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The broiler duck farming industry in Indonesia faces challenges in efficiently
monitoring body weight, as traditional manual weighing methods are labor-
intensive, time-consuming, and stressful for the animals. To address this issue, this
study aims to develop a non-invasive and automated weight estimation system that
integrates digital image processing, machine learning, and Internet of Things (loT)
technologies. The methodology involves acquiring multi-angle images of ducks,
applying preprocessing steps such as resizing, normalization, and contrast
enhancement, and extracting hand-crafted features, including Histogram of Oriented
Gradients (HOG) and HSV color histograms. These features are then fused, reduced
via Principal Component Analysis (PCA), and processed using a Support Vector
Regression (SVR) model with optimized hyperparameters for weight prediction.
While previous studies have focused on cattle, broilers, or fish, research specifically
targeting meat-type ducks remains limited, particularly those that combine image-
based regression with loT-enabled real-time monitoring. Experimental results
demonstrate that the proposed system achieves a mean absolute error (MAE) of
approximately 110 grams on the validation set, with per-duck averaging improving
stability compared to per-image predictions. Visualization through scatter plots,
boxplots, and learning curves further confirms that the model effectively captures
general weight distribution trends but exhibits higher errors in certain mid-weight
ranges. The integration with IoT facilitates continuous, stress-free monitoring of
duck growth, underscoring the system’s potential as a practical and sustainable
solution for precision livestock farming.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

This research focuses on the broiler duck farming industry,
which holds significant potential for Indonesia's economy. As
the demand for high-quality duck meat increases, farmers face
challenges in efficiently monitoring the growth and weight of
the ducks. Manual weighing is time-consuming, labor-
intensive, and can cause stress to the animals[1]. As a
solution, technologies such as digital image processing and
machine learning offer non-invasive and real-time methods
for weight estimation [2][3]. thereby providing more accurate
data [4][5][6]. Furthermore, the integration of the Internet of
Things (loT) enables centralized sensor data collection to
support better decision-making [7][8][9][10]. Current

approaches to animal weight estimation include the use of
digital image processing to accurately detect patterns and
body sizes of the animals, the application of machine learning
techniques such as regression to process visual data for more
precise weight predictions, and the integration of loT that
allows for real-time data collection through sensors in the
farming environment; all of these technologies are then
combined into an integrated monitoring system that provides
accurate and up-to-date information to support farmers'
decision-making more effectively.

Research conducted in the past five years addressing image
detection using image processing, machine learning, and loT
integration includes: Study [11] employs Sobel edge detection
to predict the weight of oil palm fruits from photographs
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without scales, while study [12] estimates body weight from
images using the BSA method based on height and
circumference. Study [13] applies Canny Edge Detection and
KNN for cattle weight prediction, and study[14] proposes a
model based on 3D cloud projection and image regression
using deep learning. Study [15] utilizes Sobel edge detection
and the Schrool formula to calculate cattle weight from
images. Study [16] develops a prediction system for fruit
weight and price using pixel count and regression. Study [17]
employs CT scan images with deep learning for weight
estimation without direct measurement. Study [18] employs
CT scan images with deep learning for weight estimation
without direct measurement. Study [19] develops an Android-
based system for predicting cattle weight using Canny edge
detection and the Schrool formula. Study [20] compares seven
machine learning algorithms (SLR, MLR, RF, SVR, LR, RR,
EN) for predicting soybean seed weight from RGB visual
features. Study [21] detects formalin in chicken meat using
image processing with GLCM and KNN. Study [22] uses
YOLOvV3 and polynomial regression to monitor the growth
and predict the weight of lettuce plants. Study [23] creates a
prediction system for the weight and length of fish and
vegetables in the budikdamber system using computer vision
and linear regression from image features.

Research [24] employs sharpening filters and Mask R-
CNN segmentation to extract images of Ongole cattle, which
are then trained using CNN regression for weight estimation.
In contrast, research [25] utilizes walk-over (WO) weight data
from two farms in Queensland, Australia, to train an XGBoost
model, with inputs including sex, breed (Belmont Red,
Brahman, Composite, and unknown), simulation duration,
birth date, and weather conditions, producing daily weight
predictions as output. Research[26] develops a Deep Learning
and loT-based system for the automatic classification and
real-time monitoring of eight fish species in Bangladesh.
Research [27] examines the concept and application of 10T in
Precision Livestock Farming (PLF) to monitor livestock
behavior, nutrition, estrous cycles, and diseases in real-time.
Research [28] employs YOLOvV5 and image processing to
detect weighing scales and calculate the harvest weight of rice
from 709 images. Research [29] develops a method for
detecting egg-laying activity in ducks using wearable sensors
and short-time Fourier transform (STFT)-based time-
frequency representation. Research [30] creates a camera-
based broiler chicken weighing method with YOLOV8
segmentation to reliably predict weight in complex
environments.

The objective of this research is to develop a system based
on image processing, machine learning, and loT to enhance
the efficiency of monitoring and managing the weight of
broiler ducks, thereby supporting modern and sustainable
farming practices. Most previous studies have focused on
estimating the body weight of other livestock such as cattle,
broilers, or fish using image processing, regression, or deep
learning approaches. However, research specifically targeting
meat-type ducks remains very limited, particularly those that

integrate multi-angle image processing, machine learning,
and loT into a single automated system. Moreover, existing
methods often do not address the practical needs of
Indonesian farming conditions, where efficiency, accuracy,
and animal welfare (minimizing stress during weighing) are
critical but underexplored.

The novelty of this study lies in the development of a non-
invasive body weight estimation system specifically designed
for meat-type ducks, which have received limited attention
compared to other livestock. By integrating multi-angle
digital image processing with machine learning, the proposed
method enhances prediction accuracy beyond that of
conventional regression-based approaches. Furthermore, the
incorporation of Internet of Things (10T) technology enables
real-time monitoring and direct accessibility of weight
estimation results, making the system more efficient and
practical for farmers. To the best of our knowledge, this is one
of the first studies to propose an image-based, loT-enabled
weight estimation framework for broiler ducks using hand-
crafted features and Support Vector Regression (SVR),
providing a computationally efficient alternative to data-
intensive deep learning models.

The objective of this study is to develop a proof-of-concept
prototype for non-invasive broiler duck weight estimation
based on image processing, machine learning, and loT
integration. The proposed system is designed to validate the
technical feasibility of the approach under controlled
conditions rather than to provide a fully industrial-ready
solution.

Il. METHOD

This section outlines the methodology adopted in this study
for developing a non-invasive body weight estimation system
for broiler ducks. The proposed framework integrates digital
image processing, machine learning, and Internet of Things
(1o0T) technologies to facilitate accurate, efficient, and real-
time monitoring. The methodology consists of several stages,
namely: (A) research framework, (B) data acquisition, (C)
image preprocessing and feature extraction, (D) hand-crafted
feature extraction with Support Vector Regression (SVR), (E)
model evaluation, and (F) loT integration for real-time
deployment. The developed system represents a prototype-
level implementation, consisting of a measurement chamber,
loT-based image acquisition, and SVR-based weight
estimation. The system is intended for experimental
validation and performance evaluation in a limited and
controlled environment.

A. Research Framework

The overall research framework was designed to simulate
a real-world environment for estimating duck weights using
computer vision and machine learning techniques. The
process begins with the collection of images of ducks,
followed by preprocessing and feature extraction. The overall
research framework is illustrated in Figure 1 and consists of
six main stages: (A) Research Framework, (B) Data
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Acquisition, (C) Image Preprocessing and Feature Extraction,
(D) Hand-Crafted Features and Support Vector Regression
(SVR), (E) Model Evaluation, and (F) Internet of Things
(1oT) Integration.

A. Research Framework
(cdefine goals & approach)

B. Data Acquisition
(image capture + weight labels)

A 4

C. Image Preprocessing &
Feature Extraction
(resize, normalize, contrast;
HOG+HSV or CNN features)

A J

D. Hand-Crafted Features + SVR
(HOG+HSY — PCA — SVR)

|

E. Model Evaluation
(MAE, RMSE, R"2,

error analysis, parity)

'

F. loT Integration
(deploy to server/cloud,
real-time monitoring)

Figure 1. Research framework of the proposed method

B. Data Acquisition

The image acquisition was conducted in a semi-modern
closed poultry house (size 60x60x60 cm) with artificial
lighting of 300-500 lux. The subjects of the study consisted
of broiler ducks aged 3-8 weeks. Each duck was
photographed from two angles (top and side) using a 1080p
camera at a distance of 50 cm. The dataset comprised 678
annotated images of ducks, each accompanied by ground-
truth weights provided in grams. Each filename contained
weight information (e.g., itikl0_caml1 848gr.jpg). The
images were captured from multiple angles, specifically top
and side views, to enhance feature representation. The dataset
included a range of weight variations from light to heavy
ducks, ensuring diversity in workload representation. To
prevent bias and data leakage, the dataset was divided into
training and validation sets based on duck ID using grouped
cross-validation. The actual weight was measured using a
digital scale with an accuracy of £1 gram. Weighing was
conducted every two days prior to image acquisition to ensure
consistency between the labels and the visual conditions.

The dataset in this study was collected from a single growth
phase (3-8 weeks), resulting in the model being primarily
trained during the rapid growth phase. To generalize to

younger phases (<3 weeks) or to breeders/adults (>8 weeks),
additional samples and model retraining will be necessary.

C. Image Preprocessing and Feature Extraction

Preprocessing was conducted to standardize the image
input as follows:

1. Resizing: All images were resized to 192x192 pixels
to enhance computational efficiency.

2. Normalization: Pixel intensities were normalized to a
range of [0, 1].

3. Contrast  Enhancement:  Adaptive  histogram
equalization was utilized to improve local contrast.

4. Feature Extraction Options:

e Hand-crafted Features: Histogram of Oriented
Gradients (HOG) was employed for texture and
edge representation, along with HSV color
histograms to capture color distribution.

o Deep Features: SmallConvNet automatically
learned hierarchical features from the input
images.

D. Hand-Crafted Features and SVR

For the classical machine learning approach, the following
steps were implemented:

1. HOG Features: Gradient magnitudes and orientations
were computed and aggregated into orientation
histograms for each cell, which were then normalized
at the block level.

HSV Color Histograms: Per-channel histograms for
Hue, Saturation, and Value were concatenated and
normalized.

3. Feature Fusion and Standardization: The HOG and
HSV features were concatenated into a single vector
and standardized to have a zero mean and unit
variance.

4. Dimensionality  Reduction  (PCA):  Principal
Component Analysis was employed to retain 95% of
the variance, thereby reducing redundancy and
computational requirements.

5. Regression with SVR: A Support Vector Regression
(SVR) model with aradial basis function (RBF) kernel
was applied. Hyperparameters CC, yy, and ec were
tuned using grouped cross-validation. Predictions
were generated at both the image and duck levels by
averaging the per-duck predictions.

The architecture of the proposed hand-crafted feature
extraction and regression approach is illustrated in Figure 2.
The process begins with preprocessing, followed by the
extraction of Histogram of Oriented Gradients (HOG) and
HSV features. These features are then concatenated, and
dimensionality reduction is performed using Principal
Component Analysis (PCA), culminating in Support Vector
Regression (SVR) to estimate the duck's weight.

The Support Vector Regression (SVR) algorithm with an
RBF kernel was chosen due to the relatively small size of the
dataset (678 images from 67 ducks), making a pure deep
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learning model susceptible to overfitting and requiring higher
computational resources. SVR is also well-suited to be
combined with standardized features derived from HOG and
HSV extraction and is capable of handling the nonlinear
relationships between visual features and duck weight.
Alternative models such as Random Forest or XGBoost could
be used for comparison; however, both tend to produce larger
models and require additional feature engineering to maintain
generalization on multi-angle image data.

| Input Image |

Y

Preprocessing
(Resize, Normalize,
Contrast)

HOG Features HSV Color Histogram
(Ecdlges, Texture) (Color Distribution)

/

Feature Concatenation
(HOG + H5V)

Y
Dimensionality Reduction
(PCA)

Y
SVR Regression
(RBF Kernel)

Y
Predicted VWeight
(grams)

Figure 2. Architecture of the proposed Hand-Crafted Features and SVR
pipeline for duck weight estimation.

E. Model Evaluation

The models were evaluated using standard regression
metrics:

1. Mean Absolute Error (MAE): This metric measures

the average magnitude of errors in grams.

2. Root Mean Square Error (RMSE): This metric
penalizes larger deviations from the true values.

3. Coefficient of Determination (R?): This statistic
indicates how well the predictions explain the variance
in the true weights.

Additionally, an analysis of error distribution (across
different weight ranges) and parity plots were utilized to
visualize predictive accuracy. Learning curves were also
examined to assess the impact of dataset size on model
performance. Model validation was conducted using Group
K-Fold Cross-Validation with five folds, where grouping was
based on duck identity. This approach ensures that all images
from the same duck are assigned to either the training or

validation set within a given fold, thereby preventing data
leakage and providing a more reliable estimation of
generalization performance,

F. 10T Integration

For deployment, the final model was integrated into an
Internet of Things (loT) architecture. Images captured by
cameras installed in duck cages were transmitted to a central
server or cloud platform. The trained Support Vector
Regression (SVR) model performed real-time inference to
estimate duck weights, with the results stored in a database.
This integration enables farmers to continuously monitor
weight growth without the need for manual weighing. The
system can be further enhanced with dashboards and alert
mechanisms to support decision-making in livestock
management. The system was tested in offline mode, while
the 10T integration was tested in a limited capacity to transmit
prediction results to a local server via a Wi-Fi connection.

The 10T node not only transmits the weight estimation
results to the server but also automates the image acquisition
process through a periodically scheduled camera (e.g., every
30 minutes). The acquired images will be processed locally or
sent to the server for estimation, and the results will
subsequently be stored in a database.

I11. RESULTS AND DISCUSSION

This section presents the experimental results of the
proposed duck weight estimation system and provides an in-
depth discussion of the findings. The results encompass the
performance evaluation of the Support Vector Regression
(SVR) model using various regression metrics, the
implementation of the loT-based monitoring system, and a
comparative analysis against conventional approaches. The
discussion highlights the effectiveness, advantages, and
limitations of the proposed method in facilitating real-time,
non-invasive monitoring for broiler duck farming.

A. Experimental Setup and Model Training

The experimental setup was designed to evaluate the
effectiveness of the proposed non-invasive weight estimation
system for ducks. A dataset consisting of 678 images from 67
ducks, with weights ranging from approximately 600 g to
1700 g, was utilized. Of the total 678 images (67 individual
ducks), 80% were used for training and 20% for testing, with
the division based on duck ID to prevent data leakage between
sets. The images were pre-processed using techniques such as
resizing, normalization, and contrast enhancement.
Handcrafted features were extracted using Histogram of
Oriented Gradients (HOG) to capture edge and texture
information, along with HSV color histograms to represent
brightness and color distribution. The combined features were
then subjected to dimensionality reduction using Principal
Component Analysis (PCA), followed by regression
modeling using Support Vector Regression (SVR) with a
radial basis function (RBF) kernel. A grouped validation
strategy was adopted to account for the multi-image-per-duck
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dataset structure. In each fold, approximately 80% of the duck
identities were used for training and the remaining 20% for
validation.

B. Model Performance Evaluation

The performance of the proposed duck weight estimation
system was evaluated using three regression metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and the coefficient of determination (R?). Table 1 and Figure
3 summarize the results for both the training and validation
datasets, considering evaluations on a per-image and per-duck
basis.

During the training phase, the model achieved notably low
error values, with a MAE of 14.84 grams (per image) and
12.61 grams (per duck), alongside RMSE values of 35.14
grams and 32.73 grams, respectively. The R? values were
exceptionally high, ranging from 0.969 to 0.973, indicating
that the model was able to explain nearly all the variance in
the training data. These results demonstrate that the Support
Vector Regression (SVR) model, utilizing Histogram of
Oriented Gradients (HOG) and Hue-Saturation-Value (HSV)
features, effectively captured the underlying patterns within
the training set.

However, during the validation phase, the model's
performance decreased significantly. The MAE increased to
117.75 grams (per image) and 111.74 grams (per duck), while
the RMSE reached 147.89 grams and 140.07 grams,
respectively. Similarly, the Rz values dropped considerably to
between 0.26 and 0.32, suggesting that the model could
explain only about 26% to 32% of the variance in unseen data.
This discrepancy between training and validation
performance indicates a potential overfitting issue, whereby
the model generalizes poorly to new samples.

It is also noteworthy that the per-duck evaluation
consistently yielded slightly better results compared to the
per-image evaluation. This improvement occurs because
averaging predictions across multiple images of the same
duck reduces noise and results in a more stable weight
estimation. Consequently, while individual image predictions
may vary, the aggregated per-duck predictions align more
closely with the actual weights.

TABLE 1.
TRAINING AND VALIDATION DATASETS
Dataset MAE RMSE R?
Train (per-image) 14.841 35.148 0.969
Train (per-duck) 12.618 32.730 0.973
Validation (per-image) 117.754 147.89 0.26
Validation (per-duck) 111.748 140.07 0.319

Overall, the findings underscore both the potential and
limitations of the proposed hand-crafted feature approach.
The model exhibits a strong learning capability on the training
data but experiences reduced generalization in the validation
phase. This suggests a need for further refinement, such as
implementing  stronger regularization in the SVR,
incorporating additional feature augmentation, or integrating

deep feature extractors to complement HOG and HSV
descriptors. Despite these limitations, the achieved validation
MAE of approximately 110 grams demonstrates the
feasibility of using a non-invasive, image-based approach for
estimating duck body weight in practical applications.

Dataset
B Train (per-image)
Train {per-duck)
I Validation (per-image)
I Validation (per-duck)

140

120

100

Value

40

20

RMSE R2
Metric

Figure 3. Comparasion of metrics(train vs validation)

MAE

The performance of the proposed Support Vector
Regression (SVR) model was evaluated by comparing the
predicted weights against the actual recorded weights of
ducks. Figure 4 presents a scatter plot of predicted versus
actual weights on a per-image basis. The majority of points
align closely with the diagonal line, indicating that the model
is capable of capturing the general trend between input
features and body weight. However, some deviations are
observed in the mid- and high-weight ranges, suggesting an
underestimation of heavier ducks and an overestimation of
lighter ducks. This distribution highlights that, while the
model achieves reasonable predictive accuracy overall, there
are specific weight intervals where performance deteriorates
due to limited sample representation or feature overlap.
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To complement this analysis, Figure 5 illustrates the
histogram of actual duck weights (per-duck average) within
the dataset. The histogram reveals that the distribution of
samples is not perfectly uniform, with certain weight
ranges—particularly in the mid-weight region—being more
densely represented. This imbalance in data distribution may
contribute to the higher variance in error observed in the
scatter plot, as the model tends to generalize better in ranges
with a greater amount of training data.
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Figure 5. Actual weight per-duck

Together, these visualizations confirm that the SVR model
demonstrates acceptable predictive capability, with the data
distribution playing a critical role in determining the
robustness and generalization of the predictions across
different weight ranges.

C. Visualization of Results

To provide a clearer understanding of the system’s
performance, this section presents several visualizations—
including scatter plots, histograms, boxplots, and parity
plots—that illustrate both the predictive capability of the SVR
model and the distribution of actual duck weights. The visual
results include scatter plots comparing predicted and actual
values, histograms of weight distributions, and error analysis
across weight ranges. These visualizations not only highlight
the model’s strengths but also reveal patterns of
underestimation and overestimation, thereby offering insights
into the reliability and limitations of the proposed approach.

1. Analysis of Scatter Plot (Predicted vs Actual Weights —
per-duck)

Figure 6 presents a parity plot that illustrates the
relationship between the predicted duck weights and their
actual measured values. Ideally, all points would align along
the dashed diagonal line (y = x), representing perfect
predictions. However, the scatter reveals noticeable
deviations, with several predictions falling above or below the
ideal line, indicating both underestimation and overestimation
across different weight ranges.

The regression line (in orange) indicates the overall trend
of the model’s predictions, with an R? value of approximately
0.396, suggesting a moderate correlation between the
predicted and actual values. While the model successfully
captures some general patterns in weight distribution, the
relatively low R? highlights variability and reduced predictive
precision at the individual duck level. This suggests that,
although the SVR model is effective in estimating general
trends, its accuracy may diminish for specific weight ranges,
particularly at higher weights, where more pronounced
deviations are observed.
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1100 +

Predictions (g}

1000 +

S ——- Ideal y=x
regression (R*=0.396)

960 10‘(!0 11‘00 12‘00 13‘00
Actual Weight (g)

Figure 6. Predicted vs Actual Weights — per-duck

2. Histogram / Density Plot of Prediction Errors (MAE per
duck)

Figure 7 presents a histogram and density plot of prediction
errors (Mean Absolute Error per duck), illustrating the
distribution of absolute errors across the validation set. Most
prediction errors are concentrated within the range of 60 to
100 grams, indicating that the SVR model is generally capable
of producing reasonably accurate estimates. However, there
are several instances of larger errors exceeding 200 grams,
suggesting occasional difficulties in capturing weight
variations for certain ducks. The density curve further
emphasizes the skewed distribution, where the majority of
errors cluster at lower values, with a long tail extending
toward higher errors. This pattern reflects the model’s
reliability in most cases while also highlighting the presence
of outliers that require further refinement in feature extraction
or model calibration to enhance consistency across all weight

ranges.
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Histogram & Density of Prediction Errors (MAE per-duck}
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Figure 7. A histogram and density plot of prediction errors (Mean Absolute
Error per duck)

When the histogram and density plot of prediction errors
(Mean Absolute Error per duck) are compared with the scatter
plot and boxplot analysis, a consistent pattern emerges. The
histogram indicates that most prediction errors are
concentrated in the lower ranges (60 to 100 grams), while the
scatter plot reveals that deviations from the ideal diagonal line
tend to occur more frequently for heavier ducks. Similarly, the
boxplot analysis shows that certain weight ranges,
particularly those around 928 to 1,037 grams, exhibit higher
variability and larger error spreads compared to other ranges.
Taken together, these visualizations highlight that the SVR
model demonstrates stable performance for the majority of
cases but struggles with specific weight intervals, leading to
outliers and increased variance. This suggests that, while the
approach is generally reliable, further refinement in feature
extraction or model tuning could help reduce systematic
errors across different weight ranges.

3. Error Distribution Across Weight Ranges

Figure 8 presents a boxplot of absolute errors across
different weight ranges, providing insights into how the
prediction performance of the SVR model varies with respect
to duck weight categories. The error distribution is relatively
low and consistent for ducks in the 818 to 928 grams and
1,037 to 1,145 grams ranges, indicating stable predictions
with fewer outliers. However, the 928 to 1,037 grams range
exhibits the widest spread and the highest median error,
suggesting that this interval is the most challenging for the
model, characterized by larger variability and potential
misestimations. The 1,145 to 1,254 grams range shows a
concentrated but consistently high error, reflecting a
systematic bias rather than random variance. Meanwhile, the
1,254 to 1,363 grams range demonstrates a moderate spread,
accompanied by some extreme deviations, indicating
occasional underestimation or overestimation.

The higher error in the range of 928-1,037 g can be
attributed to two factors: (1) the number of samples within
this range is smaller compared to other ranges, resulting in
insufficient exposure of the model to variations in body shape,
and (2) visually, ducks at medium weights exhibit uniform

body shapes, making it difficult for the HOG+HSV features
to distinguish weight differences that are only 50-100 g apart.

Boxplot |Error| per Weight Range — per-duck
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Figure 8. Boxplot of absolute prediction errors across different weight
ranges (per-duck)

4. Learning Curve (Training Size vs MAE)

The learning curve depicted in Figure 9 illustrates the
relationship between the amount of training data and the
model's performance, as measured by the Mean Absolute
Error (MAE). It is evident that the MAE for the training data
remains low and relatively stable, ranging from 10 to 15
grams, even as the number of samples increases. This
indicates that the model is able to adapt well to the training
data without encountering significant difficulties.

In contrast, the MAE for the validation data shows a
decreasing trend as the amount of training samples increases.
Initially, the validation MAE is relatively high
(approximately 140 grams), but it decreases to around 120
grams as the sample size approaches 500. This trend suggests
that the addition of training data contributes to improved
model generalization, although a gap between the training and
validation errors still persists.

The substantial gap between the low MAE for training and
the higher MAE for validation also indicates a potential
overfitting issue, wherein the model excels at learning the
training data but has not yet optimized its generalization to
new data. Therefore, employing a larger training dataset,
incorporating additional regularization techniques, or varying

feature selection could help mitigate this gap.
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5. MAE Analysis across Weight Ranges
Figure 10. This bar graph illustrates the distribution of

Mean Absolute Error (MAE) values across each weight bin of

ducks, measured in grams. It is evident that the prediction

errors are not evenly distributed throughout the weight range.

¢ In the weight ranges of 818-928 g and 1037-1145 g, the
MAE is relatively low (approximately 60-75 g),
indicating that the model performs more accurately for
lighter and medium weights.

e Conversely, in the range of 928-1037 g, there is a
significant spike in MAE, exceeding 200 g, which
suggests that the model struggles to make estimations for
this group.

e The weight range of 1145-1254 g also exhibits a
considerably high error (around 130 g), while for the
heavier weight category of 1254-1363 g, the error tends
to decrease, although it remains larger than that of the
lower weight groups.

This pattern indicates that the model's performance is more
stable at extreme weights (both light and heavy), but it is less
optimal for certain medium weight groups. This could be
attributed to an imbalanced data distribution (with a limited
number of samples in some bins) or the visual characteristics
of ducks in this group being more difficult to differentiate by
the HOG+HSV features.

MAE per Weight Range — per duck
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Figure 10. Bar chart of MAE per weight range (per-duck)

D. loT Integration and System Deployment

The trained Support Vector Regression (SVR) model was
integrated into an loT-based monitoring system. Cameras
installed in the duck housing captured images periodically,
which were then processed on a central server. The system
recorded predictions alongside duck ID, weight, and
timestamp into a database. This loT framework enabled real-
time monitoring and allowed farmers to continuously track
weight growth without the need for manual weighing.

E. Baseline Model Comparison

For comparison, three other regression models were
trained: Random Forest Regressor, Multi-Layer Perceptron
(MLP), and XGBoost, using the same input features. The
results indicate that SVR yielded the lowest validation MAE
(~110 g), while Random Forest produced a slightly higher but

more stable MAE in response to data variations. Thus, the
choice of SVR is justified based on its performance on this
dataset.

F. Discussion of Strengths and Limitations

The proposed duck weight estimation system exhibits
several significant strengths. First, the integration of hand-
crafted features (Histogram of Oriented Gradients (HOG) and
HSV histograms) with Support Vector Regression (SVR)
facilitates accurate predictions of duck weights without the
need for costly deep learning models or large-scale datasets.
This approach is computationally efficient and well-suited for
real-world farming environments, where resources may be
constrained. Second, the incorporation of an loT-based
deployment allows for real-time, non-invasive monitoring,
thereby minimizing stress on the animals compared to
traditional manual weighing methods. Additionally, the
system enables farmers to continuously track growth trends,
thereby supporting data-driven decision-making in broiler
duck farming. Furthermore, the application of per-duck
averaging enhances prediction stability by mitigating noise
across multiple image captures of the same animal.

Despite these advantages, several limitations must be
acknowledged. The model demonstrates strong performance
on the training dataset but experiences reduced generalization
when applied to unseen validation data, indicating a potential
risk of overfitting. This suggests that while the system
captures essential visual features, its robustness across diverse
farming conditions may be limited. Moreover, error analysis
indicates that the model encounters particular challenges in
mid-weight ranges, where higher variability and systematic
bias are observed. This issue may be partially attributed to an
imbalanced dataset, which contains fewer samples in certain
weight categories. Another limitation is the reliance on hand-
crafted features, which, although efficient, may not fully
capture complex visual cues when compared to contemporary
deep learning architectures. Lastly, while the 10T framework
enhances practicality, challenges such as network stability,
hardware costs, and system scalability must be addressed
prior to large-scale deployment.

The implementation of the system requires an 10T camera,
local processing devices, and a small server, with a total cost
of approximately IDR 7 million. This value indicates that the
system is relatively economical for small to medium-sized
farms and provides a basis for evaluating the economic
feasibility of adopting Precision Livestock Farming
technology.

To ensure the loT system is secure and reliable, the
implementation of TLS encryption for data transmission and
two-way authentication between the camera and the server is
required. Farmers' personal data is stored in an encrypted
format to prevent unauthorized access.

Compared to manual weighing, which requires capturing
and weighing each animal individually (approximately 1-2
minutes per animal and may induce stress), the proposed
system is capable of automatic image acquisition and weight
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estimation without physical contact in a matter of seconds per
animal. Assuming 100 animals per pen, the time savings can
exceed 60% since the operator does not need to lift and weigh
each individual.

Overall, the proposed system represents a promising
balance between accuracy, efficiency, and practicality. Future
research should focus on expanding the dataset to enhance
generalization, exploring hybrid approaches that combine
hand-crafted and deep features, and addressing infrastructure
challenges to ensure the system's robustness in diverse
farming environments

IVV. CONCLUSION

This study proposes a non-invasive weight estimation
system for ducks that integrates digital image processing,
handcrafted feature extraction, Support Vector Regression
(SVR), and loT-based applications. Experimental results
indicate that the model achieves an acceptable accuracy, with
an average prediction error of approximately 110 g on the
validation set. Distribution plots, boxplots, and learning
curves confirm that while the SVR model captures overall
weight distribution trends, prediction performance varies
across different weight ranges, with medium-weight ducks
exhibiting higher errors. The per-duck averaging strategy
effectively reduces noise and enhances stability compared to
image-based predictions.

The strengths of the proposed system include
computational efficiency, practicality for real-world
agricultural conditions, and the ability to provide real-time
monitoring without causing stress to the animals. However,
limitations such as overfitting on the training data, reduced
accuracy at specific weight intervals, and reliance on
handcrafted features highlight the need for further refinement.

In conclusion, the developed system demonstrates the
feasibility of utilizing image-based regression models for
estimating duck weight and offers a valuable tool for
precision farming. Future work will focus on expanding the
dataset, balancing weight categories, and exploring hybrid
approaches that combine handcrafted features and deep
learning to improve resilience and prediction accuracy across
various farming environments. The proposed system remains
in the prototype stage (proof of concept). Although it
demonstrates the feasibility of non-contact duck weight
estimation with acceptable accuracy, further development is
necessary  before industrial application, including
enhancements in scalability, robustness, and field testing
under diverse environmental conditions.

For large-scale farms (>1000 animals), the system can be
developed with a multi-node architecture, where each
camera-microcontroller node transmits data to a central server
via MQTT.
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