movement, as seen for BBTN. These patterns are 

consistent with core principles of technical and behavioral 

finance, underscoring the importance of liquidity, trend 

strength, and investor trading behavior in short-term price 

dynamics. 

TABLE XXII 

OPERATIONAL IMPLEMENTATION RESULTS BASED ON LSTM FORECASTS 

Bank Current 

Price 

Predicted 

Price 

Expected 

Change 

(%) 

Result 

BBCA 8075.00 8650.90 7.13 BUY 

BBRI 4050.00 4182.65 3.28 BUY 

BMRI 4730.00 4950.75 4.67 BUY 

BBNI 4380.00 4515.98 3.10 BUY 

BBTN 1300.00 1299.34 -0.05 SELL 

 

The operational application of the LSTM–TSCV model is 

shown in Table XXII. The table provides an overview of how 

the model’s prediction results can be used for stock trading 

recommendations by comparing the latest actual prices with 

the predicted values. The Expected Change (%) indicates the 

percentage difference between the prices and serves as the 

basis for determining trading actions. A positive percentage 

indicates a potential price increase, corresponding to a BUY 

signal, while a negative percentage suggests a possible 

decline, resulting in a SELL recommendation. 

In this analysis, the model indicates potential price growth 

for BBCA, BBRI, BMRI, and BBNI, resulting in BUY 

signals. In contrast, BBTN shows a minor decrease and is 

categorized as a SELL. These findings demonstrate that the 

developed model can be operationalized within a stock 

recommendation or decision-support dashboard, providing 

investors and analysts with quantitative insights for informed 

short-term trading decisions. 

TABLE XXIII 

BASELINE COMPARASION XGBOOST 

Bank MAE RMSE MAPE R² 

BBCA 586.0 791.2 6.12% -0.7022 

BBRI 126.4 202.7 2.69% 0.8474 

BMRI 925.6 1112.0 16.08% -2.0281 

BBNI 366.9 507.0 7.64% -0.4354 

BBTN 17.4 23.9 1.51% 0.9698 

 

To establish a non-sequential baseline, XGBoost was 

implemented using the same feature set and sliding-window 

configuration as the proposed LSTM–TSCV model. As 

shown in Table XXIII, XGBoost delivered competitive 

performance for BBRI and BBTN, achieving high R² values 

of 0.8474 and 0.9698, respectively. However, its 

performance deteriorated sharply for BBCA, BMRI, and 

BBNI, where the R² values were negative, indicating that the 

model performed worse than a simple mean predictor. These 

results highlight the limitations of tree-based models in 

capturing temporal dependencies and complex nonlinear 

patterns in stock price movements. Consequently, the 

findings reinforce the suitability of the LSTM–TSCV 



JAIC e-ISSN: 2548-6861   

 

Optimized LSTM with TSCV for Forecasting Indonesian Bank Stocks 

(Rizka Mars Salsabila, Amiq Fahmi, Farrikh Al Zami) 

3587 

approach, which provides more stable and accurate 

predictions across all five banking stocks. 

 

IV. CONCLUSION 

This study investigated the forecasting of stock price 

movements in the highly volatile Indonesian banking sector 

using LSTM networks, enhanced through hyperparameter 

optimization and TSCV. The empirical findings confirm that 

LSTM models effectively capture long-term dependencies 

within sequential financial data, yielding reliable and 

interpretable predictions. 

BBCA and BMRI exhibited the most stable performance 

among the evaluated stocks, with R² values exceeding 0.95 

and consistently low error rates. BBCA, in particular, 

achieved the lowest MAPE of 2.34%, highlighting the 

model’s precision in tracking long-term price trajectories. 

Although the model encountered challenges during periods 

of extreme volatility, it maintained robust accuracy across 

most conditions, reinforcing its potential as a dependable 

forecasting framework. 

Overall, the study successfully validated the applicability 

of LSTM for predicting Indonesian banking stock prices, 

emphasizing the importance of hyperparameter tuning and 

TSCV in ensuring methodological rigor. The findings 

theoretically and practically support investors, market 

analysts, and policymakers in making data-driven decisions 

while enriching the knowledge in AI-driven financial 

forecasting. Furthermore, the study establishes a foundation 

for future improvements in predictive modeling, particularly 

in enhancing responsiveness to short-term market 

fluctuations and volatility. 
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