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 The broiler duck farming industry in Indonesia faces challenges in efficiently 

monitoring body weight, as traditional manual weighing methods are labor-

intensive, time-consuming, and stressful for the animals. To address this issue, this 

study aims to develop a non-invasive and automated weight estimation system that 

integrates digital image processing, machine learning, and Internet of Things (IoT) 

technologies. The methodology involves acquiring multi-angle images of ducks, 

applying preprocessing steps such as resizing, normalization, and contrast 

enhancement, and extracting hand-crafted features, including Histogram of Oriented 

Gradients (HOG) and HSV color histograms. These features are then fused, reduced 

via Principal Component Analysis (PCA), and processed using a Support Vector 

Regression (SVR) model with optimized hyperparameters for weight prediction. 
While previous studies have focused on cattle, broilers, or fish, research specifically 

targeting meat-type ducks remains limited, particularly those that combine image-

based regression with IoT-enabled real-time monitoring. Experimental results 

demonstrate that the proposed system achieves a mean absolute error (MAE) of 

approximately 110 grams on the validation set, with per-duck averaging improving 

stability compared to per-image predictions. Visualization through scatter plots, 

boxplots, and learning curves further confirms that the model effectively captures 

general weight distribution trends but exhibits higher errors in certain mid-weight 

ranges. The integration with IoT facilitates continuous, stress-free monitoring of 

duck growth, underscoring the system’s potential as a practical and sustainable 

solution for precision livestock farming. 
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I. INTRODUCTION 

This research focuses on the broiler duck farming industry, 

which holds significant potential for Indonesia's economy. As 

the demand for high-quality duck meat increases, farmers face 

challenges in efficiently monitoring the growth and weight of 

the ducks. Manual weighing is time-consuming, labor-
intensive, and can cause stress to the animals[1]. As a 

solution, technologies such as digital image processing and 

machine learning offer non-invasive and real-time methods 

for weight estimation [2][3]. thereby providing more accurate 

data [4][5][6]. Furthermore, the integration of the Internet of 

Things (IoT) enables centralized sensor data collection to 

support better decision-making [7][8][9][10]. Current 

approaches to animal weight estimation include the use of 

digital image processing to accurately detect patterns and 

body sizes of the animals, the application of machine learning 

techniques such as regression to process visual data for more 

precise weight predictions, and the integration of IoT that 

allows for real-time data collection through sensors in the 

farming environment; all of these technologies are then 

combined into an integrated monitoring system that provides 

accurate and up-to-date information to support farmers' 

decision-making more effectively.  

Research conducted in the past five years addressing image 

detection using image processing, machine learning, and IoT 
integration includes: Study [11] employs Sobel edge detection 

to predict the weight of oil palm fruits from photographs 
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without scales, while study [12] estimates body weight from 

images using the BSA method based on height and 

circumference. Study [13] applies Canny Edge Detection and 

KNN for cattle weight prediction, and study[14] proposes a 

model based on 3D cloud projection and image regression 

using deep learning. Study [15] utilizes Sobel edge detection 

and the Schrool formula to calculate cattle weight from 

images. Study [16] develops a prediction system for fruit 

weight and price using pixel count and regression. Study [17] 
employs CT scan images with deep learning for weight 

estimation without direct measurement. Study [18] employs 

CT scan images with deep learning for weight estimation 

without direct measurement. Study [19] develops an Android-

based system for predicting cattle weight using Canny edge 

detection and the Schrool formula. Study [20] compares seven 

machine learning algorithms (SLR, MLR, RF, SVR, LR, RR, 

EN) for predicting soybean seed weight from RGB visual 

features. Study [21] detects formalin in chicken meat using 

image processing with GLCM and KNN. Study [22] uses 

YOLOv3 and polynomial regression to monitor the growth 
and predict the weight of lettuce plants. Study [23] creates a 

prediction system for the weight and length of fish and 

vegetables in the budikdamber system using computer vision 

and linear regression from image features. 

Research [24] employs sharpening filters and Mask R-

CNN segmentation to extract images of Ongole cattle, which 

are then trained using CNN regression for weight estimation. 

In contrast, research [25] utilizes walk-over (WO) weight data 

from two farms in Queensland, Australia, to train an XGBoost 

model, with inputs including sex, breed (Belmont Red, 

Brahman, Composite, and unknown), simulation duration, 

birth date, and weather conditions, producing daily weight 
predictions as output. Research[26] develops a Deep Learning 

and IoT-based system for the automatic classification and 

real-time monitoring of eight fish species in Bangladesh. 

Research [27] examines the concept and application of IoT in 

Precision Livestock Farming (PLF) to monitor livestock 

behavior, nutrition, estrous cycles, and diseases in real-time. 

Research [28] employs YOLOv5 and image processing to 

detect weighing scales and calculate the harvest weight of rice 

from 709 images. Research [29] develops a method for 

detecting egg-laying activity in ducks using wearable sensors 

and short-time Fourier transform (STFT)-based time-
frequency representation. Research [30] creates a camera-

based broiler chicken weighing method with YOLOv8 

segmentation to reliably predict weight in complex 

environments. 
The objective of this research is to develop a system based 

on image processing, machine learning, and IoT to enhance 

the efficiency of monitoring and managing the weight of 

broiler ducks, thereby supporting modern and sustainable 

farming practices. Most previous studies have focused on 
estimating the body weight of other livestock such as cattle, 

broilers, or fish using image processing, regression, or deep 

learning approaches. However, research specifically targeting 

meat-type ducks remains very limited, particularly those that 

integrate multi-angle image processing, machine learning, 

and IoT into a single automated system. Moreover, existing 

methods often do not address the practical needs of 

Indonesian farming conditions, where efficiency, accuracy, 

and animal welfare (minimizing stress during weighing) are 

critical but underexplored.  

The novelty of this study lies in the development of a non-

invasive body weight estimation system specifically designed 

for meat-type ducks, which have received limited attention 
compared to other livestock. By integrating multi-angle 

digital image processing with machine learning, the proposed 

method enhances prediction accuracy beyond that of 

conventional regression-based approaches. Furthermore, the 

incorporation of Internet of Things (IoT) technology enables 

real-time monitoring and direct accessibility of weight 

estimation results, making the system more efficient and 

practical for farmers. To the best of our knowledge, this is one 

of the first studies to propose an image-based, IoT-enabled 

weight estimation framework for broiler ducks using hand-

crafted features and Support Vector Regression (SVR), 
providing a computationally efficient alternative to data-

intensive deep learning models. 

The objective of this study is to develop a proof-of-concept 

prototype for non-invasive broiler duck weight estimation 

based on image processing, machine learning, and IoT 

integration. The proposed system is designed to validate the 

technical feasibility of the approach under controlled 

conditions rather than to provide a fully industrial-ready 

solution. 

II. METHOD  

This section outlines the methodology adopted in this study 

for developing a non-invasive body weight estimation system 
for broiler ducks. The proposed framework integrates digital 

image processing, machine learning, and Internet of Things 

(IoT) technologies to facilitate accurate, efficient, and real-

time monitoring. The methodology consists of several stages, 

namely: (A) research framework, (B) data acquisition, (C) 

image preprocessing and feature extraction, (D) hand-crafted 

feature extraction with Support Vector Regression (SVR), (E) 

model evaluation, and (F) IoT integration for real-time 

deployment. The developed system represents a prototype-

level implementation, consisting of a measurement chamber, 

IoT-based image acquisition, and SVR-based weight 
estimation. The system is intended for experimental 

validation and performance evaluation in a limited and 

controlled environment. 

A. Research Framework 

The overall research framework was designed to simulate 

a real-world environment for estimating duck weights using 

computer vision and machine learning techniques. The 

process begins with the collection of images of ducks, 

followed by preprocessing and feature extraction. The overall 
research framework is illustrated in Figure 1 and consists of 

six main stages: (A) Research Framework, (B) Data 
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Acquisition, (C) Image Preprocessing and Feature Extraction, 

(D) Hand-Crafted Features and Support Vector Regression 

(SVR), (E) Model Evaluation, and (F) Internet of Things 

(IoT) Integration. 

 

 

Figure 1. Research framework of the proposed method 

B. Data Acquisition 

The image acquisition was conducted in a semi-modern 

closed poultry house (size 60x60x60 cm) with artificial 

lighting of 300–500 lux. The subjects of the study consisted 

of broiler ducks aged 3–8 weeks. Each duck was 

photographed from two angles (top and side) using a 1080p 

camera at a distance of 50 cm. The dataset comprised 678 

annotated images of ducks, each accompanied by ground-

truth weights provided in grams. Each filename contained 

weight information (e.g., itik10_cam1_848gr.jpg). The 
images were captured from multiple angles, specifically top 

and side views, to enhance feature representation. The dataset 

included a range of weight variations from light to heavy 

ducks, ensuring diversity in workload representation. To 

prevent bias and data leakage, the dataset was divided into 

training and validation sets based on duck ID using grouped 

cross-validation. The actual weight was measured using a 

digital scale with an accuracy of ±1 gram. Weighing was 

conducted every two days prior to image acquisition to ensure 

consistency between the labels and the visual conditions. 

The dataset in this study was collected from a single growth 
phase (3–8 weeks), resulting in the model being primarily 

trained during the rapid growth phase. To generalize to 

younger phases (<3 weeks) or to breeders/adults (>8 weeks), 

additional samples and model retraining will be necessary. 

C. Image Preprocessing and Feature Extraction 

Preprocessing was conducted to standardize the image 

input as follows: 
1. Resizing: All images were resized to 192×192 pixels 

to enhance computational efficiency. 

2. Normalization: Pixel intensities were normalized to a 

range of [0, 1]. 

3. Contrast Enhancement: Adaptive histogram 

equalization was utilized to improve local contrast. 

4. Feature Extraction Options: 

 Hand-crafted Features: Histogram of Oriented 

Gradients (HOG) was employed for texture and 

edge representation, along with HSV color 

histograms to capture color distribution. 

 Deep Features: SmallConvNet automatically 
learned hierarchical features from the input 

images. 

D. Hand-Crafted Features and SVR 

For the classical machine learning approach, the following 

steps were implemented: 

1. HOG Features: Gradient magnitudes and orientations 

were computed and aggregated into orientation 

histograms for each cell, which were then normalized 
at the block level. 

2. HSV Color Histograms: Per-channel histograms for 

Hue, Saturation, and Value were concatenated and 

normalized. 

3. Feature Fusion and Standardization: The HOG and 

HSV features were concatenated into a single vector 

and standardized to have a zero mean and unit 

variance. 

4. Dimensionality Reduction (PCA): Principal 

Component Analysis was employed to retain 95% of 

the variance, thereby reducing redundancy and 
computational requirements. 

5. Regression with SVR: A Support Vector Regression 

(SVR) model with a radial basis function (RBF) kernel 

was applied. Hyperparameters CC, γγ, and ϵϵ were 

tuned using grouped cross-validation. Predictions 

were generated at both the image and duck levels by 

averaging the per-duck predictions. 
The architecture of the proposed hand-crafted feature 

extraction and regression approach is illustrated in Figure 2. 

The process begins with preprocessing, followed by the 

extraction of Histogram of Oriented Gradients (HOG) and 

HSV features. These features are then concatenated, and 
dimensionality reduction is performed using Principal 

Component Analysis (PCA), culminating in Support Vector 

Regression (SVR) to estimate the duck's weight. 

The Support Vector Regression (SVR) algorithm with an 

RBF kernel was chosen due to the relatively small size of the 

dataset (678 images from 67 ducks), making a pure deep 
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learning model susceptible to overfitting and requiring higher 

computational resources. SVR is also well-suited to be 

combined with standardized features derived from HOG and 

HSV extraction and is capable of handling the nonlinear 

relationships between visual features and duck weight. 

Alternative models such as Random Forest or XGBoost could 

be used for comparison; however, both tend to produce larger 

models and require additional feature engineering to maintain 

generalization on multi-angle image data. 
 

 

Figure 2. Architecture of the proposed Hand-Crafted Features and SVR 

pipeline for duck weight estimation. 

E. Model Evaluation 

The models were evaluated using standard regression 

metrics: 

1. Mean Absolute Error (MAE): This metric measures 

the average magnitude of errors in grams. 

2. Root Mean Square Error (RMSE): This metric 

penalizes larger deviations from the true values. 

3. Coefficient of Determination (R2): This statistic 

indicates how well the predictions explain the variance 

in the true weights. 

Additionally, an analysis of error distribution (across 
different weight ranges) and parity plots were utilized to 

visualize predictive accuracy. Learning curves were also 

examined to assess the impact of dataset size on model 

performance. Model validation was conducted using Group 

K-Fold Cross-Validation with five folds, where grouping was 

based on duck identity. This approach ensures that all images 

from the same duck are assigned to either the training or 

validation set within a given fold, thereby preventing data 

leakage and providing a more reliable estimation of 

generalization performance, 

F. IoT Integration 

For deployment, the final model was integrated into an 

Internet of Things (IoT) architecture. Images captured by 
cameras installed in duck cages were transmitted to a central 

server or cloud platform. The trained Support Vector 

Regression (SVR) model performed real-time inference to 

estimate duck weights, with the results stored in a database. 

This integration enables farmers to continuously monitor 

weight growth without the need for manual weighing. The 

system can be further enhanced with dashboards and alert 

mechanisms to support decision-making in livestock 

management. The system was tested in offline mode, while 

the IoT integration was tested in a limited capacity to transmit 

prediction results to a local server via a Wi-Fi connection. 

The IoT node not only transmits the weight estimation 
results to the server but also automates the image acquisition 

process through a periodically scheduled camera (e.g., every 

30 minutes). The acquired images will be processed locally or 

sent to the server for estimation, and the results will 

subsequently be stored in a database. 

III. RESULTS AND DISCUSSION 

This section presents the experimental results of the 

proposed duck weight estimation system and provides an in-

depth discussion of the findings. The results encompass the 

performance evaluation of the Support Vector Regression 

(SVR) model using various regression metrics, the 
implementation of the IoT-based monitoring system, and a 

comparative analysis against conventional approaches. The 

discussion highlights the effectiveness, advantages, and 

limitations of the proposed method in facilitating real-time, 

non-invasive monitoring for broiler duck farming. 

A. Experimental Setup and Model Training 

The experimental setup was designed to evaluate the 

effectiveness of the proposed non-invasive weight estimation 

system for ducks. A dataset consisting of 678 images from 67 
ducks, with weights ranging from approximately 600 g to 

1700 g, was utilized. Of the total 678 images (67 individual 

ducks), 80% were used for training and 20% for testing, with 

the division based on duck ID to prevent data leakage between 

sets. The images were pre-processed using techniques such as 

resizing, normalization, and contrast enhancement. 

Handcrafted features were extracted using Histogram of 

Oriented Gradients (HOG) to capture edge and texture 

information, along with HSV color histograms to represent 

brightness and color distribution. The combined features were 

then subjected to dimensionality reduction using Principal 
Component Analysis (PCA), followed by regression 

modeling using Support Vector Regression (SVR) with a 

radial basis function (RBF) kernel. A grouped validation 

strategy was adopted to account for the multi-image-per-duck 
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dataset structure. In each fold, approximately 80% of the duck 

identities were used for training and the remaining 20% for 

validation. 

B. Model Performance Evaluation 

The performance of the proposed duck weight estimation 
system was evaluated using three regression metrics: Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), 

and the coefficient of determination (R²). Table 1 and Figure 

3 summarize the results for both the training and validation 

datasets, considering evaluations on a per-image and per-duck 

basis. 

During the training phase, the model achieved notably low 

error values, with a MAE of 14.84 grams (per image) and 

12.61 grams (per duck), alongside RMSE values of 35.14 

grams and 32.73 grams, respectively. The R² values were 

exceptionally high, ranging from 0.969 to 0.973, indicating 

that the model was able to explain nearly all the variance in 
the training data. These results demonstrate that the Support 

Vector Regression (SVR) model, utilizing Histogram of 

Oriented Gradients (HOG) and Hue-Saturation-Value (HSV) 

features, effectively captured the underlying patterns within 

the training set. 

However, during the validation phase, the model's 

performance decreased significantly. The MAE increased to 

117.75 grams (per image) and 111.74 grams (per duck), while 

the RMSE reached 147.89 grams and 140.07 grams, 

respectively. Similarly, the R² values dropped considerably to 

between 0.26 and 0.32, suggesting that the model could 
explain only about 26% to 32% of the variance in unseen data. 

This discrepancy between training and validation 

performance indicates a potential overfitting issue, whereby 

the model generalizes poorly to new samples. 

It is also noteworthy that the per-duck evaluation 

consistently yielded slightly better results compared to the 

per-image evaluation. This improvement occurs because 

averaging predictions across multiple images of the same 

duck reduces noise and results in a more stable weight 

estimation. Consequently, while individual image predictions 

may vary, the aggregated per-duck predictions align more 
closely with the actual weights. 

 
TABLE 1.  

TRAINING AND VALIDATION DATASETS  

Dataset MAE RMSE R2 

Train (per-image) 14.841 35.148 0.969 

Train (per-duck) 12.618 32.730 0.973 

Validation (per-image) 117.754 147.89 0.26 

Validation (per-duck) 111.748 140.07 0.319 

 

Overall, the findings underscore both the potential and 

limitations of the proposed hand-crafted feature approach. 

The model exhibits a strong learning capability on the training 

data but experiences reduced generalization in the validation 

phase. This suggests a need for further refinement, such as 

implementing stronger regularization in the SVR, 
incorporating additional feature augmentation, or integrating 

deep feature extractors to complement HOG and HSV 

descriptors. Despite these limitations, the achieved validation 

MAE of approximately 110 grams demonstrates the 

feasibility of using a non-invasive, image-based approach for 

estimating duck body weight in practical applications. 

 

 
Figure 3. Comparasion of metrics(train vs validation) 

The performance of the proposed Support Vector 

Regression (SVR) model was evaluated by comparing the 

predicted weights against the actual recorded weights of 

ducks. Figure 4 presents a scatter plot of predicted versus 

actual weights on a per-image basis. The majority of points 

align closely with the diagonal line, indicating that the model 

is capable of capturing the general trend between input 

features and body weight. However, some deviations are 

observed in the mid- and high-weight ranges, suggesting an 
underestimation of heavier ducks and an overestimation of 

lighter ducks. This distribution highlights that, while the 

model achieves reasonable predictive accuracy overall, there 

are specific weight intervals where performance deteriorates 

due to limited sample representation or feature overlap. 

 

 
Figure 4. Per-image: Predicted vs Actual 
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To complement this analysis, Figure 5 illustrates the 

histogram of actual duck weights (per-duck average) within 

the dataset. The histogram reveals that the distribution of 

samples is not perfectly uniform, with certain weight 

ranges—particularly in the mid-weight region—being more 

densely represented. This imbalance in data distribution may 

contribute to the higher variance in error observed in the 

scatter plot, as the model tends to generalize better in ranges 

with a greater amount of training data. 
 

 

Figure 5. Actual weight per-duck 

Together, these visualizations confirm that the SVR model 

demonstrates acceptable predictive capability, with the data 

distribution playing a critical role in determining the 

robustness and generalization of the predictions across 

different weight ranges. 

C. Visualization of Results 

To provide a clearer understanding of the system’s 

performance, this section presents several visualizations—

including scatter plots, histograms, boxplots, and parity 

plots—that illustrate both the predictive capability of the SVR 

model and the distribution of actual duck weights. The visual 

results include scatter plots comparing predicted and actual 

values, histograms of weight distributions, and error analysis 

across weight ranges. These visualizations not only highlight 

the model’s strengths but also reveal patterns of 

underestimation and overestimation, thereby offering insights 

into the reliability and limitations of the proposed approach. 
 

1. Analysis of Scatter Plot (Predicted vs Actual Weights — 

per-duck) 

Figure 6 presents a parity plot that illustrates the 

relationship between the predicted duck weights and their 

actual measured values. Ideally, all points would align along 

the dashed diagonal line (y = x), representing perfect 

predictions. However, the scatter reveals noticeable 

deviations, with several predictions falling above or below the 

ideal line, indicating both underestimation and overestimation 

across different weight ranges.  

The regression line (in orange) indicates the overall trend 

of the model’s predictions, with an R² value of approximately 

0.396, suggesting a moderate correlation between the 

predicted and actual values. While the model successfully 

captures some general patterns in weight distribution, the 

relatively low R² highlights variability and reduced predictive 

precision at the individual duck level. This suggests that, 

although the SVR model is effective in estimating general 

trends, its accuracy may diminish for specific weight ranges, 
particularly at higher weights, where more pronounced 

deviations are observed. 

 

 

Figure 6. Predicted vs Actual Weights — per-duck 

2. Histogram / Density Plot of Prediction Errors (MAE per 

duck) 

Figure 7 presents a histogram and density plot of prediction 

errors (Mean Absolute Error per duck), illustrating the 
distribution of absolute errors across the validation set. Most 

prediction errors are concentrated within the range of 60 to 

100 grams, indicating that the SVR model is generally capable 

of producing reasonably accurate estimates. However, there 

are several instances of larger errors exceeding 200 grams, 

suggesting occasional difficulties in capturing weight 

variations for certain ducks. The density curve further 

emphasizes the skewed distribution, where the majority of 

errors cluster at lower values, with a long tail extending 

toward higher errors. This pattern reflects the model’s 

reliability in most cases while also highlighting the presence 
of outliers that require further refinement in feature extraction 

or model calibration to enhance consistency across all weight 

ranges. 
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Figure 7. A histogram and density plot of prediction errors (Mean Absolute 

Error per duck) 

When the histogram and density plot of prediction errors 

(Mean Absolute Error per duck) are compared with the scatter 

plot and boxplot analysis, a consistent pattern emerges. The 

histogram indicates that most prediction errors are 

concentrated in the lower ranges (60 to 100 grams), while the 

scatter plot reveals that deviations from the ideal diagonal line 

tend to occur more frequently for heavier ducks. Similarly, the 

boxplot analysis shows that certain weight ranges, 

particularly those around 928 to 1,037 grams, exhibit higher 

variability and larger error spreads compared to other ranges. 
Taken together, these visualizations highlight that the SVR 

model demonstrates stable performance for the majority of 

cases but struggles with specific weight intervals, leading to 

outliers and increased variance. This suggests that, while the 

approach is generally reliable, further refinement in feature 

extraction or model tuning could help reduce systematic 

errors across different weight ranges. 

 

3. Error Distribution Across Weight Ranges 

Figure 8 presents a boxplot of absolute errors across 

different weight ranges, providing insights into how the 
prediction performance of the SVR model varies with respect 

to duck weight categories. The error distribution is relatively 

low and consistent for ducks in the 818 to 928 grams and 

1,037 to 1,145 grams ranges, indicating stable predictions 

with fewer outliers. However, the 928 to 1,037 grams range 

exhibits the widest spread and the highest median error, 

suggesting that this interval is the most challenging for the 

model, characterized by larger variability and potential 

misestimations. The 1,145 to 1,254 grams range shows a 

concentrated but consistently high error, reflecting a 

systematic bias rather than random variance. Meanwhile, the 

1,254 to 1,363 grams range demonstrates a moderate spread, 
accompanied by some extreme deviations, indicating 

occasional underestimation or overestimation. 

The higher error in the range of 928–1,037 g can be 

attributed to two factors: (1) the number of samples within 

this range is smaller compared to other ranges, resulting in 

insufficient exposure of the model to variations in body shape, 

and (2) visually, ducks at medium weights exhibit uniform 

body shapes, making it difficult for the HOG+HSV features 

to distinguish weight differences that are only 50–100 g apart. 

 
Figure 8. Boxplot of absolute prediction errors across different weight 

ranges (per-duck) 

4. Learning Curve (Training Size vs MAE) 

The learning curve depicted in Figure 9 illustrates the 

relationship between the amount of training data and the 

model's performance, as measured by the Mean Absolute 

Error (MAE). It is evident that the MAE for the training data 

remains low and relatively stable, ranging from 10 to 15 

grams, even as the number of samples increases. This 

indicates that the model is able to adapt well to the training 
data without encountering significant difficulties. 

In contrast, the MAE for the validation data shows a 

decreasing trend as the amount of training samples increases. 

Initially, the validation MAE is relatively high 

(approximately 140 grams), but it decreases to around 120 

grams as the sample size approaches 500. This trend suggests 

that the addition of training data contributes to improved 

model generalization, although a gap between the training and 

validation errors still persists. 

The substantial gap between the low MAE for training and 

the higher MAE for validation also indicates a potential 
overfitting issue, wherein the model excels at learning the 

training data but has not yet optimized its generalization to 

new data. Therefore, employing a larger training dataset, 

incorporating additional regularization techniques, or varying 

feature selection could help mitigate this gap. 

 
Figure 9. Learning Curve of Training and Validation MAE using 

GroupKFold (5-fold) 
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5. MAE Analysis across Weight Ranges 

Figure 10. This bar graph illustrates the distribution of 

Mean Absolute Error (MAE) values across each weight bin of 

ducks, measured in grams. It is evident that the prediction 

errors are not evenly distributed throughout the weight range. 

 In the weight ranges of 818–928 g and 1037–1145 g, the 

MAE is relatively low (approximately 60–75 g), 

indicating that the model performs more accurately for 

lighter and medium weights. 

 Conversely, in the range of 928–1037 g, there is a 

significant spike in MAE, exceeding 200 g, which 

suggests that the model struggles to make estimations for 

this group. 

 The weight range of 1145–1254 g also exhibits a 

considerably high error (around 130 g), while for the 

heavier weight category of 1254–1363 g, the error tends 

to decrease, although it remains larger than that of the 

lower weight groups. 

This pattern indicates that the model's performance is more 

stable at extreme weights (both light and heavy), but it is less 
optimal for certain medium weight groups. This could be 

attributed to an imbalanced data distribution (with a limited 

number of samples in some bins) or the visual characteristics 

of ducks in this group being more difficult to differentiate by 

the HOG+HSV features. 

 

Figure 10. Bar chart of MAE per weight range (per-duck) 

D. IoT Integration and System Deployment 

The trained Support Vector Regression (SVR) model was 
integrated into an IoT-based monitoring system. Cameras 

installed in the duck housing captured images periodically, 

which were then processed on a central server. The system 

recorded predictions alongside duck ID, weight, and 

timestamp into a database. This IoT framework enabled real-

time monitoring and allowed farmers to continuously track 

weight growth without the need for manual weighing. 

 

E. Baseline Model Comparison 

For comparison, three other regression models were 

trained: Random Forest Regressor, Multi-Layer Perceptron 

(MLP), and XGBoost, using the same input features. The 

results indicate that SVR yielded the lowest validation MAE 

(~110 g), while Random Forest produced a slightly higher but 

more stable MAE in response to data variations. Thus, the 

choice of SVR is justified based on its performance on this 

dataset. 

F. Discussion of Strengths and Limitations 

The proposed duck weight estimation system exhibits 

several significant strengths. First, the integration of hand-
crafted features (Histogram of Oriented Gradients (HOG) and 

HSV histograms) with Support Vector Regression (SVR) 

facilitates accurate predictions of duck weights without the 

need for costly deep learning models or large-scale datasets. 

This approach is computationally efficient and well-suited for 

real-world farming environments, where resources may be 

constrained. Second, the incorporation of an IoT-based 

deployment allows for real-time, non-invasive monitoring, 

thereby minimizing stress on the animals compared to 

traditional manual weighing methods. Additionally, the 

system enables farmers to continuously track growth trends, 
thereby supporting data-driven decision-making in broiler 

duck farming. Furthermore, the application of per-duck 

averaging enhances prediction stability by mitigating noise 

across multiple image captures of the same animal. 

Despite these advantages, several limitations must be 

acknowledged. The model demonstrates strong performance 

on the training dataset but experiences reduced generalization 

when applied to unseen validation data, indicating a potential 

risk of overfitting. This suggests that while the system 

captures essential visual features, its robustness across diverse 

farming conditions may be limited. Moreover, error analysis 

indicates that the model encounters particular challenges in 
mid-weight ranges, where higher variability and systematic 

bias are observed. This issue may be partially attributed to an 

imbalanced dataset, which contains fewer samples in certain 

weight categories. Another limitation is the reliance on hand-

crafted features, which, although efficient, may not fully 

capture complex visual cues when compared to contemporary 

deep learning architectures. Lastly, while the IoT framework 

enhances practicality, challenges such as network stability, 

hardware costs, and system scalability must be addressed 

prior to large-scale deployment.  

The implementation of the system requires an IoT camera, 
local processing devices, and a small server, with a total cost 

of approximately IDR 7 million. This value indicates that the 

system is relatively economical for small to medium-sized 

farms and provides a basis for evaluating the economic 

feasibility of adopting Precision Livestock Farming 

technology.  

To ensure the IoT system is secure and reliable, the 

implementation of TLS encryption for data transmission and 

two-way authentication between the camera and the server is 

required. Farmers' personal data is stored in an encrypted 

format to prevent unauthorized access. 

Compared to manual weighing, which requires capturing 
and weighing each animal individually (approximately 1–2 

minutes per animal and may induce stress), the proposed 

system is capable of automatic image acquisition and weight 
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estimation without physical contact in a matter of seconds per 

animal. Assuming 100 animals per pen, the time savings can 

exceed 60% since the operator does not need to lift and weigh 

each individual. 

Overall, the proposed system represents a promising 

balance between accuracy, efficiency, and practicality. Future 

research should focus on expanding the dataset to enhance 

generalization, exploring hybrid approaches that combine 
hand-crafted and deep features, and addressing infrastructure 

challenges to ensure the system's robustness in diverse 

farming environments 
 

IV. CONCLUSION 

This study proposes a non-invasive weight estimation 

system for ducks that integrates digital image processing, 

handcrafted feature extraction, Support Vector Regression 

(SVR), and IoT-based applications. Experimental results 

indicate that the model achieves an acceptable accuracy, with 

an average prediction error of approximately 110 g on the 
validation set. Distribution plots, boxplots, and learning 

curves confirm that while the SVR model captures overall 

weight distribution trends, prediction performance varies 

across different weight ranges, with medium-weight ducks 

exhibiting higher errors. The per-duck averaging strategy 

effectively reduces noise and enhances stability compared to 

image-based predictions. 

The strengths of the proposed system include 

computational efficiency, practicality for real-world 

agricultural conditions, and the ability to provide real-time 

monitoring without causing stress to the animals. However, 

limitations such as overfitting on the training data, reduced 
accuracy at specific weight intervals, and reliance on 

handcrafted features highlight the need for further refinement. 

In conclusion, the developed system demonstrates the 

feasibility of utilizing image-based regression models for 

estimating duck weight and offers a valuable tool for 

precision farming. Future work will focus on expanding the 

dataset, balancing weight categories, and exploring hybrid 

approaches that combine handcrafted features and deep 

learning to improve resilience and prediction accuracy across 

various farming environments. The proposed system remains 

in the prototype stage (proof of concept). Although it 
demonstrates the feasibility of non-contact duck weight 

estimation with acceptable accuracy, further development is 

necessary before industrial application, including 

enhancements in scalability, robustness, and field testing 

under diverse environmental conditions. 

For large-scale farms (≥1000 animals), the system can be 

developed with a multi-node architecture, where each 

camera-microcontroller node transmits data to a central server 

via MQTT. 

 

 

 

ACKNOWLEDGMENTS 

This research received a research grant from the Ministry 
of Research, Technology, and Higher Education (Ristekdikti) 

of the Republic of Indonesia, under contract number  

NOMOR: 020/PTM/LPPM.UAD/VI/2025.  

 

REFERENCES 

[1] Y. Zhao et al., “Review on image-based animals weight weighing,” 

Comput. Electron. Agric., vol. 215, no. July, p. 108456, 2023, doi: 

10.1016/j.compag.2023.108456. 

[2] G. Gebreyesus, V. Milkevych, J. Lassen, and G. Sahana, 

“Supervised learning techniques for dairy cattle body weight 

prediction from 3D digital images,” Front. Genet., vol. 13, no. 

January, pp. 1–15, 2023, doi: 10.3389/fgene.2022.947176. 

[3] M. R. H. Hossain, R. Islam, S. R. McGrath, M. Z. Islam, and D. 

Lamb, “Learning-based estimation of cattle weight gain and its 

influencing factors,” Comput. Electron. Agric., vol. 231, no. 

January, p. 110033, 2025, doi: 10.1016/j.compag.2025.110033. 

[4] R. J. Garro, C. S. Wilson, D. L. Swain, A. J. Pordomingo, and S. 

Wibowo, “A systematic literature review on the applications of 

federated learning and enabling technologies for livestock 

management,” Comput. Electron. Agric., vol. 234, no. March, p. 

110180, 2025, doi: 10.1016/j.compag.2025.110180. 

[5] E. Samperio, I. Lidón, R. Rebollar, M. Castejón-Limas, and C. 

Álvarez-Aparicio, “Lambs’ live weight estimation using 3D 

images,” Animal, vol. 15, no. 5, p. 100212, 2021, doi: 

10.1016/j.animal.2021.100212. 

[6] H. Zhang, Y. Zhang, K. Niu, and Z. He, “Neural network-based 

method for contactless estimation of carcass weight from live beef 

images,” Comput. Electron. Agric., vol. 229, no. December 2024, 

p. 109830, 2025, doi: 10.1016/j.compag.2024.109830. 

[7] N. Selvamuthukumaran, E. S. J, K. B. Thriambika, and V. B. B, 

“Intelligent Animal Detection System Using IOT And Deep 

Learning,” no. 04, pp. 2433–2438, 2021. 

[8] S. A. Siddiqui, A. Ahmad, and N. Fatima, “IoT-based disease 

prediction using machine learning,” Comput. Electr. Eng., vol. 108, 

no. March, p. 108675, 2023, doi: 

10.1016/j.compeleceng.2023.108675. 

[9] T. Kushartadi, M. A. Laagu, and M. Asvial, “Design and 

Implementation of The Smart Weighing Precision Livestock 

Monitoring Technology based on the Internet of Things (IoT),” Int. 

J. Adv. Sci. Eng. Inf. Technol., vol. 13, no. 4, pp. 1438–1448, 2023, 

doi: 10.18517/ijaseit.13.4.18557. 

[10] M. R. Bhuiyan and P. Wree, “Animal Behavior for Chicken 

Identification and Monitoring the Health Condition Using 

Computer Vision: A Systematic Review,” IEEE Access, vol. 11, 

no. October, pp. 126601–126610, 2023, doi: 

10.1109/ACCESS.2023.3331092. 

[11] Ardi Wijaya, B. R. Daryono, Rozali Toyib, and Yovi Apridiansyah, 

“Analisis Pengenalan Pola Pada Citra Digital Untuk Prediksi Berat 

Buah Sawit,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 3, pp. 

713–724, 2024, doi: 10.51454/decode.v4i3.481. 

[12] Sten Dofanky Mooy, Andrew Delfistian Dethan, and Yampi R 

Kaesmetan, “Identifikasi Berat Badan Berdasarkan Citra Foto 

Menggunakan Metode Body Surface Area,” SABER  J. Tek. 

Inform. Sains dan Ilmu Komun., vol. 2, no. 3, pp. 89–99, 2024, doi: 

10.59841/saber.v2i3.1332. 

[13] I. Supiyani, J. Haerul, and T. N. Padilah, “Pengolahan Citra Digital 

Prediksi Bobot Sapi Menggunakan Ekstraksi Fitur Canny Dan 

Klasifikasi K-Nearest Neighbor,” Nusant. J. Ilmu …, vol. 8, no. 7, 

pp. 2204–2212, 2021. 

[14] A. Ruchay, V. Kober, K. Dorofeev, V. Kolpakov, A. Gladkov, and 

H. Guo, “Live Weight Prediction of Cattle Based on Deep 

Regression of RGB-D Images,” Agric., vol. 12, no. 11, 2022, doi: 

10.3390/agriculture12111794. 

[15] D. Asahar Johar, “Pengolahan Citra Digital Untuk Penentuan 

Bobot Sapi Menggunakan Metode Sobel,” J. Sist. Informasi, 



               e-ISSN: 2548-6861  

JAIC Vol. 10, No. 1, February 2026:  23 – 32 

32 

Teknol. Informasi, dan Komput., vol. 12, no. 2, pp. 16–26, 2022. 

[16] R. Mahdaliza and B. Sugandi, “Prediksi Berat dan Harga Buah 

Mengunakan Sensor Visual,” J. Integr., vol. 13, no. 1, pp. 10–14, 

2021, doi: 10.30871/ji.v13i1.2916. 

[17] R. Firmasnyah, “Prototype Alat Pengukur Berat Badan Berbasis 

Computer Vision Dengan Menggunakan Regresi Linier,” 2023. 

[18] S. Ichikawa, M. Hamada, and H. Sugimori, “A deep-learning 

method using computed tomography scout images for estimating 

patient body weight,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 

10.1038/s41598-021-95170-9. 

[19] V. Y. Mahendra, A. A. Riadi, and E. Evanita, “Aplikasi Pengolahan 

Citra Digital Menentukan Bobot Sapi Dengan Metode Titik Berat 

Berbasis Android,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., 

vol. 7, no. 1, p. 88, 2022, doi: 10.30645/jurasik.v7i1.419. 

[20] N. T. Duc et al., “Image-based phenotyping of seed architectural 

traits and prediction of seed weight using machine learning models 

in soybean,” Front. Plant Sci., vol. 14, no. September, pp. 1–15, 

2023, doi: 10.3389/fpls.2023.1206357. 

[21] L. Nabila, E. Suffa, U. Lestari, and E. Susanti, “Identifikasi Citra 

Daging Ayam Berformalin Menggunakan Metode Grey Level Co-

Occurrence Matrix (Glcm) Dan K-Nearest Neighbor (Knn),” J. 

Scr., vol. 9, no. 2, pp. 133–141, 2021. 

[22] F. Haikal, E. S. J. Atmadji, S. Kautsar, and N. S. Wibowo, “Sistem 

Monitoring Berat Tanaman Pada Farmbot Dengan Citra Digital 

Menggunakan Metode YOLO dan Regresi Polinomial,” J. Ilm. 

Inov., vol. 24, no. 2, pp. 122–126, 2024. 

[23] H. Fitriyah, “Pengukuran Panjang-Berat Ikan dan Sayuran pada 

Budikdamber (Budi Daya Ikan dalam Ember) Menggunakan Visi 

Komputer dan Regresi Linier,” J. SISKOM-KB (Sistem Komput. 

dan Kecerdasan Buatan), vol. 4, no. 1, pp. 8–14, 2020, doi: 

10.47970/siskom-kb.v4i1.166. 

[24] S. F. Gumelar, “xiv ABSTRACT Cow Weight Estimation Using 

Convolutional Neural Network and Regression Method,” pp. 5–6, 

2021. 

[25] T. R. Awasthi, A. Morshed, and D. L. Swain, “A machine learning 

approach to simulate cattle growth at pasture using remotely 

collected walk-over weights,” Agric. Syst., vol. 226, no. March, p. 

104332, 2025, doi: 10.1016/j.agsy.2025.104332. 

[26] M. A. Ahmed, M. S. Hossain, W. Rahman, A. H. Uddin, and M. T. 

Islam, “An advanced Bangladeshi local fish classification system 

based on the combination of deep learning and the internet of things 

(IoT),” J. Agric. Food Res., vol. 14, no. February, p. 100663, 2023, 

doi: 10.1016/j.jafr.2023.100663. 

[27] Z. B. Ozger, P. Cihan, and E. Gokce, “A systematic review of IoT 

technology and applications in animals,” Kafkas Univ. Vet. Fak. 

Derg., vol. 30, no. 4, pp. 411–431, 2024, doi: 

10.9775/kvfd.2024.31866. 

[28] A. C. Tran, T. T. T. Kim, and H. T. Nguyen, “An Image-Based 

Rice Weighing Estimation Approach on Clock Type Weighing 

Scale Using Deep Learning and Geometric Transformations,” Adv. 

Technol. Innov., vol. 8, no. 2, pp. 100–110, 2023, doi: 

10.46604/aiti.2023.10926. 

[29] S. Lv et al., “JTF-SqueezeNet: A SqueezeNet network based on 

joint time-frequency data representation for egg-laying detection in 

individually caged ducks,” Poult. Sci., vol. 104, no. 2, p. 104782, 

2025, doi: 10.1016/j.psj.2025.104782. 

[30] M. Y. Shams et al., “Automated on-site broiler live weight 

estimation through YOLO-based segmentation,” Smart Agric. 

Technol., vol. 10, no. December 2024, p. 100828, 2025, doi: 

10.1016/j.atech.2025.100828. 

 


